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“The best theory is inspired by practice.
The best practice is inspired by theory.”
— Donald Knuth

Optimization is central to machine learning (ML), which in turn forms the foun-
dation of artificial intelligence (AI). From training deep neural networks to fine-
tuning Large Language Models, almost every advancement in Al relies on solving
some form of optimization problem. While classical methods based on empirical
risk minimization (ERM) have powered much of early progress in ML, they are no
longer sufficient to address the growing complexity of today’s Al challenges. This
book aims to bridge that gap by offering a systematic treatment of the emerging op-
timization paradigm known as compeositional optimization and its applications in
modern Al. Many critical optimization problems in ML now exhibit intricate com-
positional structures as f(g) or .7, fi(g:) that go beyond traditional frameworks,
where both f and g are non-linear functions and potentially non-convex, extend-
ing beyond the scope of traditional optimization paradigms. However, most existing
texts remain focused on classical stochastic optimization and ERM, overlooking the
depth and diversity of these newer challenges.

Motivation of writing the book

Optimization once held a central spotlight at leading ML venues such as NeurIPS
and ICML. In recent years, however, the field has seen an influx of new topics in Al,
capturing the interest of students and early-career researchers. While attention has
increasingly shifted toward foundation models and AGI, the importance and impact
of optimization remain as vital as ever.

As someone working at the intersection of optimization and machine learning, I
feel a dual responsibility. First, to bring cutting-edge optimization techniques to the



broader ML/AI community. When I speak with researchers in ML/AI and mention
my focus on optimization for machine learning, I am often met with questions like,
“What problems are you working on?” or “Are these theories truly useful, given that
they rely on assumptions that may not be easily verified in practice?” Some even re-
marked that optimization’s only practical contribution to Al is the Adam algorithm.
This reflects a common misconception that optimization in ML is limited to training
algorithms like SGD or Adam, which is far from the truth. Second, I feel a responsi-
bility to encourage researchers in mathematical optimization to engage more deeply
with the challenges of modern Al. Many researchers in traditional optimization are
eager to contribute, but the rapid pace of Al along with the constant influx of new
models and terminology can make it difficult to identify core problems where opti-
mization insights are most needed. Working at this intersection gives me a unique
perspective: recognizing fundamental challenges in modern Al, such as the training
of large foundation models, and abstracting them into rigorous mathematical frame-
works where optimization methods can offer meaningful solutions. I hope this book
contributes to bridging the gap between the Al and optimization communities and
inspires new collaborations across these fields.

At first glance, the focus on compositional optimization in this book may seem
narrow, but it is deeply connected to fundamental learning and optimization princi-
ples including discriminative learning and robust optimization, and has broad appli-
cability across ML and modern Al, which will be shown in this book. In particular,
this book introduces a new family of risk functions termed X-risks, in which the loss
function of each data involves comparison with many others. We formulate empirical
X-risk minimization as finite-sum coupled compositional optimization (FCCO) - a
new family of compositional optimization. After five years of intensive research on
this subject, we have explored different aspects of FCCO, from upper bounds to lower
bounds, from smooth objectives to non-smooth objectives, from convex problems to
non-convex problems, and from theoretical complexity analysis to applications in
training large foundation models. While significant progress has been made, many
open questions remain. Nevertheless, we believe it is time to share this advanced
body of knowledge with the broader community in the form of a comprehensive
book.

Structure of the book

This book is crafted to engage both theory-oriented and practice-driven audiences. It
presents rigorous theoretical analysis with deep insights, complemented by practical
implementation tips, Github code repositories, and empirical evidence—effectively
bridging the gap between theory and application. It is intended for graduate students,
applied researchers, and anyone interested in the intersection of optimization and
machine learning. The readers are assumed to have some basic knowledge in ML.
The materials in this book have been used in my graduate-level course on stochastic
optimization for ML.
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Fig. 0.1: Structure of the Book Chapters. Dashed lines indicate motivation. The red
solid lines indicate application. Other solid lines indicate dependency.

The book is organized as follows. Chapter 1 reviews the fundamentals of convex
optimization essential for the material presented in this book. Chapter 2 introduces
advanced learning methods that go beyond traditional ERM framework so as to mo-
tivate compositional optimization. Chapter 3 presents classical stochastic optimiza-
tion algorithms and their complexity analysis in both convex and non-convex set-
tings. Chapter 4 delves into stochastic compositional optimization (SCO) problems
with algorithms and complexity analysis. Chapter 5 explores algorithms and analy-
sis for solving FCCO problems. Chapter 6 presents applications of SCO and FCCO
in supervised and self-supervised learning for training predictive models, genera-
tive models, and representation models. Chapter 5 and 6 are largely devoted to the
original research conducted by the author and his team. The dependencies and flow
among the chapters are illustrated in Figure 0.1. Practitioners may focus on Chapter 2
and Chapter 6. For theory-oriented audiences who are interested in ML applications,
I strongly recommend reading Chapter 2 and Chapter 6 as well.
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Chapter 1
Basics: Convex Optimization

Abstract This chapter provides a concise introduction to foundational concepts in
convex optimization, including convex sets and functions, Fenchel conjugates, La-
grangian duality, and the Karush-Kuhn-Tucker (KKT) conditions. Definitions are
accompanied by illustrative examples to build intuition and support practical under-
standing. While convex optimization is a rich and expansive subject that merits its
own dedicated volume, our focus is intentionally selective. We present only the es-
sential tools and results that the author considers most relevant for understanding and
analyzing optimization problems encountered in later chapters. The goal is to equip
readers with a practical yet rigorous foundation, enabling them to appreciate the the-
oretical underpinnings of algorithm design and analysis in subsequent chapters.

Convex Optimization is the foundation of foundations!
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1.1. NOTATIONS AND DEFINITIONS

1.1 Notations and Definitions

This book uses the following notations.

Let us denote by || - || the Euclidean norm, and by || - || a general norm.

For a differentiable function f, let V f(x) denote its gradient at x, and d f(x)
denote its subdifferential set at x.

Let 01 f(w,u) and 0, f (w, u) denote the partial subgradients of f with respect to
the first variable w and the second variable u, respectively.

Define the d-dimensional probability simplex as

d
Ad={xeRd:x,~zovl’,2x,~=1}.

i=1

Let I(-) denote the standard indicator function, which returns 1 if the input con-
dition is true and 0 otherwise. Let [y_ () denote the zero-infinity indicator func-
tion, which returns 0 if the input condition is true and co otherwise.

Denote by 1 a vector of all ones. Let e; denote the standard basis vector with a 1
in the i-th coordinate and 0 in all other entries.

Let x ~ P denote a random variable that follows a distribution P.

[n] denotes the set of all integers from 1 to n, i.e., [n] = {1,...,n}.

We use (x, y) interchangeable with x "y to denote the inner product of two vectors.
log(x) is in the base of natural constant e.

w.r.t is short for with respect to.

s.t. is short for subject to.

Definition 1.1 (Dual Norm) Let || - || be a norm on R¢, then its dual norm || - || :
R? — R is defined as

llylls =sup{x"y : [Ix|| < 1}.

Examples

Example 1.1. || - ||5 is the dual norm of itself as X"y < ||x]|2||yll2.
Example 1.2. || - || and || - ||1 are dual norms of each other as X'y <
X111y lleo-

Example 1.3. Let ||x||4 = VXTAX, where A > 0 is a positive definite ma-
trix. Then ||y|l. = \YTA~ly. This is because that X"y = x' A/2A~1%y <
AT 2x||2[[ A= 2y ]2 < A2y,

Definition 1.2 (Convex set) A set C is convex if the line segment between any two
points in C lies in C, i.e. Vx|, X3 € C,V60 € [0, 1],

0x; + (1 - 6)x, € C.



Definition 1.3 (Convex function) A function f(-) : R? — R is convex if its domain
dom( f) is convex and

f(Ox+(1-0)y) <0f(x)+(1-0)f(y),Vx,y € dom(f),8 € [0, 1].

It is strictly convex if strict inequality holds whenever x # y and 6 € (0, 1).

This inequality implies that the graph of a convex function lies below the straight
line connecting any two points on the graph—like a bowl: if you place a chopstick
across its edges, it will stay above the surface of the bowl.

Lemma 1.1 (First-order condition) Suppose f is differentiable (i.e., its gradient
Vf exists at each point in dom f). Then f is convex if and only if dom f is convex
and

f@ 2 f®)+Vf(X)"(y-x) (1.1)
holds for all X,y € dom f.

Proof. We first prove for one-dimensional convex function ¢(-) : R — R, we have
$(1) > ¢(s) +¢'(s)( = 5). (1.2)
According to the definition of convexity, we have

B(s +a(t =) - d(s)

a

¢(1) = ¢(s) +

Taking the limit @ — 0 yields (1.2).
(=) Assume f is convex and differentiable on the open convex set dom f. Fix
x € dom f and any y € dom f. Define ¢ : [0, 1] — R by

#(1) = f(x+1(y —x)).

Since f is convex and the map ¢ — x + t(y — x) is affine, ¢ is a convex function on
[0, 1]. For a convex (one-dimensional) differentiable function, we have proved that

¢(1) 2 ¢(0) +¢'(0)(1 - 0).
By the chain rule,
¢’'(0) = Vf(x) " (y - x).
Thus
F=9¢1)=¢0)+V () (y-x) = f(xX) + V(%) (y - ).
(<) Assume dom f is convex and for all X,y € dom f,
2 f®+ViX(y-x).

Take any x,y € dom f and 6 € [0, 1], and setz = 0x + (1 — )y € dom f. Apply the
assumption with (x,z) and (y, z):
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fX®) = f(2)+Vf(2)" (x~2), f) = f(@)+Vf(2)' (y-2).
Multiply the first by 6 and the second by (1 — 6) and add:
0f(x)+(1-0)f(y) = f(2) +Vf(2)" (0(x~2)+ (1 -6)(y - 2)).
Since 0(x —z) + (1 - 6)(y —z) = 0, we get
f(@) <0fx)+(1-0)1(y),

ie., f(Ox+ (1 -0)y) <0f(x)+(1—-6)f(y). Hence f is convex. O

Definition 1.4 (Subgradient) For a non-differentiable convex function f, let the
subgradient of f at x be denoted by 0 f (x), which consists of all vectors v satisfying:

f(¥) 2 f(x)+v'(y-x),Vx,y € dom(f).

Without causing any confusion, we often write

f(y) 2 f(x)+3f(x)7(y - x),Vx,y € dom(),

where 9 f (x) refers to some specific element of the subgradient set.

Examples

Example 1.4. f(x) = [x]+ = max(0,x). At x = 0 it has a subgradient
0f(0)={£€[0,1]}, af(x) =1,¥x >0, and df(x) =0,V¥x <O.

Definition 1.5 (Strongly Convex Function) A function f(-) : R — R is called
p-strongly convex with respect to a norm || - || if there exists a constant ¢ > 0 such
that for any x,y and v € 9 f(x) we have

F®) 2 f&) +VT (v =20+ Slx -yl

Examples

Example 1.5. The function f(x) = %HXH% is 1-strongly convex with respect
to the Euclidean norm || - ||;. This follows directly from the identity:

1 1 1
SIVI3 = S+ X7 (v =0 + Sl =yl

which satisfies the definition of strong convexity with parameter 1.

Definition 1.6 (Smooth function) A function f : R? i R is called L-smooth with
respect to a norm || - || if it is differentiable and its gradient is L-Lipchitz continuous,
i.e., there exists a positive real constant L such that, for any x,y € R4, we have
IVf(x) = Vf(y)ll« < LlIx = yll, or equivalently,



lf(x) = f(y) = Vfy) (x-y) < %IIX—sz. (1.3)

Definition 1.7 (Bregman Divergence) Let ¢ : Q — R be be a continuously-
differentiable, strictly convex function defined on a convex set Q, the Bregman di-
vergence induced by ¢(-) is defined as

Dy(x,y) = (%) —@(y) - Vo(y) " (x - y).

Examples:

Example 1.6 (Euclidean distance). ¢(x) = %||x||2 induces the Euclidean
distance:

1 1 1
Do(xy) = s I3 =5 IVB -y (x=y) = Slx=yI}. (14

Example 1.7 (Kullback—Leibler (KL) divergence). ¢(x) = Zflzl x; logx;
for x € Ag induces the Kullback—Leibler (KL) divergence:
d d d d .
D,(xy) = Z X 1ngi—z yilog yi—Z(log yitl) (xi=yi) = Z x; log y—l
i=1 i=1 i=1 i=1 !
(1.5)
Example 1.8 (Itakura—Saito distance). ¢(x) = _Z:'l:l logx; for x > 0
induces the Itakura—Saito distance:

d d d d
1 Xi Xi
Dy(x,y) = - E log x; + E logy;+ E )T(Xi_yi) = f—E log;—l.
i=1 i=1 i=1 ! !

L=l
(1.6)

d
i=1

1.2 Verification of Convexity

In practice, directly applying the definition of convexity or verifying the first-order
condition of convexity can be challenging when proving that a function is convex.
The following rules offer practical tools to simplify the verification process.

Second-order Condition for Twice Differentiable Functions

If a function f(x) is twice differentiable, then it is convex if and only if

VZf(x) =0, Vx,
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i.e., its Hessian is positive semidefinite everywhere.

Examples

We can use the above rule to verify the convexity of the following functions.
Example 1.9 (Log-Sum-Exp Function).

K

mpm42mmﬁ,yew.

i=1

Its Hessian matrix is given by

H = diag(p) - pp’ .

where p is the vector of softmax probabilities with components p;
%. It is positive semidefinite as v Hv = Zﬁl p,-vl.2 - (Zfil pivi)?
0 due to Cauchy-Schwarz inequality.

\%

Example 1.10 (Negative entropy).
¢(p) = Z pilogpi
i=1

wherep € Ay = {q : XL, q; = 1,q; > 0,Vi} is a probability vector. Its
Hessian matrix is
H = diag(1/p)

is positive definite.

Operations that Preserve Convexity

The following operations preserve convexity:

Affine Composition: If f is convex, then f(Ax + b) is convex for any matrix A
and vector b.
Non-Negative Weighted Sums: If f; is convex for all i, and @; > 0, then

ﬂm=2mﬁm

is convex.
Pointwise Maximum: If g(x,y) is convex in x for all y, then

f(x)= max g(x,y)



is convex.
* Function Composition: The composition i(x) = f(g(x)) is convex if one of the
following holds:

— fis convex and non-decreasing, and g(x) is convex.
— f is convex and non-increasing, and g(X) is concave.

To quickly verify this, we compute the Hessian matrix assuming that both f and
g are twice-differentiable:

V2h(x) = f(g(x))Vg(x) + £ (g(x))Vg(x)Vg(x)T,

which is positive semi-definite under either of the above two conditions.

1.3 Fenchel Conjugate

Let f : R? — R U {+0c0} be a proper convex function. Its Fenchel conjugate (also
called the convex conjugate) is defined as:

ffyy= sup {x'y-f(x},

xedom(f)

where the domain of the conjugate function consists of y € R for which the supre-
mum is finite. From the definition of conjugate function, we immediately obtain the
inequality

f)+ () > xTy, Vx,y.

This is called Fenchel s inequality. If f is proper, convex, and lower semicontinuous,
then the conjugate of the conjugate of a convex function is the original function, i.e.,

() =1r

Definition 1.8 (Legendre function) Let f : RY — R U {+co} be a proper, lower
semicontinuous, convex function with int(dom f) # (. The function f is called a
Legendre function if it satisfies:

(i) f is differentiable on int(dom f), and for any sequence {xx} C int(dom f) with
Xj converging to a boundary point of dom f, we have ||V f(xx)|| — oo.
(ii) f is strictly convex on every convex subset of dom(df).

If f is Legendre function, its Fenchel conjugate reduces to the Legendre trans-
form, defined by

[y =x"y - f(x().

where x(y) = argminy (x"y — f(x)) is the unique solution to the first-order opti-
mality condition V f(x) =y.
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Examples

Example 1.11 (Conjugate of the Quadratic Function.). Let f(x) = %llxllz.
Then:

. 1 1
FH(y) =supixTy = SIxll3 = 5 llyll5.
X 2 2

Example 1.12 (Conjugate of the Squared Hinge.). Let f(x) = max(x,0)%.
Then:

y2
f*(y) = supxy — max(x,0)* = {7, yz0
x 00, y<0

The Legendre transform is not defined in this case since f is not strictly con-
vex.

Example 1.13. Log-sum-exp and negative entropy are conjugates of each
other. Please refer to the Example 1.16.

1.4 Convex Optimization

A standard optimization problem is defined by:

min  fo(x)
xeR4
sit. fi(x)<0,i=1,...,m (1.7)

hi(x)=0,j=1,...,n.

Definition 1.9 A standard optimization problem (1.7) is a convex optimization prob-
lem if f;(x) is convex fori =0,...,m and h;(x) = aJT.X + b is an affine function for
j=1,...,n

The problem (1.7) is feasible if there exists at least one point such that all con-
straints are satisfied, and infeasible otherwise. The set of all feasible points is called
the feasible set, denoted by

X={x:fix)<0,i=1,...,mh;(x)=0,j=1,...,n}.

The Optimal value and optimal solutions

The optimal value of (1.7) is defined as

fe =inf{fo(x)[x € X}.



where inf returns the greatest value that is less than or equal to all possible objective
values at feasible points if such a value exists. For example inf e™ = 0. If the problem
is infeasible, we let f, = oco.

A solution X, is an optimal solution if it is feasible, i.e., satisfying all constraints,
and fy(x.) = fi.. Hence, we may have a set of optimal solutions:

X, =argmin{ fy(x)|x € X} = {x: x € X, fo(x) = fi}.

The optimal solution is unique if the objective is strongly convex.

1.4.1 Local Minima and Global Minima

A solution x is called a local minima if there is an R > 0 such that

Jox) =inf{fo(y)ly € X, |ly - x> < R}. (1.8)

Theorem 1.1 For a convex optimization problem, a local minima X is also a global
minima.

Proof. Suppose x is not a global minima. It means that there exists a feasible z such
that foy(z) < fo(x). Then ||z — x||2 > R because x is an optimal solution in the local
region Q = {y : ||y — x||> < R}.

Let us derive a contradiction. Lety = X + 8(z — X), where 6 = ﬁ such that
ly = xll2 < 6llz = xll2 < R. Then fo(y) < 6o(2) + (1 - 6)fo(X) < fo(x), which
contradicts to the fact that x is an optimal solution in the region Q = {y : ||y — x||» <
R}. Hence such an z does not exist. a

1.4.2 Optimality Conditions

Let us consider a differential objective function fj.

Theorem 1.2 For a convex optimization problem (1.7) with non-empty X,, X is op-
timal if and only if x € X and

Vix)(y-x)>0,Vy € X. (1.9

For non-differential function, the above condition is replaced by v € 9 fy(x)
such that vT (y — x) > 0,Vy € X.

Proof. To prove the sufficient condition, we use the convexity of fj. For any y € X,
we have

10



1.4. CONVEX OPTIMIZATION

fo(y) = fo(x) +Vfio(x)"(y —x) > fo(x).

Hence x is an optimal solution. Let us prove the necessary condition. If (1.9) does
not hold for an y, i.e., Vfy(x)T(y — x) < 0, let us consider z(7)) = ty + (1 — 1)x,
which is feasible. Thence V, fy(z())|=0 = V fo(x) T (y — x) < 0, which means there
exists a small ¢ > 0 such that fy(z(¢)) < fy(z(0)) = fo(x), which is impossible as x
is an optimal solution. O

When the problem is unconstrained such that X = R, then the optimality condi-
tion (1.9) implies that x is optimal if and only if V f5(x) = 0.

Lemma 1.2 For a convex optimization problem (1.7), if fy is strongly convex, then
X contains only a single element if it is not empty.

Proof. Assume X, contains two different solutions x; # X such that fy(x;) =
Jfo(x2). We will derive a contradiction. Since fj is strongly convex, we have

fox) 2 fol2) + o) T (1 = %2) + 5 s = ol

Due to the optimality condition, 8 fy(x2) T (X; — X2) > 0, hence fo(x;) > fo(x2) +
%||X1 - xz||§ > fo(x2), which contradicts to the fact fy(x;) = fo(x2).
O

1.4.3 Karush—Kuhn-Tucker (KKT) Conditions

Constrained optimization problems such as (1.7) are often challenging to analyze and
solve directly. The Karush-Kuhn-Tucker (KKT) conditions, derived from Lagrangian
duality theory, offer first-order necessary conditions for optimality. These conditions
can simplify the original problem, sometimes enabling a transformation into a more
tractable form or even leading to a closed-form solution.

The Lagrangian function and the Lagrangian dual function

For the constrained optimization (1.7), the Lagrangian function is defined as:
n

L(x A, 1) = fo(®) + D" AifiX) + ) vih;(x),
i=1

J=1

where A1, ..., 4, v1,...,V, are called the Lagrangian multipliers.
The Lagrangian dual function is defined as:

g(A,v) =inf L(x, A, u).
X

11



Based on this, we define the Lagrangian dual problem:

g+ =supg(4,v).
>0

Regarding the original optimal value f. and the dual optimal value g., we have the
following weak duality.

Lemma 1.3 We always have g, < f..

Proof. Let x,. be an optimal solution to (1.7). For any 4 > 0, v, we have

g, v) = ir;fL(x, A, p) £ L(Xe, A, 1)
= fox) + DT Aifi(x) + ) vih(x) < fo(x.),
i=1 j=1

where the last inequality uses the fact 4;(x.) = 0, fi(x.) < 0,and 2 > 0. The
conclusion follows. O

KKT conditions

An interesting scenario is the strong duality where g, = f.. In such case, we can
derive two conditions.

Lemma 1.4 Suppose that the primal and dual optimal values are attained and equal.
Let X, be an optimal primal solution and A.,v. be optimal dual solutions. Assume
that f, g;, hj are continuously differentiable, then the following conditions hold:

m n
Vfo(x*)+Z/l*,,-Vf,-(x*)+Zv*,thj(x*) =0, (1.10)
i=1 j=1
Aifi(x)=0,i=1,....m, (1.11)

where the second condition is called the complementary slackness.

Proof. First, we have

g« =supg(d,v) = g(As, v,) =inf L(X, A, Vi)
=0 X

m n

= inf So(x) + Z Asifi(X) + Z Vi, jhj(X)

i=1 j=1

< fo(xi) + Z i fi(%) + Z Vi, jhj(X.)
=1

i=1 j

< fo(x.) = fi.

12



1.4. CONVEX OPTIMIZATION

Since g. = f., the inequalities will become equalities. The first equality is
inf fo(x) + DA i)+ D v ihi (%) = fo(x) + D Aeifil(%) + Y e jhi(X),
i=1 j=1 i=1 j=1

which implies that x, optimizes L(X, 4., v.). Hence, by the first-order optimality
condition, we have V4 L(x, A, v.) = 0, which is (1.10). The second equality is

Fox) + D Aifi(x) + Y v jhj(x,) = fo(x.),
i=1 j=1

which implies A, ; fi(x.) = 0,V,i because A, ; f;(x.) < 0,V,7 and they cannot be
larger than zero; otherwise the equality will not hold. O

¢ KKT conditions

Assume that f, g;, h; are continuously differentiable. Let x, be an optimal primal
solution and A., v. be optimal dual solutions. The KKT conditions are:

m n

(Stationarity)  Vfo(x.) + Y eV fi(xe) + Y s jVhy(x.) =0,
i=1 j=1

(Primal feasibility)  fi(x,) <0, h;(x.)=0,Vi,j,
(Dual feasibility) A.; > 0, Vi,
(Complementary slackness) A.;fi(x.) =0, Vi.

Slater’s condition

How to ensure the strong duality holds? Constraint qualifications have been devel-
oped as sufficient conditions of strong duality. One simple constraint qualification is
Slater’s condition for a convex optimization problem: There exists an x € relint(D)
(where relint denotes the relative interior of the convex set D := N, dom( f;) such
that

fi(x) <0,Vi, and ajx+b;=0,Vj.

An important theorem of Lagrangian duality is that the strong duality holds when
the primal problem is convex and Slater’s condition holds. This suggests a tangible
approach to compute X.. or transform the original problem into a simplified one. First,
we solve the dual problem to obtain an optimal dual solution (A, v.):

(s, v) = arg max g(4,v). (1.12)
A1=0,v

Then we use the stationarity condition of KKT conditions to derive a close form of
X.. In addition, we have

13



min{ fy(x), s.t. x € X} = max g(4,v).
X A1>0,v

Examples

Example 1.14 (Dual of Distributionally Robust optimization (DRO)).
The following problem often arises in robust machine learning:

F, ... )= max Z;pifi - TZ; q:9(pi/qi),
i= i=

where T > 0,q € A, and ¢(t) : R* — R is a proper closed convex function
and has a minimum value zero that is attained at t = 1. Let us derive its
dual problem. We write the above problem as a standard convex optimization
problem:

n
min= > pil; +7 ) qid(pi/a:)
i=1 i

=
s.t. Zpl- =1.
i=1

where the constraint p; > 0 is enforced by the domain of ¢(t).
We define the Lagrangian function:

L(p,v) ==Y piti+7 ). qi(pi/qi) +v (Zm - 1) :
i=1 i=1 i=1
Let us define

¢"(s) =m>ag<ts—¢(t). (1.13)

By minimizing over p > 0, we have
n n
g(v) = min - 21 piti =) +r; 41(pi/ai) = v
=—{max ) pi(li =) =7 ) 4id(pi/gi)} -
==l i=1

With a variable change p = p/q, we have
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1.4. CONVEX OPTIMIZATION

() = —r]glggl; 4i{pili = v) = T6(5)} = v

=—Zﬁli{g}%ﬁi(&'—V)—Tlf’(ﬁi)}—V:—ZTCIicﬁ*( V)—V-
i=1 =

i=1
Since the Slater’s condition holds (p; = 1/n satisfies), we have

n n
min — Zpifi +7 Z qi9(pilqi)
i=1 i=1

peA

=maxg(v) = - {minZTqi¢* (gi;v) +v} .

i=1

Hence,
n n n f'—v
rng’(;Pifi—T;qm(pi/qi)=mvin;mi¢*(‘T )+V- (1.14)

Example 1.15 (Conjugate of ¢ functions.). We can derive ¢ for three cases
below (exercise):

o ¢(n)=(-1)%
1.2 :
crN eyt ty fy==2
¢(y)—r?§18<yt (=1 _{il o.W.
o ¢(t)=tlogt—t+1and

0" (y) = maéiyt — (tlogt—r+1) =exp(y) — 1.
>

o (1) =ly_(t < 1/a) for @ € (0, 1]:

[Y]+'

¢*(y) = maxyt —Ip_o(t < 1/a) =
t>0 a

Example 1.16 (KKT conditions of DRO with a KL divergence). Let us
consider a special case of Example 1.14 with ¢(t) = tlogt —t+ 1:

n n
£l ) :lr,ggzlpia—r;pilog%. (1.15)

We can derive the following KKT conditions:
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M

; b—v, —
(f,‘ — V) —T(logp—[+ 1) =0,Vi :)p:< :qiexp(#) ,
qi T

ip? =1
i=1

As a result, we can derive

exp( b
pre 2 eXP(T)& (1.16)
Zim qiexp(F)
n 5[
...t =tlog (;qiexp(?)). (1.17)

1.5 Basic Lemmas

Below, we present some basic lemmas that are useful for the presentation and analysis
in later chapters.

Lemma 1.5 For a L-smooth convex function w.r.t. || - ||2, the following conditions
are equivalent:

(@ 0<f(y)-f®-V T (y-x < Zlx-yl3
(b) SV = VI3 < f(¥) = &) =V T (y-x);
(© IV =VfWI3 < (V) =V )T (x=y) < LIx=yl3:

(d) 2NV f(x) - VIWIE < afx) + (1 - a)f(y) - flax+ (1 - a)y) <
a(l—a)klx -yl

Proof. Letus prove (a). Since %;yp)

= V f(x+yp) " p, according to Taylor Theory

1
Flx+p) = F(x) + /0 VF(x+yp) pdy

Lety=x+p:
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1.5. BASIC LEMMAS

FO) - FO0) - V£ (y - x)
1
- /0 VAx+ (3 -2)T(y —x)dy - V)T (y - x)

1
- /0 Vix+y(y —x) (¥ - x) — V()T (¥ - x)dy

1
< / IV F(x+7(y = %) = V@ llpll2dy
0

1
L
< [ Liplalplady = Sy = xI5

Let us prove (b). Define ¢(z) = f(z) — V f(x) " z. We can conclude that z* = x (by
the first-order optimality) and that ¢(z) is also convex & L-smooth if f is convex &

L-smooth.

#(x) = min ¢(2) < min {czs(y) FVO)T -y + 5 - yn%}

"2 min fa(3) + Vo) + £ 1013
2 \v, 2 v 2
l6MIE | IV _, o IoIE

solve r
A ey iy 2L

Then, we have 2L(¢(y) — ¢(x)) = ||Vo(y) ||§, which prove the result by plugging in
¢(z) = f(z) - Vf(x)"zand V¢(z) = Vf(z) - Vf(x).
Let us prove (c). According to part (b) we have
1
TAMAY VIO < F3) = F®) =V &) (y-x).
Similarly,
1
S V) = VW3 < f(X) = f(3) = VI T(x =y
Summing up the above two inequalities leads to

TV =TS )IB < (VF(0 = T/ ()T (x -y

Let us prove (d). Let x, = @x + (1 — @)y. From (a) and (b), we have
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iIIVf(X) — Vx5 < F(%) = (f(Xa) + YV (Xa) (1 = @) (x - Y))

L

< S -a)x=y)l5,

8]

SV ) = TSI < F3) = (F50) + VF (k) Ty =)
L
< Slla(y -9)3.

Multiplying the first by @ and the second by 1 — @, we can prove part (d), where the
lower bound is as

-Vl 2 ST 0 -V Wl

ST IVF0-VF(xa) B+

by applying the Young’s inequality [la — b[|Z < (1+B)|la—c|l3 + (1 + é)“b - |3
with 8 = a/(1 — a). O

Lemma 1.6 If f is differentiable and u-strongly convex w.r.t || - ||2, the following
conditions are equivalent:

(@f(y)—fx) -V (y-x) > §lIx-yll3:

(b)f(y) - f(x) =Vf(x)T(y—x) < ﬁIIVf(Y) - Vf)|3;

(ullx=ylI} < (Vf/(x) - Vf(y)T(x-y) < ,%IIVf(X) -Vl

(@@llx—}’llz < af(x)+(1-a) f(y)-flax+(1-a)y) < 0(1—a)ﬁ||Vf(X)—
Vw3

From (a) we can derive an useful inequality for strongly convex optimization x, =
arg ming f(x), i.e., for any x, we have

f(x) > f(x*)+Vf(x*)T(X—x*)+'§||x—x*||§ > f(x*)+g||x—x*||§. (1.18)

Proof of (b). Define ¢(z) = f(z) — Vf(x)Tz. We can conclude that z* = x (by the
first-order optimality) and that ¢(z) is also convex & u-strongly convex since f is
convex & p-strongly convex.

$(x) = min ¢(2)> min {$(y) + Vo) (z=y) + & Iz - I3

r=z—y

¥ min {¢(y) + Vo) r + S}

2
sy ||¢;y>||2.
u

solve r

Then, we have 2u(¢(y) — ¢(x)) < ||¢(y)||§, which prove the result by plugging in
¢(z) = f(z) - Vf(x)"zand V¢(z) = Vf(z) - Vf(x).

part (b), (c), (d) can be proved similarly as the previous lemma. a
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1.5. BASIC LEMMAS

Lemma 1.7 Ifr(-) is u-strongly convex w.r.t || - ||» and

1
prox,,(z1) := argminr(w) + —|lw -z, ||§, (1.19)
w 2n
1
prox,,,. (zp) := argminr(w) + —||lw — z2||% s (1.20)
w 2n
then we have || prox,,,.(z1) — prox,,. (z)[|> < ﬁ”zl — 2]|>.

Proof. First, we can see that when » = 0, the conclusion trivially holds. Next, we
prove it when r is present.

By the optimality of prox,,,(z1) and prox, . (z;) we have

Z) — prox, r(zl)
u :=+ € dr(prox,,, (21))

_Zy — prox,, (z2)

v: € 6r(pr0x,7, (z2)).

Since r(x) is u-strongly convex, we have

r(prox,, (z1)) = r(prox,, (22)) + v’ (prox,,, (z1) — prox,,,(22))
+ Ellprox,,, (1) - pro,,, ()}
F(prox,, (z2)) > r(prox,, (21)) +u” (prox,,, () - prox,,, (z1))

u
+ EII prox,,,. (z1) — prox,,,. (22)|13.
Adding them together, we have
/'l“ proxnr (Zl) - prox]]r (12) ”% < (u - V)T(proxqr (Zl) - prox]]r (ZZ))

1
= (21 = 725 prox,, (22) = prox,,, (21)) T (prox,, (21) = prox,, (22)),
which implies
1 5 1 T
(ot IDrox,, (21) = prox,,, ()5 < - (21 = 2) T (prox,, (21) = prox,, (22))
1
< ;”ZI — )2l prox,,,.(z1) — prox,,,.(z2)|l2.

Thus || prox,,, (z1) = prox,, (z2) |l < 55 llz1 = 2212 O
Lemma 1.8 For a proper closed convex function f, the following holds:

(i) if f is G-Lipchitz continuous w.r.t || - ||2, then dom( f*) is bounded and for any
y € dom(f*), we have ||y|» < G;
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(ii) if X, € argmaxx{X'y.— f(x)}, theny, € argmaxy{y'x. — f*(y)}. Equivalently,
Y+ € 0f(X.) (or X, € 0f"(y:));

(iii) if f is further a Legendre function, then f(X.) + f*(y.) = X]y. if and only if
Y: = Vf(x.), and Vf* = (Vf)~".

Proof. Let us prove (i). For any y with [ly||> > G, let u = y/||y||> and take x = ru.
By Lipschitz continuity, f(ru) < f(0) + Gt, hence

y ru— f() 2 1(llyll2 = G) = f(0) — +oo,

s0 f*(y) = +o0 and thus y ¢ dom(f™).

Next, we prove (ii). Since x,. attains the supremum in the definition of f*(y.), we
have y. € 8 f(x.) according to the optimality condition and f*(y.) = X]y. — f(x.).
Using f** = f, we obtain

f(x) =sup{y % = f*(N)} =Xy = [7(¥:)s
y

and the above equality shows that y, attains the supremum. Hence, y. € arg maxy{y ' X.—
SH(y)}, and X, € 97 (y.).

Lastly, we prove (iii). By definition, f*(y.) is the supremum of the concave func-
tion F(x) = yIx — f(x). If this supremum is attained at x, € R?, then VF(x,) = 0,
which is to say y. = Vf(x.). On the other hand, if y. = V f(x.), then x,. is a maxi-
mizer of F(x), and therefore f*(y.) =y, X« — f(X.). Using the this result twice,

y=Vf(x) ifandonlyif f(x)+f*(y)=x"y
x=Vf*(y) ifandonlyif f*(y)+ f*(x)=x"y.
Since f** = f,thenx = Vf~!(y) = Vf*(y). Hence (Vf)~! = Vf*. O

Lemma 1.9 If f is p-strongly convex w.r.t || - ||2, then its Fenchel conjugate is 1/ u-
smooth. Similarly if f is L-smooth and convex w.r.t || - ||2, then its Fenchel conjugate
is 1/L-strongly convex.

Proof. Let f*(y) = maxx X'y — f(x) be the Fenchel conjugate of f.
Suppose f is p-strongly convex. let x(y) = arg maxy X'y — f(x). Then V f*(y) =
x(y) due to the Danskin Theorem. Similar to the previous lemma, we can prove that

1
[Ix(y1) = x(y2)ll2 < ;I|y1 - y2ll2,

which proves the Lipchitz continuity of V f*(y) and hence the smoothness of f*.

Suppose f is L-smooth and convex. Let us prove f* is 1/L-strongly convex. Let
us consider yi,y,. Let x| € argmaxy X'y — f(x) and X, = arg maxx X'y, — f(x).
Then Vf(x;) =y;. For any x; € X,, we have V f(x;) = y,. Given that

) =x{yi—f(x1), [f(y2)=x3y2 - f(x2),
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1.6. HISTORY AND NOTES

then

() = [ (y2) = x5 (y1 - y2)
=x[y1 - f(x1) = (X, ¥2 — f(x2)) =% (Vf(x1) = Vf(x2))
= f(x2) — f(x1) +X{ V[ (x1) =X, Vf(X2) = X5 (Vf(x1) = Vf(x2))

= Fx2) = FO0) + (51 = %) TV () 2 5 IV = VIR = 57 = vall

where the last inequality is due to part (b) of Lemma 1.5. Hence, we can conclude the
proof by noting that 9 f*(y,) = conv(X,) due to the generalized Danskin theorem.
O

Lemma 1.10 For p € A,, the negative entropy function R(p) = X!, p;logp; is
1-strongly convex w.r.t to the £ norm || - ||;.

Proof. For any X,y € A,, let f(t) = R(y + t(x — y). By the second-order Taylor
expansion, for some ¢ € (0, 1), we have

ROO = £(1) = £(0)+ ' (0) + 5.17()
= R(Y) + VRO (= y) + 3 (6= )TVRy + 10 D) (x - ).

Hence it suffices to prove that vT VZR(p)v > ||v||? for any p € A,. This can be seen
from the following:

d
VIV2R(p)v= ) ulp;! = [Z vizp?ll

o]

where the inequality follows by Cauchy inequality.

2

Zpi

4

=

-1/2 1/2
> Pluibp!
i

1.6 History and Notes

This chapter has selectively introduced core concepts from convex optimization that
are most pertinent to the algorithms and applications discussed in later chapters.
While the treatment here is necessarily concise, readers seeking a more comprehen-
sive foundation are encouraged to consult several classic references.

The text by Rockafellar (1970a) provides one of the most comprehensive and
authoritative treatments of convex analysis. The textbook by Boyd and Vandenberghe
(2004) is an excellent introduction to convex optimization well suited for engineers.
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It covers convex sets, convex functions, duality, and optimality conditions in detail,
and emphasizes geometric intuition and practical modeling. Many of the definitions
and examples in this chapter are inspired by this text. Bertsekas (2009) offers deep
insights into convex analysis, duality theory, and constrained optimization from a
classical perspective.

The KKT condition is named after three mathematicians, William Karush, Harold
W. Kuhn and Albert W. Tucker. It was known due to Kuhn and Tucker, who first pub-
lished the conditions in 1951 (Kuhn and Tucker, 2014). Later scholars discovered
that the necessary conditions for this problem had been stated by Karush in his mas-
ter’s thesis in 1939 (Karush, 1939). The Danskin Theorem originates from the work
of Danskin (1967), while its generalized form for subdifferentiable is attributed to
Bertsekas (2005).

Nesterov’s Introductory Lectures on Convex Programming (Nesterov, 2004) pro-
vides a more mathematically rigorous treatment, including several key lemmas on
smooth and strongly convex functions (Lemma 1.5 and Lemma 1.6) that are pre-
sented in this chapter. It is particularly useful for readers interested in complex-
ity analysis and the theoretical underpinnings of first-order methods. The proof of
Lemma 1.10 is due to Nemirovski et al. (2009).
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Chapter 2
Introduction: Advanced Machine Learning

Abstract This chapter begins with an introduction to the traditional empirical risk
minimization (ERM) framework, using standard label prediction tasks to illustrate its
three core components: loss functions, optimization algorithms, and generalization
analysis. We then explore advanced learning techniques including distributionally
robust optimization (DRO) and group DRO that aim to enhance model robustness
under distribution shifts. Building on this foundation, we introduce the empirical
X-risk minimization (EXM) paradigm and discuss its applications in modern ma-
chine learning. Finally, we present the concept of data prediction for discriminative
learning in foundation models. The goals of this chapter are threefold: (i) to provide
a cohesive view of how discriminative principles inform objective function design;
(ii) to highlight the role of optimization tools for objective design and model training;
and (iii) to motivate the need for compositional optimization frameworks.

models fade, but principles endure!
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2.1. EMPIRICAL RISK MINIMIZATION

2.1 Empirical Risk Minimization

What is Machine Learning (ML)?

In 1959, Arthur Samuel, a pioneer in the field of ML, defined Machine Learn-
ing as the “field of study that gives computers the ability to learn without
being explicitly programmed” .

Nowadays, machine learning has become the foundation of Al. The essence of
machine learning is to learn a model by optimizing an objective function on training
data, with the goal of achieving strong generalization to unseen data. This relation-
ship is captured by the formula:

Machine Learning = Objective + Algorithm + Generalization.

Optimization plays a fundamental role in machine learning, as it underpins (1) the
formulation of objective functions, (2) the development of optimization algorithms,
and (3) the analysis of generalization error of learned models. Below, we will use the
traditional label prediction problem to illustrate the three components.

2.1.1 Discriminative Label Prediction

In supervised learning, the primary objective is often to learn a predictive model
from a given set of supervised training data. Let us consider a classical label predic-
tion problem. Denote by (x, y) a data-label pair, where x € X ¢ R% denotes the
input feature vector, and y € Y = {1,..., K} is the corresponding label. The goal
is to learn a predictive model parameterized by w € ‘W C R? (e.g., a deep neural
network), which induces a scoring function 4(w;-) : X — RX. Conceptually, the
model can be expressed as h(w;x) = Who(W;x), where ho(w;-) : X — R% is the
feature extraction component, and W € RK*41 is the classification head correspond-
ing to the K classes.

A classical framework for learning such a model is the well-known empirical risk
minimization (ERM), which minimizes the empirical risk over the training dataset.
To this end, a pointwise loss function £(&(w; X), y) is defined to measure the discrep-
ancy between the model’s prediction #(w;x) and the true label y. Given a training
dataset S = {(x1,¥1),-- ., (Xn, ¥n)}, the ERM problem is formulated as:

1 n
min Rs (W) = ;ah(w; Xi), Vi)- 2.1)

25



2.1.2 Discriminative Loss Functions

A major element of ERM is the design of the loss function. A common strategy of
designing a loss function for label prediction is through a discriminative approach.
Below, we introduce several discriminative loss functions.

Logistic Loss

A parameterized probabilistic model is defined to represent the probability of a class
label for a given data point as

Pr(y[x: w) = exp([A(w;x)]y) 22)

3K exp([h(w;%)];)

where [-]x denotes the k-th element of a vector. The associated loss is derived from
the negative log-likelihood, resulting in the multi-class logistic loss, also known as
the cross-entropy (CE) loss:

exp([h(w:x)]y)
Sy exp([h(w;x)]1)
The resulting method by ERM is commonly referred to as multi-class logistic regres-

sion. For binary classification, this loss becomes the binary logistic loss £(h(w;X), y) =
log(1 + exp(—yh(w;x))), where h(w;-) €e Rand y € {1,-1}.

t(h(w;x),y) = —log (2.3)

Max-Margin Loss

The max-margin loss, introduced by Crammer and Singer and commonly referred to
as the Crammer-Singer (CS) loss (Crammer and Singer, 2002), is defined as:

£(h(w;x),y) = max |0, max (cky + [A(W:X) ] — [R(W:X)]y) | » (2.4)

where ¢y, > 0 is a margin parameter. This loss seeks to ensure that the prediction
score for the ground-truth label, [2(w; x)],, exceeds the scores of other class labels,
[A(w;x)]x for k # y, by at least the margin ¢ . This method is also known as
the multi-class support vector machine. For binary classification, it reduces to the
standard hinge loss ¢(h(w;x),y) = max(0,1 — yh(w;x)) for h(w;-) € Rand y €
{1, -1} with a margin 1.
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2.1. EMPIRICAL RISK MINIMIZATION

Label Distributionally Robust (LDR) Loss

Both the CS loss and the CE loss have their strengths and limitations. For example,
the CS loss with the margin parameters is more flexible in controlling the discrim-
ination between classes, while it is not consistent and non-smooth in terms of the
prediction scores. The CE loss is smooth and consistent but lacks robustness to noise
in class labels.

