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“The best theory is inspired by practice.
The best practice is inspired by theory.”
— Donald Knuth

Optimization is central to machine learning (ML), which in turn forms the foun-
dation of artificial intelligence (AI). From training deep neural networks to fine-
tuning Large Language Models, almost every advancement in Al relies on solving
some form of optimization problem. While classical methods based on empirical
risk minimization (ERM) have powered much of early progress in ML, they are no
longer sufficient to address the growing complexity of today’s Al challenges. This
book aims to bridge that gap by offering a systematic treatment of the emerging op-
timization paradigm known as compeositional optimization and its applications in
modern Al. Many critical optimization problems in ML now exhibit intricate com-
positional structures as f(g) or .7, fi(g:) that go beyond traditional frameworks,
where both f and g are non-linear functions and potentially non-convex, extend-
ing beyond the scope of traditional optimization paradigms. However, most existing
texts remain focused on classical stochastic optimization and ERM, overlooking the
depth and diversity of these newer challenges.

Motivation of writing the book

Optimization once held a central spotlight at leading ML venues such as NeurIPS
and ICML. In recent years, however, the field has seen an influx of new topics in Al,
capturing the interest of students and early-career researchers. While attention has
increasingly shifted toward foundation models and AGI, the importance and impact
of optimization remain as vital as ever.

As someone working at the intersection of optimization and machine learning, I
feel a dual responsibility. First, to bring cutting-edge optimization techniques to the



broader ML/AI community. When I speak with researchers in ML/AI and mention
my focus on optimization for machine learning, I am often met with questions like,
“What problems are you working on?” or “Are these theories truly useful, given that
they rely on assumptions that may not be easily verified in practice?” Some even re-
marked that optimization’s only practical contribution to Al is the Adam algorithm.
This reflects a common misconception that optimization in ML is limited to training
algorithms like SGD or Adam, which is far from the truth. Second, I feel a responsi-
bility to encourage researchers in mathematical optimization to engage more deeply
with the challenges of modern Al. Many researchers in traditional optimization are
eager to contribute, but the rapid pace of Al along with the constant influx of new
models and terminology can make it difficult to identify core problems where opti-
mization insights are most needed. Working at this intersection gives me a unique
perspective: recognizing fundamental challenges in modern Al, such as the training
of large foundation models, and abstracting them into rigorous mathematical frame-
works where optimization methods can offer meaningful solutions. I hope this book
contributes to bridging the gap between the Al and optimization communities and
inspires new collaborations across these fields.

At first glance, the focus on compositional optimization in this book may seem
narrow, but it is deeply connected to fundamental learning and optimization princi-
ples including discriminative learning and robust optimization, and has broad appli-
cability across ML and modern Al, which will be shown in this book. In particular,
this book introduces a new family of risk functions termed X-risks, in which the loss
function of each data involves comparison with many others. We formulate empirical
X-risk minimization as finite-sum coupled compositional optimization (FCCO) - a
new family of compositional optimization. After five years of intensive research on
this subject, we have explored different aspects of FCCO, from upper bounds to lower
bounds, from smooth objectives to non-smooth objectives, from convex problems to
non-convex problems, and from theoretical complexity analysis to applications in
training large foundation models. While significant progress has been made, many
open questions remain. Nevertheless, we believe it is time to share this advanced
body of knowledge with the broader community in the form of a comprehensive
book.

Structure of the book

This book is crafted to engage both theory-oriented and practice-driven audiences. It
presents rigorous theoretical analysis with deep insights, complemented by practical
implementation tips, Github code repositories, and empirical evidence—effectively
bridging the gap between theory and application. It is intended for graduate students,
applied researchers, and anyone interested in the intersection of optimization and
machine learning. The readers are assumed to have some basic knowledge in ML.
The materials in this book have been used in my graduate-level course on stochastic
optimization for ML.
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Fig. 0.1: Structure of the Book Chapters. Dashed lines indicate motivation. The red
solid lines indicate application. Other solid lines indicate dependency.

The book is organized as follows. Chapter 1 reviews the fundamentals of convex
optimization essential for the material presented in this book. Chapter 2 introduces
advanced learning methods that go beyond traditional ERM framework so as to mo-
tivate compositional optimization. Chapter 3 presents classical stochastic optimiza-
tion algorithms and their complexity analysis in both convex and non-convex set-
tings. Chapter 4 delves into stochastic compositional optimization (SCO) problems
with algorithms and complexity analysis. Chapter 5 explores algorithms and analy-
sis for solving FCCO problems. Chapter 6 presents applications of SCO and FCCO
in supervised and self-supervised learning for training predictive models, genera-
tive models, and representation models. Chapter 5 and 6 are largely devoted to the
original research conducted by the author and his team. The dependencies and flow
among the chapters are illustrated in Figure 0.1. Practitioners may focus on Chapter 2
and Chapter 6. For theory-oriented audiences who are interested in ML applications,
I strongly recommend reading Chapter 2 and Chapter 6 as well.
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