Consistency of a surrogate loss function

The consistency measures whether minimizing a surrogate loss with an in-
finite number of data also minimizes the Bayes error. More formally, a sur-
rogate loss €(h(x), y) is said to be consistent if any sequence of measurable
functions /) it holds

R(h™ inf R(h) = Ro_1(h"™ inf Ro_1(h),
( )—>h12,H()$ 0-1( )—>hlg,H01()

where R(h) = Ex,[f(h(x),y)] is the expected risk, Ro_1(h) =
Ex,y [I(y # h(x))] is the Bayes error, and H is the set of any measurable
functions.

In fact, the strengths and limitations of both the CE and CS losses can be better
understood within a broader family known as the label-distributionally robust (LDR)
loss:

K K

L (h(wsx), y) = max ) pi([(w: )]k = [A(WX)]y +cy) =7 ) prlog(pik),
K k=1 k=1

(2.5)

where T > 0 is a hyperparameter, ¢y, = 0, p € RK is referred to as the label
distributional weight vector, and Ax = {p € RX : p; > 0, Zle pr = l}isa
simplex.

It is clear that the LDR loss is defined by solving an optimization problem. In-
deed, the above optimization problem follows the distributionally robust optimiza-
tion (DRO) principle, which is widely used at the level of data as discussed in sec-
tion 2.2. By treating ‘label’ as a kind of data, we can unify the LDR loss with other
losses discussed later in Section 2.4.

A closed-form solution for p can be derived using the KKT conditions (cf. Ex-
ample 1.16), making the LDR loss equivalent to:

K . _ .
£ (h(w;x),y) = 7log ( ! Z exp ( LW X1k + iy = [hW: X)]y) ) (2.6)

T
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From the perspective of DRO, we can define a more general family of LDR losses
using different regularization functions on p and constrained domains €:

K
Ce(h(w;x),y) = max > pi([h(W; )]k = [A(W; )]y +exy) = TR(P).  (27)
peQ P

where Q C Ag and R(p) is a strongly convex regularizer.

¢ Why it matters:

* The LDR loss (2.6) unifies both the CS and CE losses as special cases. Specif-
ically, the CE loss corresponds to the LDR loss when 7 = 1 and ¢, = 0 for
all k, while the CS loss corresponds to the case 7 = 0.

Moreover, the LDR loss encompasses the Label-Distribution-Aware Margin
(LDAM) loss (Cao et al., 2019) when 7 = 1 and cxy = ¢, o l/n;/4 for
k #y, where n, denotes the number of samples in class y:

tLpam (h(W;X), y)

exp ([h(W; x)]y - ﬁ)

= —log

[l

exp ([h(W; xX)]y - ﬁ) + izy eXp([2(W;X)]1)

where C is a constant. For imbalanced datasets, this assigns larger margins
¢y to minority classes, making it more suitable for handling class imbalance.

* The LDR loss provides insights into the strengths and limitations of CE and
CS losses. The regularizer R(p) = Zszl pr log(prK) is strongly convex in p,
which implies smoothness of the loss in terms of prediction scores due to the
duality between smoothness and strong convexity (Lemma 1.9). This strong
convexity also contributes to the statistical consistency of the loss (Zhu et al.,
2023b). In contrast, the CS loss with 7 = 0 lacks this property, and hence
suffer from non-smoothness and inconsistency.

* The LDR loss framework enables the design of new losses that are robust to
label noise. For instance, when T — oo, the LDR loss reduces to:

K

owix,) = 2 O (W) Ti ~ AW )Ty + ey)
k=1

A remarkable property of this loss is its symmetry: Zle {0 (W; X, y) is con-
stant. This symmetry serves as a sufficient condition for robustness to uni-
form label noise (Ghosh et al., 2017). However, by treating all negative labels
equally, it may limit the model’s ability to focus on hard negative labels and
potentially slow down the learning process. In practice, it is better to tune 7
if there is label noise.
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2.1. EMPIRICAL RISK MINIMIZATION

CS loss CE loss, LDAM loss Consistent & Smooth Noise tolerant
0 1 T > 0 00
K
- _ 1 [h(w; %)k + cry — [R(W; )]y
£, (h(w;%), ) = T log [szp( :

Fig. 2.1: The LDR loss and its special cases by varying 7.

In conclusion, the LDR loss offers flexibility in achieving three desirable properties:
max-margin, consistency, and symmetry. In practice, when tuning 7 € (0, o), it may
be beneficial to normalize the prediction scores & (W;X).

Critical: It is worth noting that all the discussed losses are discriminative in
nature, aiming to increase the score [ (w; X)], of the true label while decreas-
ing the scores [2(w;X)]x of the negative labels (k # y).

2.1.3 Need of Optimization Algorithms

To address the ERM problem in the context of large-scale data (i.e., a substan-
tial number of training examples), first-order stochastic algorithms are commonly
employed. These include stochastic gradient descent (SGD), stochastic momentum
methods, and adaptive gradient methods. For instance, the update rule of classical
SGD for solving (2.1) with ‘W = R is given by:

1
Wil =W —i— Y V(W X)), =1 T, (28)
15| (xi,yi) € By

where 1, > 0 is the learning rate (or step size), and $B; denotes a random mini-
batch data sampled from the full dataset. The concern of designing an optimization
algorithm is how fast the algorithm can converge to a (near) optimal solution. We
will discuss the design and analysis of classical stochastic optimization algorithms
in Chapter 3.

Critical: A critical assumption in conventional stochastic optimization algo-
rithms such as SGD is that the gradient V£(h(W;X;), y;) of each individual
loss, can be easily computed. This assumption will fail for the logistic loss
when the number of classes K is gigantic, e.g. millions or even billions. This
challenge will be addressed in this book.
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2.1.4 Generalization Analysis

To study the generalization of a model learned by solving ERM, we usually consider
the expected risk defined as

R(W) = Ex y~p[{(h(W;x), y)]. 29)

Let w = A(S; ) denote a learned model by a randomized algorithm A for solving
ERM that depend on random variables . A standard measure of generalization is
given by the excess risk defined as R(w) — R(w.), where w,. € arg minycqy R(u).
The following lemma decomposes the excess risk into the optimization error and the
generalization error.

Lemma 2.1 For a learned model w = A(S; ) € W, we have

R(w) —R(w,) <2 sup |[R(W) —Rs(W)|+Rs(W) — min Rs(u),
weW ueWw

generalization error optinmization error

and
Es.[R(W) = R(W.)] = Es.¢ [R(W) = Rs(W)] + Es.¢ [Rs(W) — min Rg(u)].
Proof
R(wW) = R(w.) = R(W) = Rs(W) + Rs(w) — min Rs(u) + min Rs(u) - R(W.)
< R(W) = Rs(W) + Rs(w) - l{glql}/ Rs(w) + Rs(w.) — R(w.).

This proves the first inequality. By taking expectation over S, ¢ and noting that
Es[Rs(w.) — R(w.)] = 0, we finish the second inequality. O

@ Why it matters:

The excess risk can be decomposed into two components: the optimization error,
given by Rs(w) — minygeqy Rs(u), and the generalization error which captures
the difference between the expected risk and the empirical risk. The general-
ization error supycqy |R(W) — Rs(w)| decreases as the training data size |S]|
increases. Bounding the (expected) optimization error is a central focus of this
book, approached through the analysis of stochastic optimization algorithms. A
brief discussion of the literature on generalization error analysis will be provided
at the end of this chapter.
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2.2. ROBUST OPTIMIZATION

2.2 Robust Optimization

In this section, we introduce advanced machine learning methods based on the prin-
ciple of robust optimization. Robust optimization is a framework designed to address
uncertainty in data. It ensures that the solutions perform well even under worst-case
scenarios of data within a specified set of uncertainties.

2.2.1 Distributionally Robust Optimization

Minimizing the average empirical risk often fails to yield a robust model in practice.
For instance, the resulting model may perform poorly on minority data (e.g., patients
with rare diseases) because the optimization predominantly focuses on majority class
data.

Critical: Empirical data may not fully represent the underlying data distribu-
tion, leading to generalization issues.

To address these challenges, distributionally robust optimization (DRO) has been
extensively studied in machine learning as a means to improve robustness and gen-
eralization.

The core idea of DRO is to minimize a robust objective defined over the worst-
case distribution of data, perturbed from the empirical distribution. Let us define a set
of distributional weights, p = (p1,...,pn) € Ay, Where A, ={peR" : 37 p; =
1, p; = 0}, with each element p; associated with a training sample x;.

Definition 2.1 (¢-divergence) Let ¢(¢) : R* — R is a proper closed convex function
and has a minimum value zero that is attained at = 1. The ¢-divergence is defined
as:

Dy(pll@) = > qid(pi/qp). (2.10)
i=1

¢-divergence measures the discrepancy between two distributions p and q us-
ing the function ¢. We present two common formulations of DRO based on the ¢-
divergence: regularized DRO and constrained DRO. They differ in how to define the
uncertainty set of p.

Below, we use the generic notation £(w; z) to denote the loss of a model w on a
random data point z following a distribution denoted by P. For supervised learning,
this specializes to £(w;z) = {(h(w;X), y), where z = (X, y).

Definition 2.2 (Regularized DRO)
S 1
mvin Rs(w) := 11)1;% ;pif(w; z;)) —1Dy (p [ ;) . 2.11)
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Divergence @ (1) ¢"(s) Dy(pllq)

KL tlog(z) — 1 +1|exp(s) — 1 Y pilog It
Burg entropy —logt+1 -1 |=log(l-s),s <1 |XL, qi log%

1.2 :

25 +s ifs > -2
¥ - [ s il - 17
Hellinger distance|(vr — 1)2 .5 <1 2i(Wpi - \/E)2

L. . s ifse[-1,1]
Variation distance ||t — 1| {—l ifs < —1 2ilpi — ail
[s]. 0 if p; <gi/a,Vi

CVaR HO—oo(t < 1/6!) a {00 oW

Table 2.1: Examples of ¢-divergence

Definition 2.3 (Constrained DRO)
II&HRS(W) = rlr)leag)zg izzlpif(w; Z;) (2.12)

1
where Q= {p|p €Ay, Dy (p I Z) < p} )

The regularized DRO uses a regularization on the p to implicitly define the un-
certainty set, and the constrained DRO uses a constraint on p to explicitly define the
uncertainty set.

The maximization over p in the DRO formulations simulates a worst-case sce-
nario, thereby enhancing the model’s robustness. The DRO objective interpolates
between the maximal loss and the average loss:

* Without the ¢-divergence regularization or constraint (i.e., T = 0 or p = ), the
objective simplifies to the maximal loss among all samples, which is particularly
beneficial for handling imbalanced data but is sensitive to outliers.

e Conversely, when p = 0 or 7 = co, the DRO objective reduces to the standard
empirical risk, which is not sensitive to outliers but no suitable for imbalanced
data.

In practice, adding a tunable ¢-divergence regularization or constraint (via tuning 7
or p) increases the model’s robustness.

A list of ¢-divergence is presented in Table 2.1. Two commonly used ones in
machine learning are presented below:

¢ KL-Divergence: With ¢(f) = tlogt — t + 1, the ¢-divergence becomes the KL
divergence:

KL(p,q) = Dy(plla) = ) pilog(pi/:)-

i=1

¢ Conditional Value-at-Risk (CVaR): With ¢(#) = [p_c (¢ < 1/a@), where @ € (0, 1]
and Ip_. is 0 — oo indicator function, the divergence becomes D4 (p |l q) = 0 if
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2.2. ROBUST OPTIMIZATION

pi < qi/aVi, otherwise D 4(p || q) = co. The resulting DRO formulation is also
known as the empirical CVaR-a.

The Dual form of Regularized DRO

Solving the above DRO formulations requires dealing with a high-dimensional vari-
able p from a simplex, which will incur additional overhead compared with solving
ERM when the number of training data is large. The reason is that it requires per-
forming a projection onto the simplex A, or the constrained simplex Q = {p €
A, Dy (p I %) < p}. To reduce this overhead, one approach is to convert the prob-

lem into unconstrained one using the Langrangian dual theory based on the convex
conjugate of ¢ function.

Proposition 2.1 (Dual form of Regularized DRO). Ler ¢*(s) = max,>ots — ¢(1).
Then we have

n n o
max Zp,-f(w; z;) - ™Dy (p I %) = min % Z ¢*(M) +v. (2.13)
i=1 i=1

PEA, 4= T

The proof can be found in Example 1.14 in Chapter 1.

Examples of Regularized DRO

Example 2.1. (KL-divergence Regularized DRO) For the special case of
using KL-divergence, we can further simplify the above objective function.
Since ¢(t) =tlogt —t + 1, then ¢*(s) = exp(s) — 1 (see Example 1.15) and
solving v yields

1 n

v =1 log (— Z exp(£(w; Zi)/T)).
n
i=1

Plugging it back into the objective, we can obtain a simplified form
maxZn: L(w;z;) — TKL 1 =7lo lzn:ex (L(w;z;) /1)
peAn, £ Pi s L P, n = 2 n Y s L .

i=1

As a result, with ¢(t) = tlogt — t + 1, the KL-divergence regularized
DRO (2.11) is equivalent to

min 7 log
w

1Zn:exp(m)). (2.14)
n T

i=1

Example 2.2. (Empirical CVaR) As another example, we derive the dual
form of the empirical CVaR. With simple algebra, we can derive that ¢*(s) =
% (see Example 1.15) for ¢(t) = lo_w(t < 1/a).
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As a result, with ¢(t) = lp_(t < 1/a), the regularized DRO (2.11) corre-
sponding to the empirical CVaR—« is equivalent to

1Y
min — ) [6(W;z;) —v]++ V. (2.15)
w,v na pary
When k = na € [1, n] is an integer, the above objective reduces to the average
of top-k loss values when sorting them in descending order, as shown in the
Jfollowing lemma.

Lemma 2.2 Let {[; denote the i-th largest loss among {{(w;z;),i = 1,...,n}
ranked in descending order. If @ = k [n, we have

n k
! 1
meE;[f(w,zi) Y]ty = %;5[”‘ (2.16)
Proof. First, we have
1 n n
min—Z[{’(w;zi)—v]++v:min— [l — v+ +v.
vona o vone

Let v, be an optimal solution given w. Due to the first-order optimality condition,
we have

1 n
0e %Zav[fm v ]e+ 1.
i=1

Hence,
ke Z Oy [€1i) = vl (2.17)
i=1
Let us first assume {[x41] < (k). We will show hat v, € (€417, €i] satisfy
this condition. Since —1 € 9, [{;] — v«]+ fori = 1,...,k due to £;;; > v, and
Oy[li) — vl =0fori =k +1,...,ndueto {;; < v.. Hence, it verifies that the

condition (2.17) holds at such v,.

If {1x+1] = (k) we argue that v, = {[;) can still satisfy (2.17). This is because
-le c’),,[f[l-] —vi]sfori=1,...,kand0 € av[f[i] — Vs for €1 = Crpe1y.1 2 k+1
and 0, [{];] — v«]+ = O for €[] < €[r+1],1 = k + 1. Then the conclusion follows. O

The Dual form of Constrained DRO

For transforming the constrained DRO, we can use the following proposition based
on the Lagrangian duality theory.
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2.2. ROBUST OPTIMIZATION

Proposition 2.2 (Dual form of Constrained DRO). Let ¢*(s) = max;»ots — ¢(1).
Then we have

n n
o(w:z;) —
max Zp,{(w; Z;) = min T Z ¢*(M) +v+71p. (2.18)
PGAn,D¢(P I %)Sp P 7>0,v n = T

The proof is similar to that of Proposition 2.1.

Examples of Constrained DRO

Example 2.3. (KL Constrained DRO) With ¢(t) = tlogt —t + 1, the KL-
divergence constrained DRO (2.12) is equivalent to:

min Tlog(%Zexp(M)) +p. (2.19)

,720
w,T =

KL-regularized DRO and KL-constrained DRO play important roles in many
modern artificial intelligence applications. The LDR loss (2.5) can be interpreted
as a form of KL-regularized DRO, except that the uncertainty is placed on the dis-
tribution of class labels for each individual data point. We will present additional
applications in Section 2.4.

The Optimization Challenge

Although the transformed optimization problems do not involve dealing with a high-
dimensional variable p € A,, the new optimization problems (2.14), (2.19) are not
of the same form as ERM. The critical assumption that an unbiased gradient can
be easily computed fails. We will cast them as instances of stochastic compositional
optimization (SCO), which is topic of Chapter 4 of the book.

2.2.2 Optimized Certainty Equivalent

How to understand the generalization of DRO? One way is to still consider bounding
the expected risk R(w) of the learned model. However, the expected risk may not be
a good measure when the data distribution is skewed.

For simplicity, let us consider a binary classification problem with Pr(x,y = 1) =
e Pr(x|y = 1) and Pr(x,y = —1) = n_Pr(x|y = —=1), where 7, = Pr(y = 1),7_ =
Pr(y = —1). Let P, and P_ be the distributions of x conditionedony = 1 and y = —1,
respectively. By the law of total expectation we have

R(W) = Ex y0(h(W;X),y) = m4Exp, [((A(W;x), 1)] + 7_Exp_[£(h(W;x),-1)].
(2.20)
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If 7_ > n,, the expected risk would be dominated by the expected loss of data from
the negative class. As a result, a small R(w) does not necessarily indicate a small
Ex-p, [€(W;x, 1)].

Instead, we consider the population risk of DRO as the target measure. A formal
definition of the population risk for the regularized DRO (2.11) is given below.

Definition 2.4 (Population risk of DRO) Given a data distribution P, for any 7 > 0,
we define the population risk of regularized DRO (2.11) as:

, dQ
Roce(W) : = max Ey-qt(w;z') — TEp¢ (ﬁ) (2.21)
= min 7E,_po* (M) +v, (2.22)
v T

where ¢*(s) = max;»ots — ¢(1).

In the definition above, Q = {Q | Q <« P} denotes the set of probability measures
that are absolutely continuous with respect to P. A probability measure Q is said to
be absolutely continuous with respect to P, denoted Q < P, if every event that has
probability 0 under P also has probability 0 under Q. If P and Q admit densities p(z)
and ¢(z) with respect to a common dominating measure on Z, and Q < P, then

=o{)| - Lroo55)

The equivalent counterpart in (2.22) is a risk measure originates from the op-
timized certainty equivalent (OCE), a concept popularized in mathematical eco-
nomics (Ben-Tal and Teboulle, 1986a). Minimizing OCE has an effect of so-called
risk-aversion, which discourages models from having rare but catastrophic errors.
Two special cases are discussed below:

e When ¢(t) = lp-(t < 1/a), the OCE becomes the CVaR-q, i.e.,

Revar (W) = Eo[6(w;2)|6(W;2) > VAR, (6(W;2))],
where VAR, (£(w; z)) = sup, [Pr(£(w;z) > s) > a] is the a-quantile or “value-

at-risk” of the random loss values.
e When ¢(t) = tlogt —t + 1, OCE becomes the entropic risk:

o2

What is risk-aversion?

Risk aversion refers to the preference for a certain and predictable cost over
an uncertain outcome with the same average cost, especially when the un-
certainty involves rare but severe losses. This behavior cannot be captured by
the expectation alone, which treats all outcomes linearly and ignores tail risk.
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2.2. ROBUST OPTIMIZATION

The OCE provides a principled risk-sensitive alternative by assigning a single
certainty-equivalent value to a random loss that accounts for both its mean
and its variability. A classic illustration is insurance: consider paying a fixed
premium of $1,000 versus facing a $100,000 medical bill with probability
0.01 and zero cost otherwise. Although both options have the same expected
cost, the OCE risk (log E[exp(X)] assigns a much larger value to the unin-
sured option, as it heavily penalizes the rare catastrophic loss. Consequently,
OCE correctly reflects the economic rationale behind insurance decisions by
favoring stable outcomes over risky alternatives with heavy tails.

We present two properties of OCE below.
Lemma 2.3 Let d¢*(¢) = {s : ¢ (t) < s < ¢5(1)}. If a < b, then 0 < ¢ (a) <
¢” (D).

Proof. Due to the definition ¢*(s) = max,sots — ¢(t), we have d¢*(s) > 0, which
indicates that ¢* is non-decreasing. Since ¢ is also convex, the conclusion follows
from the convex analysis (Rockafellar, 1970b)[Section 24]. a

Lemma 2.4 Forany v > 0,w € R?, it holds that Roce(W) > R(W).

Proof. Since ¢(1) =0, then ¢*(s) = max,sots — ¢(¢) > s — ¢(1) = s. Hence,

Roce(W) = min 7E,¢* (m) +v
v T

> min 7E, (M) +v=R(w).
v T

¢ Why it matters:

Lemma 2.3 implies that a data with a larger loss £(/(w;x), y) will have a higher
weight in the gradient calculation in terms of w.

Lemma 2.4 indicates that OCE is a stronger measure than the expected risk. A
small OCE will imply a small expected risk, while the reverse is not necessarily
true.

Based on OCE, we can define the excess risk Roce (W) — ming ey Roce (1) and de-
compose it into an optimization error and a generalization error similar to Lemma 2.1.

Lemma 2.5 For a learned model w = A(S; () for solving empirical DRO (2.11),
we have

Roce(W) = min Rpco(u) <2 sup [Roce(W) — RSS (w)] +¢é5(w) — min ﬁS (w).
uewW wew ueWw

generalization error optimization error

37



Training Data Test Data

y: waterbird ;/ y: landbird y: landbird |
a: water —-— a:land s a: water [
background === background| 2% background [,

Fig. 2.2: Ilustrative of spurious correlation between the class label and some feature:
waterbird images mostly have water background and landbird images mostly have
land background.

2.2.3 Group Distributionally Robust Optimization

Group DRO is an extension of DRO by aggregating data into groups and using DRO
on the group level to formulate a robust risk function. It is helpful to promote equity
of the learned model and mitigating the impact of spurious correlations that exist
between the label and some features, by using prior knowledge to group the data.

Let us consider an illustrative example of classifying waterbird images from land-
bird images (see Figure 2.2). The training data may have the same number of water-
bird images and landbird images. However, most waterbird images may have water
in the background and most landbird images may have land in the background. Stan-
dard empirical risk minimization may learn spurious correlation between the class
labels (e.g., waterbird) and the specific value of some attribute (e.g., the water back-
ground). As a consequence, the model may perform poorly on waterbird images with
land background.

Critical: Data may exhibit imbalance not in the marginal distribution of class
label but some joint distribution of the class label and some attributes, which
causes the spurious correlation.

GDRO can be used to mitigate this issue by leveraging prior knowledge of spu-
rious correlations to define groups over the training data. Let the training data be
divided into multiple groups G, . .., Gk, where G; = {(x],¥7),... (X}, y,)} in-
cludes a set of examples from the j-th group. We define an averaged loss over exam-
ples from each group L;(w) = % S €(h(w;x!),y]). Then, a regularized group
DRO can be defined as

1
mln max ZPJL (W) —1Dy ( [| E) , (2.23)
and a constrained group DRO is given by:

min max ijL (w). (2.24)
W peAx.Dy(pll K)<Pj
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2.3. EMPIRICAL X-RISK MINIMIZATION

By doing so, the learning process is less likely to be dominated by the majority group
associated with the spurious correlation between the label and a particular feature
(e.g., waterbird images with water background). If the model only captures the spu-
rious correlation, the loss for the minority group will be large, which in turn drives
the learning process to reduce this loss and thereby mitigate the spurious correlation.

Examples and Reformulations

Similar to before, we can convert the min-max problem into a minimization problem
to reduce additional overhead of dealing with a large number of groups. We give two
examples of using the KL-divergence constraint of p and CVaR-a.

With ¢(t) = tlogt — t + 1, the KL-divergence constrained group DRO (2.24) is
equivalent to

K
) 1 Li(w)

min 7 log x Z exp ( = +7p. (2.25)

With ¢(1) = [p—(t < 1/a), CVaR-a group DRO (2.24) is equivalent to

K
.1
I‘Ivll‘gl Xo Zl[Lj(w) —v]s +v. (2.26)
=

The Optimization Challenge

Again, these new optimization problems (2.25), (2.26) cannot be solved by simply
using existing stochastic algorithms for ERM since L ; (w) depends on many data and
they are inside non-linear functions. In particular, the problem (2.26) is an instance
of finite-sum coupled compositional optimization (FCCO), which will be explored
in Chapter 5 in depth.

2.3 Empirical X-risk Minimization

So far, we have revisited classical ideas of machine learning based on empirical risk
minimization and its distributionally robust variants. In these risk functions, we as-
sume each data defines a loss based on itself. These losses are typically surrogate
functions of a prediction error measuring the inconsistency between the prediction
and the label.

However, such loss functions are insufficient to capture many objectives, which
involve comparison between different data points. Examples include areas under
ROC curves (AUROC) and areas under precision-recall curves (AUPRC) for imbal-
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anced data classification, ranking measures such as normalized discounted cumula-
tive gain (NDCG), mean average precision (MAP) and listwise losses for learning to
rank, and contrastive losses for representation learning.

The standard ERM framework is inadequate for optimizing such metrics and
losses, as they involve interactions across multiple data points. We need a new mathe-
matical framework to understand the challenge and to design provable and practical
algorithms. To this end, we introduce a new risk minimization framework, named
empirical X-risk minimization (EXM), as defined below:

Empirical X-risk Minimization (EXM)

X-risk refers to a family of risks such that the loss of each data is defined
in a way that contrasts the data with many others. Mathematically, empirical
X-risk minimization is formulated as:

1\
min ~ Z fi(g(w, i, S;)), (2:27)
=
where {X1, ..., X,} is a set of data points, each S; contains a number of items,

f; 1s a simple but non-linear function, and g(w, X;, S;) involves the coupling
between x; and all data in S;. A simple instance of g(w, x;, S;) is the follow-
ing averaged form:

1
w,X;,S;) = O(W;X;,Z). 2.28
(W%, ) lSilzeZSi (W:x;.2) (2.28)

With g given in (2.28), EXM is an instance of finite-sum coupled compositional
optimization (FCCO), a framework explored in detail in Chapter 5.
Below, we present several important instances of X-risks.

2.3.1 AUC Losses

AUC, short for Area under receiver operating characteristic (ROC) curve, is com-
monly used to measure performance for the imbalanced data classification.

What is Imbalanced Data Classification?

Imbalanced data classification refers to classification problems, where the
number of examples from some classes is significantly larger than that of
other classes.
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PR Curve

TPR
[
TPR
[
B\
TPR
[
Precision

1 FPR @ B8 1 FPR B 1 FPR Recall

Fig. 2.3: Areas under ROC Curves

Definition and an Empirical Estimator of AUC

The ROC curve is the plot of the true positive rate (TPR) against the false posi-
tive rate (FPR) at each threshold setting. Let P,,P_ denote the distribution of ran-
dom positive and negative data, respectively. Let A(-) : X — R denote a pre-
dictive scoring function. For a given threshold #, the TPR of / can be written as
TPR(?) = Pr(h(x) > t|y = 1) = Ex-p, [I(h(x) > )], and the FPR can be written as
FPR(7) = Pr(h(x) > t|ly = —1) = Ex-p_[I(h(x) > 1)]. Let F_(¢) = 1 — FPR(¢) de-
note the cumulative density function of the random variable A(x_) for x_ ~ P_. Let
p-(t) denote its corresponding probability density function. Similarly, let F,(¢) =
1 — TPR(?) and p.(t) denote the cumulative density function and the probability
density function of i(x,) for x; ~ P,, respectively.

For a given u € [0, 1], let FPR™! (1) = inf{r € R : FPR(¢) < u}. The ROC curve
is defined as {u, ROC(u)}, where u € [0, 1] and ROC(u) = TPR(FPR™! (u)).

Hence, we have the following theorem.

Theorem 2.1 The AUC for a predictive scoring function h is equal to
AUC(h) = Pr(h(x,) > h(x-)) = By, x - [L(h(x)) > h(x-)].  (2.29)

Proof. The AUC score of & is given by

0

AUC(h):/OlROC(u)duzf

= /_:/tmp+(s)dsp:?t)dt = [: ‘[: p+(_:;p_(t)1[(s > t)dsdt.

Since A(x,) follows p.(s) and A(x_) follows p_(z), we can conclude the proof. O

TPR(t)dF_(t) = / " TPR(t)p_ (t)dt

This indicates that AUC is a pairwise ranking metric. An ideal scoring function
that ranks all positive examples above negative examples has a perfect AUC score 1.
It also implies the following empirical non-parametric estimator of AUC based on a
set of data S with n, positive samples in S, and n_ negative samples in S_:

AUC(; S) = Z I(h(xs) > h(x_)), (2.30)

nyn_
+ X;€8:,x_€S_

which is also known as the Mann-Whitney U-statistic (Hanley and McNeil, 1982).
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Necessity of Maximizing AUC

AUC is more appropriate than accuracy for assessing the performance of imbalanced
data classification. Let us consider an example with 2 positive data and 100 negative
data. If one positive data has a prediction score 0.5 and another one has a prediction
score —0.2, and all negative data has prediction scores less than O but larger than
—0.2. In this case, if we choose a classification threshold as 0, then the accuracy is
101/102 = 0.99. However, the (emprical) AUC score according to (2.30) is given
by 100/200 = 0.5. “Can a model that optimizes the accuracy also optimize the AUC
score?” Unfortunately, this is not the case as different classifiers that have the same
accuracy could have dramatic different AUC (Cortes and Mohri, 2003). An example
is illustrated in Table 2.2. Hence, it makes sense to directly optimize AUC.

Critical: A model that optimizes accuracy does not necessarily optimize
AUC.

Example 1 2cExample 2 2cExample 3
Prediction Ground Truth  Prediction Ground Truth Prediction Ground Truth
0.9 1 0.9 1 0.9 1
0.8 1 0.41()) 1 0.41()) 1
0.7 1 0.7 1 0.40()) 1
0.6 0 0.6 0 0.49(]) 0
0.6 0 0.49(]) 0 0.48(]) 0
0.47 0 0.47 0 0.47 0
0.47 0 0.47 0 0.47 0
0.45 0 0.45 0 0.45 0
0.43 0 0.43 0 043 0
0.42 0 0.42 0 0.42 0
0.1 0 0.1 0 0.1 0
Acc=0.92 Acc=0.92 (—) Acc=0.92 (—)
AUC=1.00 AUC=0.89 () AUC=0.78 ()

Table 2.2: Illustrations of variance of AUC for different classifiers with the same
Accuracy on an imbalanced dataset of 25 samples with a positive ratio of 3/25. The
accuracy threshold is 0.5. Example 1 shows that all positive instances rank higher
than negative instances and two negative instances are misclassified to positive class.
Example 2 shows that 1 positive instance ranks lower than 7 negative instances and
1 positive and 1 negative instances are missclassifed. Example 3 shows that 2 posi-
tive instances rank lower than 7 negative instances, and 2 positive instances are also
missclassifed as negative class. Overall, we can observe that AUC drops dramatically
as the ranks of positive instances drop but meanwhile Accuracy remains unchanged.
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2.3. EMPIRICAL X-RISK MINIMIZATION

Pairwise Loss £(1) Monotone
Squared Hinge (c+1)? Yes
Hinge (c+1)s Yes
Logistic log(1 +exp(st)) Yes
Sigmoid (1 +exp(—st))~! Yes
Square (c+1)? No

Barrier Hinge max(-s(c —t) + c,max(s(—t —c¢),c+t)) No

Table 2.3: Surrogate loss functions for pairwise modeling with the input argument
t = h(w;x_) — h(w;x,). For the sake of simplicity, denote max (0, ¢) by ¢, denote
the scaling hyper-parameter by s > 0 and margin hyper-parameter by ¢ > 0.

Pairwise Surrogate Losses

Using a pairwise surrogate loss €(-) of the indicator function I(# > 0) (see exam-
ples in Table 2.3), we have the following empirical AUC optimization problem for
learning a parameterized function z(w;-):

min -1 Z Z £(h(W:X;) — h(W:X;)). 2.31)

weRd Ny n_
+ X,‘ES+ X_,’ES_

This can be regarded as a special case of (2.27) by setting

g(w;x;, S_) = ni Z C(h(w;x;) — h(w;x;)),
T oxjeS-

fil®) =¢.
This is the simplest form of EXM as f is just a linear function. An unbiased stochastic

gradient can be easily computed based on a pair of data points consisting of a random
positive and a random negative data point.

Compositional Objectives
An alternative approach to formulate AUC maximization is to decouple the pairwise

comparison between positive and negative examples. A generic formulation is given
by:

LS (h(wix) -+ o 3 (h(wix)) - b)°

min
weRd,(a,b)eR? Sy &4 IS-| =
1 - j —

| | (2.32)
+fl D hwix) === D hwix)) |,

|S-| x;eS. IS+ 23,
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where f is a non-linear function. The last component is a compositional function.

The above formulation also has a clear physical meaning. In particular, minimiz-
ing the first two terms aim to push the prediction scores of positive and negative
examples to center around their means, respectively, and minimizing the third term
aims to push the mean score of positive examples to be larger than the mean score
of negative examples.

The above formulation is motivated by the pairwise formulation with a square
surrogate function £(h(w;X;) — h(w;X;)) = (c + h(w;X;) — h(w; x;))2. Indeed, in
this case, (2.31) is equivalent to (2.32) with f(s) = (s + ¢)>. We leave this as an
exercise for interested readers. Nevertheless, using f(s) = [s +¢]2 in (2.32) is more
robust than £(s) = (s + ¢)? with ¢ > 0.

Solving the above problem requires compositional optimization techniques, which
will be discussed in Section 6.4.1.

2.3.2 Average Precision Loss

Area under precision-recall curve (AUPRC) is another commonly used measure for
highly imbalanced data. The precision and recall of a scoring function % at threshold
t are defined as

Rec(t) :=Pr(h(x) >t |y =1) = TPR(z),
Prec(t) :==Pr(y =1 | h(x) > 1).
For a given u € [0, 1], let TPR™! () = inf{t € R : TPR(¢) < u}. The precision—

recall (PR) curve is defined as {(u,PR(u))}, where u € [0,1] and PR(u) =
Prec(TPR ™! («)). Hence, AUPRC for / can be computed by

1
AUPRC(h) = / PR(u) du.
0

Theorem 2.2 The AUPRC for a predictive scoring function h is equal to

[

AUPRC(h) = / Prec(t) p.(t) dt = Ex, ., [Prec(h(x,))]. (2.33)

—00

Proof. By definition,
1 1
AUPRC (h) = / PR(u) du = / Prec(TPR™! (1)) du.
0 0

Letu = TPR(¢) = 1 — F,(t). Then du = —p(t) dt. Therefore,

-0 (e8]

AUPRC(h) = / Prec(t) (—p+(t) dt) = / Prec(t) p+(¢) dt,

00 —00
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2.3. EMPIRICAL X-RISK MINIMIZATION

which proves (2.33). a

The above theorem yields the following empirical estimator of AUPRC. For a set
of training examples S = S; US_, a non-parametric estimator of AUPRC is average
precision (AP) (Boyd et al., 2013):

2 I(h(xj) = h(xi))

1 x; €8,
AP = 2 T = e e

AP is an unbiased estimator of AUPRC in the limit n — .

Necessity of Maximizing AUPRC

While AUC is generally more suitable than accuracy for imbalanced classification
tasks, it may fail to adequately capture misorderings among top-ranked examples.
Consider a scenario with 2 positive and 100 negative samples. If the two positive
samples are ranked below just two of the negative ones, followed by the remaining
98 negatives, the resulting AUC is 196/200 = 0.98, which appears high. However,
this model would be inadequate if our focus is on the top two predicted positive in-
stances. In drug discovery, for example, models are expected to identify the most
promising candidate molecules for experimental validation. If these top-ranked pre-
dictions turn out to lack the desired properties, the resulting experimental efforts may
lead to significant wasted resources and costly failures.

To avoid this issue, AUPRC or its empirical estimator AP is typically used as a
performance metric. According to its definition (2.34), the AP score for the above
example is %(% + %) = 0.42. In contrast, a perfect ranking that ranks the two positive
examples at the top gives an AP score of 1. Unfortunately, optimizing AUC does not
necessarily lead to optimal AP, as two models with identical AUC scores can exhibit
significantly different AP values. This highlights the need for efficient optimization
algorithms that directly maximize AP.

Critical: AUPRC/AP penalizes more on the error at the top of the ranked list.

Surrogate Loss of AP
To construct a differentiable objective for minimization, a differentiable surrogate

loss £(h(x;) — h(x;)) is used in place of I(%(x;) > h(x;)). Then AP can be approx-
imated by :
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> Wy; = DE(h(x;) = h(x;))

X;€S
AP 2 3 _{(h(x)) = h(x)

(2.35)

X[€S+

Let us define

__leh
f(g= o],

g(w;x;, S) = [g1(W: X3, S), g2(W; X, S)]

1
g1 W%, S) = 75 ) 10y = DEh(W:x)) = h(w:xy)),

x; €S

g2 (w;x;, 8) = é Z C(h(w;x;) = h(W;x;)).

XjES

Then, we formulate AP maximization as the following problem:

. o
min — > f(g(w:x;. ), (2.36)

Xi€S+

which is a special case of EXM. We will explore efficient algorithms for optimizing
AP in Section 6.4.2 using FCCO techniques.

2.3.3 Partial AUC Losses

There are two commonly used versions of partial AUC (pAUC), namely one-way
pAUC (OPAUC) and two-way pAUC (TPAUC). OPAUC puts a restriction on the
range of FPR, i.e., FPR € [a, B] (the second figure from the left in Figure 2.3) and
TPAUC puts a restriction on the lower bound of TPR and the upper bound of FPR,
ie., TPR > a, FPR < S (the second figure from the right in Figure 2.3).

By the definition, we have the following probabilistic interpretations.

Theorem 2.3 OPAUC with FPR restricted in the range [«, 8] for a predictive scor-
ing function h is equal to

OPAUC(h|FPR € (a, B)) = Pr(h(x,) > h(x_), h(x_) € [FPR™'(B), FPR"'(a)]).
(2.37)

Similarly, TPAUC with FPR restricted in a range of [0, B] and TPR restricted in a
range of [, 1] is equal to

TPAUC(h|TPR > a, FPR < jB) (2.38)
=Pr(h(xy) > h(x_), h(x_) > FPR™'(B), h(x,) < TPR"'(a)}).
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Proof. The first part about OPAUC is similar to AUC except for the range of integral:
FPR™! (@)

OPAUC(h|FPR € (a, B)) = /F . TPR(7)dF_ (1)

FPR (@) poo
- / / Do (8)p_(D)I(s > t)dsdt.
F —_

PR (B) oo

This concludes the proof of the first part.

For TPAUC with FPR restricted in [0, 8] and TPR restricted in [, 1], it is equal
to OPAUC with FPR restricted in [y, 8] minus the square area with FPR € [y, 5] and
TPR < a, where 7y is the FPR that corresponds to TPR equals to , i.e., FPR™!(y) =
TPR~!(a). Since TPR(?) = Am p+(s)ds and FPR(7) = ftm p—(s)ds, we have

o= /T T pwds. B= [ pwar

PR (@) FPR™!(B)

Then, we have
(B-7)a

- / f pa(s)p—(1)dsdi - / pa()p—(1)dsdi
FPR™!(B) JTPR™! () FPR™!(y) JTPR"! ()

FPR™'(y) poo
=/ / p+(8)p_(t)dsdt.
FPR™!(B) JTPR !(a)

As a result,

TPAUC(h|TPR > @, FPR < f) = OPAUC(K|FPR € (v,8)) — (8 - y)a

FPR™!(y) poo FPR™!(y) po
[ [ pop-asar- [ pop-@asar
FPR™1(B) Jt FPR™!(B) JTPR™!(a)

FPR™!(y) pTPR™!(a) o0 TPR™! (@)
[ peop-asar= [ f po(s)p_ () dsdr,
FPR™1(B) Jt FPR™!(B) Jt

where the last equality follows from FPR~!(y) = TPR™! (). Thus,

oo TPR™! (@)
TPAUC(h|TPR > «,FPR < B) = / p+(s)p_(t)dsdt
FPR™1(B) Jt

~ TPR™! (@)
= / / p+(8)p—(t)I(s > t)dsdt.
FPR™!(B) /-0

This concludes the proof of the second part. |

Hence, an empirical estimator of OPAUC with FPR restricted in the range [a, 3]
can be computed by
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1
LSS weewo.  aw
+ lxi€S+xjeS£[k1+1,k2]

where k| = [n_a], ko = [n_B], and St [k, k2] C S denotes the subset of examples
whose rank in terms of their prediction scores in the descending order are in the
range of [k1, k»].

An empirical estimator of TPUC with with FPR restricted in a range of [0, 8] and
TPR restricted in a range of [«, 1] is computed by:

11
= Z Z I(h(w;x;) > h(W;X;)), (2.40)

xi €SI,k ]x;€S84 1,k ]

where k; = [ny(1 — @)],k» = |n_pBJ, and ST[ky, k»] C S denotes the subset of
examples whose rank in terms of their prediction scores in the ascending order are
in the range of [k, k3].

Necessity of Maximizing partial AUC

In many applications, there are large monetary costs due to high false positive rates
(FPR) and low true positive rates (TPR), e.g., in medical diagnosis. Hence, a mea-
sure of interest would be the pAUC- the region of the ROC curve corresponding to
low FPR and/or high TPR. With a similar argument as last section, a model that max-
imizes AUC does not necessarily optimizes pAUC. Let us compare two models on a
dataset with 2 positive and 100 negative molecules (Figure 2.4). The model 1 ranks
two negatives above the two positives followed by the remaining 98 negatives. The
model 2 ranks one positive at the top, and then four negatives above the other positive
followed by the remaining 96 negatives. The two models have the same AUC score of
196/200 = 0.98 but have different pAUC scores. When restricting FPR € [0, 0.02],
model 1 has an empirical pAUC score of g = 0 and model 2 has an empirical pAUC

score of % = 0.5 according to (2.39).

Critical: Partial AUC emphasize the correct order between the top ranked
negative data and/or the bottom ranked positive data.

A Direct Formulation

Using a surrogate loss of zero-one loss, OPAUC maximization for learning a param-
eterized model 4(w; -) can be formulated as:
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Low High
O ®B OO Model1

O—— @ ®— Model2

Fig. 2.4: Two models that have the same AUC score but differ dramatically in pAUC.
The arrows indicate the prediction scores from low to high.

min iki Z Z t(h(w;x;) — h(w;x;)). (2.41)

Xi€S x;e S 1,k ]

Similarly, TPAUC maximization can be formulated as:

11

in — — E(Ch(W;X;) = h(W; X)), 2.42

MAET 2 2 (hwx)-hoes). @4
x; €8, [1,k1] x;€82[1,kz]

where k| = [n. (1 — )], ky = |n_B].

Both problems are not standard ERM. The challenge for solving the above prob-
lems is that the selection of examples in a range, e.g., St[1, k»] and SI [1, k], is
not only expensive but also non-differentiable. We will explore different approaches
for optimizing OPAUC and TPUC in Section 6.4.3 using advanced compositional
optimization techniques.

An Indirect Formulation

When the surrogate loss €(¢) is non-decreasing, the top-k selector of negative exam-
ples SL[1,k,] can be transferred into the top-k average of pairwise losses, which
becomes an CVaR. By drawing the connection between CVaR and KL-regularized
DRO, an indirect objective for OPAUC maximization is formulated by:

. Z clog Z eXp(f(h(w;x;)—h(w;Xi)) . (2.43)

W n T
+ X; €S, X; €S-

This problem is an instance of EXM, which will be solved by FCCO techniques.
TPAUC maximization can be handled similarly. We will present detailed exposition
in Chapter 6.4.3.
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2.3.4 Ranking Losses

Ranking losses are commonly employed in learning to rank.

What is Learning to Rank?

Learning to rank (LTR) is a machine learning problem that aims to learn a
ranking model, which can be used to predict the relevance order of a set of
items given a query.

Let Q denote the query set of size N, and let ¢ € Q represent an individual
query. For each query g, let S, be a set of N, items (e.g., documents, movies) to
be ranked. For each item x,, ; € S, let y,; € R* denote its relevance score, which
quantifies the relevance between the query ¢ and the item x, ;. Define S; cS, as
the subset of N:]' items relevant to g, i.e., those with non-zero relevance scores. Let
S ={(q,%q,1) | g € @ X4,; € S7} represent the collection of all relevant query-item
(Q-D) pairs.

Let s(w; X, ¢) denote the predicted relevance score for item x with respect to query
g, parameterized by w € R (e.g., a deep neural network). Define the rank of item x
within S as:

r(w;x,8S;) = Z I(s(w;x', q) — s(W;X,q) 2 0),

X' €Sy

where ties are ignored.

NDCG and NDCG Loss

Normalized Discounted Cumulative Gain (NDCG) is a metric commonly used to
evaluate the quality of ranking algorithms, especially in information retrieval and
recommender systems.

NDCG evaluates how well a model ranks relevant items near the top of a list for
a query ¢. The DCG of a ranked list according to {s(W;X, ¢),x € S, } is given by:

Z log, (1 +r(w x,S,)) Z log,(1 +r(w x,8;))

Note that the summation is over S; rather than S, as only relevant items contribute
to the DCG score due to their non-zero relevance.

NDCG normalizes DCG by the ideal DCG denoted by Z,; of the best possible
ranking:

DCG,
NDCG, = :

q
The average NDCG over all queries is given by:
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1 i 1 ai — |
NDCG: — — , (2.44)
N = Z, xpaeS; log, (r(w;x4,i,Sg) + 1)

where Z, can be precomputed.
By replacing the indicator function with a surrogate function in Table 2.3, we
approximate r(w; X, S;)/N, by

1 ,
g(wix.Sg) = - D Es(wixX',q) = s(Wix,)).
1 xeS,

Then the NDCG loss minimization is defined by

N )
o1 1 1 —2Yai
S N Z Z_q Z log, (Ngg(W;Xg,i,Sg) +1) '

g=1 Xq,i €S

(2.45)

which is an instance of EXM. We will explore FCCO techniques for solving this
problem in Section 6.4.4.

Listwise Cross-Entropy Loss

Analogous to multi-class classification, we can define a listwise cross-entropy loss
for ranking. This is based on modeling the probability that a specific item is ranked
at the top:

exp(s(W; X, g))
Yxjes, EXp(s(W;X;,q))

Piop(x | g) = (2.46)

Accordingly, the listwise cross-entropy loss for query ¢ is defined as:

exp(s(W:Xg.i»q))
Yxjes, eXp(s(W;x;,q)) |’

L(w;q) = Z —pg.ilog

xq,ieS;;
where p, ; denotes the top-one prior probability for item X, ;, such as

_ exp(yg.)
qu’iESq exp(yq,i)

Pq.i or pg,i=

1
Ng
An optimization objective based on the average of listwise cross-entropy losses
over all queries leads to the following formulation known as ListNet:

N
. 1
min > > pailog| ) exp(s(Wixj.q) ~s(Wixgi )| (247)

w
q=1x4,:€S; X;€Sy
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This formulation closely resembles equation (2.43) and constitutes a special case
of the EXM framework.

2.3.5 Contrastive Losses

Contrastive losses are commonly used in representation learning, which is a funda-
mental problem in the era of deep learning and modern Al

What is Representation Learning?

Representation Learning is a process in machine learning where algorithms
extract meaningful patterns from raw data (e.g., images) to create represen-
tations that are useful for many downstream tasks, e.g., learning a classifier
or a retrieval model.

A deep neural network is usually used to extract representation from unstructured
raw data. Let A(w;-) : X — R? denote the representation network that outputs
an embedding vector, which is sometimes called the encoder. A meaningful encoder
should capture the semantics such that ‘similar’ data points (positive pairs) are closer
to each other and dissimilar data points (negative pairs) are far away from each other
in the embedding space.

To conduct the representation learning, the following data is usually constructed.
Let x; be an anchor data, and let X} denote a positive data of x;. Denote by S; the
set of negative data of x;. Let s(w; x,y) denote a similarity score between the two
encoded representations. For example, if #(w;x) is a normalized vector such that
[|h(w;x)||2 = 1, we can use s(W;X,y) = A(w;X) T h(wW;y).

A contrastive loss for each positive pair (x;, x}) is defined by:

L(w;x;,x}) = 7log |Sl—_| Z exp((s(w; x;,y) — s(W; x;,X7))/7) |, (2.48)
i'yeS”

where 7 > (s called the temperature parameter. Given a set of data { (x;, X}, S7)}.,,
minimizing a contrastive objective for representation learning is formulated as:

: 1 e _ cv. v
m;n;Zrlog — Z exp((s(w;x;,y) —s(W;X;,X;7))/7) |. (2.49)

1 1
IS71 2 5

i=1
Traditional supervised representation learning methods construct the positive and
negative data using the annotated class labels, such that data in the same class are
deemed as positive and data from different classes are considered as negative. How-

ever, this requires a large amount of labeled data to learn the encoder, which requires
significant human effort in labeling. To address this issue, self-supervised represen-
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2.4. DISCRIMINATIVE DATA PREDICTION

tation learning (SSRL) techniques are employed to fully exploit the vast data readily
available on the internet via self-supervision to learn representations that are useful
for many downstream tasks. In SSRL, a positive pair (X;, x}') may consist of different
augmented views of the same sample or represent different modalities of the same
underlying object (e.g., an image and its corresponding text). The negative samples
for each anchor x; are typically drawn from all other data points in the dataset ex-
cluding x;. In this setting, a variant of the contrastive objective is useful by adding a
small constant € > 0 inside the logarithm:

1< 1
m&n; Z Tlog|e + ] Zﬁ exp((s(w; x;,y) — s(W; x;,X7))/7) | (2.50)
i= U yes;
This can mitigate the impact of false negative data in S;. We will explore SSRL in
Section 6.5.

Optimization Challenge

Optimizing the above contrastive objectives is challenging due to the presence of
summations both inside and outside the logarithmic function. These losses can be
reformulated as special cases of the X-risk, where the outer function is f(g;) =
7log(g;i), and g; represents the inner average computed over negative samples asso-
ciated with each x;.

2.4 Discriminative Data Prediction

The aforementioned X-risks can be unified under a principled discriminative learn-
ing framework for data prediction, providing a statistical foundation for developing
advanced methods to train foundation models in modern Al.

What is a Foundation Model?

A foundation model (FM) is a type of machine learning model trained on
large, diverse datasets (generally using self-supervision at scale) that can be
adapted to a wide range of downstream tasks.

The widely used foundation models include Contrastive Language-image Pre-
trained (CLIP) model (see Section 6.5), Dense Passage Retrieval (DPR) model, large
language models (LLMs) such as the Generative Pretrained Transformer (GPT) se-
ries (see Section 6.6), and vision-language models (VLMs). These models fall into
two main categories: representation models, such as CLIP and DPR, and genera-
tive models, including LLMs and VLMs.
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We present a discriminative data prediction framework to facilitate the learn-
ing of these foundation models. Suppose there exists a set of observed paired data,
{(xi,yi)} |, where x; € X and y; € Y. These pairs typically represent real-world
positive correspondences. While this setup resembles traditional supervised learn-
ing where x; represents input data and y; denotes a class label, there is a crucial
difference: here, y; refers to data from a continuous space (e.g., images) or an un-
countable space (e.g., text). For instance:

 In training the CLIP model, x; represents an image and y; is the corresponding
text caption (or vice versa).

* In training the DPR model, x; is an input question, and y; is the corresponding
textual answer.

* Infine-tuning LLMs or VLMs, x; represents input data (e.g., prompts or images),
and y; represents the text to be generated.

Discriminative Data Prediction

The problem of learning a representation model or fine-tuning a generative
model can be framed as discriminative learning, which we term as data pre-
diction, such that given any anchor data x, the parameterized scoring function
s(w; -, -) is able to discriminate a positive data y from any other negative data
y,ie., s(w;x,y) = s(w;Xx,y’).

Since the risk function usually involves coupling each positive data with many other
possibly negative data points in a compositional structure, the resulting risk is called
discriminative X-risk. The following subsections detail two specific approaches to
formulating discriminative X-risks.

2.4.1 A Discriminative Probabilistic Modeling Approach

Without loss of generality, we assume that X and Y are continuous spaces. Let P
denote the joint distribution of a pair (X,y), and let P; and P, denote the marginal
distributions of x and y, respectively. We write their corresponding density functions
as p(-,-), p1(+),and p;(-). We denote the conditional density functions by p(y|x) and
p(x]y), corresponding to the conditional distributions P(y|x) and P(x | y). Below,
we present two approaches based on discriminative probabilistic modeling (DPM)

Symmetric DPM
For symmetric DPM, we use s(W;X,y) to model both conditional distributions

P(y|x) and P(x]y). A discriminative probabilistic approach models the conditional
probability p(y|x) using a scoring function s(w;X,y) by:
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p2(y) exp(s(W;X,y)/7)
ey P2(¥) exp(s(W;x,y") /T)dy"’

Pw(ylx) = (2.51)
A

y

where 7 > 0 is a temperature hyperparameter. The above parameterized distribution
is the solution to the following problem for a fixed x:

pw(-x) = argglggEwaS(W; x,y') - TKL(Q, P2),

where Q = {Q|Q < P,} is a set of probability distributions overy € Y.
Similarly, we model p(x|y) as

pulxly) = 7 P1(x) exp(s(W; X, y)/7) (2.52)

ex P1(X) exp(s(w; X, y)/7)dx"

Given a set of observed positive pairs {(X;,y;)}_,, the model parameters w are
learned by minimizing the empirical risk of the negative log-likelihood:

1 ¢ s Xis Yi 3 Xi, Vi
min__z:ﬂog XWX, ¥)/T) o, eXp(s(w:xi,y0)/T) }
v Ey g, eXp(s(W; Xi, ') /7) Ey -7, exp(s(W:X',y;)/7)

A significant challenge in solving this problem lies in handling the partition func-
tions,

Z(x;) = By p, exp(s(W:x;,¥')/T)dy’,  Z(y:) = Exp, exp(s(W; X', y:)/7),

which are often computationally intractable. To overcome this, an approximation can
be constructed using a set of samples Y; € Y, X; € X. The partition functions are
then estimated by:

T2 SOOI, 200 = o D) epls(wiR. v /)

y;i E% X; E/\%‘

Z(Xi) =

Consequently, the resulting optimization problem is an empirical X-risk minimiza-
tion problem:

T

i=1 i€V

1< s(W:X;,§;) — s(W; X, yi)
mv&n;Z‘rlog Z exp(
(2.53)

+ 7 log Z exp

)ACjE/\A’i

(S(W; X;,yi) — s(w; Xh)’i))
- .

The above approach can be justified that if s(w, -, -) is optimized over all possible
scoring functions, then the learned p,(y|x) and p(x|y) approaches the true density
functions of P(y|x) and P(x|y) when n approaches oo, respectively.
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Theorem 2.4 Let us consider the following problem over all possible scoring func-
tions s(-,-):

P2 ePEEN/D | pi(6) exp(s(x.)/D)

. (2.54
Ey —p, exp(s(x,y')/7) Exp, oxp(sy)ym |

min —Ey y [‘r log
N

Then the set of global minimizers is given by

S, = {s : s(x.9) =1lo p(x.y) +const} ,
P1(x)pa(y)
where const is a constant, and we have
p2(y) exp(s(x,y)/7)
pa(yly) = — PEEFRERIIT (),
Jyey P2(¥) exp(s(x.y)/7)dy

Py = T ey ey =P

wex P1(X) exp(s(x’, y)/7)dy’

Proof. Let F1 be aclass of functions f(x,y) : XXY — Rsuchthat f(x,y) > Oand
fy cy fi(x,y) = 1, which induces a probability distribution Q; ,(-) over Y for any
x. Similarly, we define f>(x,y) € % that induces a probability distribution Q, ,(-)

over X for any y.
Let us define a problem:

min —1lo x,y) —lo x,y)].
emin  Bxy[-log fi(x,y) ~log (% y)]

Since

Exyl-log fi(x,y) —log f2(x,y)]

B fix,y)
= ExEy~p(.|x) [~ log P I%) —IOgP(Y|X)]
+EyExp(.ly) [— log J;i((:b?’)) - 10gP(Y|X)]

= Ex[KL(P(:[x), Qi ,x(-))] + Ey[KL(P(-]y), Q2,y(-))] + const,

where const is independent of f. Hence the minimizer f;"(x,y) is equal to p(y[x)
and the minimizer f;(x,y) is equal to p(x|y). As a result, for optimal s.(-,-) we
require

p2(y) exp(s«(x,y)/7)

Jy P2(y) exp(s.(x,y') /7)dy’
P1(x) exp(s«(X,y)/7)

Sy Pr1(x) exp(s.(x',y)/7)dx’

= f{ (x,y) = p(ylx), (2.55)

= f, x,y) = p(xly). (2.56)
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From the first equation, we can derive that s.(x,y) = log % + hy(x), where
h1(x) is any arbitrary function of x. From the second equation, we can derive that
s.(x,y) = log ’;(l’zlxy)) + hp(x), where A, (y) is any arbitrary function of y. As a result,
pP(x.y)
p1(x)p2(y)

the global minimizer s.(x,y) will be in the form of log + const. |

One-sided DPM

If we are only interested in modeling P(y|x), then we can consider one-sided DPM.
We define the following parametric probability function to model P(y|x):

exp(s(w;X,y)/7)
exp(s(w; X, y')/7)du(y’)’

pw(ylx) = (2.57)
Iy

where T > 0 is a temperature hyperparameter, and yu is the Lebesgue measure asso-
ciated with the space Y.

Given a set of observed positive pairs {(x;,y;)}_,, the model parameters w are
learned by minimizing the empirical risk of the negative log-likelihood:

exp(s(w;X;,y:)/7) .
exp(s(w;x;,y")/T)du(y’)

] n
min —— Z 7log
Vo Ty
A significant challenge in solving this problem lies in handling the partition function,

Zi = / exp(s(W: i, ¥) /D) du(y’).
Y

which is often computationally intractable. To overcome this, an approximation can
be constructed using a set of samples Y; C Y. The partition function is then esti-
mated as:

1 N
Z; = g — exp(s(w;x;, §,)/7),
= 4
VieY:

where g is an importance weight that accounts for the sample probability of §;.
Consequently, the empirical X-risk minimization problem is reformulated as:

n

1
min = > vlog| Y exp((s(w:%i. ;) +¢; —s(Wixi.¥))/7) |.

i=1 §ie;

where {; = 7ln #.
We can similarly justify the above approach by the following theorem.

Theorem 2.5 Let us consider the following problem over all possible scoring func-
tions s(-,-):
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Fig. 2.5: DPM for supervised learning and self-supervised representation learning.

exp(s(x,y)/7) .
Jyey exp(s(x,¥)/7)du(y")

min —Ey y7 log (2.58)
A

Then the set of global minimizers is given by

S _{s,s(x,y)
* = . T

=log p(y[x) + h(X)},

Vi ; i — __expsxy)/T)
where h(-) is an arbitrary function of X, and we have p(y|x) T ety m)dy
p(y[x).

The proof is similar to the previous one and thus is omitted.

Instantiation

The fundamental difference between symmetric DPM and one-sided DPM lies in
what their scoring functions s(w;x,y) are designed to capture. We can use sym-
metric DPM for learning representation models and one-sided DPM for learning
generative models and supervised prediction models.

The standard cross-entropy loss for classification and the listwise cross-entropy
loss for learning to rank can both be viewed as special cases of the one-sided DPM
framework, where Y represents either a finite set of class labels or a list of items
to be ranked for each query. In these cases, the integral naturally simplifies to a
finite summation, eliminating the need to approximate the normalization term Z;.
However, when Y is large, computing Z; remains computationally demanding. This
challenge, in turn, motivates the development of more advanced compositional op-
timization techniques.

For representation learning, the goal is to learn a symmetric scoring function
s(w;X,y) = hy(w;x) T hy(w;y) that approximates the global optimum
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s*(x,y) = tlog L’Y) + const,

p1(x)p2(y)
which measures how much the joint distribution P(x, y) deviates from independence
between x and y. We will consider contrastive losses of CLIP in Section 6.5 for multi-
modal representation learning, which can be interpreted by the symmetric DPM with
X, y denoting an image-text pair.

For generative modeling, we can use underlying models to induce a scoring func-
tion s(w; X, y) for approximating the global optimum s*(X,y) = 7 log p(y|x) + h(x).
We will also consider discriminative fine-tuning of LLMs Section 6.6, which can be
interpreted by the one-sided DPM with X, y denoting an input-output pair.

An illustration of the connection between the probabilistic model for multi-modal
representation learning and traditional supervised learning tasks including multi-
class classification and learning to rank is shown in Figure 2.5.

Critical: Discriminative probabilistic model over a data space is a framework
that unifies traditional label prediction and data ranking of supervised learn-
ing and modern self-supervised representation learning, and induces new ap-
proaches for fine-tuning LLMs.

2.4.2 A Robust Optimization Approach

The goal of discriminative learning is to increase the score s(w; x, y.) for a “positive”
pair (X, y;) while decreasing the score s(w;x,y-) for any “negative” pair (X,y-).

Full Supervised setting

Let us first consider the supervised learning setting, where positive and negative
samples are labeled, i.e., there is a function r(x,y) € (0, 1) that indicates whether
they form a positive pair or a negative pair. We let (x,y;) ~ P.(x,y;) denote a
positive pair and (x,y-) ~ P_(x,y-) denote a negative pair, where P, (x,y;) =
PP, (y+[x), P-(x,y-) = P(X)P_(y-[x),and P(x, y+,y-) = P+ (y+[x)P_ (y- [x)P(x).
Let us denote a pairwise loss by £(s(W;X,y-) — s(W;X,y4)).

A naive goal is to minimize the expected risk:

mvin Exy,y-~P(xys.y-) [f(S(W; X, y-) = s(W;X, Y+))] .

However, a fundamental challenge for data prediction is that the number of negative
data is usually much larger than the number of positive data. Hence, the expected
risk is not a strong measure. To address this challenge, we can leverage OCE. In
particular, we replace the expected risk Ey__p(y_|x) [é’(s(w; X,y-) —s(w; X, y+))] by
its OCE counterpart, resulting the following population risk:
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C(s(W;X,y-) = s(W;X,¥4)) — V)
+v

T

min Ey y, [min TEy_x¢" ( (2.59)
w 4

If the training dataset is S = {x;,y7, Yl € [n].j € [m]}, where y] ~ P, (-|x;) and
¥;; ~ P-(-[xi), then the empirical version becomes:

1 & 1 & C(s(Wixi,y;7) — s(Wi X, ¥7)) — v
min—z i ¢*( J

) +vi. (2.60)
T

Semi-supervised setting

We can extend the above framework to the semi-supervised learning setting, where
we only have samples from the positive distribution P, (-|x) and samples from the
distribution P(-|x).

Let us assume that P(:|x) = 74 (X)P;(+|x) + 71— (X)P_(-|x) and 7, (x) < 7_(x).
This means that for a fixed data x, the sampled data 'y ~ P(-|x) is mostly likely
from the negative distribution P_(-|x). Hence, we can approximate Ey__p_(.|x) by
Ey.p(.|x)- Hence, a population risk in the semi-supervised learning setting becomes

4 X, ¥) — X, -
min Eyy, [minTEy|x¢* ( (s(w;X,y) — s(W;X,y4)) v) .
w v

T

v, 2.61)

and its empirical version becomes

ul (f(s(w; Xi,Yij) — s(W:X;, ¥7)) — vi

1 < 1
min—ZminT— ¢ )+v,~, (2.62)
W n Py Vi m - T

J

where {y;;,j = 1,...,m} are samples from P(-|x).

Self-supervised setting

For self-supervised learning, we let (x,y*) ~ P(x,y") denote a “positive” pair, and
(x,y7) ~ P(x)P(y~) denote a “negative” pair. For empirical learning, we only have
a training set of S = {x;,y7,i € [n]}. Weuse S;” = {y}f}j# to define the empirical
risk:

+v;. (2.63)
T

1 . 1 Z L(s(W:xi,y') — (WX, ¥7)) — vi
o
ilyeS”

We refer to the problems in (2.60), (2.62) and (2.63) as the Compositional OCE
(COCE) optimization. We will present and analyze stochastic algorithms for solving
COCE optimization in Chapter 5[Section 5.5].
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Fig. 2.6: Overview of different losses and two fundamental learning principles

Instantiation

When ¢(7) = tlogt — ¢ + 1, the inner optimization over v; in (2.62) admits a closed-
form solution, which can be substituted back into the objective, yielding:

1 v 1 < E(s(w:xi,yij) — s(W:Xi. ¥7))
in — log| — ! . 2.64
min > 3 log( 2 ex 264)

w n T
i=1 7=

This formulation unifies several well-known losses as special cases:

* Cross-Entropy Loss for Classification: Let x; denote an input data point, let
y¥ represent its true class label and {y;;,j = 1,...,m} = {1,..., K} forms the
full label space. Define the prediction score for the y-th class of x as s(w; X, y) =
ho(wo; ) "wy. When the loss function is £(s) = s and 7 = 1, the objective reduces
to the empirical risk with the standard cross-entropy loss.

* Listwise Cross-Entropy Loss for Ranking: Let x; denote a query, {y;} denote
a relevant (positive) document, and {y; j}’;?: , denote the complete candidate list
to be ranked. Let s(w;X,y) be the predicted relevance score between a query x
and a document y. When the loss function is €(s) = s and 7 = 1, the objective
simplifies to the listwise cross-entropy loss.

¢ Self-supervised Contrastive Loss for Representation Learning: If x; is an an-
chor (e.g., an image), y; denotes its positive pair (e.g., the corresponding text)
and {y; j,j = 1,...,m} = 87, the the objective in (2.64) recovers the contrastive
loss (2.48) used in self-supervised contrastive representation learning.
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¢ Partial AUC Loss for Imbalanced Binary Classification: Let x; be a fixed class
label (i = 1), with {y}} denoting its positive data set and {y;; };”: , being its nega-
tive data set. Define the scoring function as s(w;X,y) = h(w;y) € R. Under this
setting, the objective in (2.64) reduces to the partial AUC loss in (2.43).

This framework offers a flexible foundation for designing alternative contrastive
objectives by varying the loss function £(-), the temperature 7, the divergence func-
tion ¢(-), and the distributionally robust optimization (DRO) formulation, including
its constrained variants.

Finally, Figure 2.6 illustrates the losses, objectives, and learning frameworks dis-
cussed in this chapter, along with their connections to the principles of discrimina-
tive learning and robust optimization. This perspective highlights the necessity of
stochastic compositional optimization and finite-sum coupled compositional opti-
mization, which will be presented in subsequent chapters.

2.5 History and Notes

Loss functions

A pioneering work analyzing the infinite-sample consistency of various multi-class
surrogate loss functions is provided by Zhang (2004b). This work proves the con-
sistency of several losses, including the cross-entropy loss. It also shows that the
consistency of the Crammer-Singer and hinge losses can fail unless the maximum
conditional probability of a class label given the input exceeds 0.5.

The Label-Distribution-Aware Margin (LDAM) Loss was proposed and studied
by Cao et al. (2019), inspired by margin-based generalization error bounds tailored
for each class. The label distributionally robust (LDR) losses and their consistency
was proposed and studied by Zhu et al. (2023b).

Variants of standard loss functions have been developed to minimize the top-k
error for k > 1, such as the top-k SVM loss and the top-k cross-entropy loss (Lapin
et al., 2018; Yang and Koyejo, 2020). The top-k SVM loss can be recovered as a
special case of the general LDR loss by setting R(p) = 0and Q = {p € Ax : px <
1/k}. Although this formulation is generally inconsistent, adding a small strongly
convex regularizer R(p) to the LDR loss can restore consistency.

A sufficient condition for a loss function to be noise-tolerant is the symmetry
property, as introduced by Ghosh et al. (2017). A loss function is considered noise-
tolerant if the minimizer of the expected risk under the true label distribution remains
the same under the noisy label distribution, provided the noise level is not excessively
high.
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2.5. HISTORY AND NOTES

Robust optimization

Robust optimization dates back to Scarf (1958), who studied an inventory problem
in which the goal is to determine the purchase quantity that maximizes profit when
future demand is a random variable whose underlying probability distribution is as-
sumed to belong to a set of plausible distributions. The problem is reformulated as a
worst-case analysis over all distributions in this set with known mean and variance.
Later, Dupacova (1966) investigated the min—max robust formulation of stochastic
linear programming. Since then, robust optimization has been extensively studied
in management science, operations research, and mathematical programming (Kou-
velis and Yu, 1997; Shapiro and Kleywegt, 2002; Rustem and Howe, 2002; Ben-Tal
et al., 2009b). The term distributionally robust optimization was introduced by De-
lage and Ye (2010).

The ¢-divergence (sometimes called f-divergence, where both f and ¢ denote
a function) was introduced by Csiszar (1967). The use of ¢-divergence to define
the uncertainty set in robust optimization was first studied by Ben-Tal et al. (2013),
while earlier works had considered using the KL divergence to define an uncertainty
set of probabilities (Calafiore, 2007). A special case of DRO, namely the maximal
loss, was shown to be beneficial for imbalanced classification by Shalev-Shwartz and
Wexler (2016). The popularity of DRO in machine learning is largely attributed to
Namkoong and Duchi (2017), who established a variance-based generalization error
bound for DRO with the y? divergence, building on their preceding work (Duchi
et al., 2022). The optimized certainty equivalent (OCE) was proposed by Ben-Tal
and Teboulle (1986b), and its connection to DRO was later established in (Ben-Tal
and Teboulle, 2007). Group DRO was first proposed by Hu et al. (2018) and became
widely recognized due to Sagawa et al. (2019).

AUC and NDCG

The receiver operating characteristic (ROC) curve was originally developed in the
1940s by electrical and radar engineers during World War II to detect enemy ob-
jects on the battlefield, which gave rise to its name (“receiver operating character-
istic”) (Marcum, 1947). It was subsequently formalized within the framework of
signal detection theory (Green and Swets, 1966). The probabilistic interpretation of
AUC and its equivalence to the Mann—Whitney U-statistic (or Wilcoxon statistic)
were later established by Hanley and McNeil (1982). The concept was subsequently
introduced into machine learning as a standard metric for evaluating learning algo-
rithms (Spackman, 1989). The first study of the one-way partial AUC (pAUC) was
presented by Dodd and Pepe (2003), and the notion of two-way partial AUC was
later introduced by Yang et al. (2019).

The study of AUC maximization dates back to Verrelst et al. (1998) and has since
been extensively explored in machine learning. Yan et al. (2003) were the first to
apply the gradient descent method to optimize a hinge-based pairwise surrogate loss
for AUC, while Cortes and Mohri (2003) employed the Rankboost algorithm (Freund
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et al., 2003) to optimize AUC. The compositional objective for AUC maximization
was first proposed by Ying et al. (2016a) in a min—max form and was later generalized
in (Yuan et al., 2021; Zhu et al., 2022c). For a comprehensive overview of related
work, see the survey by Yang and Ying (2022). The first work on maximizing average
precision was conducted by Morgan et al. (2004). The use of DRO for formulating
partial AUC losses was proposed by Zhu et al. (2022a).

NDCG was introduced by Jérvelin and Kekildinen (2000), and the listwise cross-
entropy loss for learning to rank was proposed by Cao et al. (2007). The concept of
empirical X-risk minimization for unifying a family of non-decomposable losses was
developed by the author of this book in (Yang, 2022), which also presents additional
examples of X-risks.

Foundation Models

Representation learning in traditional machine learning is related to principal com-
ponent analysis and distance metric learning (Yang and Jin, 2006). Conventional
contrastive losses are defined on pairs (x,y) using it binary label indicating positive
or negative pair (Hadsell et al., 2006) or triplets (x,y+,y-) (Weinberger and Saul,
2009). The Contrastive loss defined on a list of negative data for a positive pair was
first introduced by Sohn (2016).

The term foundation model was introduced by Bommasani et al. (2021). The use
of DRO to formulate the contrastive loss was first proposed by Qiu et al. (2023), pro-
viding a principled approach for optimizing individualized temperature parameters.
The discriminative probabilistic modeling approach for self-supervised representa-
tion learning was first explored by Wang et al. (2025).

Generalization Error

Generalization error analysis is a central topic in several classical machine learning
texts (Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018) and in the statisti-
cal learning theory literature (Koltchinskii, 2011). Typically, uniform convergence
bounds of the form supycqy |R(W) — Rs(W)| are derived using concentration in-
equalities, with dependencies on both the number of training samples n and the
complexity of the hypothesis class. More recently, there has been growing interest in
directly analyzing the generalization performance of models returned by stochastic
optimization algorithms using stability-based techniques (Hardt et al., 2016; Lei and
Ying, 2019).

Generalization error analyses for DRO and OCE objectives have been extensively
developed in the literature: Brown (2007) established theoretical bounds for CVaR,
Namkoong and Duchi (2017) developed bounds for y?-constrained DRO, and Lee
et al. (2020) explored generalization for general OCE risk. However, the generaliza-
tion error for compositional OCE is under-development.
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2.5. HISTORY AND NOTES

Machine Learning texts

There are excellent textbooks on machine learning (Shalev-Shwartz and Ben-David,
2014; Mohri et al., 2018; Bishop, 2006) and on robust optimization (Ben-Tal et al.,
2009a). However, to the best of our knowledge, this book is the first to provide a com-
prehensive and unified treatment of diverse loss functions and objectives, ranging
from the traditional cross-entropy loss to the contrastive loss used in self-supervised
representation learning, through the lens of robust optimization and discriminative
learning.
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Chapter 3
Classic: Stochastic Optimization

Abstract In this chapter, we introduce standard stochastic optimization problems
and present key stochastic optimization algorithms along with their complexity anal-
ysis. While many important stochastic algorithms have been proposed for solving
stochastic optimization and empirical risk minimization problems, we focus on seven
foundational methods that gained prominence before the deep learning era. These
algorithms have had a profound impact on machine learning and provide essential
insights for understanding more advanced methods presented in later chapters. The
selected algorithms include stochastic gradient descent (SGD), stochastic proximal
gradient descent, stochastic mirror descent, adaptive gradient methods, stochastic co-
ordinate descent, stochastic gradient descent ascent, and stochastic optimistic mirror
prox. We concentrate on the complexity analysis in the convex setting.

Stochastic optimization is classical wisdom in motion!
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3.1. STOCHASTIC GRADIENT DESCENT

Algorithm 1 SGD

1: Input: learning rate schedule {7,
2: fort=1,..., T do

T

;1> Starting point w;

3: Compute an unbiased gradient estimator z, = Vg (w;; &)
4: Update the model w by wyy; = w; — 17,2
5: end for

3.1 Stochastic Gradient Descent

Let us consider the following standard stochastic optimization problem:
ming(w) :=E¢[g(w; )] (3.1

If g is differentiable, the stochastic gradient descent (SGD) method takes the follow-
ing update:
Wil = Wr =1, VE(We5 4r), (3.2)

where {; is a random sample. If g is non-differentiable, we use a stochastic subgra-
dient G(w; () to update the model parameter:

Werl =W = 1:G (W3 {p). (3.3)
The key assumption regarding the stochastic gradient or subgradient is the following.

Assumption 3.1. For any w, we have E;[Vg(w;{)] = Vg(w) or E;[G(W; ()] €
ag(w).

Explanation of SGD update

The update (3.2) is equivalent to:
. 1
Weet = argming(w;; &) + Vg(wr; &) T (W—w) + gllw - w3 (3.4)
t

The stochastic linear approximation g(w; ;) = g(W;; &) + Vg(ws; &) T (w—
W, ) serves as a stochastic surrogate for g(w). Since it is only an approxima-
tion, we avoid optimizing it directly; instead, we seek a solution close to w;
that minimizes this surrogate.

When SGD is applied to solving ERM (2.1), {; could represent one randomly
sampled data with an index from {1, ..., n} or a mini-batch of random data.

Below, we present the convergence analysis for smooth and non-smooth, convex
and non-convex objective functions.
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3.1.1 Smooth Convex Functions

For a point w, convergence is typically measured by the objective gap:
(W) —ming(w) = g(W) — g(W.),

where w.. denotes a global optimal solution. A convergence analysis aims to show
that after T iterations of updates, we can obtain a solution Wz such that the expected
objective gap is bounded by

E[g(Wr) — g(w.)] < O (%) , (3.5)

for some @ > 0. The term 1/7% is referred to as the convergence rate. Accordingly,
to guarantee a small objective gap E[g(Wr) —g(W.)] < € for some € < 1, the bound

implies that T = O (#) which is known as the iteration complexity.

ella |°
Let us first assume that g is smooth and its stochastic gradient Vg(w; () satisfies
the following assumption.

Assumption 3.2. (i) g(W) is L-smooth and convex; (ii) For any w, we have
E[[|Vg(w; {) - Ve(W)l3] < o
for some o > 0.
The following lemma is useful for convergence analysis.
Lemma 3.1 Consider the update (3.2). For any w we have

1 1 1
Ve(Wei &) (Wea1 — W) Sz—nt”W - Wr||% - Z_rh”W — Wiyl ||§ - 2—m||Wz+1 - Wr||§-

Proof. Since the problem (3.4) is 1/n, strongly convex and has an optimal solution
W41, following (1.18) for any w we have

1
Ve(Wes &) T (W —w,) + 2—||w - w3
Nt

1 1
> Vg(wg; {t)T(Wt+1 - W)+ —|lW1 — Wt”% + —lw =W ||%
21, 2n,

Re-arranging the inequality, we have

1 1 1
Ve(We3 &) T (Weat — W) Sz_m”W - w3 - 2—m||W ~Well3 - 2—m||W:+1 - w3

O

The following lemma shows one-step objective gap bound.
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3.1. STOCHASTIC GRADIENT DESCENT

Lemma 3.2 Suppose Assumption 3.1 and 3.2 hold. For one step SGD update ;1 =
w; —1:Vg(Ws; &), we have

1 1
Elg(Wi1) = g(W)] <E|=—lIw. = W[5 = =—lIw. = Wit I3 | + me0™.
2n; 2n;

Proof. From Lemma 3.1, we have

1 1 1
Vg (W) T (W — W) Sz—mHW w3 - Z_Th”w ~ w3 - 2—m||Wt+1 - w3

+(Vg(we) = Vg(Wi3 &) T (Wee1 = W).
(3.6)
By the smoothness and convexity of g, we have

L
g(Wis1) < g(We) + V(W) (Wret = We) + = [[Wers = w3
T T L 2
<g(w)+Vg(w,) (W, —w) +Vg(w;) (W1 — W) + EHWHI - w5

L
< g(W) +Vg(w) T (Wi — W) + EHWHI - Wt||§~
(3.7
Combining this with (3.6), we have

1 1 1
g(Wes1) = 8(W) <——IIw =W, I3 = =—IIw = Wit |3 = =— Wit — wiI3
L
+ E”Wt+l - Wt”% +(Vg(w:) = Vg(We; )T (Wee1 — W).

Then if n, < 1/L and plugging w = w,,, we have

1 2 1 2
W, - W.) <—|[We — W — —||Wye — W,
g(Wey1) — g(w.) 2 I t”2 oy Il t+1 ”2

+(Vg(we) = Vg(Wi3 &) T (Wert = Wa).

The challenge lies at handling the last term where w,,; depends on ¢;, hence its
expectation is not equal to zero. To bound the last term, we introduce

. . 1
Wier = argmin Ve (w,) T (W= W) + >—[[w — wi|[3.
w 2n,
Note that W, is independent of ;. Then E,, [(Vg(W;)—Vg(W;; ) T (Wer1 —W,)] =

0. Thus, we have

1 1
Elg(Wer1) — g(W)] <E | =—|lW. = W, |3 = =—[IWs = Wi [13
2n; 2n;

+E[(Vg(w;) — Vg(ws; {t))T(WHl - We1)].
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Due to Lemma 1.7, we have [|W;41 — Westll2 < 7/1IVg(W;) — Vg(w;5 ) |l2, thus

1 1
Elg(Wis1) — g(Wa)] <E | =—|IWs = W, |2 = =—[IW. = W 3| + 102
2m; 2n;

O

Theorem 3.1 Suppose Assumption 3.1 and 3.2 hold. Let the learning rate {n,} be
ne =n < 1/L and W = % Z,T:1 Wei1. Then after T iterations of SGD update we
have

lwi —w. |3

2
T +no-. 3.9

E[g(Wr) —g(w.)] <

Ifn = min({, —”W‘;Tw(;uz), then

‘/7

V2o ||wi = w.ll,  Llwi = w.ll3

\NT T

@ Why it matters

In the convergence upper bound (3.9), the first term captures the optimization
error due to the finite time horizon, while the second term represents the error
induced by stochastic gradient noise.

If o = 0 (no noise), SGD reduces to gradient descent, then a constant step size

_ 2
n = 1/L canbe used and the convergence rate becomes O (M ) Ifo? >0

E[g(wr) —g(w.)] <

(there is noise in stochastic gradient), in order to guarantee convergence, we have
to set 7, — 0 or a small value to guarantee certain level of accuracy.

For a fixed number of iterations 7', a smaller variance o~ allows for faster con-
vergence with a larger learning rate 77 (up to a certain limit).

The iteration complexity required to achieve E[g(Wr) — g(w.)] < € is

Pllwi=w. )3 Lllwi—w.ll3 ))

T = O(max( p , -

If a mini-batch of size B is used to compute the stochastic gradient at each it-
eration, the variance of the stochastic gradient decreases by a factor of B. This
implies that increasing the batch size, up to a certain point, can reduce the num-
ber of iterations needed.

Finally, the result also highlights that the initial learning rate 77 cannot be too
large; in practice, an excessively large initial learning rate may cause the algo-
rithm to diverge.

Proof. If n; = n, summing the inequalities in Lemma 3.2 overt = 1, ..., T, we have
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3.1. STOCHASTIC GRADIENT DESCENT

5ol 1
2 2
21w = Wil = 5w = e

t=1

E

T
Z(g(Wm) - g(w*))} <E
t=1

+ Tna'z.
The first term in [-] is a telescoping series,

T
1 2 1 2 1 2 1 2
Z —|lw. - Wt”z - Z”W* - Wt+1||2 < Z”W* - Wl”z - %“W* - WT+1”2

2
[Iw. — W1||2~

As a result,
| - 1
2 2
E[T ;(g(wml) -g(w.)) SZT]_T”W* - Wl||2 +no-,

which concludes the proof of the first part of the theorem.
For the second part, optimizing the upper bound over n gives 1, = “V‘V‘F;Tv;” If

lwi—w.|I3L2
202

n. <1/L,ie., T > , wWe set 7 = 1, then

20 |lwi — w.ll2

E[g(Wr) —g(w.)] < NoTi

llwi—w.|I3L?

Ifn. > 1/L,ie., o2 < ——r ., wesetn = 1/L, then

Llw; — w.|2 , Llwi ~ w3 Lllwi — w3
2T 2T - T

E[g(wr) —g(w.)] <

3.1.2 Non-smooth Convex Functions

Now, let us consider the SGD update (3.3) for non-smooth convex functions under
the following assumption.

Assumption 3.3. (i) g(W) is convex; (ii) For any w, we have E[||G(W; {)|3] < G*.

Lemma 3.3 Suppose Assumption 3.1 and 3.3 hold. For one step SGD update W;1 =
w, — 11, G(Wy; &), we have

1 1 M
E - I SE|=—|w. = w5 - —lw- 2+ 262
L (we) = W)l < B 5liwe = Wil = 5w = W+ 5
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Proof. From Lemma 3.1, we have

1 1 1
Wi Z) T (W, = W) < —||We = Wi |2 = —[|We = Weat |17 = — [|Wre1 — W, |2
G(W3 41) (W, ) o I i 2, Il +11l3 2 lWes1 el

+G (W5 {t)T(WH] - W;)

1 1
W, = Well3 = 5= 11w = Westll3 = 5—[[Weer = Wil

S -
2n, 2n, 2n;

1
+ NG Wi G 1B + 5 Wit = will
(3.10)

where the last inequality uses the Young’s inequality. Taking expectation on both
sides, we have

E[G(Ws; &) (w, —w.)] < B

1 2 1 2 Nt 2
—||W. — W ||5 — —|lW—W + —=G~.
277t” t||2 277t” t+1||2] )

(3.11)

Since w, is independent of ¢;, we have E[G (W;; ) T (W, — w,)] = E[v/] (w, — w,)]
for some v, € dg(w;). By the convexity of g, we have

E[g(w:) — g(w)] < E[v; (W, = w)] =E[G(Wr: &) T (W = w)]
L (3.12)
5 G

1 1
<E|[—/|W:=W 2 |w-w 2
3 1w = Wil = 5 llw = wea

O

The theorem below establishes the convergence of SGD for non-smooth convex
functions as measured by the objective gap.

Theorem 3.2 Suppose Assumption 3.1 and 3.3 hold. Let the learning rate {n;} be
ny =nand Wr = % Zthl w;. Then after for T iterations of SGD update (3.3) we have

Ilwi - w3 G2
LMETMGLE NS b

E[g(Wr) —g(w.)] < 2T >

IfTI — ||W‘I/%Vg||2’ then

Gllwi — w.ll2

E[g(Wr) —g(w.)] < N

@ Why it matters

The above theorem exhibits the key difference in the convergence of SGD for
smooth convex functions and non-smooth convex functions. Even with a zero
variance for the stochastic subgradient , the convergence rate is still O(1/ \T).
The reason is that for smooth convex functions when g(w) — g(w.), we have

74



3.1. STOCHASTIC GRADIENT DESCENT

Vg(w) — 0 (cf. Lemma 1.5(b)), which is not true for non-smooth convex func-
tions.

Proof. The proof is similar to that in the smooth case.

3.1.3 Smooth Non-Convex Functions

For a non-convex function, it is generally NP-hard to find a global optimal solution.
Hence, our goal here is to establish the complexity of SGD for finding an e-stationary
solution with € < 1, as defined below.

Definition 3.1 (e-stationary solution) w is an e-stationary solution to miny g(w),
if [Vg(w)l2 < e.

Assumption 3.4. (i) g(w) is L-smooth and non-convex; (ii) For any w, we have
E[[|Vg(w;{) - Ve(W)l3] < o

for some o > 0.

Based on the above assumptions, we establish the following convergence guaran-
tee.

Theorem 3.3 Suppose Assumption 3.1 and 3.4 hold. Let the learning rate {n,} be
N = min{%, a_%ﬁ}for some constant D > 0. Lett € {1, ..., T} be arandom sample

Jollowing a distribution Pr(t =1t) = % Then we have

2L(g(w1) —g(w.)  (2(8(w) —g(Ws)) | o
T D T

Proof. For brevity of notation, we let Vg, (w;) = Vg(w;; ;). Due to the L-smoothness
of g, we have

E[[|Vg(wo)l3] <
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L
g(Wes1) < g(W,) + Vg (W) T (Wey1 —We) + = ||Wt+1 Wt”%

2
77 L
=g(w,) =1, Vg(w;) Vg, (w;) + — ||V8t(Wt)||2

2L
=g(w) —m; ||V8(Wz)||2 +77th(Wt) (Vg(wy) = Vgi(wy)) + — 77 ||Vg,(w,)||2

=g(w;) —m; ||V8(Wt)||2 + n,Vg(w,)T(Vg(wt) - Vg (wy))

77tL
IVg: (w:) — Vg(w,) + Vg(wt)||2

77t

=g(ws) —(m — ——) ||V8(Wt)||2 + (e - U%L)Vg(wt)T(Vg(Wt) —Vg:i(w))

UtL
Vg (we) = Ve(woll3 .

Taking expectation over {; given w, on both sides, we have

2

L
L T 19gwol3 + 1=, (3.13)

Eg, [8(Wes1)] < g(We) — (s —

Telescoping this from # = 1 to T gives

T T]zL T T]2L
2 2
B ;m—’T) IVg(w)l3] < (g(wl>—g(w*>+;f7cr.
As a result,

(gw) —g(w)  Taml

7L 2L
Z[ 1(7]t h ) ZZ,T:](UZ -

E [[IVe(wo)ll3] <
yn
=)

Plugging the value of n; = min(%, ﬁ?), we have

gw) —g(w) Tl 2
T(n-4=) 270 - 45)
J2ew) —gw) ) o
Tm
N (2L(g(wl) g(w.) 2(g(w)) - g(w*)>o)+Do-L
T ' DNT T
2L(g(wy) — g(w.)) +(2(g(W1)—g(W*)) o

+DL| —.
; : )7

If we setn; = mm(L, \[) then Zt = Q(VT) and Zt 117, < 0(log(T)), then
E [IIVg(w-)ll3] < O(log T/T). O

E[IVe(wo)l3] <

IA
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3.1. STOCHASTIC GRADIENT DESCENT

3.1.4 Non-smooth Weakly Convex Functions

Next, let us extend the analysis to non-smooth non-convex functions. Consider a
function g : R? > R and a point w € R? with g(w) finite. The Fréchet subdifferen-
tial of g at w, denoted dg(w), consists of all vectors v satisfying

gwW) = g(W)+v i (w=w)+o(lw=-w]r) asw — w.

We consider a family of non-convex functions, namely weakly convex functions. A
lower semi-continuous function g is called p-weakly, if there exists p > 0 such that:

g(W) 2 g(W)+vT(w-w) = Ellw-wWI5  Vww.vedgw).

It is easy to show that if g is p-weakly convex, then g(w)+§ ||W||§ is a convex function
of w. A smooth function is weakly convex, but the reverse is not necessarily true.

Example

Example 3.1 (Compositional functions). Ler F(x) = f(g(x)). If f convex
and G -Lipschitz continuous and g(X) is Ly-smooth, then F is p-weakly con-
vex for some p > 0. We will prove this in Section 5.3. The OCE risk (2.22) is
a special case when ¢* is non-smooth and the loss function £(W; z) is smooth
non-convex.

Example 3.2 (Compositional functions). Let F(x) = f(g(x)). If f Li-
smooth and monotonically non-decreasing and g(X) is non-smooth convex
and G»-Lipschitz continuous, then F is p-weakly convex for some p > 0.

Let us prove it. Since f(g) is Ly smooth, i.e., for any w,v € R, we have
F(gW) + [/(8()(g(W) = g(v) = F-lg(w) — g(M* < f(g(W)). Since g

is convex, i.e. for any w,v € R%, g(w) > g(v) + dg(v)T (W — V), then
f(g(w)) = f(g(v) 2f"(8(v)dg(V) " (W=v) - %Ig(w) -gW?
G3L

1
2

>f"(g(v))dg(v)" (W —-v) - W = vII3,
where the first inequality uses f'(g(v)) > 0, the second inequality uses the
fact that ||0g (W) |2 < G,. That is, f(g(w)) is G>L-weakly convex.

An important application of this function in machine learning is optimizing
the truncation of a convex loss g(w) = £(w;z) > 0 with a smooth truncation
Sfunction f(£(w;z)) = alog(1 + HL(;Z))for some a > 0, which is useful for
tackling heavy-tailed data distribution.
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Comparison of go2(x) and g(x)
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Fig. 3.1: Moreau envelope of g(x) = |x?> — 1| with 1 = 0.2.

Nearly e-stationary solution

When g(-) is non-smooth, finding an e-stationary solution such that ||Vg(w)|2 < €
is difficult even for a convex function. Let us consider a simple example min,, |w|.
The only stationary point is the optimal solution w, = 0, and any w # 0 is not an
e-stationary solution (¢ < 1) no matter how close w to 0. To address this issue, we
introduce a weak notion of e-stationary solution, termed nearly e-stationary solution.

Definition 3.2 (Nearly e-stationary solution) w is a nearly e-stationary solution to
miny, g(W), if there exists W such that ||w — W|| < O(€) and dist(0, dg(W)) < e.

A useful tool for deriving a nearly e-stationary solution is the Moreau envelope of g:
() = ming(w) + == [lu — w2 (3.14)
g,lw.—m&ngu 2/lu wl|5. .
Define
._ : 1 2
Prox (W) := argmumg(u) + ﬁllu—wllz. (3.15)
An example of a weakly convex function and its Moreau envelope is illustrated in
Figure 3.1.

The proposition below shows that when A is sufficiently small, g,(-) is a smooth
function.

Proposition 3.1. Consider a p-weakly convex function g(-). Then for any 1 €
(0, p~"), the Moreau envelope g, (-) is %-smooth, with gradient given by
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3.1. STOCHASTIC GRADIENT DESCENT

Vga(w) = 1 (W~ proxy (W),

Proof. First, when A < p~! we have g(u) + 5;|lu — w||3 become (4 — p) -strongly
convex. Hence the solution prox,, (w) is unique for a given w. We can also write

Prox (W) as

. 1 2
Prox (W) := arg min g(u) + ﬁllu -wl;

2

w

1(1
=argmuing(ll)+g||“||§+§(j_p)Hu_1—/lp )
~—

r(u)

1
Due to Lemma 1.7, we have [|prox ;, (W) — prox ;, (w')[|2 < W”W — W||2. Then

1
IVga(W) = Vga(w)ll2 = ~ [ (W = prox,¢ (W) = (W = proxo (W) 12

’ _ 2_/1p ’
I =Wl = 1=l = Wl

< Liw-wip+ —
= 2T 1= ap

O

With the Moreau envelope, we can use the norm of its gradient to measure the
convergence for optimizing the original function.

1

Proposition 3.2. If1 < p~', we have

£a(W) < g(w),  ming, (W) = ming(w). (3.16)
IfIVga(w)ll2 < € then W = prox,,(w) is a nearly e-stationary solution. In partic-

ular,
W —wll2=2|Vga(w)|l2 < e,

) . (3.17)
dist(0,0g(W)) < [[Vga(w)[l2 < €.

Proof. ga(w) < g(w) follows the definition of g,(w). Then g (w.) < g(w,). To
prove they are equal, we have

. 1 .
ga(w) =ming(u) + —|lu— W||% > ming(u) = g(w,).
u 21 u

Since Vg, (w) = %(w — W), which implies the second inequality. The first inequality
is due to the first-order optimality condition of miny g(u) + % |la - w||§. O
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@ Why it matters

Proposition 3.2 shows that if we can make ||Vg,(w)||, small, then w is close to
an e-stationary solution w of the original function g(w). The smaller the A, the
closer between w and W.

Convergence Analysis

Assumption 3.5. (i) g(W) is p-weakly convex; (ii) Foranyw, E; [|G (W, {)|3] < G?
for some G > 0.

Lemma 3.4 Let us consider an update Wi = W; — n:2;. If Bi[z,] = M; and
E/[llz:113] < G?, then we have

Mt U?Gz
B [ga(Wis1)] < ga(we) + — (W, —w,) "M, + ———,

A 22
where W, = prox ,,(W;).

Proof. We have

. | . 1, .
8a(Wei1) = g(Wppr) + ﬁ”wml - Wt+1||% <g(Wy)+ ﬁ”wt - Wt+l||%

. | . 1., 1. .
= g(W;) + ﬁ”wt - Wt”% - ﬁ”wt - Wt”% + ﬁ”wt = Wiyl ||%

Merging the first two terms we get g,(W;), and using the three-point equality 2(a —

b)y(b-c)=l|a- c||§ —|la - b||§ —|Ib - c||§ to merge the last two terms we get

1 . 1
ga(Wrs1) = ga(wy) + E(WI = W) (W, = Wepr) + ﬁ”wz = Wil ||§
=ga(w;) + l(‘?Vt —w,) Mz, + 77_?”zt”2.
1 2112

Taking expectation over {; given w, on both sides, we have

1. . n:G>
Er[ga(Wee1)] < ga(we) + — (W —wp) e M, + .
A 24
O
Lemma 3.5 Under the same setting of Lemma 3.4 we have
n;G?

(1= 2p)IVga(W)ll3 < ga(w,) — B [ga(Wesn)] + TR

Proof. Due to the weak convexity of g, for any M, € dg(w;), we have
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3.1. STOCHASTIC GRADIENT DESCENT

MT (W, =) = g (W) = g (%) = E 1% = w3
1 . 1. 1 po..
= (g(wo) + 5 lIwe = wlB) = (g() + 5= IN =will3) + (57 = 5D = will.

Since h(w) = g(w) + ﬁllw - w,ll% is (1/A1 — p)-strongly convex and W, =
arg min &(w), then applying Lemma 1.6(a), we get

1 . Lo L P
(g(w;) + ﬁ”wz - Wt”%) - (g(W;) + ﬁ”wt - Wt”%) = (ﬁ - E)”Wt - WI||§~
Combining the above two inequalities we have
M (W =) = g(we) = g (W) = 1 = wi 3
1 R 1 .
> (37— D% =Wl + (o7 = Sl = will3 = (2= 20) 1984w 13-
Plugging this into the inequality in Lemma 3.4, we have

22
un

22

(1= 2p)IVga(W)lI3 < ga(w,) — B [ga(Wesn)] +

O

Theorem 3.4 Suppose the learning rate {n, } is setton, = % Lett € {1,...,T} be

a random sample following a distribution Pr(t =t) = % Then for any A € (0, p~1),
we have

_gw)-glw) _ CG

© (1-2p)CNT  22(1 - Ap)NT

E[lIVga(wo)ll3]

Proof. Summing up the inequalities in Lemma 3.5 over ¢+ = 1,...,T and taking
expectation over all randomness, we have
n;G*

21

T T
B> m(1=2p)IVga(will3| < g(wi) = g(w.) + >
t=1 t=1

where we have used g (w) < g(w) and min g,(w) = g(w..). Then

|8 glw) | CG?
T (1=2p)CNT  24(1 = Ap)NT

E[[|Vga(wo)ll3
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Algorithm 2 SPGD

1: Input: learning rate schedule {7,
2: fort=1,..., T do

T

;1> Starting point w;

3: Compute an unbiased gradient estimator z, = Vg (w;; &)
4: Update the model w by W, = arg minycpa z; (W — W) + ﬁ [|w — w, ||§ +r(w).
5: end for

3.2 Stochastic Proximal Gradient Descent

Let us consider the following stochastic composite optimization problem:
min F(w) :=Ez[g(w; )] +r(w), (3.18)
weRd ’

where g(w) = E;[g(w; )] is a smooth function and r(w) is a possibly non-smooth
function. In machine learning, r usually corresponds to some regularizer on the
model parameter. We make the following assumption.

Assumption 3.6. Suppose the following conditions hold:

(i) g(w) is L-smooth and convex, and r(W) is convex.
(ii) There exists o > 0 such that E; [||Vg(w; {) — Vg(w)||§] < o for all w.

If the regularizer r is non-smooth, the overall objective function is also non-
smooth. Consequently, applying SGD directly cannot exploit the smoothness of g,
which would otherwise enable faster convergence and enjoy the variance scaling in
the convergence bound.

To address this challenge, we can employ the stochastic proximal gradient descent
(SPGD) method:

. 1
Wit = arg min V(Wi £i) T (W —w,) + (W) + —|[lw — w13
weR4 2n; (3.19)
. 1 '
= arg min r(w) + =—||w — (W, =, Vg(wi: £) 3.
weRd 2n;

This is also known as forward-backward splitting, where w,,; = w, — 17, Vg(w;; ;)
is the forward step and the proximal mapping of r is the backward step:

- . 1 —
(Wes1) = argngnr(w) +—|lw- Wt+1||§-

w = prox
t+1 = P 2

ner

When r is absent, the above update is equivalent to the SGD update. If »(w) corre-
sponds to a domain constraint w € ‘W, i.e., r(w) = [p_o (W € W), the above update
becomes

Wil = Hay[We] = v?eu({dl/ lw— Wi “%, (3.20)
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Regularization |r() |prox,]r (W) or prox nr(W)

Euclidean norm square %llwll% % .

Euclidean norm Allwll> (1- ﬁ)ﬂ‘v

Lasso Allw|ly sign(W) © max{|w| — An, 0}

Group Lasso AYg Iwgll2 (1- “‘fvlﬁ)jvg (for each group g)
Elastic Net allwli + gllw”% ﬁ (sign(W) o max{|w| - na, 0})

Trace norm (nuclear) |A||W|l. =AY, (W) |U diag ((o; — An)+) VT (W = U diag(o;)VT)

Table 3.1: Examples of regularization functions r(+) and their proximal mappings,
where o; denote the i-th singular value of a matrix.

which is the projection of wW,4; = w; — 1,Vg(W;, ;) onto the constrained domain
‘W. This is known as projected SGD method.

Explanation of SPGD update

The update (3.19) is equivalent to:
. T 1 2
Wit = argrrgng(wt; G)+Vg(We &) (Ww—w,) +r(w) + E”W - Wt||2~
t

Unlike SGD, SPGD uses a stochastic linear approximation g(w;;¢;) +
Vg(w;; &) (w—w;) +r(w) as a stochastic surrogate for g(w) + r(w).
Using the first-order optimality condition of (3.19), w;, satisfies

Wip1 = W — (Vg (Wes £r) + 0r(Weyr)). (3.21)

It resembles SGD but differs in that it uses a stochastic gradient of g evaluated
at w, and a subgradient of r evaluated at w;,;.

In order to make the update efficient, the proximal mapping of  should be easily
computable. Table 3.1 presents several examples of regularizers » and the corre-
sponding solutions of their proximal mappings, followed by explanations below. We
leave the detailed derivations of these proximal mappings to the reader as exercises.

Examples

Example 3.3 (Euclidean norm square). This is the most commonly used reg-
ularizer. Its proximal mapping shrinks the magnitude of the input vector w,
effectively performing weight decay.

Example 3.4 (¢; norm). The €| norm regularizer A||W||, is used in the well-
known Lasso method for linear regression. Its proximal mapping promotes
sparsity in the solution by setting some entries to zero if the corresponding
component of W is smaller than nA in magnitude.
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Example 3.5 (Group Lasso). This is an extension of Lasso that groups fea-
tures together and enforces group-wise sparsity. Specifically, if one weight
within a group is set to zero, then all weights in that group are simultane-
ously set to zero.

Example 3.6 (Trace norm). The trace norm regularizer for a matrix is anal-
ogous to the €1 norm for a vector, as it promotes low-rank structure. Its prox-
imal mapping induces a low-rank solution by setting the singular values of
the input matrix to zero whenever they are smaller than nA.

3.2.1 Convex Functions
Lemma 3.6 Consider the update
T 1 2
W41 = arg min z, (W —w;) + —|[|lw — w,||5 + r(w). (3.22)
weRd 2n;
If r is u,-strongly convex, for any w we have

1 1 ,
ZIT(Wt+1 - W) +7 (W) —7(W) < 2—m||Wt - W||§ - (2_77z + %)HWM - W||%

1 2
— —||Wy — W .
277t ” t t+l||2

Proof. By the first-order optimality condition of (3.22), for any w we have
(z; + Or(Weyp) + %(W,H -w))T(W=ws) > 0. (3.23)
By the strong convexity of r, we have
F(Wiat) < F(W)+ Or (W) T (Wit = W) = S flw = weai .
Adding the above two inequalities, we have
2/ (Wie1 = W) +7(Wip1) — (W) < %(W: — W) (Wi — W) — %IIW - w3

2 2 2 H 2
= _2 (Ilw; — W”z — [[We1 — W”z — |Iw; — Wt+l||2) - _r”W - Wt+1||2~
un 2

where the last equality uses the fact that 2(a — b) T (b —¢) = |la - CII% —|la - b||% -
b — C||§- O

Theorem 3.5 Suppose Assumption 3.6 holds. Let n; = n < 1/L and wr =
% Zthl Wei1. Then after T iterations of SPGD update (3.19), we have
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

lwi —w.|i3

2
2nT '

E[F(wr) — F(w,)] < +no

Ifn = min(£, ”vi‘é#”z) then

Vao|wi —w.lly  Llwi = w3

\NT T

¢ Why it matters

Insight 1: The theorem indicates that even if the objective has a non-smooth
regularizer r, the convergence rate of SPGD still depends on the variance bound
o2 instead of the Lipschitz constant of the objective function as in the analysis
of SGD for non-smooth convex functions.

Insight 2: Employing the proximal mapping of r renders the convergence in-
dependent of the smoothness of . Consequently, this approach is advantageous
even when r is smooth, particularly if it possesses a large smoothness constant.

E[F(wr) - F(w,)] <

Proof. Without loss of generality, we assume g is u-strongly convex with u > 0
and r is y,-strongly convex with y, > 0 so that it covers both convex and strongly
convex cases.

By Lemma 3.6, we have

1
Vg (Wi, 6T (Wist = W)+ 7 (Wiat) < r(w) + 5= (lwe = W = Wit = wIB)
t
1
= Sl =Wt = 5w = wea
t

By the smoothness of g, we have
T L 2
8(Wes1) < g(We) + Ve (W) " (Weat = We) + [ Weet = Wil
By the strong convexity of g, we have
T H 2
g(Wr) < g(W) +Vg(Wr) " (wr —w) = Zflw, — w3
Adding the above two inequalities, we have
T H 2, L 2
§(Wr1) < g(W) +Vg(We) " (Wrat = W) = S [IWe = Wl + S {IWear = Well3.

Combining this with the first inequality for w = w.., we have
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1
F(Wi1) — F(W,) < ﬁ(”wt =Wl = IWeer = Wall3 = 1w = Wraa [13)
t

1 U L 3.24
= S = Wl = Wit = Wl 2 e = will G2

+ (VW) = Vg(Wi, )T (Wep — W),
This is similar to (3.8) except for the two negative terms —% [|w; — W, ||§ - ”—zr Wi —
W, ||%, which are due to the u,--strong convexity of  and u-strong convexity of g. If

= pu =0, the remaining proof is similar to that of Theorem 3.1 with the following
definition of W;,;:

- 1
Wier = arg min —[|lw — (W, =7, Vg(w,)) |13 + r(w).
weRd 27];

It used to bound the expectation of last term in the RHS of (3.24):

E[(Ve(W;) = g(Wi, £i)) T (Wit = Wrgt + Wigy — Wa)] (3.25)
=E[(Ve(W;) — g(We, &) T (Weat = Wea)] < mE[11(Vg(We) — g(wy, évt)”%] = 7710'2’

where the inequality is due to Lemma 1.7.

3.2.2 Strongly Convex Functions

We can prove a faster convergence when the loss function or the regularizer is
strongly convex.

Theorem 3.6 Suppose Assumption 3.6 holds and g is p-strongly convex and r is
wuy-strongly convex. Let n; = 1/((u+ )t + L) and Wr = % Zthl Wyi1. Then after T
iterations of SPGD update (3.19), we have

T

lZ:(F(W 1) = F(w.)| < (L+p) lwi=w.ll3  (1+logT)o?
T t+ D) <

E
p r T(p+ pr)

Proof. Similar to the proof of Theorem 3.5, if 5, < % we have

E[(F(We41) = F(W.))]

1 2|1 2 _H 2 _ Hr 2
SE (= wr = Wall5 = z— [Wee1 = Wal[5 = Z[[We = W[5 = = ||Wre1 — W
[(2771‘ ” t *”2 27]t || t+1 *”2 2” t *”2 2 || t+1 ”2
+77t0'2.
Taking summation over t = 1, ...,T we have
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Algorithm 3 Restarted SPGD

1: Input: a learning schedule {7, Tk }17\::1, starting point w;

2. fork=1,..., K do

3: run SPGD with a learning rate 775 for T} iterations starting from wy
4: return an averaged solution Wy

5: end for

T
B> (F(We) - F(w.))
1=1
Lo 1 U+ 1 u
<E _ Iy lwe = w2 + — [[wy = w2 + 5 |lwy — w3
2~ Ty~ g Il g —w e -
T
+Zn[0-2
1=1
= 1 1 1 Htpr _
Letnt—m.Thenm—m—T—Oandwehave
E

1 T
7 2 (F(Wea) = F(w.))
t=1

2

T

L+ 1 o L+ (1 +logT)o?

< T E wi w2 D < S w2
2T T 4 (u+ py)t 2T

T(p+ pr)

A Restarted Approach

The log T factor in the convergence bound can be removed using a restarting scheme.
It runs in multiple stages. At stage k, it start with a step size n; and ran SGD with
a number of iterations T and returns an averaged solution wg. By choosing 7y, Ty
appropriately, after a logarithmic number of K stages, we will get a solution wg
satisfying E[F(wg) — F(w.)] < €. The key motivation is coming from the one-

stage convergence bound in Theorem 3.5:

lwi —w.li3

2
. 3.26
T no (3.26)

E[F(wr) — F(w,)] <

Since the u-strong convexity of F implies that ||w; — W*H% < %(F(wl) - F(w,)),
then we can establish a recursion of the objective gap in a stage-wise manner. From
which, we can show the objective gap will decrease geometrically if 77; decreases
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geometrically and Ty increases accordingly. This is formally stated in the following
theorem.

Theorem 3.7 Suppose Assumption 3.6 holds, F is u-strongly convex and there exists

€1 such that F(wy) — F(w.) < €. Let gy = mjn(%, #) and Ty = #flk. Then

after K = |log,(€1/€)] stages of Restarted SPGD updates (Alg. 3), we have

E[F(Wk+1) — F(w.))] <e.
The iteration complexity is Y,n_, Tk = O(g—z + ﬁ log()).

Proof. Let ex = €;/2F. Then ex41 = €,/2K*! < e and ex > €.
Applying the one-stage analysis of SPGD, we have

E[|lwir — w.||? E[F - F(w,
[lIwi I15] mo? < [F(wg) — F(w,)] s e,
2 T

E[F(Wis1) — F(W,)] <
uni T

Then we prove by induction. Assume E[F (wg)—F (w.)] < ek, we prove B[ F(Wg41)—
F(w.)] < €k1-

Bllwe - w2,

E[F(Wk+1) — F(w,)] < ko™
2mi Tk
€k 2 €k €k+1 €k €k+l
< +nro” < + < —+ = €k+]-
T pmTie 2 T 4 2 *
Thus, E[F(Wk+1) — F(W.)] < €x+1 < €. The total number of iterations is
K K K k+l 2
4 4.2 4L
Sre St S (S22, 4
=l = Mk o HEl M
K 2 2
8 4L L
< 3 max(E 2 < 0 T Liog (2 )
o ue2R=k" ue u €
O

Last-iterate Convergence

Furthermore, if g(-) and/or r is strongly convex, we can also prove ||W;i; — W.||2
converges to zero.

Lemma 3.7 If g is L-smooth and pu-strongly convex and r is u,-strongly convex, for
the update (3.19) with n; < 2/L we have

(1= Qne =7 L)) lw, = w.l3 + 70

(3.27)
L+ nu,

2
Eg, (W = W*”z] <
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

If g u-strongly convex and ||0g(w)||2» < G for w € dom(r), for the update (3.19) we
have

(1 =2, 0)llw, — w3 + 72 (0% + 4G?)

3.28
L+npu, (3:28)

2
E,, [Iwes = W*”z] <

Proof. LetE; = E,,. Let us consider smooth case first. Due to the optimality condi-
tion of w,, we have

1
w. = arg min Vg(w.) (W = w.) + =— [[w — w13 + r(w)
weRd 2n;

= proxmr(w* —-n;Vg(wy)).

Due to the Lipschitz continuity of the prox operator (see Lemma 1.7), we have

E[lWes1 — W3 < Ellwe = n,V8(Ws3 &) = [we =, Vg (w3, (3.29)

L+ nu,

Next, we bound

Eellwe = n:Ve(Wis &) = [w. = 1. Vg (w)]ll3
=El[[w: —1:Vg(w)] = [we =, Vg(W)] +n,Vg(w,) =1, Vg (wy, (t)”%
= E/ll[w, = n:Vg (W)l = [W. = . Vg(w)lll5 + njo,
where the last inequality uses E,[Vg(w;, {;) — Vg(w;)] = 0 by expanding the RHS.
Let us bound the first term below.
E/ll[w: —1:Vg(wi)] = [we =1, Vg(W.)] ||%
= By [lw, = W.l3 + 07 B[ Ve(We) = V(W3 = 207,Bs (W, — w.) T (Vg (W) — Vg(w.))
< Brllwe = Wal3 +m7 LE (W, — w.) T (Vg (W) — Vg(w.))
=20 B¢ (W; = w.) T (Vg(w;) — Vg(W.))
= E;||lw; — W*”% - (2n; - U?L)Et(wt - W*)T(Vg(wt) - Vg(w.))
< Byllwe = Wall3 = (2nr = 07 L)UEe | W, = w3
< (1= Q21 = LB Wy = w3,
where the first inequality uses Lemma 1.5(c) and the second inequality follows from
Lemma 1.6(c).
If g is non-smooth, we bound E||Vg(w;) — Vg(W*)H% < 4G?. Combining this

with (3.29) concludes the proof.
O

Theorem 3.8 Suppose Assumption 3.6 holds and g is u-strongly convex and r is
ur-strongly convex. Let n, = n < min(1/L,1/u,). Then after T iterations of
SPGD (3.19) update, we have

89



no?

(p+ur)T
_n#zyr B .
M+

E[llwrer — wall3] < e [lwy = w.]I3] + (3.30)

@ Why it matters

This theorem indicates that if we set n < O((u + u,)e/o?), then with T =

2 . . . . .
(m) iterations, the algorithm finds an solution wr,; that is e-close to

the optimal solution w, measured by E[||wz,; — W ||§] , where O(-) hides a log-
arithmic factor of log(1/e).

Proof. If n < 1/L, Lemma 3.7 implies that

(1 = nuwE[|lw, - w.[13] + n*o?
L+ nu,

2
E[llwesr — wall3] <

2

2
S(l_mu_n#+ngm

< (1 I ){(1 — nE[[lw: - w.ll3] + 7?02}

)E[“Wt — w3l +n*0?,

where the first inequality is due to 1 < (1 +nu,)(1 - 25=) = 1 + 2= — # as
nu- < 1. Then

nur MU
E[IWee = wll3] < (1= 555 = Z2)E[Iwe = wal3] + 70,
Unroll this inequality for# = 1,...,T, we have

+ 4t
ElIwra - w.l] < (1 - M)Euw ~wilB+ o,

Applying this inequality 7 times gives

E[llwrs1 — w.l12]

e+ )\ 2 N[ et o
5(1———3——)Emm—wm2+§:@——————)na.

t=0 2
Since (1 —a)” < e fora € (0,1) and 3, ' o' < L=, we have
Bllwra - w.l2] < e Bl lwy - wa|3] + Po?——2
T+ — Will3] < e 1 — Ws not—————
* 2 2 n(p+ uy)
_ n(ptpr)T 2 O’2
= e TR wy - wal2] + L.
M+ Uy
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3.3. STOCHASTIC COORDINATE DESCENT

Corollary 3.1. Under the setting of Theorem 3.8, if % =

I\)PR\

(5 )2 4 wzth
no < min(1/L, 1/u,) and g = (u + ) /2, then we have

4w - w3 202

E[llwrs —wall3] < - ——.
2 ngaT?>  @T

Proof. Leté, = ||w, — w*ll2 Due to the update of 7;, we have 1 —an, =

we have:
712
E[ 6741 < E[(1 - ainr)d7] + o’nf < B| 561 | + onj-
oy
Unrolling this inequality for # = 1,...,T, we have
2 e
E[ 6741] SE| =071 |+ 07 #2 < =61 +0’ng + T.
Nr-2 o
: 1 _ ﬁ 1 2 1
Since il /( )2 4 . Then, we have wZatao As a result, 7 >
% + % > max(L, u,), where g < m1n( ) Hence, n1 < _T, and
46, 207

E[o < —5——+—=.
[ T+1] )7(2)/127.,2 /IZT

O

@ Why it matters

This corollary shows that a decreasing learning rate schedule can be used without
requiring prior knowledge of €, in order to obtain a solution wr that is e-close
to the optimum w,, measured by E[ ||wy,; — W, ||%]. The iteration complexity is

1 o?
T:O(max{ ,_—})
fAnove f*e

3.3 Stochastic Coordinate Descent

In this section, we present stochastic coordinate descent (SCD) for solving the
stochastic optimization:

_min f(@) = E[f(a.)). (3:31)
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where Q = Q) X Qp - -- X Q,,.

The key motivation is that if the dimensionality # of « is very large, then comput-
ing Vf(a, &) could be expensive at each iteration. However, if the function exhibits
decomposable structure over dimensions of @, then we can sample a random coordi-
nate of @ and update it. To this end, we assume that [V f(«, £)];, Vi € [n] is easy to
compute. In machine learning applications, this is possible if f(a, &) = a" g(£) and
computing each coordinate of g(&) is much more cheaper than computing itself. An
example is the COCE problem (2.62), which will be discussed in Section 5.5.

Let us consider a simple version of SCD. At each iteration ¢, a coordinate de-
noted by i, is randomly sampled from {1, ..., n} with uniform probabilities. Then
we compute V;, f(a;, &) = [Vf(as,&)]i, and update o by

_ | g, [ar,i —nVif(a;, &) ifi=1i;
Yr+li = o, 0.W.

Convergence Analysis

We make the following assumption.
Assumption 3.7. The following conditions hold:

(i) f(a) is convex;
(it) For any a, we have E[||V; f(a; ) — Vl-f(oz)||§] < o-l.zfor some o; > 0;
(iii) V f is L;-Lipschitz continuous w.r.t to the i-th coordinate, i.e.,

IVf(@) = Vf(a+ed)l < Lild].

Theorem 3.9 Let ar = % Zthl e, L=max; L;. If n; =5 < %, after T iterations
of SCD update we have

E

T 2nT

f(@) —f(a*)] UV (VACIV R C2) S PN ) S
i=1

If ||lay — a*llg <D% Y, a’i2 < o, with n = O (min( \/2‘/71, 1/L)), we have

(n=1)(f(ar) = f(as)) . \2nDo .\ LnD?
T \NT T

<

E[f(@t) - flaw)

@ Why it matters

According to the theorem, SCD’s iteration complexity is 0(%2{'2). Although
this is n times higher than that of SGD, it is offset by the fact that each individual
iteration of SCD can be n times cheaper to compute.
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3.3. STOCHASTIC COORDINATE DESCENT

Algorithm 4 SCD

T

: Input: learning rate schedule {7,},_,,

cforer=1,..., T do

1 starting point @)
2

3: Sample a coordinate i; uniformly

4

5

Compute an unbiased coordinate gradient estimator V;, f (a;, &)
Update

o o, [a@ri — 7 Vif(ar, &)] ifi=i
Hrli = g, 0.W.

6: end for

Proof. To facilitate the analysis, we consider a virtual sequence {&,} defined by
a1 =Tglar —n/Vf(ar, &)l
Due to the decomposability of Q = Q; X - - - Q,,, it implies that
@1, = o [ar,i —=n:Vif (ar, &)1, Vi

Applying Lemma 3.6 to each coordinate of @, with r(@;) = lp-o(@; € Q;), we
have

- 1 |
E[Vif (e &) (@1 — @i)] < =—Elllar; — awills — = @1, — asill3]
2, 2n,
1 .
- z_m]E[”at,i — as1ill3]-
Then,
T~ 1 » L 2
E[Vif(a:) (@10 — @i)] £ =—E[llay; — @ ill; — == @41, — @ ill5]
2n; 2n;
1 5 -
- EE[H%J’ — @1 |13 +E[(Vif (@) = Vif (@, &) (@10 — @)
t

Similar to (3.25), the last term in the RHS can be bounded by E[(V;f(a;) —
Vif (@, &) (@i = @] < E(Vif (@) = Vif(a:,é))* < n,07. Then adding
the above inequality overi = 1,...,n, we have

~ 1 %
E[V;f(an)T (@10 — @0i)] < 5—E |l — @uill} = 5— @i — @il
27]; 27]!
1 -
- Z_mE[”at’i - 01;+1,i||%] + 7710'1'2-

Due to the randomness of i;, we have
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Bl (@~ o)) = VB — )]+ (1= 1B - )]
BV, @) (@rr1i = 20)] = ~BIVf (@) (@t = 0,)]

+ (1= B[V:f () (@~ )]

Bl — arerilB] = Ll — GrerilE]

Combining the above, we have

E[nV;f(ar) (a1, —awi) = (n =DV f(ar) (@i — @)l

: 1
< z—mE[”at,i - a*z“%] - Z_ThE[(n”a'Hl,i - a*,i”% - (n- 1)||at,i _ a*t”%)]
n
- =—E[lla:; — arll3] +nio7

21,

Adding this overi = 1,...,n, we have

E

n n

n Y Vif (@) (@ = @e) = Y (= 1V f(ar) (ar; - )
i=1 i=1

i llar,i — a.ill3| - ~E i st — @.ill3

i=1 ’ ’ 2 i=1 ’ ’

n n

n 2 2

- —E[Z lae,i = s il + D mio?.
L e i=1

For the LHS, we have

n
< —E
2n;

n Z Vif(an) T (@i — n) — ;m —DVif () (@i - )

n
=1V, f(a) (@i, = @) +n ) Vif (@) (@ - a.)

i#i;
n
_ Z(n — I)Vif(at)T(at,i - a*,i)
i=1
=nV,, (@) (@i, = @) =0V, f @) (@, = aw)
n
+ Z Vif(a,)T(at,i - G«'*,i)
i=1

= nVi,f(a't)T(a’Hl,i, —ai,) + Vf(a't)T(Q’t - ).

By the assumption, we have
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3.3. STOCHASTIC COORDINATE DESCENT

Vi, flar) (@i, — i) = V(@) e, (@i, — i)
L;
> f(a't+1) - f(a't) - 7||(a't+1,i, - a’z,i,)”%

Via) (e —a.) 2 flar) - f(as).

Combining the above, we have
n Y Vi (@) (@i = e = D (n = DVif () (ari = @)
i=1 i=1

> n(f(aw) — flar) - _”a/t+1 Jir at,i,”%) + flar) = fas).

Thus, we have
E[n(f(ar1) - f(at)— Ilam i — @i 13 + flar) = ()]

Z la i - e, lng] - —E[Z letesri — a*luz]
- _E[ Z llar,i — @ L||2 Zﬂro}z‘
i=1 i=1

Re-arranging this, we have

E[n(f(ar1) = f(a) = (n =D (f(ar) = f(a.))]

n n n n
2 2
—E[Z v - a*,iuz} - Q—E[ Dl — a3 | +
i=1 U i=1 =
nL; n &
2 2
Bl =l i, = i3] = 5—E| D llar: - il
2 277[ Py
n n
2 2
[Z ||a’tz (e z”z] E[Z ”a't+l,i - a’*,i“z + ZU[O'[
2nt i=1 21 i=1 i=1

S nL; n &
E[Z Tl”a’tﬂ,i - a’t,i”%] - 2—E Z llezz,i — 0/z+1,i||§]-
=1 =1

< %, the sum of the last two terms is less than O, then we have

n
2

If

E[f (1) = fas)]
SE[(n - D(f(ar) = f(@) = (n = D(f (1) = f(@))]

n

2

+—E[Znat, a*lnz} E[Z||a,+1,i—a*,,-||2
i=1 21 i=1

n
2
+Znt0—i .
i=1
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Algorithm 5 SMD

1: Input: learning rate schedule {7,
2: fort=1,..., T do

T

;1> Starting point w;

3: Compute an unbiased gradient estimator z, = Vg (w;; &)
4: Update the model w by W, = arg minycpa z; (W — W) + U%D‘p (w,w;) +r(w).
5: end for

Averaging overt = 1,...,T, we have

n-D(f(e) - fla) = n_

E
T 2nT

2
llar — a.ll3

1 - (
7 2 e - f(a*)] <
t=1

n

2

" )t
i=1

which concludes the proof.

3.4 Stochastic Mirror Descent

The SGD update (3.2) and the SPGD update (3.19) can be generalized using the
Bregman divergence instead of the Euclidean distance. Let ¢ be an a-strongly con-
vex function with respect to a general norm || - ||. Recall the definition of Bregman
divergence D, (w, w’) in Definition 1.7 induced by ¢. Due to the strong convexity
of ¢, we have,

’ a ’
Dy(w, W) > Z[lw - w 2. (3.32)

The stochastic mirror descent (SMD) update applied to non-smooth convex opti-
mization problem (3.1) is given by

. 1
W1 = arg min GWi3 &) (W —w,) + U—D‘p(w, w;). (3.33)
w t

The SMD update applied to composite optimization problem (3.18) is given by

. 1
Wiyl = arg min, Ve(Wei &) (w—w;) + Esz(w, W) +r(W). (3.34)
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3.4. STOCHASTIC MIRROR DESCENT

Examples

Example 3.7 (Euclidean distance). By choosing ¢(-) = %Il . ||%, which is 1-
strongly convex with respect to || - ||2, the Bregman divergence reduces to the
Euclidean distance, and the above updates simplify to SGD or SPGD.

Example 3.8 (KL Divergence). Let us consider another example, where
r(W) =Tp-w(WeA) and Ag ={weR :w>0, T4 [w]; = 1}.

By choosing ¢(w) = ;i:] [w]; log[w];, which is 1-strongly convex w.r.t || - ||
(c¢f. Lemma 1.10), the Bregman divergence reduces to the KL-divergence:

d

Dy(w,u) = Z[W]ilog %
i=1 !

and the SMD update (3.34) simplifies to

[w:]; exp(-1:[Vg(w:;€0)]0)
Y4 Wil exp(—n, [Ve(wis &)1 )

[(We]i =

which is also known as stochastic exponential gradient descent.

Convergence Analysis

The following lemma is similar to Lemma 1.7.

Lemma 3.8 Ifr(-) is convex and ¢ is a-strongly convex w.r.t a norm || - ||, with
T 1
zy =argminw' a+r(w)+—D,(w,z),
w n
1
z) = argminw'b + (W) + =D ,(W, z),
w n

we have ||z; — 25|| < L||a—b]..
Proof. By the optimality of z; and z, we have

L. Ye(@) ~ Ve(z)
n

.. Ve(@) - Ve(z:)
n

—aedr(z)
—b e ir(zm).

Since r(x) is convex, we have

r(z1) > r(z2) +v' (21 — 22)
r(zz) > r(zy) +u' (20 — 71).
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Adding them together, we have
0< (=97 (21=22) = (b~ 2+ Vi(z) = V(@) (21 =),
which implies
}I(VQD(ZI) ~Vo(22)) (21 —22) < (b-2) (21 —22) < [[b-all.||lz; — 2.
Since ¢ is a-strongly convex, similar to Lemma 1.6 (c) we have
(Veo(z1) - Vo(22) (21 — 22) 2 allz; — 22|
Combining the above two inequalities, we have ||z — 25| < Z|la - b]|... O
Lemma 3.9 (Generalized Three-point Equality) For any w, w,, W;,|, we have
(Vo(W;) = Vo(Wi1) T (Wes1 = W) = Do (W, W;) = D o (W, Wii1) = D o (Weat, Wy).
Proof.

D (W, Wry1) = D (W, W)

= —p(Wi41) — V‘P(WHI)T(W — Wei1) + (W) + VSO(WZ)T(W - W)

= (Vo(Wia1) = Vo (W) T (Weat = W) = @(Wei1) + @(W,) + Vo (W,) T (Wpiq = W)
= (Vo(We1) - VQD(WI))T(WI‘+1 -W) - D<p(wt+1»wt)'

Rearranging this equality finishes the proof. O
The following lemma is similar to Lemma 3.6.

Lemma 3.10 Consider the update
. T 1
W1 = arg min z, (W — w;) + —D (W, w;) +r(w). (3.35)
weRd Nt
If D.(w,w') > uD ,(W, W), then for any w we have
. 1 1
z, (Weet = W) +7(Wepp) — (W) < U—Dg;(w, W) - (77_ +1)D o (W, Wri)
t t
1
-—D, (Wre1, Wr).
un
Proof. By the first-order optimality condition of (3.35), we have

(z; +Or(Wes1) + nl(VQO(WHl) = Vo(w,)) T (W= W) > 0. (3.36)

By the assumption of r, we have
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3.4. STOCHASTIC MIRROR DESCENT

,UDw(Wa Wip1) < 7(W) = r(Weyp) — 6r(wt+l)T(W — Wiil).
Adding the above two inequalities, we have
Z:(WHI — W) +7(We1) = 7(W)

< %(W(wz) Vo (Wra)) (West = W) = 1Dy (W, i)

1 1 1
—D (W, W) = (— +)D (W, Wii1) = —D o (Wii1, Wy).
un uh Ui

where the last equality uses Lemma 3.9. |

3.4.1 Non-smooth Composite Problems

Let us first analyze SMD (3.34) for the composite problem (3.18) under a modified
Assumption.

Assumption 3.8. Suppose the following conditions hold:

(i) g is convex and L-smooth with respect to the norm || - ||, and r is convex.
(ii) There exists o > 0 such that E;[Vg(w;{)] = Vg(w) and E/[||IVg(w;{) -
Vg(w)|?] < o2 for all w.

Theorem 3.10 Suppose Assumption 3.8 holds. Let n, = n < a/L and wr =
% Z,T:1 Wy y1. After T iterations of SMD update (3.34) for the composite problem (3.18),
we have

D, (Wi, w.) . no?

E[F(wr) — F(w,)] < .
nT a

Ifn = min (%, —“ZD‘%(V:’W*)), then

204/D (W1, W.)  2LD (Wi, W,)
+ .

VTa Ta

@ Why it matters

The key difference of the above result of SMD from that of SPGD in Theo-
rem 3.5 lies in the divergence measure and the variance bound that is measured
in the dual norm. Let us consider r(w) = [y_o (W € Ay). With the Euclidean
setup, the convergence upper bound is dominated by O(O'ZHW‘—;W*

||2), where
o7 > E|Vg(w,¢) — Vg(w) |3 forall w, £.

E[F(Wr) - F(w,)] <
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In contrast, with the stochastic exponential gradient descent update, the con-

T\ Dy (W1,W.)
NT

E||Vg(w, ) — Vg(w)||2, for all w,Z. If we set [wy]; = % for all i, then we
get D, (wi,w,) < logd for all w., € Ay. In addition, [|[w; — w,||> could be
O(1). However, the constant o2, can be smaller than 0'22 by a factor of d. Hence
o—mm _ O(logd

oallwi-wila T vd
descent may converge faster than SGD.

), where ol >

00

vergence upper bound is dominated by O(

), which indicates that stochastic exponential gradient

Proof. From Lemma 3.10, we have
1
Vg(w;, §,)T(w,+1 = W) +7r (W) —r(W) < n_(D‘p(W’ W) — D‘p(W, Witl))
t

1
= —Dy(Wii1, Wy).
un

Same as (3.7) we have
T T L 2
g(Wei1) < g(W) +Vg(wy) (W — W) + Vg(W;) (Wry1 — W) + §||Wt+1 = we||".
Adding the above two inequalities for w = w,, we have
1 1
F(wiy1) = F(w,) < U_(D‘F(W’ W) — D(,D(Wv Wii1)) — U_Dcp(WHl,Wt)
t t

L
+ §|th+1 - Wt||2 +(Vg(we) = g(We, &) T (Wesr — W), (3.37)

Similar to the analysis of SPGD, we define:

1
W1 = arg min Vg(w,) T (W —w;) + —D (W, w,) +r(W),
weRd Ui

which uses the full gradient Vg (w;), making it independent of ;. Then we have

(Vg(w:) = g(Wi, 41)) T (Wip1 — W) (3.38)
< (Vg(wy) — g(wy, (t))T(WHl = Wei1) + (Vg (w;) — g(wy, §t))T(Wt+1 - W.).

In addition,

(Ve(we) = g(We, &) T (Weat = Weat) < IVe(We) = g(We, ) IWeat = Wi |
< T |Vg(we) - g(wi &)1, (3.39)

where the last inequality follows Lemma 3.8. Adding (3.37), (3.38) and (3.39) and
using (3.32), we have
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3.4. STOCHASTIC MIRROR DESCENT

a L

Z_le - E)Hwt - Wt+l||2

+(Vg(w;) — g(wy, gt))T(Wt+1 — Weel) + %”Vg(wt) - g(ws, é)lli

F(Wey1) — F(w,) < %(Dw(w, W) — D¢(W,W,+1)) - (

Taking expectation over {; on both sides, we have

Eg [F(We) — F(ws)]

! a L 2 M o
<E; |—(D , -D , - |—-= - + —0”.
=54 )7’( o (W, W) (W, Wii1)) (277t 2)”Wz Wit || (10'
If n, < ¢, we have
1
By, [F(Wer1) — F(wy)] < Eg, [U—(D¢(W, W) =Dy (W, W) | + %02.
t
Summing over t = 1,...,T, we have
T T )
! Dy(Wi, W) Xm0
E| o > m(F(wi) - F(w.) | < =57 + e
Zl:l 77t t=1 Z[:l nl @ Zt:I nt
Let n;, = n and optimizing the upper bound over 7 finishes the proof. |

3.4.2 Non-smooth Problems

Next, we present the convergence analysis of SMD (3.33) for non-smooth convex
objectives under the following assumption.

Assumption 3.9. For any w, we have E; [G(w; ()] € dg(w) and E[||G(w; O)]1?] <
G

Theorem 3.11 Suppose Assumption 3.9 holds. Let the learning rate {n;} be n; = n
and Wt = % Zthl w;. After T iterations of SMD update (3.34), we have

D EE) 2
E [g(Wr) — g(w,)] < Dy(Wew)  nG*
nT 2a

IfT] _ V2aD,(w.,wy)

Ve , then

G+/2D 4, (W, wy)
VaT '

E[g(Wwr) —g(w.)] <

Proof. From Lemma 3.10, we have
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1 1
Q(w,,{,)T(le -w) < U_(Dga(w, W) — D¢(W, Wit1)) — U_Dw(wt+1,wt)~
t t

Rearranging it, we get

ntg(w,;é’t)T(W, - W)
< Dcp(w’ W) — Dw(W, Wipl) — Dga(Wt+1, W) +1:G (Wi {t)T(Wt - Wii1)

< Dw(w, W) — Dtp(w7 Wipl) — Dcp(Wr+l,Wt)
2
n a
+ 321G (Wes )12 + S 1we = W 1%,
2a 2

where the last inequality uses the Cauchy-Schwarz inequality. Using (3.32), we have

2
NG (Wes £)T(Wy = W) < D (W, Wy) = Dy (W, Wes1) + ;7—;||g<w,; DI (3.40)

The remaining proof is similar to that of Theorem 3.2. O

3.5 Adaptive Gradient Method (AdaGrad)

The stochastic algorithms discussed so far are fairly general and were originally de-
veloped to address a wide range of problems, extending beyond those encountered
specifically in machine learning. Nevertheless, the ERM problem of machine learn-
ing may exhibit some unique properties dependent on data. How to leverage them to
develop a stochastic algorithm that could be potentially faster in practice?

Below, we introduce Adaptive Gradient Method (AdaGrad), which employs an
adaptive step size, which incorporates knowledge of the geometry of the data ob-
served in earlier iterations to perform more informative gradient-based learning.

While AdaGrad was considered an important breakthrough in machine learning,
it indeed evolves from SMD. We use the same language as SMD to present AdaGrad
and its analysis. Let us consider the smooth problem (3.1) and recall the update of
SMD:

. 1
Wil = arg min Veg(w:; &) w+ HDLP(W, w;).
weE

The key design to AdaGrad is to use a time-varying proximal function ¢, that changes
across iterations. A specific way to construction ¢, is the following.

Let H, = diag(s; 1,...,5:,4) be a diagonal positive matrix. Define ¢;(w) =
%WTHtw and a general norm ||w||gy = VWTHw. Then the Bregman divergence in-
duced by ¢, becomes:

d
’ l ’ ’ 1 ’
Dy, (WoW) = 5 (W= W)TH (W= W) = 2 3 se.i(wi —w)’,
i=1
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3.5. ADAPTIVE GRADIENT METHOD (ADAGRAD)

Algorithm 6 AdaGrad

: Input: learning rate parameter 77, starting point w;
cforr=1,...,Tdo
Compute an unbiased gradient estimator z, = Vg (w;; &)

1
2
3
4 Update s,; = T4y 11V (We3 £ 1ill3, Vi
5
6

Update the model w by w4 = w; — ;_Z oz,

: end for

which is 1-strongly convex w.r.t || - || 7. The weights s; = (s;,1, ..., 8¢,4) are updated
according to the following:

3
st =4[ D [Ve(Wes £)12, Vi, (3.41)
=1

which essentially measures the growth of stochastic gradients across all iterations
before ¢.

Let z; = Vg(w;, ), and my; = [zy,...,%/], and m;.,; denotes its i-th row
vector. Then s; ; = ||my.;;||2. As a result, the updating step becomes
- U
Weet = Wi = nH; V(Wi ) = Wi = = 0 Vg(Wis ), (3.42)
t

where o denotes element-wise product. The full steps of AdaGrad are summarized
in Algorithm 6.

Compared with SGD, there are two differences: (i) the effective step size Q is
adaptive that depends on the history of updates, hence depends on data sampled
{1, ..., ¢ . This is the reason it is called adaptive step size; (ii) each coordinate of w
will receive a different step size. This feature makes it useful to tackle deep neural
networks as the parameters at each layer usually have different orders of gradient.

Convergence Analysis

Let the dual norm of || - || is given by |[u|| z-1 = VuTH~!u. Then, ¢; is 1-strongly
convex in terms of || - || g, .

Lemma 3.11 We have

d

T

1
DD (WerWe) = Dy, (W W)} < 5 max [[w. = will%, ) 57
t=1 - i=1

Proof.
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T
D AD G, (Wi W) = D, (W, Wi}

t=1

T
= > Dy, (Way We) = Dig, (W W) + Dogy, (War W) = Do, (Wer Wei1)}
t=1

M=

{Dsﬁt (W*’ Wt) - Dﬂpz—l (W*’ wt)} + kao (W*7 Wl)

~
1l
—_

T
1
= Dy (Wer W1) + 5 > (W = We) T (Hy = Hy1) (W = Wo).

t=1

Since s; = s;_1, we have

T
D W= W) (Hy = Hio) (W = W) = )

=1 t=11i

T d d
2 2
< max [[w. = will%, ) " (sei = se-1.0) = max [l = will%, Y (s7.i = s0.).
= t=1 i=1 - i=l

(se,i = Se—1,0) ([W:]; = [Wii)?

T d
=1

Combining the above two inequalities, we have

T
Z D(Pz (W*,WZ) - D(p, (W*’Wl+1)
t=1
1 d
< Doy (W, w1) + 5 max W = Wit I3, Y (5701 = 51.0)
2 t<T ~
i=
d d
1 2 1 2
SIwi = wallZ, D 0.+ 5 max [lwe = Wil )" (57,0 = $0.0)
2 ; 2 t<T :
i=1 i=1
d
L maxiw. — w2 Y sr
2rznsa% * too.l T.i-

IA

IA

Lemma 3.12 We have

T

d
D IVewi ol <2 s
i=1

t=1

Proof. Let us first prove a general result in the following: for a general real-value
sequence {a, }, we have
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3.5. ADAPTIVE GRADIENT METHOD (ADAGRAD)

T 612 T
D =<2 llairlh, (3.43)
Liflarl, = 4
where ay; = (ay,...,a;). We prove this by induction. First, it holds trivially for
t = 1. Now, assume it holds for 7 — 1, we prove it holds for 7.
lair-ill2 + :
p Z = |al T||2 P |a T||2

Let by = 1/ T -1 a,, then we have
2

a
z§ lavraill+ L =26 - af + L.
T” b2
T

Since +/- is a concave function, applying Vx + ¢ < Vx + 67 we have
b2 2 < b2 2 1
T~ 4r =07 :
24 /b%

aZ
Hence, 2., /sz - azT + \/% <2 b%. Thus, we prove (3.43) for T'.
T
Next, we apply this result to the following:

Z V(Wi 2l = ZVg<w,,4>leag<st> Ve(wi;di)
t=1

t

d d
_ Z Vg(wt’élt < le \JZ[Vg(WT,&

U2 (Ve (Wes £ =

Theorem 3.12 Let wr = % Zthl Wy, then AdaGrad guarantees that

E [max, <7 [[w. — w, |12, Zﬁizl Imy.7: Iz
2nT
+ nE [Zﬁizl ”ml:T,i”Z]
T .

E[g(W;) —g(w,)] <

If max; ||Wy — Wy|leo < Doo and = Do /N2, we have

\/EDooE [Z:'l:] ”ml:T,i”Z]
T .

E[g(W;) —g(w.)] <
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@ Why it matters

The above result shows the convergence rate depends on the growth rate of the
cumulative stochastic gradient Zf: 1 lmy.7;]|>. In the worst case, it grows at a
rate of O(VT), inducing a convergence rate of O (1/VT), similar to SGD. How-
ever, when the cumulative stochastic gradient grows slower than 0(\/7 ), Ada-
Grad will enjoy a convergence rate of o(1/VT).

Let us consider the following linear model with sparse random data scenario,
where g(w;, ;) = [1 — w] ]+ and the data vectors £, € {~1,0, 1}¢. Assume
that at in each round ¢, feature i appears with probability p; = min{1, ci~%} for
some a € (1, ) and a dimension-independent constant ¢. Then we have

d d d
Z lmy.zill2 Z\Ht 12y = 1|l < Z VE |tz =1|]
i=1 i1 i=1
d
= Z vpiT.
i=1

E =E

by Jensen’s inequality. In the rightmost sum, we have ¢ Zflzl i~ = O(log d)
for @ > 2, and Zle i~%2 = 0(d"~??) for @ € (1,2). If w, is restricted in a
domain W = {w : ||W||w < 1}, then D, = 2, and the convergence rate of Ada-
Grad becomes O(max{log d, d' =/} /NT). For contrast, the convergence rate
of SGD in Theorem 3.2 is O (\/d/_T ). So we see that in this sparse yet heavy tailed
feature setting, AdaGrad’s convergence bound can be exponentially smaller in
the dimension d than the non-adaptive bound of SGD.

Proof. Similar to (3.40) in the proof of Theorem 3.11, we have
n?
(Vg (W3 {t), Wi =W) < Dy (W, W;) =Dy, (W, Wr+1)+7’I|Vg(Wz;§t)II§,t_1- (3.44)
Taking expectation and summation overt = 1,...,7, we have

T

Z nE[g(w,) —g(w.)] <E

t=1

T
Z Dgo, (W, w;) — D«pr (w, Wt+1)l

t=1
T

nz
> 7||Vg<w,;4>||i,tll .

t=1

+E

Using the results from the two lemmas above, we conclude the proof.
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3.6 Stochastic Gradient Descent Ascent

In this section, we consider stochastic convex—concave min—max optimization prob-
lems:

min max f(w,u) := Bz [f(w,u;0)].

This class of problems has two important applications in machine learning: (1) it
serves as a foundation for directly formulating learning tasks (e.g., the DRO prob-
lem (2.11)); (2) it provides a tool for reformulating standard minimization problems
to enable more efficient optimization.

A solution of interest is the so-called saddle point (w,, u.) € W x U satisfying:

f(w,,u) < f(w,,w,) < f(w,u,),Ywe W, ueU.

In many machine learning applications, we may be only interested in finding a global
optimal solution to the objective F(W) = maxyeq, f (W, u). It is easy to see that if
(W.,u,) is a saddle point, then w,. is a global optimal solution to F(w). This can be
seen from

max f(w,,u) < f(w,,u) < f(w,u,) < max f(w,u).
uel uel
For a point (w,u) € W X U, a convergence measure is defined by the duality gap:
A s = > ) - i ,7 .
(w,u) lllpgéf(w u’) wr,rgglvf(w u)
A simple method for solving the convex-concave min-max problem is the stochas-

tic gradient descent ascent (SGDA) algorithm, which is an extension of SGD. It em-
ploys two key updates:

. 1
W1 = arg min 9y f (W, u,38) " (W= w,) + =—|lw — w, |3
weW 21 (3.45)
. 1 '
Uy = argmin -0 f (W, u;547) T (w—uy) + —|ju— u,||%,
uel 2n2

where 0 f (w, u; ¢) and 0, f (W, u; £) denote the stochastic partial subgradients such
that Bz [01 f(w,w;{)] € 01 f(w,u) and E/ [02 f (W, u; )] € &> f (W, u).
Convergence Analysis

Below, we analyze the convergence rate of SGDA under the following assumptions.
Assumption 3.10. Suppose the following conditions hold:

(i) f(w,u) is convex w.r.t w and concave w.r.t 0.
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Algorithm 7 SGDA

1: Input: learning rates {71, 172}, starting points w, u;

2: fort=1,...,Tdo

3 Compute unbiased gradient estimators z; , = 91 f (W,; ;) and o, = 2 f (W, 03 ;)
4: Update the primal variable w by w;,; = arg minyey z]Tyt(w - W) + ﬁ [|lw—w, ||§
5 Update the dual variable u by u,,; = arg mingeqs —z{, (u—wuy) + ﬁ [[a —u; ||%
6: end for

(ii) There exist G, G, > 0 such that

E 1101 f(w,w; O)[13] < G3,¥w e W,u e U, (3.46)
E; [l2f (w,w; )|I5] < G3,¥w e W,ue U. (3.47)

(iii) maxXwe w wew lw—w| < D and maXpyey ,weld lu—u']] < D>

Lemma 3.13 Let us consider a martingale difference sequence {6;};>1 and a se-
quence {y; }¢>1:

Yert = argmin{-67 v+ @Dy (v, )}
veV

If y is py-strongly convex w.r.t. || - || (1y > 0). For any v (that possibly depends on
{6:}) we have

E[o/v] <E [aDw(v, yi) = @Dy (0, y041) + 3 ||6t||§] :
A [y,

@ Why it matters

In standard minimization problems, the convergence measure is usually defined
with respect to the optimal solution w.,, which is fixed and independent of the
randomness introduced by the algorithm. In contrast, in stochastic min—max op-
timization we are concerned with the duality gap A(w, u) = maxycq f(W,u’)—
miny ey f (W, w), where the optimal w” and w’ depend on the current random
iterates (w, u). This dependency introduces additional subtleties into the analy-
sis.

The preceding lemma applies to any random variable v that may depend on the
entire randomness of the algorithm, and will be useful for our analysis. Recall
that a sequence {X,} is a martingale difference sequence if the conditional ex-
pectation of each variable given the past is zero, i.e., E[X; | X1,...,X;—1] =0.

Proof. Applying Lemma 3.10 to the update of y;.;, we have

E [_6:()’”1 - U)] <E [aD¢(y,y,) - CVD{//(}’,)’HI) - CYD://()’HI’}’Z)] .

Hence,
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3.6. STOCHASTIC GRADIENT DESCENT ASCENT

E 6] (v-yi)| <E[aDy(v,y,) = aDy(v,yi41) = @Dy (yrs1. ¥1) ]
+E[6] (yes1 — y1)]
<E [a'Dw(U, yi) —aDy (v, ym)]

2
llo:1l% ] -

apy 2 My >
-E|— - +— - +
2o =l S e =l 4

Since E[6,] = 0 and y, is independent of 6,, we have E[6; y;] = 0. As a result,

1
E[6;v] <E[aDy(v,y:) —aDy(v,ym1)] + WE [5:112] -

2u
O

Theorem 3.13 Letwr = + 31w, iy = = Y1, u,. After T iterations, SGDA (3.45)
guarantees that

D?> D2 531G? 51.G3
E[A(Wr,ar)] € —= + —2 + Ly =2
[A(Wr,a7)] < Tt T > >

If we set | = O(G?\Iﬁ) andn, = O(G?\Z/T)’ we have

+

NT VT

Proof. Similar to (3.10), for the primal update and dual update for any w € ‘W, u €
U we have

E[A(Wr, )] < O(D‘Gl DZGZ).

Af(weus &) (wy —w) <

1 1 1
7”% - w3 - 2_m||Wt+] - w3+ 3 181f (Wi, g5 20|13
_(92f(wtaut;§t)-r(ut - u) <

ol =l = 5o w4 Sl v IR
The difference from the SGD analysis is that we cannot fix w as w,. and fix u as u,,
which will not yield the duality gap measure. Indeed, at the end we need to take max
over w € ‘W and min over u € U to obtain the duality gap, making them dependent
on the randomness.

To proceed, we have
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1 1
O1f (Wr )T (We = W) < oWy = Wil = 2= lween = w3

1
+ Emllﬁlf(wt,ut; é’t)”% + (01 f (W) = 01 f(We, 5 84)) T (W — W)

1 1
- azf(wt,ut)T(ut -u) < 2_772||ut - u||§ - 2 [[agey — u||%
1
+ 5772||62f(wt,ut; 41)”% + (O f (W w3 &) — 0o f (We,wp)) T (uy — ).

Adding these inequalities we have

61f(wtaut)T(wt -W) - 62f(Wt,u,)T(ut -u)

1
3y (10 = wll3 = luges — wl)
1 1
#3101 (W, urs CI3+ 320l f (e s )13

+ (01 f (Wi, uy) — (91f(wt,ut§§t))-r(wt - W)
+ (0o f (Weug54y) — aZf(thut))T(ul -u).

1 2 2
< — W = W||5 = [|[Wee1 — W )+
g (I = WIE = 1w = Wi

Due to the convexity and concavity of f(w,u) in terms of w, u, respectively, we have
FWeur) = f(w,u,) < 01 f(we,u,) T (W —w),
Fwe,u) = f(we,u) < =02 f (We,u) T (u; — ).

Adding these two equalities, we have

f(we, ) = f(w,u) < (91f(W,,u,)T(W, -w) - 62f(w,,u,)T(u, -u)

As a result, we have
f(W[,u) - f(w’ ut)

1

2 2 2 2
< — | ||Wr = W||5 — [|W - W )+—(ll—ll — || —-u )
2 | (” t ”2 ” t+1 ”2 2 ) ” t ”2 ” t+1 ”2

1 1
#3101 (W 013 + 3m2ll0f (e i )13

+ (01 f(We,wp) = 01 f (We, 03 40)) T (We — W)
+ (0o f (W, 5 8y) — 0o f (Wi, wp)) T (uy — ).

Taking average overt = 1,...,T, we have
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3.6. STOCHASTIC GRADIENT DESCENT ASCENT

T
(1w = F(80) < 72 30 (700w = o)

1 2
+ 3l = w3

T
L n mn
=3 > 161 v IR + 7 Zl 1621 (we. wrs )11

* % ;(51f(wt,u,) -1 f(We,u54)) T (W —w)

T
g D0 v ) =0 o)~ )

Let w, u be the solution to maxyeay yeqs f (Wr,u) — f(w,@iy), which are random
variables. Taking expectation over both sides, we have

2 2
G2 G
mey  mY

1 1
BIAGWr 7)) <5 [Iwi =Wl + =l —ul}+ =L+ =

—2mT 2n,T

T
Z(alf(wz,uz,é) o f(we,up)) WI (3.48)

T
Z 0o f (We,uy) = 0zf(wt,uz;§z))7ul :
t=1

Next, we apply Lemma 3.13 to bound the last two terms. To this end, we introduce
two virtual sequences with Wi = wi, ) = uy:

R . 1 .
W1 = arg min —(0y f (W, u;5) — 01 f (Wi, uy)) "W+ —||lw — thI%
weWw 2m
N . 1 R
O,y = argmin (0 f (W, 5 4y) — 0o f (Wy, u)) u+ —Ju- Uz”%-
well 2
Applying Lemma 3.13, we have
1 . R
E[(01f(Weus &) = 01 f (weoup) Tw] < o (Ilwt — W3 = ([ W1 — WII§)
TR0y f (Weswis £0) = 01 f (Weoup) 3]
1 . R
3 (18 =l = sy i)
TR0y f (W3 £0) = 1 f (Wi up) 3]

[(aZf(Wtaut) - f(Wi,u;4)) “]

Hence,
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T
E Z(alf(wt,uﬁft) - alf(Wt,ut))TWl
=1
T
+E Z(ﬁzf(wt,u,) —azf(wt,u,;gt))Tul (3.49)
=1

4mGiT  4mGaT
+ .
2 2

< W - Wi+ o6, —ul +
S 2o 2
Combining (3.48) and (3.49), we have

57]1G% 57]2G§
2 T2

1 1
E[A(Wr,ar)] < —E[||w; - w|2] + —E[|lu; — u)?
[A(Wr,8r)] < T [llw WI|2]+n2T [y —ull5] +

Hence, we conclude the proof. O

3.7 Stochastic Optimistic Mirror Prox

While simple in design, SGDA cannot enjoy a faster convergence when the function
is smooth and the stochastic gradients have zero variance. A classical method to
address this limitation is to use an extra-gradient. Let

Vlf(w9 ll)

w
V= [u]’ M) = =V f(w,u)

], V=WxU.

The extra-gradient method takes the following update with an initialization of x; €
V: 1
y: = argmin M(x,) v+ —||v - Xt”%
veV 27]
) (3.50)
_ . T = _ 2
X4l = arggélgM(Y;) v+ o v —xll5.

The name “extragradient” comes from the fact that it uses two gradients M(x;) and
M(y,) at each iteration.

The extragradient method can be generalized using the mirror descent steps with
a Bregmand divergence D, (-, -) defined by a strongly-convex function ¢ : ¥V — R:

1

y: = argmin M(x,) v+ =Dy (v,%,)
veV n

) (3.51)

Xp+1 = argmin M(y;) 'V + =Dy (v, %,).
veV n

This method is called mirror prox.
Both methods can be extended to their stochastic versions. For example, the
stochastic mirror prox method (SMP) uses the following update:
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3.7. STOCHASTIC OPTIMISTIC MIRROR PROX

Algorithm 8 Stochastic Optimistic Mirror Prox (SOMP)
1: Input: learning rates n, starting points x; =yo = (W, uy)
2: Compute y; = arg minyey M(yo; o) v+ ,i,D‘p (v,x1).
3: fort=1,...,Tdo
Compute unbiased gradient mapping M (y;; &;)
Update X;,; = arg minyeqy M(y;; &) Tv+ %Dg, (v, X).

4
5
6: Update y;,; = arg minyeqy M(y;; &) Tv+ %Dg, (V, Xz41)-
7: end for

1

y: = argmin M(x;3¢))'v+ =Dy (v,X,)
veV n

| (3.52)

X;+1 = arg min M(Yzigr)TV"‘ _D¢(V’ X;),
veV n

where B, [M(x; ()] = M(x).

Stochastic Optimistic Mirror Prox: a variant with a Single Gradient Sequence

The updates of SMP (3.52) need to compute two stochastic gradient sequences
{M(x4, )} and {M(y;; )}, which double the costs of SGDA. A simple remedy
is to use M(y;-1; {;—1) in the first update of y,, yielding

. 1
yr = arg min M(Yi-15-1) TV + =Dy (V. X;)
. (3.53)
Xp4] = arggéiqr/lM(yt; )TV EDW(V, X/).

As aresult, we only need to compute one sequence of stochastic gradients { M (y;; ¢;)}.
This method is known as stochastic optimistic mirror prox (SOMP).
Let us consider a special case when V = R? x R and D, (x,y) = 1[Ix - yli3.
The above update reduces to
Ye =X —nMYr-154-1)

(3.54)
Xei1 = X = pM(ys; &r).

This update can be re-written using one sequence of {y, }. By subtracting the second
equation from the first one, we have

Vi — Xes1 = gM(Y15 &) —aMI(Yi—15 4-1). (3.55)
As a result,

Yi = Xex1 +pM(Y15 &) —nM(Yi-134i-1)
= Y1 + MY &) + My &) —nM(Ye-15 4e-1)-
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From this, we derive that

Vo1 =Ye = n(M(Ye5 &) + M(ye5 &) = M(Yi-154i-1))- (3.56)

This method applied to the min-max problem is known as stochastic optimistic gra-
dient descent ascent (SOGDA), yielding the following primal and dual updates:

Weel =W —n2Vif(We, 3 8) = Vif(Weo,w—154-1)) (3.57)
Uy =0 + 02V f(We, 05 4) — Vo f(Wem1, W15 45-1)))- (3.58)

Convergence Analysis

We analyze the stochastic optimistic mirror prox method in Algorithm 8. We make
the following assumption.

Assumption 3.11. Suppose the following conditions hold:

(i) f(w,u) is convex w.r.t w and concave w.r.t 0.

(ii) Let ¢(z) be a a-strongly convex function with respect to the norm || - ||, whose
dual norm is denoted by || - ||.,

(it) M(v) is L-Lipschitz continuous such that

IM(V) = M) < LP|lv=v'|1%.
(ii) There exist o, 0 > 0 such that
E/[IM(x;0) = M(®)]1?] < 0%, ¥x e V.
(iii) maxxey wev D (X, X') < D2,
Lemma 3.14 Given X, consider the updates:

y = argmin yM(&)Tv+ D (v, x),
veV

. (3.59)
X, = arg min yM(Q) TV + Dy (v,X).
For any v € V, we have
YM(OT(Y = V) <D (V,X) = Dy (V, x4) + %ZHM(f) -MQ)II? (3.60)
= Ly =<l + lly ~ %21 |
Proof. First, by Lemma 3.8, we have
Iy = xell < ZIM(©) = M@l (3.61)
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3.7. STOCHASTIC OPTIMISTIC MIRROR PROX

Let ¢(v) = yM({)T(y—v)—D 4 (v,x)+D o (v, X,). Given the optimality condition of
X,, it is easy to verify that it also satisfies the optimality condition of maxyey ¢(Vv).
As aresult, ¢(v) < ¢(x4),Vv eV, ie,

YM(Q)T(y = V) = Dy (V. X) + Dy (V,X4)

< yM({)T(y -X4) — D‘p(x+,x)

= yM(O)T(y = %) +¢(¥) + Vo(x) " (X = X) = p(xs) (3.62)

=y(M({) = M()T(y = x) + YM(E)T(y — x4)

+o(x) + Vo(x) T (x: —X) — p(x4).

By the optimality condition of y, for any v € V we have

(YM(€) + Vo(y) = Vo(x)) T (y - v) <0

Plugging v = x, into the above inequality, we have

(YM(&) +Vp(y) - Ve(x) T (y —x4) <0,

which implies that

YMET(y = x1) < (Vo(y) = Vo(x) " (x4 —y).

Combining this with (3.62), we have

YM(OT(Y = V) = Dy (v,X) + Dy (v, X4) < y(M(L) = M(€)T(y - x4)
+(Ve(y) = Vo(x) T (x4 —¥) + @(x) + Vo (x) T (X4 — X) — ¢(x4)
=y(M() = M(é)T(y - x4)
+¢(x) + Vo(x) T (y - x) — o(x4) + (Vo(y) " (x4 - y)
=yM() = M(é)"(y - x4)
+9(x) + Vo (x) T (y = %) = (y) + o(y) + (Vo) " (x4 = ¥) — ¢(x4)
=y(M() = M(é)T(y = x4) = Dy(¥.X) = Dy (X4, )

2
< LIM@) - MO - Sy - xI2 - Sx, - ylI%
a 2 2

where the last inequality uses (3.61) and the @-strong convexity of ¢.
O

Theorem 3.14 Let Wy = + Y, wi iy = + X1 u,. After T iterations, SOMP
guarantees that

2D? 802
E[A(Wr, @ir)] < 5 + —1.
Tn a
If we setn = min(M%, ﬁ), we have
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2
E[A(Wr,i7)] < O (% + %) :

@ Why it matters

This result is consistent with the convergence of SGD for smooth convex mini-
mization in Theorem 3.1. In particular, when o~ = 0 (i.e., using the deterministic
gradient), the convergence rate simplifies to O(1/7).

Proof. Since the updates of y;, X, follow that in (3.59), by applying Lemma 3.14,
we have

nM(Ye, &) (ye = V) < D (V. Xr) = Dy (V. X41)
+ %ZIIM(yz, &) = M@i-1 G-I - %[IIY: =% |17+ Ilyr = %ot [17]
<Dy (v,X;) = D (Y, Xp41)
+ %ZIIM(yt, &) = M(¥e-1,Zi-1) = M(y0) + M(yi-1) + (M(ye) = M(ye-)) 2

12+ llye = Xear 7]

a
Ly -,
Let o7 = | M(y:, &) = M(y1) |3, then we have

IM(Ye, &) = M(Yeot, Gm1) = MAYe) + M(yi—1) + (M(ye) = M(ye-0)|I?
<3IMye &) = MYOIZ +3IMio1, Gem1) = My 112
+3IIM(y:) = M(ye-)I?

<302 +302 +3L% |y, — yi_1 |1
Combining the above two inequalities, we have
My, &) T (¥: = V) < Dy(V, %) — D o (V, Xp41)
7o s 2 2y_ & 2 2
+ (607 4 3L7lyr = yellP) = S llye = eI+ [lyr = Xen 7).

Taking average over t = 1,...,T, we have
1 - 1
T ;M(y,f(yt V) < 7Dy (vx1)

T T
@
+ ;maz #3070y =yt ) - 5 ;[ny, =%l + e = e ]

Y=

a

| &
+ T ;(M(Yt) - My, )" (y: = V).
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3.7. STOCHASTIC OPTIMISTIC MIRROR PROX

Lety, = (w;,u,) and v = (W, u) = arg maxXyew.uew f (Wr,u) — f(w, ii7). We have

T T
D M=) = 2 3 (TS () (e =) = T/ (v, w) T (y — w)
t=1 t=1

T

Z(f(wt,ut) — f(w,up) + f(w, ) = f(w;,u))

t=1

1

ﬂ

~

= D071 = F00)) = F(7.8) = ()

’\]

As a result,

1« 1
A(Wr.Gr) < 2 ) M) (3 = V) < - Dy(V.x1)
t=1 d

T T
iTZ (60 +3L7ly: = yi-1|I?) - ﬁZ[ny,—x,u%ny,—x,+1||21

1
tr ;(M(y» — M L)) (¥ = V).

The last term can be bounded by using Lemma 3.13. Define the virtual sequence
with 1 = x;:

N . 1 N
§re1 = argmin(M(y,) = M(ys, 4)'v+ EDsp(V, §:).

Then Lemma 3.13 implies that

|+ 1
E T;(M(ylagt)_M(yt))TV SEI:n_TD‘p(V’yI)

+E

T
. i 2
zaT;HMm) M IR

Combining the above results, we have
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o’n

o 2 8
E[A(Wr,a7)] < T—an)(V,Xl) +

3L% .
E "ol t:Zl lly: —y:- 1||2 e Z[”)’t Xt”2 +1lye — Xe1 |l l
2 802 312
< 7oDy(vxn) + =g | 2 ;[zuyt %P+ 2l —yt_lnz]]

[\

T

a

8| 57 2y =%+ e = e ]
t=1

the sum of the last two terms will be less than zero

27
If6L;_2,7 ie., U‘W’
due to x; = yo. Then, we have

2 802 2D? 802
E[A(WTaﬁT)] < T—D¢(V,X1) + g < — + g TI'
n a

Tn a
For the second part, optimizing the upper bound over n gives n. = zD\/‘T/Z I
e < ML ie, T > 3D L’ , we set 17 = 1, then
8aD
E[F(wr) - F(w,)] < —.
VTa
If n, > \FL ie.,o? < 3[(’:TL ,Wesetn—rL then
2V12LD?* 12LD?
E[A(Wr,ar)] < \/; + .
a \V3Ta
O

3.8 History and Notes

Stochastic Approximation and Mathematical Optimization

Stochastic approximation has a long history dating back to Robbins and Monro
(1951) for solving a root finding problem f(x) = « using an iterative method
Xe+1 = Xy —a; (y; —a), where y, is a stochastic variable such that E[y;] = f(x;). They
studied the asymptotic convergence of lim; ., E[(x; — #)?] = 0 under some condi-
tions, where 6 is the solution to the root finding problem. It is notable that Herbert
Robbins was regarded as one of the most influential mathematicians of the latter half
of the 20th century, renowned for his seminal contributions to probability, algebra,
and graph theory.
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3.8. HISTORY AND NOTES

Inspired by Robbins and Monro (1951), Kiefer and Wolfowitz (1952) considered
stochastic maximization of a regression function using a stochastic finite difference
estimator of the gradient. Later, Chung (1954) established the convergence bound
of Robbins-Monro’s method under some conditions. Since then, the convergence of
SGD has been extensively studied. Polyak and Juditsky (1992) analyzed the conver-
gence of SGD with a simple averaging for stochastic optimization, which is some-
times referred to as Polyak-Juditsky averaging or Polyak averaging. This work as-
sumes smoothness and strong convexity of the objective function and established a
convergence rate of O(1/T).

Nemirovski and Yudin (1978) is probably the first work that analyzes the non-
asymptotic convergence of SGDA for general convex-concave min-max optimiza-
tion without smoothness and strong convexity assumption. Their paper introduces
the weighted averaging (weighted by the step size at each iteration) and establishes
the convergence rate of O(1/VT). The optimal rate O(1/T) for strongly-convex
strongly-concave min-max problem was recently proved in Yan et al. (2020a).

The mirror descent method originates from Nemirovsky and Yudin (1983), which
is also the work that is often cited for the lower bound of O(1/VT) for general con-
vex problems. A more general form of SMD and its extension for convex-concave
min-max problems using a Bregman divergence was later considered in (Nemirovski
et al., 2009).

The non-asymptotic analysis of SGD for non-convex optimization was initiated
by (Ghadimi and Lan, 2013). The non-asymptotic analysis of SGD for weakly convex
optimization was developed by (Davis and Drusvyatskiy, 2019).

The proximal method dates back to the proximal point method proposed by Mar-
tinet (1972) and further developed in (Rockafellar, 1976). Lions and Mercier (1979)
proposed a splitting method for finding a zero point of the sum of two maximal mono-
tone operators. The forward backward splitting was first proposed by Pazy (1979) in
the same context of finding a zero of sum of monotone operators. Its special instance
for minimization problems known as projected gradient method was first studied
by Goldstein (1964).

Coordinate descent has a long history in optimization, with its earliest roots trace-
able to the Gauss—Seidel iterations for solving linear systems in the 19th century.
The method was later formalized and discussed in early optimization literature, in-
cluding (Warga, 1963; Ortega and Rheinboldt, 1970; Luenberger, 1973). Rigorous
analysis of convergence properties was developed in a sequence of influential works
by Paul Tseng and others, including (Luo and Tseng, 1992; Tseng, 1990; Tseng and
Bertsekas, 1987; Tseng, 2001). Recent developments of block coordinate descent
including accelerated coordinate descent (Nesterov, 2012) and stochastic block co-
ordinate descent (Dang and Lan, 2015).

The extragradient method was first proposed by Korpelevich (1976). The mirror
prox method and its convergence rate O (1/T) was proposed and established by Ne-
mirovski (2004). The stochastic mirror prox method was analyzed in (Juditsky et al.,
2011).

119



Optimization in machine learning

Frank Rosenblatt’s pioneering work in the late 1950s introduced a learning rule for
updating the Perceptron model (a single-layer neural network for binary classifica-
tion) (Rosenblatt, 1962), a method that shares a conceptual foundation with modern
stochastic gradient descent (SGD). The earliest instance of SGD for machine learn-
ing is perhaps the Widrow-Hoff algorithm (Widrow and Hoff, 1960) (also known as
the least mean square’ algorithm), which was used to train ADALINE - a single-layer
neural network that produces a continuous output. Amari (1967) is the first work that
applies SGD to optimize a neural network for binary and multi-class classification.

Starting in late 1980s, online prediction problem has attracted increasing atten-
tion in machine learning, whose developments have many parallels to stochastic op-
timization. Littlestone (1988) proposed the Winnow algorithm for learning Boolean
functions. It was shown to be better than the earlier Perceptron learning algorithm
in the sense that the number of mistakes grows only logarithmically with the num-
ber of irrelevant attributes in the examples. Later, it was generalized to weighted
majority for learning with expert advice (Littlestone and Warmuth, 1994), and the
exponentiated gradient method (Kivinen and Warmuth, 1997) for online learning
with a decision variable from a simplex, which is a special case of SMD using the
KL-divergence. It has impact on the development of Adaboost (Freund and Schapire,
1997).

During the first decade of the 21st century, online convex optimization emerged
as a central topic in machine learning. A key focus was on regret bound analysis,
which can be transferred into convergence guarantees for stochastic optimization via
the online-to-batch conversion technique (Dekel and Singer, 2005). Regret bounds
for online gradient descent were established for both convex loss functions (Zinke-
vich, 2003) and strongly convex loss functions (Hazan et al., 2007). The multi-epoch
scheme for achieving an optimal rate of O(1/T) for stochastic strongly convex opti-
mization was established independently and concurrently in (Iouditski and Nesterov,
2010; Hazan and Kale, 2011; Ghadimi and Lan, 2012). Later, SGD has shown to be
able to achieve the optimal rate for stochastic non-smooth strongly convex optimiza-
tion using tail averaging (Rakhlin et al., 2012) or increased weighted averaging (La-
coste-Julien et al., 2012). The last iterate convergence of SGD for non-smooth convex
optimization was established in (Shamir and Zhang, 2013).

The use of the £; norm as a regularizer in the Lasso method was pioneered by Tib-
shirani (1996). The elastic net regularizer was later proposed in (Zou and Hastie,
2003), while the group lasso regularizer was introduced by (Yuan and Lin, 2006).
More recently, the Piecewise Affine Regularizer (PAR) was proposed in (Jin et al.,
2025). The nuclear norm minimization for promoting a low-rank matrix was first
considered in (Fazel et al., 2001).

Pioneering works on the application of SGD to regularized empirical risk mini-
mization in machine learning, including support vector machines, include (Zhang,
2004a; Shalev-Shwartz et al., 2007). The application of the proximal gradient method
to £; norm regularized problem was initiated by Daubechies et al. (2004), yielding
an algorithm known as iterative thresholding. The application of SPGD to machine
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learning with various regularization terms was studied in (Duchi and Singer, 2009).
The application of SGD for optimizing truncated loss and its theory was studied
in (Xu et al., 2019b).

The most famous application of coordinate descent methods in machine learning
is the solver for support vector machine (Chang et al., 2008; Hsieh et al., 2008).

AdaGrad, proposed by Duchi et al. (2011), was a breakthrough in stochastic opti-
mization for machine learning. It later inspired several popular stochastic algorithms
for deep learning, including RMSprop (Hinton, 2018) and Adam (Kingma and Ba,
2015), which will be discussed in Chapter 6.

The first variant of stochastic optimistic mirror prox method appeared in the au-
thor’s award-winning work (Chiang et al., 2012), inspired by Nemirovski’s mirror
prox method. It was introduced to address a long-standing challenge in online con-
vex optimization for achieving variational regret bounds. This line of research later
inspired the work of (Rakhlin and Sridharan, 2013), which formally coined the term
optimistic mirror descent. More recently, stochastic optimistic mirror prox has been
adopted for solving min—-max problems in machine learning, including applications
such as training generative adversarial networks (Daskalakis et al., 2018).

Discussion. The most important factor that affects the practical performance of
SGD and other stochastic algorithms is the learning rate scheme 7. In this chapter,
we focus on a fixed learning rate 7, = 1. However, it is usually not the best choice
in practice. We can also develop theoretical analysis of these algorithms using de-
creasing learning rates, e.g., n; oc 1/v/f, 1/t. However, these theoretical learning rate
schemes are usually also not the best in practice. A practical approach is the step
decay strategy as in Theorem 3.7, which gives a convergence that has only loga-
rithmic dependence on the initial distance ||w; — w.||2. This strategy also works for
general stochastic convex optimization under generic error bound conditions in the
form ||lw — w.|l» < c(g(w) — g(w.))? with 6 € (0,1] (Xu et al., 2017). Another
issue of theoretical learning rates is that their best values that optimize the conver-
gence bound may depend on some unknown parameters of the problem, e.g., w,, the
smoothness constant, strong convexity modulus. This issue has triggered a line of
research known as parameter-free algorithms (Orabona, 2019; Lan et al., 2023).

While this chapter focuses on classical stochastic methods that not only have
important applications in machine learning but also significantly influence the ap-
proaches presented in later chapters, it does not cover several important algorithms,
most notably accelerated gradient methods and their stochastic variants. These meth-
ods achieve optimal convergence rates for smooth convex objectives when the vari-
ance of stochastic gradients vanishes (Lan, 2012). For a comprehensive treatment
of accelerated gradient methods, we refer to the textbook by Nesterov (2004), and
for stochastic accelerated algorithms, we recommend Lan (2020). Variants of these
methods will be introduced in Chapter 6.

Finally, I recommend the textbook (Recht and Wright, 2025), which provides a
comprehensive treatment of convex optimization algorithms tailored for data analy-
sis.
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Chapter 4

Foundations: Stochastic Compositional
Optimization

Abstract In this chapter, we introduce stochastic compositional optimization prob-
lems and their optimization algorithms, including stochastic compositional gradient
descent and stochastic compositional momentum metholds. We also consider exten-
sions of these techniques to structured optimization with compositional gradients
including non-convex regularized problems, min-max optimization, min-min opti-
mization and bilevel optimization. We focus on the complexity of these metholds for
non-convex optimization.

Moving average is the core ingredient!
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4.1. STOCHASTIC COMPOSITIONAL OPTIMIZATION

4.1 Stochastic Compositional Optimization

We have seen several advanced machine learning frameworks in the Chapter 2, in-
cluding DRO, GDRO, EXM, and COCE. Unfortunately, existing stochastic gradient
metholds such as SGD are not directly applicable to these new problems. The rea-
son will become clear shortly. To address this challenge, we need new optimization
tools.

In this chapter, we will consider a family of stochastic optimization problems
called stochastic compositional optimization (SCO), whose objective is given by

‘g@ F(w) :=E¢f(Erg(w; 0);€), 4.1

where & and ¢ are random variables, g(-;¢) : R — R¥ is the inner random func-
tion, and f(-;&) : R? — R is the outer random function. Let f(-) = Ee f(+;€) and
g(-) = Ezg(+;£). Then the objective function F(w) = f(g(w)) is a composition of
two functions.

Examples

Example 4.1. The KL-regularized DRO (2.14) is a special case of SCO by
setting f(-) = Alog(+) and g(w) = % 2y exp(E(w;x;, i)/ ).

Example 4.2. The KL-constrained DRO (2.19) is a special case of SCO by
setting § = (81,82) f(8) = gilog(g2) + g1p and g1 (W, 1) = 4,82(W, 1) =
Ly exp(6(w:xi, yi)/A).

Example 4.3. The compositional objective for AUC maximization (2.32) has

a compositional term of f(g(w)), where g(W) is a stochastic function and f
is a deterministic function.

Optimization Challenge

The challenge of solving SCO lies in how to estimate the gradient VF(w) =
Vg(W)V f(g(w)), where Vg(w) € R¥4" denotes the transpose of the Jacobian ma-
trix of g at w and Vf(g) € R? is a gradient of £ at g.

A simple way of estimating the gradient is by using stochastic samples, i.e.,
G(W;&,4,0") =Vg(w,; )V f(g(w; ) &), where &, £, {’ are random samples. One
can also use mini-batch of random samples to compute the estimator. However,
the problem is that G(w; &, ,’) is a biased estimator when f is non-linear, i.e.,
Eer,00G(W;€,4,¢") # VF(w). This will break all assumptions made in the con-
vergence analysis in Chapter 3. Directly using this estimator in SGD could result in
non-convergence or it requires a large batch size for estimating g(w).
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Algorithm 9 SCGD

1: Input: learning rate schedules {7,
2: fort=1,..., T do

Sample ¢, ¢/ and &

4 Compute the inner function value estimator u; = (1 — y;)u;—1 + v g(We; &)
5: Compute the vanilla gradient estimator z, = Vg(w,; /) V f(u;; &)
6

7:

T

=1 {vt szl; starting points wy, ug

Update the model w by w;,; = w; — 1,2,
end for

4.2 Stochastic Compositional Gradient Descent

We assume both f and g are differentiable. Next, we introduce stochastic composi-
tional gradient descent (SCGD) as a solution method for SCO. The key to the de-

sign is to track the sequence of {g(w;),# = 1,...,T} by a sequence of estimators
{u;,t=1,...,T}. Let us consider the following problem:
.1 2
min > Ju = g(w) 3. (42

We compute u; by using the SGD update:

w=u =y (W —g(Wes &) = (1 —yo)w—1 +y:.8(Wes &), t € [T],  (4.3)

where g(w; () is stochastic estimator of g(w) such that E; [g(w; {)] = g(w). The
update is also known as moving average sequence of {g(w,)}.

The intuition behind this is that when w; converges (i.e., w, — w;_; — 0), u; is
a better estimator of g(w;) than g(w,; ;). With u,, the gradient estimator can be
computed by

Z; = Vg(“’t?é}/)vf(ut;ft), (4.4)

where ¢/ is another independent random variable. Then, we can use it for updating

Weel = W — 12y
The detailed steps are presented in Algorithm 9.

Critical: Using ¢; instead of {; in computing Vg(w;; /) is for simplicity of
analysis, which decouple the dependence between u, and {; as u, depends on
{;. However, this will increase the number of random samples per-iteration.
For practical implementation, one may just use ¢ = {;.
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

4.2.1 Convergence Analysis

We make the following assumptions regarding the SCO problem (4.1).

Assumption 4.1. There exist L1, G| > 0 such that

(i)  fis Li-smooth, i.e., |[Vf(g) =Vf(g)ll2 < Lillg—-¢'ll2,Vg, g';
(ii) E[IVf(g:9l3] < G3,Vs.

Assumption 4.2. There exist G, > 0 such that E[||Vg(w; O)[13] < G2, ¥w.

Due to Jensen’s inequality, E[[|Vf(+€)|3] < G2, and E[[|Vg(w;)I3] < G2
indicate the G-Lipschitz condition of f and G»-Lipschitz condition of g, respec-
tively.

Assumption 4.3. There exist o, 0, 0 > 0 such that

(i) Blllg(w:0) - gWli3] < a3, ¥w;
(i) BlIVf(g:6) - Vf(®I3] <ol E[lIVe(w:{) = Vg(WI3] < o3, Vw. g.
(iii) F. = minyg F (W) > —oo.

Assumption 4.4. F is Lg-smooth, i.e., there exist L > 0 such that VF(-) is Lg-
Lipschitz continuous.

It is notable that the smoothness of F does not necessarily imply that g is smooth.
One example is that if g(w) = ||wl||; and f(g) = g, the overall function F(w) =
||W||§ is smooth but the inner function g is non-smooth.

Lemma 4.1 Under Assumptions 4.2 and 4.3(i), the {u; },>1 sequence (4.3) satisfies
that

G
E,, [”ut - g(Wt)”%] < (1 =) laoy - g(“’t—l)”% +')’t20'8 + 7_ [|w; — Wz—1||%~
s

(4.5)

where By, denotes the expectation over {; given all previous randomness.

@ Why it matters

The lemma admits an intuitive interpretation. The first term shows that |lu; —
g(w,)||§ is bounded by a contracting sequence. The second term is due to the
noise in g(w;; ;) and the third term is caused by the drifting from w;_; to w;,
. . E[|lw,—w,_1]13
both of which decay to zero under the conditions y?> — 0 and M =

2
(0] ("j/—;‘) — 0, respectively.

Proof. In the following proof, we abuse the notation E; to denote E,,. According to
the update formula w; = (1 — y,)u,_1 + v, g(W;; ¢;) we have
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E: [l — g(wo)ll3] =By [I1(1 = yo)w—1 +yeg(Wes &) — g(w)ll3]
=B, [I(1 = y) (o1 — g(Wo)) +v: (g (W3 &) — g(wo))ll5] -

Note that E; [(u;—1 — g(w;)) " (g(W;: ;) — g(W;))] = 0. Thus,
E [llw — g(wo)ll3] < (1 =) lw—1 — g(wo)l3 + y2og. (4.6)

This inequality is same as Lemma 3.7 when we consider u, as the SGD update
for (4.2).

Due to the Young’s inequality of inner product, we have ||ju;—; — g(w;) ||§ <(1+
@) [la;—1 = g(We-)II3 + (1 +1/@) llg(W,) = g(W;-1)|I3 for any @ > 0. Whence,

E [l — g(wo)l3] <(1=v)*(1+y) -1 — g(we—) I3
+(1=y)*(1L+ 1/y)G3 W, = Wi |5 + y2op.

The proof is completed by noticing (1—y;)*>(1+y;) < 1—y; and (1-y,)>(1+1/y,) <
1

" 5
Lemma 4.2 Under Assumptions 4.1, 4.2, 4.3 and 4.4, SCGD satisfies
272
n n:G3L
Eg.e.00 [F(Wir1)] <F(w;) - Et IVF(w)l3 + —=2—Ey, [Ilu, — g(wo)ll3]
2LrG32G2
Milideiy @.7)

2

Proof. In the following proof, we abuse the notation E, to denote E, ¢, ;7. Accord-
ing to Lr-smoothness of F, we have

L
F(Wiat) < F(We) + VEW) T (Wet = Wo) + = [Weat = Wil

n?Lr

7 [Ve(we &)V ;-

= F(w;) — 1, VF(w;) " Vg(w; OV f(asé) +

Then, we have
E, [F(Ws1)] <F (W) =, [IVF(w)) |13

+1| By [VF (W) T (Vg(Wes £V (8(We)) = Vg(wes £V f(u))]

2
n;LF , 2
+ [2 E, [||Vg(Wz;§,)Vf(ut;§z)||2] > 4.8)
where we use the fact

Ee [Ve(we Z)Vf(g(w))]| = VF(w,)
Eg.ce [VeWis V(i é0))] =By o [Ve(Wis )V f ()]
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

Due to the Cauchy-Schwarz inequality and the Young’s inequality of inner product,
we have

E,[VF(W:) " (Vg(Wi; £V f(g(We)) — Ve (Wi )V f(uy))]

2
IVF (w13 |Ve(we: 7)) G?
<E, k T2 LBy | 22 IV (g(w) = Vf(u) I3
2G2 2
IVF(w)|} G3L?
S =Byl — g (w3 (4.9)

For bounding the last term in (4.8), we proceed as follows:

B, (Vg we, i)V r 0 €0[5 | | < Baar [IV8 W 8D Btz 197 s ) 13]

< G3G3. (4.10)

We finish the proof by plugging the last two inequalities into (4.8). O

Critical: We comment on the modifications required in the analysis when
the same sample ¢; is used to compute Vg(w;; ;). In the original proof,
there are two places highlighted in boxes, where we explicitly rely on the
independence between u, and /. If instead we use the coupled estimator
Ve(ws; &)V f(us; &), then the first term must be modified and bounded as
follows:

B, [VE(W:) T (Ve(We )V (8(W): &) — V(Wi L)V f (a3 é1)) |

[VEWoII” 1Vg (W3 &) 112

<E l 2G2
2

GZ
+E | VS (g(w)ién) = V(i é)P |

To recover the same bound as in (4.9), we must impose a stronger regularity
condition on f, namely,

Be [V (2:6) - V(& OI7] < Lille-¢'ll5.

For the second boxed term, the corresponding expression becomes
E, [|| Veg(w:; &)V f(ug; &) ||2] , which in turn requires assuming that this quan-
tity is uniformly bounded by a constant.

Combining Lemma 4.1 and Lemma 4.2, we can prove the following theorem of
convergence for SCGD for a non-convex function.

Theorem 4.1 Suppose Assumptions 4.1, 4.2, 4.3 and 4.4 hold. After T iterations of
SCGD updates with parameters 11, = 75, v+ = 755, we have
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_ 200 L3G3GSm? . LiGlogm . LrG2Gin
= T %Tz/s T2/5 T35

T
1 2
E ;Zl IVF (w3

where Cy = F(w;) — F. +LC20° oI =1/, v, = y1 /1283, then the conver-

gence rate becomes O (log T/TZ/S).

Proof. Adding ‘ G} '7: [lla; — g(w,)13] on (4.7), we have
222
1Y2

2

E, [F(Wi1)] + Z—E [, - g(w)l3]

22 22
" nL2G M LrG2G2
< F(w,) - EIIIVF(Wz)H% + (1+y) ——2E, lu, — g(w,) |3 + ZT

Applying Lemma 4.1 to bound the right hand side, we have

LiG3n
1 t
Er [F(Wer)] + =2 228 [[lu - g(wo)l13]
Vi
LG}
n n
SF(W:)——’IIVF(W1)|I§+(1 — (1 +y) =527 lu = g(wi-pl3
t
(1+y,)L2c;2G2n, 5 LiG305 niLrGiG3
272 Iwe = wetll5 +yem: (1 + 1) 5>t )
2G2 204
sl G Mt
< Fw)+ =52 T sy = g (eIl + =5 [we = w3
Vi t
2 232
M LrG3G
+y L3 Ghog + =22 = T E w13

. . L?G?
We define the potential function Y, = F(w;) + ITZ% |-y — g(w,_1)||§. By the
setting, we have 2L ”—;, then

Yeel T
232 2
G3 1yt G3
Yoot = F(Weat) + =52 58 = (W0l < Fwee) + =52 fluy = gl
Yi+1
Then,
24 2 2032
L1G2 tLFG1G2

Nt
E [Yi] €Y + lw; — w,_ 1||2 + v Ly G%O'g

2 2

n
= S IV

Telescoping the above over ¢+ = 1 to T and use the tower property of conditional
expectation.
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T
<2B[Y) - Yral +2L3G3 ) v} G1G3
t=1
T 22 T
LrG3G2
+ L%G%Ug Z Vel + — r]?.
t=1 t=1

T
B> n IVF(w)I3

t=1

where we use the fact E[|lw, — w,—1|3] = E[n?_IVg(W:: )V (a3 é)5] <
n?_ ,G3G3. Let wo = wy and ug = g(Wo; £1). Then, we have

L%C% 11 2
E[Y) = Yrul <E|[F(wy)+ 7|Illo—g(Wo)||2 - F.
12
G20
< F(w)) - F, + ¢m
2

L Gz‘To '71

We define Cy = F(wy) — F. + /=221 Then we have

2Cy P v,

2~6~2
+ L1G,G] T
t177 =11
22
G2 22[ 17177t+LFG G Zl ]nt

200 =71 :
=11 2 t 1 e

E[IIVF(wo)3] <

+ L2

Plugging the constant values of ; = 5=z and y; = 7—/ we have

T3/

20y LiGIGST  LiGiogyvi  LrGiGim

2
E[IVEGolL] < g T T2/ 27775

If g, = 0(1/87),y, = 0(1/1*1), '7”‘ ; is satisfied. Besides, we have Y.\, 1, =

0(T2/5)7 ZtT:1 77? =0(1), thl ')’t’]t = 0(10g T), Zt:l Y m”t—l = O(logT). Then,
we have E [|[VF(w.)|13] < O(1/T%5). .

4.2.2 An Improved Complexity with Smooth Inner Function

If we replace the smoothness assumption of F' by the smoothness of g, we can es-
tablish a better complexity of SCGD.

Assumption 4.5. g is Ly-smooth, i.e., there exist L, > 0 such that Vg(-) is L,-
Lipschitz continuous.

Assumptions 4.1 and 4.5 ensures that F' is smooth.

Lemma 4.3 Under Assumptions 4.1 and 4.5, we have F is Lg-smooth, where Ly =
GiL> +G3Ly.
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Proof. Since VF(w) = Vg(w)V f(g(w)), we have

IVg(w)Vf(g(wi)) — Vg(w2)Vf(g(w2))ll2
=[|[Vg(w)Vf(g(w1)) — Vg(w1)Vf(g(w2))

+Vg(w)Vf(g(wa)) — Vg(w2)Vf(g(w2))ll2
< G3Li||wi — wall2 + G La||wy — wala.

O
Lemma 4.4 Letz, = Vg(w; )V f(us; &), My =E;[2;]. Then
Ei[llz - MiI3] < Glo3 + G3of,
E:[IIWeet = wel3] < 77 G163,
B, (1w = Will3] < nf IMUII3 + 777 (GRos + Go).
where E; denotes Ey g conditioned on w;, u;.
Proof. First, we have
’ 2
Eelllze = Mil3] = B [||[Ve(Wes E)V f (&) = Vg (W) V£ (uy)||;]
=E[IIVg(w)Vf(ur) - Vg(w)Vf(us;ér)
, 2
+ Vg(w)Vf(u:; &) - Vg(wt§§t)vf(ut§§t)||2]
< G%o-l2 + G%O‘%.
Next, due to Assumption 4.1, 4.2 we have
Ee[lIWet = Well3] = B 07 IV8 (Wes )V f (i €3] < 17 G163,
Second, we have
E[llwes — Wt”%] =E, [77;2||Zt -M;+ Mz”%] =E, [7712||Zt - Mt”%] + 7712||Mt”%
Plugging the first result into the above, we finish the proof. O

Next, we develop two lemmas similar to Lemma 4.1 and Lemma 4.2.

Lemma 4.5 Under Assumptions 4.2, 4.3 and 4.5, ifnf71 < L;/tGZ then the {u;};>1
271

sequence (4.3) satisfies that

2 2y, 4G5 2
E [l = g(woll3] < (1= y)E[llw—1 - g(w,—p)lI3] + —, BlIMl]
t
3n?_,G2
+yiod + %(G%ag +Glod). (4.11)

Proof. Similar to the proof of Lemma 4.1, we have
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

By [llur — g(wo)ll3] < (1=9)* w1 = g(w)ll3 + v/ 05 (4.12)
Next, we will handle ||ju,-; — g(w;) ||§ differently by using the smoothness of g.

lur—1 = g(Woll3 = -1 — g(wi—1) + g(wi—1) — g(wo)lI3
= w1 = g(wem )13 + llg(wimt) — g(Wo)lI3
+ (o1 — g(Wim1) T (g(Wi1) — g(Wy))
< lugoy = g(Wem)II3 + G5 Iwe—y — will3
+2(-1 — g(Wim1)) T (g(Wi—1) — g(Wy)).

Taking expectation on both sides and applying Lemma 4.4, we have

E[llu;-1 = g(Wn)l3] < Elllw—1 = g(we-)I3] +1;_ G3E[IM;-1113]
+n77,G3(G307 +G103) + E[2(w—1 = g(W;-1)) T (g(Wi-1) — g(W))].
Instead of using the Young’s inequality of inner product to bound the last term, we

proceed as follows:
E[(u-1 = g(We-1)) " (8(Wi-1) — g(W1))]
= E[(u;-1 = g(Wr-1)) "Vg(Wr—1) (Wit = Wy)]

A
+E[(u—1 — g(w—1) T (g(W—1) — g(W,) + Vg(w,—1) T (W, — w,—1))].

B

To bound A, we have

A=E[(u-1 — g(Wi=1)) "Vg(W—1) -1 Mi_1]

2
ni_
< Blonl| (-1 = gw-1) I+ 5= Vg (wi) "M 3]
t
2 2
n:_.G
< Blagll(woy = g(wi)TIP + == M, 3]

da,
To bound B, we have
B <E[llu—1 — g(wi—)ll2llg(We—1) — g(We) + Ve (we1) T (W, — we_1)]l2]

L,
< E[flu,-1 - g(Wz—1)||27||Wz - w3

2 2
< éﬁ[nut_l = g(WeD) I lIwe = Wit 131+ —2ELlIwe = we- 3],

where the first inequality uses the smoothness of g and the last inequality uses the
Young’s inequality. To proceed, we utilize the first bound of E,_[||w; — w,_; ||§]
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in lemma 4.4 to bound the first term, and utilize its second bound in lemma 4.4 to

bound the second E[||w, — w,_, ||%]. Thus, we have

n L2G2 n2_ G2
B <=2 B llu — g(we) 3] + 2
2 2

+ M-
4

2 (G%O'Q2 + G%O’lz ].
Combing the bounds for A and B, we have

E[(u;—1 — g(w;—1)) " (g(Wi—1) — g(wy))]

n? L3G3 n? G5 n? G
=(a,+% Bl = g(we-n) 3] + | =7 2+ =
t
GZ
L 122 (G} + GRod).
As a result,
2 22
B ;1 L5Gy 2
[lu, - = g(wo)ll3] < 1+2at+T lu—1 = g(we) I3
2 2
2 2 77—1G2 i, 1G
+(’7:—1G2+ tz% ’2 E[IM;-1113]
2 2
n:_.G
+ (ng_IGg o Tt 2)(0@2 +G2).
nt 1L G?

Welete, = % <1,

can finish the proof.

E[IM-1113]

2
) (M- 5]

> < 7‘ . Combining the above inequality with (4.12), we

O

Lemma 4.6 Under Assumptions 4.1, 4.2, 4.3 and 4.5, if n;Ly < 1/4 then SCGD

satisfies

BIF(wien)] <E|F(wp) = TIVF(w) 13 = ZIMIB

272
+ 1:G5 L

5 Elllg(w) - |31 +27Lr (G307 +

Proof. According to Lemma 4.3 (Lr-smoothness of F'), we have

Lr
F(We1) < F(We) + VF (W) T (Wit — We) + — ||Wt+1 - Wz”z

=F(w;) - n,VF(W,)TVg(w,, OV f(uér) +

Taking expectation on both sides, we have
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

T ntzLF 2
E[F(Wi1)] <E[F(wo)] - nE[VF(w,) M] + > Elllz, — M; + M:||5]
=B[F(w,)] - mE[VF(w)" M) + 17 LrE[llz, = M, 3] + 07 LFE[IM]]3]

Using —2a"b = [la — b — [|a]|3 — ||b]|2, we have

BIF(wi)] < E[F(w) = ZIVF(w) I3 = 2 IM, 3]

+ DE[IVF (W) = Mill3] +n?LrE[llz = M 1G]+ m LEBLIM ).
Next, we bound E[||[VF(w,) — M,|13].

E[IVF(w;) = M.|13] = E[|IVg(W,)Vf(g(W)) — Vg(w)V.f(u,) 3]
< G5LIE[|lg(w,) — u|13].

Combining the above inequalities, we have
n n
E[F(Wi1)] < E[F (W) - éIIVF(Wz)Ilg - éIIMzH%]

nGiLy
2

Elllg(W:) = w 3] + 17 Lr (G307 + Gio3) +n; LEE[I M [13].

If n,Lr < 1/4, we have —%HM,H% +n’Lp ||M,||§ < %IlM;llz, which concludes
the proof. O

Finally, we establish the following convergence of SCGD under the smoothness
condition of g.

Theorem 4.2 Suppose Assumptions 4.1, 4.5 and 4.3 hold. Run SCGD with T itera-

o, = : v N1
AR where 1 < min( Vioin a6 T ). Then

tions with parameters n; =

we have

Cy +L1yfo-g m(Lp + L1G3)(G30? + Gloj

E + ,
771‘/7 771\/7 \/T

<0

T

1

7 2, IVF W3
t=1

where Cy = F(wy) — F. + \L—}6IIU1 —g(wll3-

¢ Why it matters

From Theorem 4.2, we can derive that in order to find an e-level stationary so-

lution of a smooth non-convex compositional function (whose gradient norm is
. L} .

less than €), SCGD needs a sample complexity of O(_;). The order in terms of

€ is the same order as that of SGD for solving non-convex ERM.

Proof. By Lemma 4.5, and Lemma 4.6, we have
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BIF(wien)] < E[F(w) = ZIVE(w) I3 = 2 1M, 1]

nG5L3
+ =Bl - g(wo)ll3] + 07 Lr (G + Gloy),
4n’G?
E [llurs1 — g(Wer) 3] < (1= ypa1) luy — g(wo) |13 + — IZE[thu%]
+
3 G
+yt2+10§+ 'h (G2 2+G2 ).

Multiplying the second inequality by G2L 1M:/(2y1+1) and adding it to the first in-
equality, we have

T]thLz
B|F (W) + =5 2 e = gwen) I | < B Fw) = TIVEw)IB = 7 IM5
+
n:G2L? n.G3L? 49} G3
2LE[|lu; - g(w)l3] + ——2E[IM 3]
2141 2Y41 Vil
n,G2L? n.G3L? 307G
+n°L G2 +G20-2+ 27,2 52y 2 G2 2+ Gio?
n: Lr( 10%) 2yt Yi+1%0 2in1 3 ( ) 207
. 77,G§L|2 47]t2G ,7 Veil . . 2 .
Since B2 < I duetoyy, < \/géng,the term involving || M, |5 will be less
than zero. If y't]—’ < '7; L we obtain
UtG2L2
E|(F (W) + 2 loer — g(Wt+1)||2
l+
Nt 1G2L n UtG%L%
E|F(w,) + ———E[|lu, —g(Wz)H% — ZE[IVF(w)I3] + V0o
2y, 2 2y

T] 2L2 377

2 Yi+1

+7Lp (G0t + Gio?) +

5+ G20'1 ).

Applying n; < \F to the R.H.S, we have
n,G3L?

t+1

Ne— 1G2L2
< BIF(wo) + =2 lu, - g(w))I3
Yt

E|F (W) +

o1 — g(Wz+1)||§ ]

- _E[”VF(wt)” ]

7,.,_10'0 +1; (LF+L1G2)(G2 +G%O'22).

2\/_

272
Define Y, = F(w,) + “5 22 B[ |u, - g(w,)[[3. Then we have 37 (Y, ~ Y,.1) <
Cy =Y, -F,and
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T T 2 2
2C L oz
E Z Tm ||VF(w,)||§ < X o, pIvil 1T7’z+1 0
=1 Zi=i 1t =11t ‘/§Zz=1 i
5L 23 (L + LiG)(GRot + Glad)
+ .

T
=1 n:

Plugging the values of 7, y; will finish the proof. O

4.2.3 A Straightforward Approach with a Large Batch Size

Before ending this section, we compare the complexity of SCGD with a straightfor-
ward approach that uses a large batch size for estimating the gradient. In particular,
we update the model parameter by the following:

B B
_ 1 _ 1 , _
U=z JZ:; g(WesLje)s Ve = 3 ; Ve(Wis & IV (05 &) (4.14)
Wil = Wy —11: Vs, (4.15)
Then under Assumptions 4.1, 4.2, we have

E[|[¥; = VF(w.)l13]

B

= EH'% ; Ve(Wi: {{ IV f (03 &i) = V(W) VS ()
2
i

1 B
E[HE ; V(Wi &l VS (Ui €i) = V(W) V f (W)

+Ve(w)Vf (@) - VF(w,)

Since

J

2 2 2 2
G20'1 +Glo'2
= Ta

2
E[”Vg(wt)vf (u;) — VF(w;)

2722
Gy Loy
B b

< B[G3Lillu; - g(w)li5] <

2

Lo} ool

then, E[||¥, —VF(w,)II%] <0 (% +—5 ) Hence, if Assumption 4.4 holds and

by setting B = O(max(L%O'g/ez, (a'l2 +O'22)/62)), n=0(1/Lg)andT = O(Lp/€),
Lemma 4.9 will indicate that the naive approach can find an e-stationary solution.
Overall, it yields a sample complexity of
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Algorithm 10 SCMA

1: Input: learning rate schedules {7,
2: Let wi = wg — 170V
3:fort=1,...,Tdo

: Sample ¢, ¢/ and &

T

T . ; :
¢=1» {¥t},_,; starting points wo, U, vo

4
5 Compute the inner function value estimator u, = (1 — yy)u,—1 + v, g (W5 &)
6: Compute the vanilla gradient estimator z, = Vg(w;; )V f(u;; &)

7: Update the MA gradient estimator v, = (1 — B;)V,_| + B:Z;

8: Update the model w by w; 1 = w; — 17, v,

9: end for

BT =0

)

et et

LpL?0? Lp(c?+ 0?2
max( 170 1 2 ) )

Critical: Compared with Theorem 4.1, the sample complexity of this naive
approach is improved by an order of magnitude. In comparison to Theo-
rem 4.2, while the order of € remains identical, the dependence on the Lip-
schitz constant L; is reduced. Specifically, SCGD exhibits a dependence of
O(L‘l‘), whereas the large mini-batch approach achieves O(Lf), assuming
Lr=0(Ly).

4.3 Stochastic Compositional Momentum Metholds

In this section, we present a method that matches the sample complexity of the large
mini-batch approach without using large mini-batches under the smoothness condi-
tions of f and F. The idea is to design a gradient estimator such that its error can be
reduced gradually. It turns out this technique, related to the momentum metholds for
standard stochastic optimization, is more widely applicable to other problems dis-
cussed later in this chapter. Furthermore, we introduce advanced metholds to further
improve the complexity to O(1/€?) under stronger conditions.

It is worth noting that the results in this section apply to the standard stochastic
optimization problem (3.1) under the smoothness assumption of g(w) by setting
fi(g) = g and L| = 0 in the complexity results and removing the u update in the
algorithm.

4.3.1 Moving-Average Gradient Estimator

The first method is to use the following moving-average gradient estimator:
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4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

Ve = (1= B)Vio1 + B Vg (Wi {)V f (a3 &), (4.16)
where 0 < B; < 1. With v;, the model parameter is updated by:
Weel = Wr =1t Vz. 4.17)

We present the full steps in Algorithm 10 and refer to it as SCMA.

To understand this method, we can view v, as a better estimator of the gradient,
with its estimation error gradually decreasing over iterations—a property we will
prove shortly. This yields an enhanced stability of momentum-based metholds ob-
served in practice.

Connection with Stochastic Momentum Metholds

This method is analogous to applying the stochastic momentum method to
the ERM problem, using the term Vg(w;;/)V f(u;;&,) as a surrogate for
the true stochastic gradient. This connection is revealed by reformulating the
update into a canonical momentum form:

Wil = W, =, Veg(We )V f(ug &) + Br(we — wi_1), (4.18)

where the effective step size and momentum parameters are n; = 7,3, and
B =n:(1—;)/n:-1, respectively. The term 3, (W, —w,_1) is the momentum
term.

In the special case where f is the identity function, the update is identical to
the classical stochastic momentum method (also known as stochastic heavy-
ball method), renowned for its accelerated performance on quadratic func-
tions relative to plain gradient descent. Hence, the convergence analysis pre-
sented below also applies to the stochastic momentum method for ERM by
setting L1 = 0.

Convergence Analysis

First, we prove a generic lemma that establishes the error recursion of v;.

Lemma 4.7 Let v, = (1 - B¢)Vi_1 + B:2s, where B, [z,] = M,. If B[]z, —Mz||§] <
o2, then we have

E [lve = VE(W)I3] < (1= B0) Ive—1 = VE(W_1)I5 + Bio? (4.19)
2

ﬁF Wit = Well3 + 48, 1M, — VE(w)l3 .
t

Proof. Due to the update formula v, = (1 — 3,)v,_| + B;Z;, we have

+
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E, [||Vt - VF(WZ)”%]
=E, [”(1 = B)Vi-1 + Bz — VF(Wt)”%]

=B |l (1 =B)Vic1 = VF(W,) + B M + B (2, = M,) ||§ .

ar b,
Note that E, [a/b,] = 0. Besides, we have Et[||bt||§] < B?0%. Due to Young’s
inequality, we have [la + b||3 < (1 +a)l|all3 + (1 + 1/a)||b||3 for any & > 0. Hence,
llaell3 = 11(1 = B) (Veet = VF(W;—1)) + (1 = Be) (VF (W) = VF (W)
+ 6 (M - VF(Wt))”%
< (1=B)*(A+B)I(vie1 = VF(wi-1)) 13
1
+(1+ F)ll(l = B)(VF(Wi_1) = VF(W,)) + B (M, — VF(wy))II3
t

201+ B)(1 - B)?
B

< =B)Iviz1 = VF(Wt—l)”% +

21+ B,)B?

+ —_—
B

2

2 2LF 2 2
<(1=pB)llve-1 = VF(Wt—l)”z + _,3 ~ |lwey - Wt”z +40; |IM; — VF(Wt)”z-
t

IVF (1) = VE(W)lI3

IM, = VF(w,)|2

Combining the above results, we finish the proof. O

With the above lemma, we are able to establish the error recursion of v, of SCMA.

Lemma 4.8 Under Assumptions 4.1, 4.2, 4.3, and 4.4, for t > 1 SCMA satisfies that

Ee, ¢ [V = VE(W)I3] < (1= B0) Vi1 = V(w113 (4.20)
2
+ ﬁf Wit = W,lI3 +4G3L3B; llu, — g(w)ll3 + B2,

where 0% = G%O'z2 + G%(le.

@ Why it matters

The above lemma establishes the recursion of the error of stochastic gradient
estimator v;. It is the key to show that the average of the estimator error of v,
will converge to zero.

Proof. We denote by E,[-] = Eg, /[]. Letz, = Vg(w;; )V f(us; &) and M, =
E;[z;] = Vg(w,)Vf(u;). Lemma 4.4 proves that

E:lllze - M l13] < G507 + Gio3, 4.21)
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4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

and
IM; = VE(WII3 = Vg (W) V f () = Vg(w) Y (g(w)ll3
< G3Li|lu; — g(wi)ll3.
Plugging these two results into Lemma 4.7, we finish the proof. O

Critical: If we use the same random sample ; to compute

2, = Vg(Wi; &)V f(ug; &),

then M; = Eg, (2] is not equal to Vg(w;)V f(u,). However, we just need
to assume that E,, £ [||z; —M,||§] is bounded and ||Vg(w,; &) ||> < G. Then

IM; = VE(W)II3 = By, Ve (Wi £V f () = B, Vg (Wi £)Vf (g(Wo)) I3
< B IVe(Wi: £V f () = Vg (Wi £V f (g(wa))I3
< B¢ [IIVe(We: 203NV f (up) = V£ (g(wi))I3]
< B, [G5LT llu; — g(wo)ll3] -

The following analysis will proceed in the same manner.

To enjoy the above recursion of the gradient estimator’s error, we state the fol-
lowing lemma, which is a variant of the standard descent lemma of gradient descent.

Lemma 4.9 For the update Wiy = W, — Ve, t 20, if n, < 1/(2LFE), we have

n n 1
F(wWi1) < F(wy) + Et IVE(w:) = vell5 - Et IVE(wo)ll3 - o Wee1 — Wl
t
(4.22)

¢ Why it matters

This lemma ensures that if the stochastic gradient error satis-
fies E[+ X/, IIVF(w,)-v]3] — 0, then the convergence of
E[+ 27, IVF(w,)|3] to zero is guaranteed.

Proof. Due to the smoothness of F, we have
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L
F(Wi1) < F(w;) + VF(Wt)T(WtH - W)+ TF (W1 — Wt”%

Lr
= F(W) + (VF(W) =) (We1 — Wy) + V; T (Wil — W) + — > [[Wee1 — Wt”z

=F(w;) —n:(VF(W;) = Vi) v, — (nl - LTF) Wi —well3
=F(w)+n I(VF(w;) - Vt)”% -1 (VF(w;) - vt)TVF(w,)

1 Lp
- (E - ?) W1 _Wt”%'

Since (VF(w,) = Vi) VF(w,) = £ (IVF(w,) = vil13+ [VF (W)l = v, 113), then
we have

1 Lf
F(We1) < F(we) +1, [[VF(w,) - Vt”% - (77_ - 7) IWesr — Wt”%

t

n
= L (I9F (w0 =il + IV F (w3 = Ivil13)
n 2 1 Lp 2
= F(w) + 5 IVE) = vl = S IV = |5 = 5| Iwees = well.
t

To prove the final convergence of SCMA, we present a useful lemma.

Lemma 4.10 Ifn, < 1/L, assume that there exist non-negative sequences A;, By, Tz, Ay, 67,1 >
0 satisfying:

(#)Ars1 < Ap +1:0r =By — i1y

Con?
(A1 < (1= Bry1)Ar + C1 1416141 + B lt I, +,3,2+10'27
t+

Csn; 2 n
(©)8r+1 < (1 = 41)0r + y_rt Y0 -

t+1

Cr, 7 7 7
Lo, = At St [ e < B, < Bty < min( i, )
and Y; > A, then we have

=5 1 (1B, + 1 r) < Cy . ZZ:()I (Tltﬂt+10'2 + 2C17717’t+10"2)
, MeDr + SMelt ,
=0 ZZ: L 2 ZT—() un tTol Nt
whereCy:Yg—A*sAo—A*+ FAO-'- 8&50
2 .
Ifg= 302, W, n= mm(L, Vics W)’ then in order to guarantee
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~

,]1

1
f(Bt + EFI) < 62.

Il
(=}

t

the iteration complexity is the in the order of

CyL Cya'z\/c_‘z CYvC1C3C1(T'2
T = O [max .

e’ e’ et

Critical: If (), (#), (¢) hold in expectation, then the concluding inequalities
also hold in expectation.

Proof. The proof is constructive. The idea is to construct a telescoping series of
A + a,As + b6, with some appropriate sequences of a;, b;. First, we have

Al + Are1 Ayt + bi16041 < Ap + e A — e By — 12
2

Con; 2 2
+ a1 (1 = Bra1)Ar + a1 C1Brs1 041 + Ay ﬁ_rt +a1B;,0
t+1

Can?

t+1

2 2
Fl +bt+1’yt+10' .

+ b1 (1 = Yi41)8; + bry

Let ary1 = n¢/Brs1 < ni-1/Br and byy1 = Ciny (1 + y141) /¥e41, We have

n L+ 7y
Apgr + _tAt+1 +(C1m4 AL Cini)0i41 < Ar — 1 By — i1y
t+1 t+1
3
n Con
+ {7+ d (1=Bm1) | A + 5 trt""]tﬂmlo'z
IBt+1 41
1+ Y41 C3Cim; (1+y141)
+ CIUI—H(I — Vis1)0; + tfﬁr‘t +Cin:(1 +7’t+1)7’t+10"2-
Yi+1 Vil
Thus,
C C
A1 + It Apyr + hald Ore1 S Ar+ r A + Lt Oy
t+1 Y+l t+1 Vil
Con} GO (1 +y441)
1B — |m — 21— : s I,

2
B Vin

+ Utﬁt+10'2 +Cin (1 + yt+1)yt+10—,2'

Since 1, /Br+1 < M:-1/Br and 1 /Y141 < 11-1/7yr and ;41 < 1, we have
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C _ Cins_
A + LAt+1 + 1_771(5”1 <A+ il lAt + Ul 151‘
t+1 Ye+1 t Vi
G} 2C3Cim}
—n:B: — |1 - N L
ﬂt+l 71+l

+ Utﬁt+10'2 + 2C177t7t+10'12-

Since Con}/B%., < m,/4 (because 5, < Br41/V4C2) and 2C3Cmf/yt2+1 < n /4

t+1

(because 17; < y;+1/V8C1C3), we have

(o _ Cins—
Ay + Nt Ay + mt6;+1 <A+ Nt lAt + 1Mr-1
t+1 Ye+1 t Ve

0

1
-n:B; — Entrt + 77t,31+10'2 + 2C177t7t+10',2-
Define Y, = Ajqp + L%A’“ + %6,“, we have

1
B, + EmFt <Y =Y + 77t,8t+10'2 + 2C177t7t+10-,2'

Hence

~

1
(m:B; + Entrt) <Yp- A+ (let,3z+10'2 + 2C177tyt+10-/2) .

t

~

-1

I
(=}
I
(=}

t

Next, let us consider ; =1, 8; = B,y: = y. Then we have

~

_]1

1 C
f(B’ + EF,) < TY + (B(Tz + 2C1yo"2) .

Il
(=}

t

In order to ensure the RHS is less than €2, it suffices to have
2 2
€ € Cy
B —

= y=—S_ 7=-X
302 7 6C07? 3eZn

Since

(1 B Y )
=min|—, N )
7 (L V4C, V8CC3

thus the order of T becomes

a CyL CyVC; CyVCC3
T = O |max s s
€2 €2 ve?
( {Cpr Cyo\GC, ny/C1C3C10"2})
= 0 |max , R s
€? et et
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where
Ui Cin 1 VC
CYZA()—A*+—A0+—50 SA()—A*+—A0+—50.
B Y 2VC, V8C;

Finally, let us prove the convergence of SCMA.
Theorem 4.3 Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. For the SCMA algo-

: p_ € _ € — i 1 B Y
rithm, set the parameters as follows: B = 375,y = o andn = min e Vie e o)

where 0% = G%Ul2 + G%O’ZZ, C = 4G§L%, C, = 4L12,, C; = 2G%. Then, the following

T-1

EDY {Z Ivell3 + ||VF(wt>||2H <€

t=0

holds, with an iteration complexity of

{CyLF Cyo'zLF CYL?U'(%})
ax > )
€

T =0 |m )
et et

where Cy :=2 (F(wWo) = F.) + 51— [IVF (o) = voll3 + 5 [lup — g(wo)l3.

@ Why it matters

Insights 1: Theorem 4.3 indicates that SCMA enjoys the same complexity of
O(1/€*) for finding an e-stationary solution as SGD for ERM. In addition,
the averaged estimation error of the moving-average gradient estimator v, i.e.,
E[+ X/ IV — VF(w,)|[3], converges to zero as T — co.

Insights 2: We can apply the above result to the Momentum method (6.2) for
solving the standard stochastic optimization miny, F(w) := E,[g(w; ()] by set-
ting L; = 0. The complexity of the Momentum method is

T =0 |m:

(F(wo) — F)Lg (F(wo) — F)o* L |IVF(wo) = voll3 o
R 2 ’ ! ) ! ’

which is no worse than that of SGD in Theorem 3.3. The key advantage of the
Momentum method over SGD is that it ensures the averaged estimation error of
the moving-average gradient estimator v, converge to zero.

The convergence bound also suggests that it is better to initialize v( in a way such
that |VF (wg) — v0||§ is small, e.g., using the mini-batch gradient at wy instead
of initializing it to zero.

Proof. The three inequalities in Lemma 4.8, 4.9 and 4.1 that we have proved so far
are
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()F (Wes1) < F(we) + T IVE (W) = vell

n n
S IVF (w3 - Zt Ivell3.220

-3
WE [IIvi = VE(Wo) 2] < BL(L = A1) [Ivi-1 = VE(we-)II3]
[ 2L2 772
+E4GILIB: llur =g (W) ll3 + — = Vil + B
() [llur = g(Woll3] < BL(1 =0 1 = g (we-p) 3]

Define A, = 2(F(w;)
IVF(w) - Vt||%, o = [luy

t

Tt < 7]t—1, Mt < Ne-1
B+ Br  Yinl Yt

Then we have

T-

=0 z: t

2
+E y—’ Ive1ll3 + v og

—g(w)l3,and Y, =

- F)and B, = |[VF(W)IZ Tv = [Ivl3/2, A,

A+ B, + DL,
Then the three inequalities satisfy that in Lemma 4.10 with C, = 4G3L3,C,
4L%,C3=2G3,0% = Go2 +Glo?, 0% =

0-0 Then n;, B, v satisfy

777t—m (

Br+1 Y+l
V4Cy \/8C1C

ST nIVFn)IG + ) tuz)l

Cr Yt (1o +2C]7]t7t+10—0)

<
2i=1T

T-1

=0 Tt

Since the setting of n, y, B satisfy that in Lemma 4.10, the order of T becomes

where

T=0

2 et

€

=0

s

{CyLF Cyo2\GC, CYVC1C3C10'§})
max -
€

€2 et

1
Cy =2(F(wp) - F) + NG

bl

lIvo = VF(wo)ll3 +

{CyLF Cyo’Ly CyxLio, })
max 4 5
€

1
llao — g (wo)ll3

VCi
V3G

1 L
= 2(F(wo) = F.) + 7= lIvo = VF(wo) I3 + =~ llug — g(Wo)l5 -
4LF 2
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4.3.2 STORM Estimators

We can further reduce the error of the gradient estimator by using advanced variance
reduction techniques under stronger assumptions. We make the following assump-
tions.

Assumption 4.6. There exists L1, G > 0 such that

(i) ElIVf(g:6) - Vf(g:Ol5] < L3llg-g'l12. Ve, 8
(ii) E[IVf(g:)I3] < G2 Vs.

Assumption 4.7. There exists Ly, G, > 0 such that

(i) E[IVg(w;{) - Vg(W: I3 < L3[Iw—w|13,Vw, w';
(ii) E[IVg(w:)I3] < G2, vw.

Due to Jensen’s inequality, Assumption (4.6)(i) implies the Lipschitz continu-
ity assumption of V f in Assumption (4.1)(i). Similarly, Assumption (4.7)(i) implies
that in Assumption 4.2(i), respectively. Hence, Assumption (4.6)(i) and Assump-
tion (4.7)(i) are stronger, which are referred to as mean-square smoothness condition
of f and g.

The STORM estimator

Let us first discuss a generic STORM estimator, an improved variant of the
moving average estimator. Without loss of generality, we consider estimat-
. . T . .

ing a sequence of mappings {M(w;)},_, through their stochastic values at
each iteration { M (w;; g“,)}tT:I, where By, [M(w;; ()] = M(w;) € RY . We
assume the mapping M satisfies:

Ee [IM(W;0) = MW 0)II5] < GPllw — W' |[3, Yw, W'
The STORM estimator is give by a sequence of Uy, . .., Ur, where

U = (1 =y) U1 +y MW &) + (1 =) (M(Wes &) = M(Wi_134r)),
4.23)

and y; € (0,1).

It augments the moving-average estimator by adding an extra term (1 —
ve) (M(wy; &) — M(we_1; ), which can be viewed as an error correction
term.

Applying the STORM estimator to estimating the sequence of {g(w;)},;>1, we
have the following sequence:

u = (1=y)u_1 +yg(We; &) + (1 = y)(g(Wes &) —g(Wio134)). (4.24)

Given u,, we can compute a moving-average gradient estimator (4.16) similar to
SCMA. However, this will not yield an improved rate compared with SCMA. To
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Algorithm 11 SCST
T

1: Input: learning rate schedules {7, },_,, {¥: thl; starting points W, U, Vo
2: Let w; = wg — 10Vo

3:forr=1,...,Tdo

4: Sample ¢, ¢/ and &

5: Update the inner function value estimator

u = (1= y)u1 +ye8(Wes &) + (1= y:) (8(We3 &) — 8(Wem1541))

6 Compute the vanilla gradient estimator z, = Vg(w;; /) V f(u;; &)

7 Compute Z; 1 = Vg (W15 )V f(w_15 &)

8: Update the STORM gradient estimator v; = (1 — B¢)Vs—1 + Br2: + (1 — B¢) (2: — Zs—1)
9: Update the model by W, = W, — 17, V,

0:

10: end for

reduce the estimator error of the gradient, we apply another STORM estimator to
estimate M, = Vg(w;)V f(u,). This is computed by the following sequence:

Ve = (1= B)vio1 + B: Vg (wy; Q’)Vf(ut;ft) (4.25)
+(1 _,Bt)(Vg(Wt§§;)Vf(ut§§t) - Vg(Wr—l;Q')Vf(uz-l;fz))-

With v;, we update the model parameters by
Wiel = We —11V;.

The full steps of this method is presented in Algorithm 11, which is referred to as
SCST.

Connection with Variance-reduced metholds for Non-convex optimiza-

tion

In the special case where f is the identity function, the update is identical
to the classical variance-reduced method (also known as STROM) for non-
convex optimization miny E/[g(w; {)], i.e.,

Ve = (1= Bo)Vi1 + B Veg(Wes ) + (1 = B) (Ve (Wi &) — Vg (We-154))),
Wil = We =11 V:.
(4.26)
It is renowned for its improved complexity of O(1/e*) better than the com-
plexity O(1/€*) of SGD for finding an e-stationary solution.

Convergence Analysis

We first prove a general result of the STORM estimator that applies to both u, and
Vi.
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Lemma 4.11 Consider v, = (1 — 8;)v,—1 + B2, + (1 — B,)(z; — Z;-1), where B; €
(0, 1). Let E; denote the expectation over randomness associated with z,,Z; — condi-
tion on the randomness before t-the iteration. If E,[2,] = M, and E,[Z,—1] = M,_1.
IfE[llz, -~ M|13] < o2, then we have

B [Ive = MAB3] < (1= B0) IIVict = M-t ll3 + B [2l|z, — 71 |12] + 28202
Proof.

E; [”Vt - MZH%]

=E, [”(1 = B)Vie1 = Me + Brzg + (1 = Br) (2, - it—l)”%]
=E; [II(1 = Be) (Vi1 = Me—1) + (1 = Br) (2 — Z—1) — (M = Mi—1))
+ B (2 — Mz)”%] .
Note that
B [{(1 = Be) (Vi1 = Mi-1),
(1 =B)(2zs =2-1) = (M; = M;i-1)) + Bi (2, — M;))] = 0.
Then,
Er [I1ve = Mell3] < (1= B 1V = Mie-ill3
+ (1= B) (2t —Z 1) — My = Mi_1)) + B (2 — MI)”%
(o)
< (1=B)* llve = Mol
+2(1 = B B [ (2 = Z-1) = (My = M) 3] + 287, [z — M |13]
()
< (1= B2 IVemt = Micit I3 +2(1 = B)°Er[llze = 211131 + 2870,
where (o) uses the Young’s inequality, () uses the fact that E[|la — E[a]||%] <
E[Ilallg],andEt[Zz —Z1] = My - M. O
Let us first prove an error recursion of u, in the lemma below.

Lemma 4.12 Under Assumption (4.7)(ii), we have:

By, [lur = g(Woll3] < (1=y2) llu—1 = g(We)ll5 +2v7 0 +2G3lIwe = Wi |13

2 2 2 2 2 2 2
E{, [ |la; — uz—l”z] < 2y; o +4y; llas—y — g(“’t—l)”z + 6G2||W, - Wt—1||2~

¢ Why it matters

Compared to the error recursion of u, to that in Lemma 4.1, the improvement

2G3||w,

2
. —W;_
comes from the last term reducing from R — =il to ZG%HW, — Wi ||%.
t
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Proof. The first part follows directly from Lemma 4.11 by noting the mean-Lipschitz
continuity of g(w; {). To prove the second part, we proceed as follows:
E, [”“t - ut—l”%]
=E, [”)’t (g(Wrs ) —u—1) + (1 —y:) (g(Wes 4y) = g(“’z—ﬁ{z))”%]
<E; [207 I1(g(Wes &) = w15 +2(1 = 70)* g (Wi &) = g(We-15 )15
<E: [207 I(g(Wi: &) =D 13] +2(1 = y0)*G3lIwe = wii 3.

Next, we bound the first term on the RHS as

E, [2%2 I(g(Ws; &r) — ut_1)||%] =E; [2712 I(g(Wes i) — g(we) + g(Wy) — ut_1)||%]

2 2 2 2
< 2y;04 + 2y llg(we) — w5

< 29203 + 2y llg (W) — g(Wi_1) + g(Wim1) — w13

2 2 2 2 22 2
< 2yrop + 4y llg(wiot) —weql; + 4y, Gollwe — wi_itll3,

where the first inequality uses the fact E [g(w;; ;) — g(w,)] = 0. Combining the
above results, we finish the proof. O

Next, we build an error recursion of ||v; — M, |I§.

Lemma 4.13 Ler 0> = G%a’l2 + G%(rzz. Under Assumptions (4.6) and Assump-
tion (4.7), (4.25) satisfies that

Ege [V = Mill3] < (1= Bo) Vet = M3 (4.27)
+16G5 L1y lus—1 = g(We-1)ll5 + (24G3LT +4GTL3)IWe — Wi I3
+ 2Bt20'2 + 8G§L%y,20'02.
Proof. First, (4.21) gives E, [|lz, — M,||3] < o*. Second,
E; [”Zz —21—1”%]
=B, [[IVg(We; )V f (w3 &) = Ve(Weo13 SV F (w13 )13

=B/ [IIVg(Wi; SV (0 &) = Vg (Wi )V f(ue-13 &)
+ Vg (Wi )V (o1 &) = Ve(Wm1: )V f(w-130)13]

()
< ZG%L%”ut — U ||§ + ZG%Lillwz — Wi ||%,
where (A) uses the Assumption (4.6)(i) and Assumption (4.7)(i). It then follows:

E [lIve = Mell3] < (1= B2 Vet = Mol

+4G5L[u, — |3 +4GILE||w, — w1 |15 + 287077

By using the second inequality of Lemma 4.12, i.e.,
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E,, [ [, —umlli] < 27: O'o +47t o, -1 — g(w;_ 1)”2 +6G2||W, W 1||2,
we have

E, [”VI - Mr”%] < (1=pB)l|vie1 = M, 1||2 + 16G2L1'}’t la;—1 — g(w;- 1)”2
+(24G5 L +4GILY) W, — Wi |3 + 28707 + 8G3 L3y 0.

O
Similar to Lemma 4.9, we have the following descent lemma.
Lemma 4.14 For the update w;.1 = Wy, —1,V,,t > 0, ifn, < 1/(2LF) we have
F(We1) < F(w) + ﬂtGgL%”“t - g(Wt)H% +1 |lve = Ht”%
1
= JIVFOIB = - Wi = wil. (4.28)

This lemma can be proved following that of lemma 4.9 by bound ||v,~VF (w,)||? <
2||v, - Mt”% +2|IM; - VF(W1)||2 < 2|lv; - MI”% + ZGgL%Hu, - g(Wt)”%-

Lemma 4.15 For n, < 1/L, the non-negative sequences A;, By, T, Ay, 64,8 > 0
satisfy:

(#)Arr1 < Ap +n A + 1,6 — 1By — 1y
A1 < (1 =Br)Ar + C17t2+15t + C27]t2rt +ﬁ?+10'2 + 7,2+10J2’
(©)641 < (1 = yp41)0; + C377t2Ft + 7;2+10'"2

Let Yiy1 = Ay + - At+l + 6t+l 2 A.. Suppose c,c’, 0y, Y1, Br satisfy:

Crc+Czc’ <

c
s M+ —(1=f) <
Nt

N —

e-1 (4.29)

7’

c C’
N + _C17;2+1 +—(1=ym1) <
Nt un t—1

Then,

B o2+ Y 2 Y 2
Z(U:Bt"‘ Utrz)<CY+Z o'+ o7, (4.30)

1=l =0 Nt Nt

- L v _ _L E’7\/
If we set ¢ = iG¢ = 4c3’ﬁt =

_ enVC, enyC C
s Y = mm( o o7 ’2C32Cl ) and

€ VG, € V& .
=17 =min (L, WCo 8C507 3VCia7 4C3ﬁ) then in order to grantee
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~

711

1
T(Bt + EF,) < 52, (431)

Il
(=}

t
the iteration complexity is in the order of

- {CYL CrC3/Ci/Cy CyoVT; CyCio’ Cyo'\GCs }
X

T=0
e’ €? e T eVG e’

1 1
where CY = Y() — A, = A() + on + W(S() —A..

Critical: If (), (#), (¢) hold in expectation, then the two inequalities in (4.30)
and (4.31) hold in expectation.

Proof. The proof is constructive. The idea is to multiply the second inequality by
as+1 and the third inequality by b;4; such that we can construct a telescoping series
of A; +a;A; + b;5;. First, we have

A1 + Arg1 Ayt + D164 < Ap + 0Dy + 1,60 — 1By — 01
2 2 2 2 2 72
+ a1 (1 = Bra)Ar + a1 Cry; 6 + a1 Cony Ty + @11 By ) 07 + Qr1 Y 07

+ b1 (1 = y141)6: + b,+1C3T]?F, + bt+1712+10'”2-

Let a;+1 = ¢/n; and by = ¢’ /n,, we have

c c’
A1+ —Api1 + — 0011 < A — By — i1y
Mt Nt
2 2
cp cy
+ (r]t + i(l _:Bt+1)) A + CZCTIIFI + i 0'2 + i+l 0—’2
un n: n

74,2

c c’ , cy ,,
+ (T]t + _C17t2+1 + _(1 b ’yt+])) 6[ + C3C 77,F, + —t+10— 2.
un un Nt

With (4.29) we have

’ ’

c c c 1
App1 + —Apg + — 041 S A + A + 6 =By — =1
Nt Nt Mt-1 NMt-1 2

2 2 14,2

cf cy c'y
+ t+10_2+ t+1 0_/2+ t+10_//2

Nt Nt Nt

~ w4
Define Y,y = Apy1 + iAHl + %6,”, we have

2 2 )

cp cy cy
t+1 0_2 + t+1 0_/2 + t+1 0_/12.

Nt un Nt

1
n:B: + Enth <Y =Y +

Hence
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= T- 2 )

1 c c
§ (B + =n:Ty) < Yo - E ’+1 o2+ Vit o Vvl el
t=0 2 o\ N Mt Mt

Next, let us consider 5, =, 8; = 3, ¥: = y. Then we have

T-1

1 1 Y, 2 )
X B+ 3T < X [ L o).
~ T 2 nT n n n
In order to ensure the RHS is less than €2, it suffices to have
€n . en Cy
= R = min T - .
p 2\Jco 4 (2\/_0' 2\/_0—") 4ep
To ensure (4.29), it suffices to have
2<eB, Ciey<c')2 Z<cy)2 c—L c'—L
T] —_ £ 1 ')’ —_ ) 77 —_ ')’ ) - 4C29 - 4C3 .

As a result, if we set

,(1 eVc e’ eV )
nzmln ) 5 5
L™ 20 4+Jco’ 40" 2+/cCy

. (1 € eVC, € VG, )
= min | —

L’ 4JCro” 8C30"” 8+/C30" " 4C3/Cy

5= eNG en\/C_z NG G
o 77 o7 2650y )
we have
-1, 1 ,
;T(BZ-FEFI) < €.

Plugging the values of 7 into the requirement of 7 yields the order of T'.
O

Theorem 4.4 Suppose that Assumptions 4.3, 4.6,and 4.7 hold. For SCST, in order
to guarantee

2

= >

T-1
1 1
EDY {Z Ivell3 + ||VF(wt)||§}

t=0

— i 1 _ enL
we can set the parameters as n = min{O(f-), O(L]LU), O(ﬁ)}, B =0(=5),
and y = min{O (- E" ,O(1)}, and the iteration complexity is

T = O | max(

s

3

CyLy (o1 +03) Cyooli CYLF))

€ €3 €?
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where Cy = O(F(wo) — F + ﬁllvg(wo)vf(uo) ~voll3 + ﬁllg(wo) ~wuoll3).

¢ Why it matters

We only explicitly maintain the dependence on L, which will have implications
when we handle non-smooth f in next Chapter.

The above theorem can help us establish an improved iteration complex-
ity of O(1/€%). First, we need to ensure Cy = O(1), which can be sat-
1sﬁed by using a large 1n1t1a1 batch size. In particular, we can set uo =

= T2 g(Woidi).vo = Z | Ve (Wo: )V f (o &), where {£i, £/, i}, are
independent random varlables. Thus, we have E[||lug — g(wp) ||2] < 0O( Bo) and

E[||lvo — Vg(wo)Vf(uo)H%] < O(Blo). Hence, if we set By = O(L‘lTE, ) we
have Cy = O(1). This initial batch size requirement can be removed by using a
decreasing parameters n, = O(1/t'/3), B, = 0(1/1*13),y; = 0(1/1*13).

Compared to the result of SCMA in Theorem 4.3, SCST has a higher order of

step size 7 and a smaller order of iteration complexity.

Proof. Let us recall the three inequalities in Lemma 4.14, 4.13 and 4.12:
(%) F(Wis1) < F(W,) +1:G3L3[[w, = g(Wo)ll3 + 770 [1ve = Mo I3 - % IVF(wo)ll3

2
— — w1 = wel5,
g e = wil

MHE [”Vt - Ml”%] <E[(1-=8)Ivi-1 = Mt—l” 1+ 16GZL1% [[a;—y — g(Wt—l)”%]
+E[(24G5L3 +4GIL3) |lw, — w1 |5 + 28202 + 8G3 L2yl o],

() Eg, [llus = g(wol3] < (1 =92) llu—1 — g(wim1)II3
+E[2G§||Wt Wi 1||2+2710'0]

Define

=F(w) - F., Bi=I[IVF(W)|53/2,
U= vell3/4, Ac=llve = Hill3, 6 = LiG3llu, — g(w)l[3.

They satisfy the three inequalities marked by =, §, ¢ in Lemma 4.15 with Then we
have C; = 16,C, = 0(G4L2+G$L§), C3 = 0(L2G3),0? = 0(Gio}+G20o}), 0% =
O(LEG%O'(?), o’ = 0(L2G2 ). Plugging these into Lemma 4.15, we can finish the
proof. O

4.4 Non-smooth (Non-convex) Regularized Problems

In this section, we consider the following regularized stochastic compositional opti-
mization:
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

Fig. 4.1: Left: the capped £;-norm regularizer; Right: a non-convex PAR regularizer

;2};{31 F(w) :=E¢f(Bz[g(W; )];€) +r(w), (4.32)

where r is a non-smooth regularizer, which is potentially non-convex. This in-
cludes constrained problems, where r(w) = [y_o(W € W). For example, the KL-
constrained DRO (2.19) has a constraint 4 > 0.

We extend the definition of e-stationary solution of a smooth function to the non-
smooth composite function by noting that 9(F + r)(w) = VF(w) + dr(w).

Definition 4.1 (e-stationary solution) A solution w is called an e-stationary so-
lution to minycga F(W) + r(w) where F is smooth and r is non-differentiable, if
dist(0, VF(w) + 0r(w)) < €.

To handle non-smoothness or r, we assume the proximal mapping of r is simple
to compute:

. 1 <12
prox, (W) = arg ;Ielgb §||W - W3 +r(w).

Below, we give some examples of non-convex regularizers and their proximal map-
pings, whose derivations are left as exercises for interested readers.

Examples

Example 4.4 (Capped ¢-norm). It is defined as r(w) = A Zle W (w;), where
Y (w;) = min(|w;|, 0) (cf. Figure (4.1)). It penalizes small coefficients heav-
ily (encouraging sparsity) but stops penalizing once coefficients are large
enough. It was shown to reduce the bias issue of LASSO, which cannot ex-
actly recover the non-zero coefficients under some conditions. Its proximal
mapping is given by

x1 = min(sign(u) (ul = ), 0) if h(x13u) < h(xo; )
xp = max(|ul, 0) otherwise ,

proxy, (u) = {
(4.33)
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where h(x;u) = %(x — u)? + Amin(|x|, 8). Similar non-convex sparse regu-
larizers include minimax concave penalty (MCP) and Smoothly Clipped Ab-
solute Deviation (SCAD).

Example 4.5 (Nonconvex Piecewise Affine Regularization (PAR)). A non-
convex PAR is defined as r(w) = A Z;’zl W (w;) (cf Figure (4.1)), where

— 7 < < 2k+1
lﬁ(x)={|X| kq ifkq < x| < 557q, k=0,1,..., (4.34)

g i ELg < x| < (k+1)q,

Its proximal mapping is defined as:

o When the regularization strength A < g, we have

sign(u)kq ifkg < |ul < kg+a,
proxy, (u) = {sign(u)(Jul = ) ifkqg+A < |u| < 2Hq+4,
sign(u)|u| i 2I‘T“q+/§l <lul < (k+1)g.
(4.35)
o When the regularization strength A > g, we have
: lul - 5
prox,, (u) = sign(u) p q. (4.36)

where | -] denotes the nearest integer. When A exceeds a certain thresh-
old (e.g., A > gq), the proximal operator becomes a hard quantizer,
mapping inputs exactly to discrete levels in a quantization set Q =
{0, +q, +2q,+3q,...}.

Algorithms

We can easily extend SCMA and SCST to solving the non-smooth regularized SCO

problems using the following update:

o1
W41 = arg min gllw - (w, — n,v,)ll% +r(w), 4.37)
t

where v, is the MA or STORM gradient estimator as in SCMA or SCST.

Convergence Analysis

We first present a lemma similar to Lemma 4.9.

Lemma 4.16 Consider the update in (4.37), if n; < ﬁ then we have
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F(w) = F(Wii1) <nellve = VE(w)) |2 - %disz(o, OF (Wea1))>

1 2
- —||W - W .
8077t ” t+1 t”z

Proof. Recall the update of w,,:

. 1
Wi €arg min {r(W) + 5w — (w, - nm)ll%} :
weRd 27],
Then following variational analysis, we have
1

=V — n_(wt+1 —W;) € Or(Wpy1),
t

which implies that

1 _
VF(Wi1) =V, = U_(Wt+1 —W;) € VF(Wpy1) +0r(Wey1) = OF (Wry).
t

Hence, we have
. _ 1
dist(0, 6F(Wt+1))2 S |VF(Wpy1) = v — n_(Wt+1 - Wt)”%
t
Due to the update of w,., we also have
1 2
F(Weat) + Ve, Wel — W) + g”wtﬂ - w5 < r(w).
t
Since F(w) is smooth with parameter L, then
LF 2
F(Wi1) S F(w) +(VE(W;), Weyp — W) + THWHI - Wt”z‘

Combining these two inequalities (4.40) and (4.41) we get

(4.38)

(4.39)

(4.40)

(4.41)

_ - 1 L
F(Wea) + (v = VEOW). Weay = wi) £ F(we) = (30 = ) Iwen = will.
t

From the above inequality, we obtain two results. The first result is
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2
]7—<Vr = VF(Wii1), Weel — Wy)
t

2(F(w,) — F(w 1 1
< W) “Fwe)) 1Ly i — w2
Nt Mt M

2
+ ;(VF(Wt) = VF(Wei1), Wil — Wy)
'

2(F(w,) — F(w 1 1
CHEW) ZFOWe) L Ly i w442
Nt n Nt

The second result is
1 _ _
(ﬁ - 7F)||Wt+1 - Wt”% S F(W) = F(Wes1) +(VF(W;) = Vi, Wi — Wy)
t

_ _ 1
=F(w;) = F(We1) +1:IVF(W;) - Vt”% + E”WHI - Wt”%-
t

If 3F < g 1€ e < g the above inequality indicates:

1 _ _
s, Wit = Wil < F(We) = F(Wes) + 1 IVF (W) = vill3. (4.43)
t

To proceed, we have
1 2
v = VF (W) + U_(WHI - Wt)”z
t
1 2 1 2
=2(v; = VF(Ws41), n—(WHl = W)y + lvi = VE (W) |5 + _2||Wt+l - w3
t t

Adding the above inequality to (4.42) we have

1
Vi = VF(Wei1) + U_(WHl - Wt)”%
t

2(F(w,) — F(w 1 1
< HEW) “FWe)) L1 gy i - w2
Nt Nr My

1
+lve = VF(Wt+1)”§ + = [[Weer = WIH%
t

_ 2F(w) = F(Ww) | 3Lk
Nt Nt

2 2
|Weer — Wt”z +|lve - VF(wt+l)||2'

Since

”Vt - VF(WZ+1)||§ = ”Vt - VF(WI) + VF(Wt) - VF(WZ+1)||§
< 2|lv; = VE(W,)|3 + 2lIVF (W) = VE(Wes1)I3

< 2|lv; = VE(Wo)|3 +2L% (lwe) = Wit |13
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2 o Lr
Due to 2L < 2 e have

1
lv: = VF (W) + n_(wt+1 - Wt)”%
t

< 2(F(wi) = F(Wis1)) L33k

[IWes1 = Wt”% +2[v; - VF(“’t)”é
Nt Nt

Multiplying both sides by 7;, we have

1
N:llve = VF(Wipp) + U_(WHI - Wt)”%
t
< 2(F(Wt) - F(WHI)) +3.5LF||Wie1 — Wt”% +2n|lv, — VF(W:)II%-

Adding this inequality to (4.43) gives

1 1
Ve = VE(Wi1) + —(Wppr — Wl)“% +— W — Wt”%
Nt 81y

< 3(F(wW,) = F(W1)) + 30 1ve = VE(W)|13 + 3.5LE|[Weat — w3,

Applying (4.43) again to the RHS, we have

1 1
nellve = VE(Weit) + — (Weet = WO ll3 + =—— Wt — well3
Nt 8n;

< (3+28Lpn,) (F(W,) — F(Wea1)) + (317, + 2877 LE) v, — VE (W) |13
< IO(F(WI) - F(Wt+l)) + 10n||v; - VF(Wt)”%-

Combining this with (4.39), we finish the proof. O

Since the above lemma resembles that in Lemma 4.9, hence, it remains a simple
exercise to derive the complexity of using the MA estimator similar to Theorem 4.3
and of using the STORM estimator similar to Theorem 4.4.

Corollary 4.1 Consider the method (4.37). Under the same assumptions and similar
settings as in Theorem 4.3, the method finds an e-stationary solution with a complex-
ity of O(1/€*). Under the same assumptions and similar settings as in Theorem 4.4,
the method finds an e-stationary solution with a complexity of O(1/€%).

@ Why it matters

Since standard regularized stochastic optimization E, [g(w; {)] + (W) is a spe-
cial case, the above results directly apply. This corollary shows that regularized
problems can be solved with the same complexities as unregularized ones by
employing either the moving-average gradient estimator or the STORM gradi-
ent estimator. In contrast, without these estimators, solving non-convex regular-
ized problems requires a large batch size at every iteration (Lan, 2020)[Section
6.2.3].
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4.5 Structured Optimization with Compositional Gradient

In this section, we extend the compositional optimization technique to address other
structured optimization problems, including min-max optimization, min-min opti-
mization, and bilevel optimization. These problems share a common structure in the
form of a compositional gradient, denoted by M (w, u*(w)), where M is a mapping
that is Lipschitz continuous with respect to its second argument, and u*(w) is defined
as the solution to a strongly convex optimization problem:

u*(w) = arg min A(w, u). (4.44)
ueu
This structure generalizes the gradient of a compositional function f(g(w)), whose
gradient takes the form M(w, u*(w)) = Vg(w)V f(u*(w)) with

u'(w) = argmin [lu - g(w)|3.

The high-level idea underlying the algorithms and analysis presented below is
summarized as follows. To estimate M(w, u*(w)) at w,, we use an auxiliary variable
u, to track the optimal solution u*(w;), which is defined by solving (4.44) with one
step update at w,. A key aspect of the analysis is that the error in the approximation of
M(w,,u,) is controlled by the estimation error ||u; —u*(w;)||2, due to the Lipschitz
continuity of M:

M (We,ur) = M(we, w* (W) 3 < O(lluy = u*(wo)13).- (4.45)

Moreover, since u*(w) is the solution to a strongly convex problem and is Lipschitz
continuous with respect to w, we can construct a recursion for |lu, — u*(wt)llg to
effectively bound the cumulative error over iterations.

In cases where M(w;,u,) cannot be computed exactly and is instead approxi-
mated by a stochastic estimator M(w;,u;;{;), where {; is a random variable, we
employ a moving average (MA) estimator:

Vi = (1= B)Vi-1 + B M(Wr,ui581).
The model update is then performed using:
Wiil = Wy — 1)1 Vs
Alternatively, if M(w;,u;) is directly computable, the update simplifies to:

Weel = W, — 17, M(wg,0,).
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

4.5.1 Non-convex Min-Max Optimization

We consider a non-convex min-max optimization problem:

min max f(w,u) := Eg[f(w,u;&)], (4.46)

weRd ue

where f(w,u) is a continuous and differentiable and U is a closed convex set. Let
F(w) = maxyeqs f(W,u). Denote by V; f(-,-) and V, f (-, -) the partial gradients of
the first and second variable, respectively.

We make the following assumptions.

Assumption 4.8. Regarding the problem (4.46), the following conditions hold:

(i) f(w,u) is u-strongly concave in terms of u, and u*(w) = arg maxycqs f (W, 1)
exists for any w.
(ii) Vi f(w,u) is Ly-Lipschitz continuous such that

IVif(w,u) = Vif(w,u)]l2 < Li([lw = w2+ lu—u'[]2). (4.47)

(iii) Vo f (w, ) is Lyi-Lipschitz continuous with respect to the first variable and is
Loy-Lipschitz continuous with respect to the second variable

(IV2f(w,u) = Vo f(wW,u')|l2 < Loy |lw = W2 + Loz [lu —u’||>. (4.48)
(iv) there exist o1, 0 such that

E[IVif(w,u;€) = Vif(w,u)[3] < o2, (4.49)
E[|IVaf (w,u;€) = Vaf(w,u)|[3] < o3. (4.50)

(v) F, = min F(w) > —o0.

4.5.1.1 A Double-loop Large mini-batch method

Let us first consider a straightforward approach that updates w, using a large-batch
gradient estimator

B
1
vV = E Z Vlf(Wt’ut§ fi,t),
i=1
and computes u, via an inner-loop SGD with K updates. It suffices to have K =
O(L2c}/(u*€?)) (by Lemma 3.8) such that

62

E[[lu; —u*(w)l3] < —.

—

If B = O(c?/€?), following the Lemma 4.18 below we have
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Algorithm 12 SMDA
T T

1: Input: learning rate schedules {7:},_;, {v:},_;» {B: IT:I; starting points wo, uj, Vo
2 Wy = Wo — 170V0

3:fort=1,...,Tdo

4: Sample &;

5 Update uy = s [uy +y: Vo f (We, ue; 4r)]

6: Compute the vanilla gradient estimator z; = V; f (W, us; &)

7: Update the MA gradient estimator v, = (1 — B;)V,_| + B:Z;

8: Update the model by wy| = Wy, — 17,V

9: end for

ﬁ]

B
E[llv; - VF(WI)”%] < E[Hé ; Vif(Weus i) = Vif(we,u®(wy))

2

a
<0 f‘ + L3 ||u, —u*(w,)ll%) <é.

Combining this with Lemma 4.9, we can set the step size 5, = O(1/Lp) and the
number of iterations 7 = O (L /€?), yielding an overall sample complexity of

BT +KT =0

o 26t

Lro? . LFLfazz)

4.5.1.2 A Stochastic Momentum Method

We present a solution method in Algorithm 12, referred to as SMIDA (Stochastic
Momentum Descent-Ascent). The method begins by updating the dual variable us-
ing stochastic gradient ascent (Step 4), then computes the moving average gradient
estimator v, for the primal variable (Step 6), and finally updates the primal variable
using this estimator (Step 7). When §; = 1, the method reduces to SGDA. How-
ever, setting §; < 1 is crucial for achieving improved complexity. Conceptually, the
method shares similarities with SCMA.

Convergence Analysis

We will prove the convergence of the gradient norm of F(w). We first prove the
following lemmas.

Lemma 4.17 Let u*(w) = argmaxyeqs f(W,0). Under Assumption 4.8(i), (iii),

u* () is k-Lipschitz continuous with k = %

Proof. Let us consider wi, w,. By the optimality condition of u*(wy) and u*(w;)
for a concave function, we have
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Vof(wi,u*(w)T(u—u*(wy)) <0, VueU
Vof(wo,u*(ws)) " (u—u*(ws)) <0, VueU.

Let u = u*(wj) in the first inequality and u = u*(wy) in the second equality and add
them together we have

(Vaf (Wi, " (w1)) = Vo f (W, 0" (W2))) T (u" (w2) —u"(w)) < 0.
Since — f(wy, -) is u-strongly convex, due to Lemma 1.6, we have
(Vaf (Wi, u™(w1)) = Vaf (Wi, u'(w2))) T (u”(w2) —u"(wp))
> plu* (wa) —u* (wi)|l3.
Combining these two inequalities we have

plut (wa) —u* (W) 13 < (Vaf (o, w'(w2)) = Vaf (Wi, u"(w2))) T (u*(w2) — u*(wy))
< |IVaf (wa, 0" (W2)) = Vo f(wi,u" (w2)) ]2 [lu* (w2) —u”(wy)|l2

< Log|lwa — wil2][u” (w2) — u*(wp)]l2.

Thus,
. Ly
[lu*(w2) —u(wp)ll2 < 7||W2 - wil2.

O

Lemma 4.18 Under Assumption 4.8(i) and (ii), VF(w) = V| f(w,u*(w)), and it is
is Lp-Lipschitz continuous with Ly = L1 (1 + k).

Proof. If U is bounded, the Danskin’s theorem implies that VF (w) = V; f(w, u*(w)).
If U is unbounded, we have

our(w) "

VE(w) =V f(w,u*(w)) +
ow

Vo f(w,u'(w)) = Vif(w,u’(w), (4.51)

where the last equality follows from V, f(w, u*(w)) = 0. To establish the Lipschitz
continuity of VF(w), let us consider w; and w,. We have

(IVE(wi) = VE(W2)|l2 = IV f(wi,u" (W) = Vi f(Wa,u"(W2))]l2
< Li(Jlwy = wall2 + [[u"(wy) —u*(w2)]l2) < Li(1 +k)[[wy — wall2.

O

Next, we prove two lemmas similar to Lemma 4.8 and Lemma 4.1, regarding the
recursion of gradient estimation error and the estimation error of u, respectively. The
descent lemma (Lemma 4.9) still holds.

Lemma 4.19 It holds that

163



2

2 2 2LF 2
Eft [”Vt - VF(WZ)”z] <(1 = B) Vi1 = VF(Wt—l)”z + _ﬁ [lw,—1 — Wz”z
t

+4L%,Bt o, —u (Wt)“z +ﬁt 0'1

Proof. Letz, = Vi f(w;,us;&) and M, = B,[z;] = Vi f(ws,u;). Then v, = (1 -
Bi)Vi-1 + Bz, Noting that B, [ ||z, = M;|3] < o and |M, = VF(w,)|13 < Lillu, ~
u(w) ||§ Plugging these into Lemma 4.7 finishes the proof.

O

Lemma 4.20 Suppose Assumption 4.8 (i), (iii), (iv) hold. Consider the update u; =
g [u; +y: Vo f(We,ue; &)1 If ye < 1/Loy < 1/, we have

2

. B 3k
By [llurer = w' (wean) ] < (1= 225y - u* (w13 + Bl = Wi ]
t

+ 27/, 0'2

Proof. By Lemma 3.7, if y < 1/Ly; we have

By [llur —w* (w51 < (1 = ye)lluy —u* (Woll3 + 7703 (4.52)

Then,

BEE: [lu, - (wo) ]

E/[llusr — “*(Wt+l)||§] <(1+

F(1+ %)Et[uu*(w» - u*(vvm)nz]

%,U)(l_ %,U)

< (1+

ye)lhue =t (wo) [l + (1 + YO

2+vu
+ —tszt [llwy — W1 ||2]
Yt

Y
< (1- ”‘)nut

32 2
—uw (W)ll3 +2y7 07 + —E, [lIw, — we l13],
YiH

where the first inequality uses the Young’s inequality, and the last inequality uses
yu < 1. O

Finally, we can prove the following theorem regarding the convergence of SMDA.

Theorem 4.5 Suppose Assumption 4.8 holds. By setting B; = 8 = € /(30-12), Vi =
, ﬁ) in SMDA, then the

y = ,1162/(96[4%0'22) and n, = n = min(
following holds

B YH
VSLg’ 16V3Lik

1 T-1

1
{vatn% + ||VF(wt)||§” < e (4.53)

t=0
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

with an iteration complexity of

{ CyLrp Cyo'lsz CyL?KO'ZZ })
max )

T=0
P P Y

(4.54)

_ 1 2 L % 2
where Cy = 2(F(Wo) = F.) + g —llvo = VE(Wo) I3 + - [luo — u*(wo) 5.

@ Why it matters

The MA gradient estimator in SMDA is critical to obtaining a complexity of
O(1/€*). If we simply update the primal variable by SGD, the algorithm be-
comes SGDA. The convergence analysis of SGDA for non-convex minimax
problems will suffer from a large batch size issue or slow convergence. In par-
ticular, SGDA with a batch size of O (1/€?) can find an e-stationary solution in
O(1/€?) iterations when the problem is smooth in terms of primal and dual vari-
ables and strongly-concave in terms of dual variable, yielding a sample complex-
ity of O(1/€*). If using a constant batch size O(1), SGDA may need O(1/€®)
iterations for finding an e-stationary solution (Lin et al., 2020).

Proof. The proof is similar to Theorem 4.3. Let us see the three inequalities in
Lemma 4.9, Lemma 4.19, and 4.20 that we have proved so far:

n n n
(F(Wea1) < FOw) + TIVE(w) = vl = T IVE o) I3 - T w3,

2.2

2L
BE [Ive = VEW)I3] <E|(1=B) V-1 = VE(w,_)|I3 + %’7 ||v,_1||%l

+41362 o, - (w3 + Bt

. yu . 3kn?
(0)Ellu, —u*(w) 3 <E|(1 - 7)”“:—1 —u' (w3 +2y%07 + i Ive-1ll3] -

Let ¥ = yu/2, the last inequality becomes:

« 2 7 - . 2 -20'22 3k*n? 2
(OE|u; —u* (W)l <E (1 =P)luj—1 —u* (W) |5 + 8y el + Ive—1ll5] -

2y

Let us define A, = 2(F(w,) — F,) and B; = ||[VF(w)|2, T; = ||vt||§ /2, Ay =
||[VF(w;) — thlg, 0; = |luy, — u*(wt)llg. Then the three inequalities (x), (§), (¢) sat-
isfy that in Lemma 4.10 with C; = 4L%, Cy, = 2L2F, Cz = 3k*/2,02 = 0'12, o'? =
807 /u*. If n, B, ¥ satisfy

165



&2 &2 &2 12

P3027 30 7T 6o T 1021207
I R SNV B R 2
2LF’ \4C, \BC|Cs 2LF 8L VA8Lik~

then (4.89) holds, and the iteration complexity becomes

CyLF CTO'Z\/C_Z Cy\/C1C3C10"2
T = O [ max , >

€? et et

1 = min(

=0

R P Y

{CYLF CyolLp CyLiko? })
max .

Critical: It is worth mentioning that an improved complexity of O(1/€) can
be achieved by employing the STORM gradient estimator for both the primal
and dual variables under the mean-square smooth condition of the objective.

4.5.2 Non-convex Min-Min Optimization

We can extend SMDA to solving a non-convex strongly-convex min-min problem:

min min f(w,u) :=E[f(w,u;&)], (4.55)

weRd uel

where f(w,u) is smooth, non-convex in terms of w and strongly convex in terms
of u and U is a closed convex set. If the u*(w) = arg minycq/ f(W, u) exists and
unique, then we have VF(w) = V| f(w,u*(w)). Hence, its gradient also exhibits a
compositional structure, where the inner function u*(w) is a solution to a strongly
convex problem.

SMDA can be modified by replacing the u update with

Uy = Hyu =y Vo f(we,ug540)].

Then, the same convergence result in the last subsection can be established for min-
min problem, which is omitted here.

4.5.2.1 Application to weakly convex minimization

Next, we present an application to solving weakly convex minimization problems:
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Algorithm 13 A novel method for weakly convex minimization

T
t=1’

: Input: learning rate schedules {7, {vt szl; starting points wy, uj, v;
cforer=1,..., T do

Sample £, and compute G(u;; &) = g (us; &)

Update us1 =0y — ¥ (G (05 &) +p(uy — Wy))

Update wyy = (1 — 237:0) Wy + 211 puy
end for

A

min F(w) := E[g(w:{)], (4.56)

where F > —co is p-weakly convex, as discussed in Chapter 3.

As argued in Section 3.1.4, an e-stationary solution of the Moreau envelope of
F(w) corresponds to a nearly e-stationary solution of the original problem. Hence,
we consider optimizing the Moreau envelope directly:

min F,(w) := minE[g(w: )] + pllu - wll3. (4.57)

Define f(w,u) = E[g(u; )] + p|lu - W||§- Then f(w,u) is p-strongly convex with
respect to u due to the p-weak convexity of F.
For updating u, we use the standard SGD:

U =0 — Y (G0 &) +2p(u, — wy)). (4.58)

where G(u;; ;) € dg(u;; ;). For updating w, then we just apply GD with its gra-
dient given by V| f(w;,u;) = 2p(w, —u;):

Wipl = W —0:2p(W; — ) = (1 = 2n:p)W; + 21, pu;. (4.59)

We present the updates in Algorithm 13. An interesting observation about this algo-
rithm is that the u update is similar to the Momentum update (4.18) except that the
momentum term u, — u,_; is replaced by u, — w,, where w, is a MA weight vector.

Convergence Analysis

Let us first prove the following lemma.

Lemma 4.21 We have (i) F,, is Lp-smooth with Ly = g; (ii) Vi f (w, ) is Lipschitz
continuous with Ly = 2p, and (iii) w*(w) is 1-Lipschitz continuous.

Proof. The smoothness of F,, has been proved in Proposition 3.1 with 2 = p/2. The
Lipschitz continuity of V| f(w,u) = 2p(w — u) is obvious. Next, let us prove the
Lipschitz continuity of u*(w). The proof is similar to that of Lemma 4.17.

Let us consider wy, w,. By the optimality condition of u*(w;) and u*(w,) for a
concave function, there exists v(wy) € & f (Wi, u*(wy)), v(wy) € 0> f (W, u*(wy))
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viw) (u—u*(w;)) <0, Vu
v(iwy) " (u—u"(w)) <0, Vu

Let u = u*(wj) in the first inequality and u = u*(wy) in the second equality and add
them together we have

(v(wy) = v(w2)) " (u"(w2) —u*(wy)) < 0.

Since —f(wy, -) is p-strongly convex, similar to Lemma 1.6, we have for any v €
O f(wi,u"(w2)),

(v(w1) = v) T (u* (w2) —u’(W1)) 2 pllu’(w2) —u*(w)]]3.
Combining these two inequalities we have

plla* (wa) —u*(wi) 13 < (v(w) = v) T (u*(w2) — u*(wy))

< Iv(w2) = vll2]lu” (w2) = u*(wy)]l2.

Since there exists v/ € dg(u*(w;)) such that v(wy) = vV + p(u*(wy) — wy), we let
v=V +p(u*(w;) — wy), then

[[u*(w2) —u*(Wi)ll2 < [[w2 = will2.
O

Since 0, f (W, u) is not Lipschitz continuous with respect to u, lemma 4.20 is not
directly applicable. We develop a similar one below.

Lemma 4.22 Consider the following update:
U =0 — Y (G(ur; 4p) +2p(uy — Wy)).
IFE NG (u; {)Il%] < G* and y;p < 1/8, then we have

2
E; [Jugr — u*(wt+1)”2

. 12
< (1= Z8) lhus - u* (w15 + 857G + —= By Wt = w3
Yip

Proof. Since u;y; is one-step SGD update of f(w;,u), the proof is similar to
Lemma 3.7 for the non-smooth case.

lasy — U*(Wt)”% = |lu; —y: (G(us; &) +2P(“t -w)) — U*(Wt)“% (4.60)
= [lu, —u* (W)l3 + 72 1G (w3 &) +2p(u, — w13
- 2y(G(ur; &) +2p(u, = wy)) T (u — u(wy)).

Note that 0 € dg(u*(w;)) + 2p(u*(w;) — w;). Thus, v;_; = 2p(w; — u*(w;)) €
ag(u*(wy)),
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

E; |G (us; &) +2p(uy — Wt)”% =E, [|G(u; &) = Vi1 +2p(0; — u*(w,))ll%
< 2B, 16 (ugs &) + Vit |l + 807 [luy —u* (wy)[[3
< 8G2 +8p” |lu; —u* (W) |13,

where the last inequality uses ||v;—1||2 < G. For the last term in (4.60), let v,_; =
E[G(us; &) +2p(u; — W) € 02 f(Wr, 1), then we have

E (G (us; &) +2p(u; - Wt))T(ut -u'(w,)) = V;r_l (0; —u*(w;))

(Veo1 = V(W) (u, —u*(w))) = p [l — (w13

where 0 = v(w;) € 0f(w;,u*(w,)) and the last inequality is due to the strong
convexity of f in terms of u. Combining the above inequalities we have

et —w (W3 = llu, =y, (9g(uss &) +20(u — w,)) —u'(w)) 13
< flu; —u* (W) |13 +¥2(8G? + 89 lu; —u* (W) [13) = 2y Iy — w*(wi) 13
= (1-2y:p +8y20%) lu; —u*(w,) |13 + 4y2G>
< (1= y:p) lluy —u* (W) |13 + 8y?G>
where the last inequality uses y; < #. Since u*(w) is 1-Lipschitz continuous, we
have
E; |[uge1 — u* (wean) |13

* 2 * *
< (10 22 Bl =0 n 1+ 1 =2 ) = o)

t

. 3
< (1= Z) lhus - wr (w3 + 87767 + B [[we = wil3.
Yip

O

Lemma 4.23 Let 7z, = 2p(W, — ;). For the update W;.y = W; — 1%, if 7y <
1/(2LF), we have

1
Fp(Wei1) < Fp(We) + % ||VFp(Wt) - Zt“; - % HVFp(Wt)Hi T an IWre1 — Wt||§7
un

where L is the smoothness parameter of F(-).

Since VF, (W) = 2p(w; —u*(w,)), hence ||F,(W;) = 2|3 = 4p*|[u, —u*(wy) |3,
whose recursion has been established in Lemma 4.22. We can combine these two
lemmas and establish a complexity of O(1/€e*) for Algorithm 13 in order to find an
e-stationary solution to Fj, ().
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4.5.2.2 Application to weakly-convex strongly-concave min-max problems

The same technique can be applied to solving weakly-convex strongly-concave
min-max problems miny maxycq; f (W, u) with a single loop algorithm. In subsec-
tion 4.5.1, we assume the partial gradient V; f(w,u) is Lipschitz continuous. We
replace this assumption by an assumption that f(w,u) is p-weakly convex in terms
of w for any u € U.

In this case, F(w) = maxycqs f(W,u) is not smooth but weakly convex. Let us
consider its Moreau envelope:

min F,(w) := min F(u;) + p|lu; — W||§.
w up

This problem is equivalent to

min max f(uj, ) + plla; — wlj3,
w.u el

which is strongly convex in terms of u; and strongly concave in terms of uy.

Compared to (4.57), this problem just adds another layer of inner maximization.
However, it can be still mapped to the general framework as discussed at the begin-
ning. The gradient of F,(w) is given by M(w, u](w)) = p(w — uj(w)). If we track
uj(w;) by u;, and its update relies on the gradient d; f(u;,,,u;(u;,)). Hence, we
just need another variable uy ; to track u; (uy ).

We can develop a similar algorithm. First, let us update uy, up. Given w;, uy ¢, ua ¢,
we update uj s41, W ¢+ With SGD update by

w y1 = Heg[ug, + 200 f (g 1, 02,45 47)] (4.61)
g =0, — Y1 (01 f (5 8) +2p(ug, — we)). (4.62)

Then we update w,,; with GD update by
Wil = Wy = n2p(W —uy ;) = (1 = 2np)w; +2npuy ;. (4.63)
This algorithm also enjoys a complexity of O(1/€*) for finding a nearly e-stationary

solution of F(w). We refer the readers to (Hu et al., 2024a) for a convergence analysis
of this algorithm.

4.5.2.3 Application to Compositional Optimization

We can apply a similar strategy to a compositional function F(w) = fo(g(w)), where
fo 1s smooth convex and g is weakly convex. With the conjugate of fj, we can write

min fo(g(W)) = min max f(w,uz) :=ul g(w) - f; (u2).
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Since fo is smooth, then fj is strongly convex. Then if g is weakly convex and U is
bounded (i.e., fj is Lipschitz), then f(w,u) is weakly convex and strongly concave.
Optimizing the Moreau envelope of fy(g(w)) yields:

. T * 2
min max u up) — u) + u —w
in max ul g(un) = 1 (u2) + s Wi,

which is strongly convex in terms of u; and strongly concave in terms of u,. We give
an update below:

w1 = Hyfuy, +y28(0y 5 4)]
e =, —y1(01g(wy s {)un, + 2p(uyg ; — W)
Wil = W, = 112p(W; —uy ;) = (1 =2np)w; +2npuy ;.

Then similar convergence analysis can be developed with a complexity of O(1/€*)
for finding a nearly e-stationary solution to F.

4.5.3 Non-convex Bilevel Optimization

In this section, we discuss the application of the compositional gradient estimation
technique to non-convex bilevel optimization defined by

min £ (W, u" (W)
wer , (4.64)
u*(w) = arg min g(w,u),
ueRd’

where g is twice differentiable and pg-strongly convex in terms of u. Let F(w) =
f(w,u*(w)). The following lemma states the gradient of the objective F(w).

Lemma 4.24 We have
VE(W) = Vi f (w0 (W) = Varg(w,u" (W) T (Varg (w,u’ (w))) ™' Vo f (W, u (W)
Proof. By the optimality condition of u*(w), we have

Vog(w,u*(w)) = 0.

By taking derivative on both sides, using the chain rule, and the implicit function
theorem, we obtain

ou*(w) _

0.
ow

Vai1g(w,u"(w)) + Varg(w,u"(w))

Hence
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ou*(w)
ow

= —(Vag(w,u" (W) "' Va1 (W, u* (w)).

Thus,

"’“;V(VW) Vaf (W, (w))

= Vif(w,u (W) — Varg(w,u"(w) T (Vaog(w, u*(w) "' Vo f (w, u* (w)).

VF(w) =V f(w,u"(w)) +

O
Let us define
M(w,u*(w)) =
Vif(w,u"(w) = Vorg(w,u*(w) T (Varg(w,u*(w))) "' Vo f (w,u*(w)).

If we can establish the Lipschitz continuity of M(w,u*(w)) in terms of the second
argument and the Lipschitz continuity of u*(w), then the similar technique can be
leveraged. Let u*(w;) be tracked by u,. It can be updated by SGD:

U =0 — ¥ Vag(We urs &) (4.65)
With u,, the gradient at w, can be estimated by
M(we,up) = Vi f(we,up) + Vo g(wy, Uz)T(szg(Wt, ut))_IVZf(Wh u;). (4.66)

However, another challenge is to handle the Hessian inverse (V2,g(w,,u;)~!, which
itself is a compositional structure. We will discuss three different ways to tackle this
challenge. If we have a stochastic estimator of M (w;,u;) denoted by v;, then we
update the model parameter by:

Weel = Wr — 11Vt (4.67)

4.5.3.1 Approach 1: The MA Estimator

If the lower level problem is low-dimensional such that the inverse of the Hessian
matrix can be efficiently computed, we can estimate V,,g(w;, u;) by a MA estimator:

Hy =Sy, [(1 = B)Ha -1 + BV28(Wr,ur52,0)]

where S, [-] is a projection operator that projects a matrix into a matrix whose
minimum eigen-value is lower bounded by p, where u, is the lower bound of eigen-
values of Vy,g(w, u). The projection ensures that [Ho; ;] ~1is Lipschitz continuous
with respect to Hay ;.

The a vanilla stochastic gradient estimator of w, and its MA estimator are com-
puted by
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

2 = Vif(Weu &) + Vag(weu 8 )T (Hoo) ' Va f (Wi ugs &)

(4.68)
Vi =1~ B)vi_1 + Bz;.

Convergence Analysis

The proof is largely similar to that of Theorem 4.3. We provide a sketch of proof
below. Recall that

M(wi,up) = Vi f(we, ;) + Vo g(wy, u,)T(szg(W,, llz))_Isz(Wz, u;).
Define:
M(Wt, ;) = Vif(we,u,) + Vorg(wy, ut)Tngl,,VZf(Wz, u).
First, similar to Lemma 4.9, we have the following:
F Nt 2 Mt 2 1 2
(Wrs1) < F(wy) + E”Vt - VF(Wt)“z - E ||VF(Wt)||2 - E [|Weer — Wt||2-
t
(4.69)

We establish a recursion of the error ||v; — VF(w;) ||% similar to Lemma 4.7 by not-
ing that B¢, o7 [z:] = M(w;,u,) and there exists & > 0 such that Ee g, [z, —
M(ws,u.)[12] < 2. Thus, Lemma 4.7 implies that

g g, [IVe = VEW)I3] < (1= B) Iveet = VE(we-n) 3 (4.70)
2
F 2 9 2 2 2
+ _ﬁ Wit — well5 + 48 ([M(ws,up) — VE(w;) 5 + B0,
t

Then, we bound || M(w;,u,) — VF(W;)H% by

IM(We,u) = VE(Wo) 13 < 2 M(we,u,) = M(we, a3
+2[[M(we,u;) = VE(w) I3
< O(||Hay — Varg (Wi, u)|13) + O(Jlu, —u*(w,)[[3).

As a result, we have

2

2 2, 2L¥ 2
Efllvi=VFEW)I2] < (1 = B)IVi-1 = VE(W,-)|I” + I Iw: = we1ll3
t

+Bi (O Ho,e = Vg (We, u)[15) + O(llw, — ' (w))lI3)) + B70(0?).

This result is similar to that in Lemma 4.8.
We can further build the error recursion of ||Hay; — Vaog(wy, ut)||§ similar to
Lemma 4.1, and the error recursion of ||u; — u*(wt)||% similar to Lemma 4.20.
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Combining these results, we can establish a complexity of O(1/e*) for finding an
e-stationary solution of F(-) in expectation.

4.5.3.2 Approach 2: The Neumann Series (Matrix Taylor Approximation)

If the lower level problem is high-dimensional such that it is prohibited to compute
the Hessian, one approach is to leverage the Neuman series:

[oe]

A‘1=Z(I—A)i, if  JJA| < 1. 4.71)
i=0

Hence, if ||V22g(W,, u;)|| < Loo, we estimate the inverse of LLnVZZ g(w;,u,), yield-
ing i

K-1
_ 1
(Vaag(Weu )™ = 7 )

i=0

1 i
(1 - L_szg(wt, ut)) . (4.72)
22

This can be further estimated by a stochastic route, by sampling k from {0, ..., K—1}
randomly, then estimate the Hessian inverse by

Kk (7oL ) i
Q22,t - ngz i=1 ( Ly szg(wt’uls é’l)) lfk Z 1 . (4.73)
L_zzl ifk=0

This is can be justified by

K
1 K K-1 K 1
E =——] Ex- _ —_— 1 - —E[V U G
[022,] Xin + Bk 1k -1y n |”|( n [Voog(w:,u, é’)])l
K K-l k
K 1 1 1

=E,— |- —V s = — |- —V s .

kL22 ( I, 28(W; llt)) g:o 7 ( 7 28(W; u,))

Then the vanilla gradient estimator of w; and its MA estimator are computed by

2 = Vif(We, w5 410) + Voug(We, w545 )T 02,V f (We,ugs {1 )

“4.74)
Vi = (1= B)vi_1 + Pz;.

Convergence Analysis

We provide a proof sketch below. We can understand that z, is a unbiased stochastic
estimator of

M(Whut) =Vif(w,u)+ VZIg(Wuut)TE[QZLt]VZf(Wt,ut)-
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

We decompose the estimation error of v, similarly as in (4.70) and bound ||M (W, up)—
VF(w,)|13 by

IM(we,u;) = VE(W)|15 < 2M(ws,u;) = VF(w) 13
+ 2”M(Wt» u;) — M(w;,u;) ”%
The error recursion of the first term on the right hand side can be similarly bounded
as before. To bound the last error, since

o)

— 1 1 i
[V%Zg(w, “)] = E[Q2] + I Z [1 - L—22V§2g(w, u)] ,

i=K
we have

IM(weur) = M(weu) [ < Ol [Vag(w.w)] '~ E[02]13)

00 L

K
<L (1 - “—g) :

2 Mg Ly

As a result, if K = O(fl—;2 log(1/(ugBro?))), then IM(wy,u;) — M’ (we,up)|13 <

O(p,0?). Then similar to the analysis of approach 1, we can establish a complexity
of O(1/€*) for finding an e-stationary solution of F(-) in expectation.

1
I- —ngg(w, u)

[V2,e(w,w)] ' —E[0n]| < 1 D
2 Ly

Ln

4.5.3.3 Approach 3: The penalty method

An alternative approach to avoid computing the Hessian inverse and Jacobian ma-
trices is to reformulate the problem as a constrained optimization problem:

min f(w,u)
w,u

s.t.  g(w,u) < ming(w,u).
u
This constrained problem can be addressed using a penalty method (see Chapter 6.7):
min f(w,u) +2(g(w,u) — ming(w,y)),,
w,u y

where 4 > 0 is a penalty parameter and (-); denotes the positive part. Since
g(w,u) > miny g(w,y), the formulation simplifies to:

min f(w,u)+ A |g(w,u) —ming(w,y) 4.75)
w,u y

= r‘rvnlrll myax fw,u) + 4 (g(w,u) —g(w,y)). (4.76)
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If both f and g are smooth and g is strongly convex in its second argument, the result-
ing formulation becomes a non-convex strongly-concave min-max problem, which
can be effectively addressed using the SMDA algorithm with the following update
fort > 1:

Vi1 =¥ + YeAVag(We, ¥1561),
2, =Vf(w,u;d)+A (Vg(wt,ut;ft) - [

Vi = (1 = B)Vi-1 + Bi2y,
=]
= —M:tVe.
Uzl u;

Convergence Analysis

Vlé’(“’n}’t?fz)])

0
4.77)

The convergence analysis of (4.77) for the min—max problem (4.75) follows a sim-
ilar approach to that of Theorem 4.5 for SMDA. However, a remaining challenge
lies in converting the convergence result for the min—max formulation into that of
the original problem. To address this, we provide the detailed convergence analysis
below. We begin by stating the following assumption.

Assumption 4.9. Regarding the problem (4.64), the following conditions hold:

(i) g(w,u) is u-strongly concave in terms of u.
(ii) V f(w,w) is L ¢-Lipschitz continuous such that

w w
IVf(wisup) = Vf(wa,w)ll2 < Ly ( 1) —( 2) N CWE
up up 2
(iii) Vg(w, ) is Lq-Lipschitz continuous such that
w w
e - Teomwlh < 2 (V)< ()] . @
uj w /il

(iv) there exist o ¢, 0g such that

E[IV/(w,u;) = Vf(w, 03] < o7, (4.80)
2

E[[|Vg(w,u; &) - Ve(w,w)3] < o, (4.81)
(v) min f(w,u) > —co.
Le’t us define W = (w, u) and
FW.y) = f(w,u) + 2 (g(w,u) — g(W,y)) (4.82)
F(W) = max f(w,y). (4.83)
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Then

V]f("_V, Y) = Vf(w’ ll) +4 (Vg(w7 u) -
Vo f(W,y) = —AV2g(W, y),
Vif(Ww,y;e) = Vf(w,u;{) + 4 (Vg(w,U;f) - [

Vo f(W,y;:€) = —AV2g(W,y; ).

Vlg(WJ’)}
0 s

Vig(w,y:é) ])
0 ,

where & = (£, £). We first show f(W,y) satisfies the conditions in Assumption (4.8).

Lemma 4.25 Under Assumption 4.9, we have

(i) f (W, y) is pd-strongly concave in terms of w.
(ii) Vi f (W,y) is Lipschitz continuous, i.e.,

IV1Lf (W1, 51) = Vif (W2, ¥2)ll2 < (Ly +2Lg ) (W1 = Wall2 + [ly1 = y2ll2).
(iii) Vo f (W, y) is Lipschitz continuous, i.e.,
Vo f (Wi,y1) = Vaf(Wa,¥2)|l2 < LgAllWi = Wall2 + LgAllyr — y2llo.
(iv)
E[IV1f(W,y;8) = Vif(W,p)3] <307 + 620,
E[|IV2f(W,y:€) = Vo f (W, y) 3] < X0y,
(v) E(W) := maxy f(W,y) > —co.

Proof. (i) is obvious. The Lipschitz continuity of V1 f (W, y) follows that of V f (w, u)
and Vg (w,u). For (iii), we have

IV2f (Wi, y1) = Vaf (W2, y2) [l = A|Vag (Wi, up) = Vag(wo, wo) |l

)= (el

< ALg(lwy = wa|l2 + [lug —uz||2) < AL ([[W1 — Wall2 + |[u; — uz]]2).

< AVg(wi,uy) = Vg(wa, wo)l2 < ALg

It is trivial to prove (iv). The last result follows that maxy f(w,y) > f(w,u)
00, O

\%

Theorem 4.6 Suppose Assumption 4.9 hold. By setting
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62

b= 902 + 180202
ﬂgfz
Ye=Y= 3 2
96(L f +2LgA)? A2
=

min B Vhgd !
VB(Ls +2Lgd)(1+ L) 16V3(Ls +2LgA)Lg 2(Ly+2LgA)(1+ Ly)
in (4.77), then the following holds
=

1 i}
T Z {Zuvtug + ||VF(W,)||§}l <é, (4.84)
t=0

E

with an iteration complexity of

Cyd Cy(/lcr]% +0?) CyA’o}?
T = O [ max 2 >
ety

(4.85)

’

€’ et
where Cy = 2(F(Wo) — ming F(W)) + ‘/§+LF||VO - VF(V_VO)H% + %HYO - Y*(WO)”%

Proof. We map the problem into the setting in Theorem 4.5 with L1 = Ly +
2Lg/1,L21 = Lg/l,Lz = Lg/l,/,l = ,ug/l,K = Lz]/(,ug/l) = Lg,LF = Ll(l +K) =

(Ly+2LA)(1+ Ly), 0'12 = 30'; + 6/120'3, 0'22 = /120';. Then, plugging these values

into the result in Theorem 4.5, we obtain the results. O

Convergence of the original function

Next, we derive the convergence of the original function in terms of ||VF(w)||,. We
need the following additional assumption.

Assumption 4.10. (i) g is twice differentiable and V1 g(w,u) and Vg (W, u) are
Lgg-Lipschitz continuous; and (ii) ||Vof (w,u)|l2 < Gr.

Lemma 4.26 Let u’(w) = argminy F(w,u),u*(w) = arg min, g(w, u). Under As-
sumption 4.10(i), we have

_ L
IVF(w) = ViF(w,uy(w))|l2 < L(1+ M—g)IIHZ(W) —u (w2
g
L&’ * * 2
+ Lgg A(1 + —)[[uy(w) —u”(w)]l5.
Hg

Proof. Letu* =u*(w). Then,
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

VIF(W’ ll) = V]f(w5u) +/1(V|g(w’u) - V]g(W,u*))
VoF(w,u) = Vof(w,u) + AVag(w, u).

Due to Lemma 4.24, we have

VE(w) = ViF(w,u) = Vi f(w,u*) = V| f(w,u)

* ) —1 * * (486)
- Vlzg(Wau )V22g(w’u ) VZf(W,u ) - A(Vlg(w7 u) - Vlg(w’u ))

We can rearrange terms for (Vig(w,u) — V;g(w,u")) as the following:

Vig(w,u) — Vig(w,u") = Vig(w,u) — Vig(w,u") — Virg(w,u") " (u—u’)
+Ving(w,u")" (u—u").
(4.87)

To continue, we have
u-u'=-Vyg(w,u") ! (Vag(w,u) - Vog(w,u’) — Vorg(w,u")(u—u’))
+ Vg (w,u’) " (Vag(w,m) — Vog(w,u’)).

By the optimality condition for u*, Vog(w,u*) = 0, and Vo F (w,u) = Vo f(w,u) +
AV,g(w, ), we can express u — u* as

u-—u'=-Vyg(w,u) ' (Vog(w,u) — Vog(w,u*) — Varg(w,u*)(u —u*))

1 )
+ 2 ng(w, u) " H(VaF(w,u) - Vaf (w,u)).
(4.88)

Plugging (4.87) and (4.88) back to (4.86), we have

VE(w) = V{F(w,u) =V, f(w,u*) = V{f(w,u)

— V128 (W, u") Varg (W, u") "' Vo f(w, u")

—A(Vig(w,u) = Vig(w,u") - Vipg(w,u") " (u—u"))

+ AV 128 (W, u") " Voog(w,u*) ™ (Vag(w, u) — Vog(w,u’) — Vorg(w,u’) (u — u’))
~ Ving(w,u") " Vyrg(w,u*) " (VoF (w,u) = Vs f (W, ).

As a result, we have
VF(w) = ViF(w,u) + Vipg(w,u") Varg(w,u*) "' V2 F (w,u)

= Vlf(w’ u*) - Vlf(“’? u)

— Ving(w,u*)Varg(w,u") " (Vo f (w,u*) = Vo f (W, u))
- A(Vig(w,u) - Vig(w,u") — Vipg(w,u*) " (u—u))
+AVi2g(w,u*) T Varg(w,u*) ! (Vag(w,u) — Vag(w,u) — Varg(w,u”) (u —u*)).
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By the Assumption 4.10 we have
IVig(w,u) = Vig(w,u") = Visg(w,u") T (u —u)[|2 < Lggllu—u*|3,

V28 (W, u) = Vag(w,u") = Vaog(w,u") (u - u")l2 < Lgglu —u’[f3.

By the Assumption 4.9 we have
IVLf(w,u®) = Vif(w,u)ll2 < Lg|lu® —ull2,
V2 f(w,u) = Vo f(w,uw)ll2 < Lgllu” —ull,

V128 (W, u*)Varg(w,u") "', < =<,
Hg
Thus, we have
IVF(w) = ViE(w,u) + Viog(w,u*) " Vag(w,u’) "' Vo F(w,u)|»
. Lg * Lg )
SL(1+ =)lu—u’fz + LggA(1+ —=)|u—u’||5.
Hg Hg
Plugging u = u’, (W) = min, F(w, u), then Vo F(w, u’(w)) = 0 and then we have

IVF(w) = ViF(w,uy (W) ]l2

Lg * * Lg * %112
S Lp(1+ —)[luy(w) —u'[[2 + Lggd(1 + —=)Ju} (w) —u’[[5.
Hg Hg

Next, we bound [[u’, (W) —u*(w)||>.
Gy

Lemma 4.27 Under Assumption 4.10(ii), we have ||u’;(w) —u*(w)||2 < Tig

Proof. By the definitions of u’,(w), u*(w), we have
u,l (W) = arg Hll}n /_lf(w, u) + g(w3 u)
u*(w) = argmin g(w, u).
u
By the optimality condition,
1 . -
7 V2f (W, w3y (W) + Vag (w,u}(w)) =0
Vag(w,u*(w)) =0.

Since g(w, u) is pg-strongly convex w.r.t u for any w, then we have
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

(W, w5 (W)) >g(W, u* (W) + Vag(w, u (W) (W) — u* (W)
+ X i (w) — ' (w) 3
2(W, 0 (W) 2g(w, W5(W)) + Vag(w, uy (W) (u* (W) — wy(w))
+ EE i w) - w (wB.
Adding these two inequalities yields:
pellu (w) = u* (W12 < ~Vag(w, uh (W) (u* (W) — (W)
1
= 22/ (W (W) (" (W) — (W)
< 92 (v, (W) ol () ~ w0

Dividing both sides by [[u*(w)) — u’;(W)||2 and noting ||V2f(w,u}(W))|l2 < G
concludes the proof.
O

Corollary 4.2 Under the same setting as in Theorem 4.6 with A = 0(%) > 2Ly /g
and assume ||y — y*(Wo)||2 < O(€), then the following holds

E[[IVF(wo)ll2] < O(e), (4.89)

with an iteration complexity of

T=0

2 2
1 95 o
max{f—ye—s,?}), (490)

where T € {0, ..., T — 1} is randomly sampled.
Proof. Combining Lemma 4.25 and Lemma 4.27, we have
IVE(Wo)ll2 = [[VF(We) = ViF(We, wy(We)) |2 + [[VIF(We, 0y (Wo)) |2
L, G L, G}
<Ly(1+ 5L 4 Ly a1+ 5L
Mg Hgd Mg pgd?
+ ||V1F(WT’ ujl(w‘r)) - VIF(WT’ uT)||2 + ”VIF(WT, u‘r)”Z
_2LsLyGy 2LggLy G
< +
pzd fgA
+|IViF (W, (We)) = ViF(We,ug) |2+ [[VIF(We, ur) |2

Since F(w,u) is (Aug — L ¢)-strongly convex w.r.t u, Lemma 1.6(c) implies that
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. 1 _ _ i
(g = Ly)lwy(we) —ur| < W—IIVzF(WT, ur) = VoF (We,uy(wo)) 3
g

—Ly)

1 _
= ————|IV2F (wr,u,)|f5
(Apg — Ly) oo

Due to Vi F(w,u) = V; f(w,u) + 1(Vig(w,u) — Vig(w,u*(w))), we have
IVIF(We,uy(We)) = ViF(We,ur)lla < (Ly +ALg) [0 (W) =zl

(Ly+ALg)

"~ (dpg —Ly)
- 2(Aug/2+ALg)

||V2F(WT7uT)||2

_ Ue +2L _
IV2F (We,ur)ll = 52| V2 F (W, ur) 2
Apg Hg

where the last inequality uses Ly < Au, /2. Combining the above inequalities, we
obtain

2
2L¢LoGy . 2LggLgGy
pzA pzd

+2L
L He T ohe

Hg

IVE(w)ll2 <
”V2F(Wﬁ uT)||2 + ||V1F(WT’ u‘r)”Z-

From Theorem 4.6, we have
E[”VZF(WT» u‘r)”% + ||V1F(WT’ u‘r)”%] <€

Hence, it follows that E[||V2F (W, ur)|2] < € and E[||V1F (W, up)|2] < e.If A=
O(1/e), then E[||VF(w)|[2] < O(e). The iteration complexity can be established
by substituting 2 = O(1/e) into Theorem 4.6 and noting that Cy = O(1) when
lIyo = y*(Wo)l3 < O(e).

O
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4.6. HISTORY AND NOTES

Critical: The complexity of O(1/€’) is not the state-of-the-art sample com-
plexity achievable under the same assumptions. Indeed, a double-loop large-
batch method—similar to the one presented in Section 4.5.1.1 for solving the
min-max problem ming maxy f (W, y)—can yield a superior sample complex-
ity of O(1/€%) for achieving the stationarity condition E[||VF(w)]|2] < €.
To see this, we apply the results from Section 4.5.1.1, which indicates that a
Lro} LpL?o3
p aZet )

sample complexity for achieving E[||[VF(W)||3] < €% is O (

Here, L denotes the smoothness constant of the objective function F (W) =
maxy f(W,y). The remaining parameters are defined as follows:

o L; = 0(2) is the Lipschitz constant of V £ (-, -);

» ji = 0(A) is the strong concavity parameter of f(-,y) with respect to y;

. 6'22 = 0(A?) represents the variance of the stochastic gradient with respect
toy;

. 6'12 = 0(A?) is the variance of the stochastic gradient with respect to w =
(w,u).

Given that we can establish Lr = O(1) independent of A (Chen et al., 2025a,
see Lemma B.7) and 2 = O(1/e), the total sample complexity reduces to
O(1/€°).

However, it remains an open problem to develop a single-loop stochastic algo-
rithm that achieves O (1/€°) complexity without requiring a large batch size
or assuming mean-square smoothness (see next section for more discussion).

4.6 History and Notes

The optimization techniques presented in this chapter for stochastic compositional
optimization are rooted in the pioneering work of Yuri Ermoliev (Ermoliev, 1976;
Ermoliev and Wets, 1988). The monograph (Ermoliev, 1976), written in Ukrainian,
laid the early foundations. Chapter 6 of the edited volume (Ermoliev and Wets, 1988)
introduces an early form of the Stochastic Compositional Gradient Descent (SCGD)
method, employing a sequence of moving average estimators u, to track the inner
function values at each iteration—referred to then simply as “averaging.” The con-
vergence analysis in these early works is largely limited to asymptotic results, if
provided at all. Notably, these works considered a broader class of problems with
functional constraints, which will be discussed further in Chapter 6.

The study of non-smooth compositional optimization, where a non-smooth con-
vex function is composed with a smooth function, was first initiated in the works
of Fletcher and Watson (1980); Fletcher (1982). Their proposed method, known as
the prox-linear method, has since been extensively studied and developed in subse-
quent research (Lewis and Wright, 2009; Duchi and Ruan, 2018; Drusvyatskiy et al.,

183



2021; Duchi and Ruan, 2017; Drusvyatskiy and Paquette, 2019). We will consider
non-smooth compositional optimization in next chapter.

The modern convergence analysis with non-asymptotic rates for stochastic com-
positional optimization was pioneered by Wang et al. (2017a). Their initial analysis
established an O (1/€®) complexity for finding an e-stationary solution to a smooth
compositional problem, primarily due to suboptimal choices of learning rates. Sub-
sequent works have aimed to improve this convergence rate (Ghadimi et al., 2020;
Wang et al., 2017b; Chen et al., 2021a). The improved complexity of O(1/€’) for
SCGD is derived by following the parameter settings introduced in Qi et al. (2021c¢).
A further refined complexity of O(1/€*), under the assumption that the inner func-
tion is smooth, was achieved in Chen et al. (2021a). The use of a moving-average
gradient estimator to attain the O(1/€e*) complexity in stochastic compositional op-
timization is credited to (Ghadimi et al., 2020).

The modern variance-reduction technique for estimating the gradient of a smooth
function originates from (Johnson and Zhang, 2013; Mahdavi and Jin, 2013; Zhang
et al., 2013), and was inspired by earlier work (Schmidt et al., 2017) that estab-
lished linear convergence for finite-sum problems with convex and smooth objec-
tives. This technique is now widely known as SVRG. For the objective function
f(w) = % i, fi(w), the SVRG gradient estimator takes the form Vf;(w;) —
Vf;(W) + Vf(W), where w is a reference point whose full gradient V f (W) is com-
puted periodically.

For non-convex optimization, the variance reduction technique named SPIDER
was initiated by Fang et al. (2018), which proposes a gradient estimator v, =
Vi1 + Vfi(wy) — Vfi(w;_1), with v being periodically re-initialized using either
a full gradient or a large-batch gradient. This approach was earlier proposed under
the name SARAH for convex optimization in (Nguyen et al., 2017). The technique
later evolved into the STORM estimator (Cutkosky and Orabona, 2019), defined as
Vi = (1= B)Viet + BV f (Wi &) + (1= B) [V £ (Wis &) = Vf (W13 €)1, which elim-
inates the need for periodic re-initialization.

Huo et al. (2018) applied the SVRG technique for finite-sum compositional opti-
mization where both the inner and outer expectation is an average over a finite set.
Hu et al. (2019) and Zhang and Xiao (2019) concurrently applied SARAH/SPIDER
to compositional optimization with an expectation form and a finite-sum structure,
and derived a complexity of O(1/€>) for the expectation form and O (\/n/€?) for a
finite-sum structure with n components. Qi et al. (2021a) applied the STORM esti-
mator for SCO with a complexity of O(1/€>) and Chen et al. (2021b) applied the
STORM estimator to only the inner function estimation for SCO with a complexity
of O(1/€*).

The capped £; norm for sparse regularization was introduced by Zhang (2013).
The minimax concave penalty (MCP) was proposed by Zhang (2010), while the
smoothly clipped absolute deviation (SCAD) regularizer was introduced by Fan and
Li (2001). The proximal mappings for these non-convex regularizers were studied
in (Gong et al., 2013). The non-convex piecewise affine regularization method for
quantization was proposed by Ma and Xiao (2025). The theoretical analysis pre-
sented in Section 4.4 on non-convex optimization with non-convex regularizers fol-
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lows the framework established by Xu et al. (2019a), whose results were applied
by Deleu and Bengio (2021) to train sparse deep neural networks.

Stochastic weakly-convex—concave min—max optimization with a complexity of
O(1/€%) was first studied by Rafique et al. (2018). When the problem is weakly-
convex and strongly-concave, the complexity can be improved to O(1/€*) using
double-loop algorithms (Rafique et al., 2018; Yan et al., 2020a). The analysis of
SGDA for smooth non-convex min-max optimization was first established by Lin
et al. (2020), who derived a complexity of O(1/€*) when using a large batch size
on the order of O(1/€?) for problems that are strongly concave in the dual variable.
Without employing a large batch size, the complexity degrades to O(1/€%), which
also applies to problems lacking strong concavity. The analysis of the single-loop
SMDA algorithm was provided by (Guo et al., 2021b), which also established the
convergence guarantees for stochastic bilevel optimization using the first approach
introduced in Section 4.5.3. A similar convergence result was achieved in Qiu et al.
(2020), which employed moving-average gradient estimators for both the primal and
dual variables. Chen et al. (2021a) obtained a complexity of O (1/€e*) for smooth non-
convex strongly-concave problems without relying on moving-average gradient esti-
mators, under the stronger assumption that the Hessian/Jacobian matrix is Lipschitz
continuous. An improved rate of O (1/€*) for smooth non-convex strongly-concave
problems was established by (Huang et al., 2022) through the use of STORM esti-
mators.

Bilevel optimization has a long and rich history (Bracken and McGill, 1973). The
first complexity analysis of bilevel optimization was initiated by Ghadimi and Wang
(2018), who employed the Neumann series to approximate the inverse of the Hes-
sian. Their proposed double-loop stochastic algorithm achieves a sample complexity
of O(1/€°) for solving the lower-level problem and O (1/€*) for the upper-level prob-
lem. Subsequent research has led to improved complexity bounds: O(1/€’) in (Hong
et al., 2020), 0(1/64) in (Ji et al., 2020; Guo et al., 2021b; Chen et al., 2021a), and
further down to O(1/€%) in (Yang et al., 2021; Khanduri et al., 2021; Guo et al.,
2021a) under mean-square smoothness conditions. The analysis corresponding to
Approach 1 in Section 4.5.3 can be found in (Qiu et al., 2022), while that of Ap-
proach 2 is provided in (Guo et al., 2021b).

Penalty-based metholds for bilevel optimization date back to (Ye et al., 1997),
with recent developments appearing in (Liu et al., 2021, 2022; Shen and Chen, 2023).
Lemma 4.26 is due to Kwon et al. (2023), which established a sample complexity of
O(1/€’)—comparable to Theorem 4.6—for a different double-loop algorithm. They
also derived a complexity of O(1/€°) for an algorithm similar to update (4.77), ex-
cept that the gradient estimators for both the lower- and upper-level functions are
replaced with STORM estimators under stronger mean-square smoothness assump-
tions.

The complexity of O(1/€e*) for stochastic compositional optimization is known
to be optimal, as it matches the lower bound established for standard stochastic opti-
mization (Arjevani et al., 2022). Moreover, under mean-square smoothness assump-
tions, a reduced complexity of O(1/€?) is also proven to be optimal (Arjevani et al.,
2022).
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Chapter 5

Advances: Finite-sum Coupled Compositional
Optimization

Abstract In this chapter, we study a novel family of stochastic compositional
optimization problems namely finite-sum coupled compositional optimization
(FCCO), and introduce algorithms for solving them. These algorithms have direct
applications in addressing the empirical X-risk minimization challenges discussed in
Chapter 2. To ensure broad applicability, we examine various settings of this prob-
lem, characterized by different properties of outer and inner functions, including
smooth and non-smooth cases, as well as convex, weakly convex, and non-convex
scenarios. The results presented here also significantly extend and complement those
discussed in Chapter 4. We also discuss how to efficiently optimize compositional
optimized certainty equivalent risks, especially compositional entropic risk.

Coupling reveals depth where composition meets reality!
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5.1. FINITE-SUM COUPLED COMPOSITIONAL OPTIMIZATION

5.1 Finite-sum Coupled Compositional Optimization

Specifically, we focus on the following optimization problem:

min F(w) := %Zfi(E{~Pigi(W§ ), (5.1)
i=1

weRd

where g;(;¢) : R — R? is a stochastic mapping, f;(-) : R¥ — R is a determin-
istic function, and P; denotes the distribution of the random variable {.

We refer to this problem as finite-sum coupled compositional optimization
(FCCO). If we interpret i as an outer random variable, a distinctive feature that sets
FCCO apart from standard stochastic compositional optimization (SCO) is that each
inner stochastic function g; (w; £) depends on both an inner random variable  and an
outer index i, giving rise to the term coupled. While this problem can be cast as a spe-
cial case of SCO by defining f(g) = % >y fi(gi) and g(w) = [g1(W),...,gn(W)],
the high dimensionality of g due to large n, along with its stochastic components, sig-
nificantly complicates the construction of unbiased estimators and theoretical anal-
ysis. Therefore, FCCO warrants the development of specialized optimization meth-
ods.

Below, we revisit several applications of FCCO in ML and discuss the properties
of f; and g;.

Group DRO

In Section 2.2.3, we have formulated the CVaR divergence regularized group DRO
as

K
|
min -— ;[Li(w) — ]+, (5.2)

where @ € (0,1), L;(w) = nl—k Z;.lil £(w; le yj.) denotes the average loss over data
from the i-th group. The first term above is an instance of the FCCO objective, where
the outer function f(g) = ([g]1 — [g]2)+ is a convex but non-smooth function of
g, and each inner function g;(w,v) = [L;(w), v]" could be convex or non-convex,
smooth or non-smooth depending on applications.

AP Maximization

In Section 2.3.2, the AP maximization has been formulated as the following problem:

1
min-— D, f(gi(w), (53)

X; €S,
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where S, is the set of n, positive examples, g;(w) = [g1(W;x;,S), g2(w;x;, S)]T
is a vector mapping with two components:

@1 wixieS) = e D 100 = DECHW:x;) = h(wix,)

XjES
1
22(Wix;, 8) = == > L(h(W;X)) = h(W;X))),
S|
X_,'ES
and f(g) = —% is simple function. We can see that f is non-convex and smooth if

the loss value is upper bounded and £(0) is lower bounded. The inner mapping g; (w)
could be convex (e.g., a linear model) or non-convex (e.g., a deep model), smooth or
non-smooth depending on applications.

Contrastive Representation Learning

The contrastive objective of self-supervised representation learning presented in (2.50),
is the following:

n

1 1
m&nzz-rlog e+ —— Z exp((s(w;x;,y) — s(W; x;,x7))/7) |.

i=1 |Sl | YES;

The outer function f(g) = 7log(e + g) is a non-convex function and smooth when
¢ is lower bounded. Each inner function g; is a non-convex function of w in general.

5.2 Smooth Functions

In this section, we consider a non-convex but smooth objective function F(w) with
smooth outer functions. In addition, we assume the inner stochastic functions satisfy
the following conditions throughout this section.

Assumption 5.1. We assume that

(i) Eeep,lllgi(w: ) - ge(WI3] < 0.
(i) Beer [IIVei(W:0) = Vei(w)3] < o
(iii) Bz, [IVg:(w: O3] < G3.
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5.2. SMOOTH FUNCTIONS

5.2.1 The SOX Algorithm

The first algorithm for solving FCCO is called SOX, named by Stochastic Optimization
of X-risks. Owing to its ease of implementation and favorable practical performance,
this algorithm is commonly adopted for addressing FCCO. Below, we outline the as-
sumptions necessary for its analysis.

Assumption 5.2. There exist G, L1, Lr > 0 such that

(i) fi: R - Ris G 1-Lipschitz continuous and Ly-smooth;
(ii) F:R? s Ris Lp-smooth;
(iii) F. = miny F(w) >> —oo.

Similar to that for SCO, we also need to track and estimate the inner functions.
However, the difference is that we need to maintain and update n estimators for the
n inner functions g;(w),i € [n].

To this end, we maintain n sequence of estimators {u;,,¢ € [T]}",. At the ¢-th
iteration, we draw a set of B random indices B, C [n] with |8;| = B. We update
u; ;,i € [n] by the following:

u, = {(1 “ YU+ i (Wb i€ B (5.4)

U;r-1, O0.W.

where {; ; ~ P; is a random variable. We refer to the above estimator as coordinate
moving average estimator. Then, similar to SCMA, a moving average estimator of
the gradient is computed by:

Vi =1 =B)vi_1 + iy,

1 ’
where z, = E Z Vgi (Wi & )V fiug ).
e,

Then, the model parameters are updated by:
Weel = Wr =11Vt

The detailed steps are presented in Algorithm 14.

Convergence Analysis

Let us first define two notations:

A = |Ivi = VF (w13, (5.5)

1 n
6=~ 3w =g w5 (5.6)
i=1
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Algorithm 14 S0X
1: Input: learning rate schedules {7, tT:I’ {7t zT:1’ {B: tT: |» starting points Wo, o, Vo
2: Let wi = wg — 170V
3:fort=1,...,Tdo

4: Draw a batch of samples 8; C [n]
5: fori € B; do
6: Draw two samples i ¢, &/, ~ Pi
7 Update the inner function value estimators
= 1=y )1 +v:8i (Wes Gie)s
8: end for

9: Setw;; =u; ;1,0 ¢ By

10: Compute the vanilla gradient estimator z, = @ Yies, V&i(We; &/ )V fi(uir)
11: Update the MA gradient estimator v, = (1 — B;)V,_| + B:Z;

12: Update the model w by w;; = w; — 1, v,

13: end for

The descent lemma (Lemma 4.9) remains valid. Next, we analyze the recursion of
A; and d;. One point of deviation is that only some randomly selected coordinates
of u are updated and used for computing the gradient estimator z,. To facilitate the
proof, we introduce a virtual sequence:

u ;= (1- %)ui,t—l +¥:8i (We; (i,t),Vi =1,...,n. (5.7

This is similar to that is done in the analysis of stochastic coordinate descent method
in Section 3.3. Then, we have

1< _
M, =Esg, z[z] = = > Vai(w)V filli;,).
n i=1

Critical: Since u, is a random variable that depends on B;, hence
1 n
Es,.ql2] # Z} Vi (W) Vi (uis).
=

We first bound the error recursion of d;.

Lemma 5.1 Consider the u, updates in Algorithm 14. Under Assumption 5.1, if y; <
1, then

2nG?2 By?c?
E[at]s( —Z—)E[a,m oo B llwey - w3+ ——=.

Yt n

Proof. Since W; ; is updated using MA, then similar to (4.6), for all i € [n] we have
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5.2. SMOOTH FUNCTIONS

Bz, [ = gi(woll3] < (1= 70?0 -1 = gi(Wo) 3 + 77 0

Given i € [n], with a probability of B/n thati € B;, we have u; ; = 0, ;; otherwise,
u; ; =u;,_1. Hence,

E¢,, Eg, v, — gi(wo)l3]

B _ B
=B, v, - gi(woll3]+ (1 - P gi(w)ll3

B Byiog B
< — (=)l = g (Woll3 + — =%+ (1= g1 = ge(wo)ll3
B'y B’}/20'2
< (1= 5 0 s = gi(wo)ll3 + ——=.

2n
where we use the fact %(1 —y)?+(1- %) <(1- %)2. Then, taking expectation
over all randomness on both sides yields

2.2
By; oy
ot

By
E [llus - gr(woll3] < (1= = 5B [, = gi(woll3] +

Then using the Young’s inequality similar to the proof of Lemma 4.1, we have

By,

By _ Bn
2n

) - 2n

)?E [Ilw;,r—1 — g (we1)II3]

Bytz 0'02

B [llui, - gi(wo)ll3] < (1+

+(1+ BQ—;Z)(l - 1;—3:)215 [lgi(we—1) — gi(wo)ll5] +

2 2. 2
By n By o
<(1- 2_nt)E [”ui,t—l _gi(Wt—l)”%] + By,ZE [”Wt—l - Wl“%] + ; 0 s

where we use y; < 1 < %”. The desired result follows by taking average over i =

1,...,n on both sides.
O

. Gic2 G¥G?,_
Lemma 5.2 (Variance of z,) Let 02 = =12 + L2128 'y paye

E; [”Zz _MIH%] <o’

Proof. First, using the variance bound of the average of B independent zero-mean
random variables gives

2

A]zEt < B )

1 1
7 2. Vs OV = 5 > Vai(w) V(i)

i€B; i€B;

2

and using the variance bound of B random variables without replacement yields
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2

G?G3n-B
A =F, LGZB: Vi (W) V fi(fij,) — — Z Ve (W) V fi (i, ,) < — 2 -
As a result,
E, [llz -~ MyII3]
2

Z Vi (Wi & )V fil,) - = Z Vi (W) fi(0i0)
16.5,

G30? G?Gin-
=A+A < l0—2+ 1721 = o2,
B B n-1

2

O

Lemma 5.3 Under Assumptions 5.1 and 5.2, if B; < 1, the gradient estimation error
A; can be bounded as
2L2% +8B2GL?
E[A] < (1= BOE[A] + %E [lIwe = weeil13] + 85, LIG3E [6,-1]
t
+Bro? +4G3 LByl oy,
GG?

2
2_ G 0'2 19 n-B
where 0° = —52 + —» =T-

Proof. Since v; is updated using MA, we apply Lemma 4.7 in light of Lemma 5.2,
yielding

E[lvi - VE(w)I3] < (1= B)E[lIvi—1 = VF(w,_1)3] (5.8)
2

+ —LE[IWi—1 = w51 +4B,ElIM; = V(W3] + B7o.

t

Next, we bound E[||M; — VF(w,)|13].

1 n . 1 n 2
IM; = VF(w)Il3 = H— D V& WOV f (@) =~ ) Vei(w)Vf(gi(w))
ni i 2
2 21 N = 2
< GILi- ) Ml = gi(w)ll3.
i=1

From Lemma 5.1, we have
Ee,, 8 — gi(Wol3] < (1= yo)? w1 — gi(Wo)ll3 + v7 o, Vi

Hence
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5.2. SMOOTH FUNCTIONS

2 2
+’yt0'0

1< IS
E[; D e = gi(wnll5 | < (1 y,>2E[; 2wt = g (w3
i=1 i=1

1 n
<(1- %)ZE[; D @llgi(we) = (Wi )13 + 2w -1 = gi(wi ) IB) | +v7og

i=1

< 2E[6;-1] +yiog + B[2G3| w1 — w,||§].

As a result,

E[|IM; = VF(W)|13] < 2G3L3E[6,-1] + G5Liy og + E|2G5 LT |lw,—1 — wt||§].

Plugging the above results into (5.8) we finish the proof.
O

For combining the descent lemma and the above lemmas, we present a result
similar to Lemma 4.10, with differences highlighted in boxes.

Lemma 5.4 Ifn, < 1/L, assume that there exist non-negative sequences A;, B;, Ty, Ay, 84,1 >
0 satisfying:

(*)Ais1 < Ap + Ay =By — 1y

C27]2 ’”
(A1 < (1= Bra)Ar + Clﬁt+1 + BH: I'; +ﬁ?+10'2 + ﬁH]ytZHO' 2 .
Can} )
(©)0r41 < (1 = yp41)6; + LT, +7’,2+10' %,

t+1

2 . 2 . .
If B :t;?,y = min(ge 7. 757).1 = min(7, %, ﬁ), then in order to
guarantee
T-1
1 1
; ?(Bt + EF,) < 62.

the iteration complexity is in the order of

CTLF CY C]C30'” CYo'z\/C_z CYVC]C3C10"2;)
2 ’ ) 4 .

T = O [max
( { € e €t €

: 1 Cy
< — 1 A
where Cy < Ag — min; A; + 2‘/(72A() + ¢, 00-

Proof. Following similar analysis to Lemma 4.10, we have
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1+ 1
Yol _ Cini)die1 < Ay — 1By — Iy

n
A + J Ay + (Crmpy
t+1

ﬂt+1
3
n Con
! z—trz+77t(,3t+10'2+ %2+10'N2 ) +| C11: (01 = 6441)

+\n+ (1=B1) | A+
t+1 +1
L+ 741 C3Cim, (1 + yia1) ,
+Clﬂti(1—%+l)5t+tfﬁrt"'clﬂt(l'*%ﬂ)%ﬂo'z-
Yie+l Yinl

where the terms in the box highlight the difference due to the slight difference in the
recursion of A;. Under similar conditions of B;41,¥++1, 7, and similar analysis, we

get
C -1 Cims-1
Apgr + LAHI + létﬂ <A+ fr A + i 01 +| C11: (61 — 6141)
t+1 t+1 B Yt
1 2 2 772 ’2
- By - 57711“1 + 1 (Brr10” + Yi+10 ) +2C10: Y10’

Since 1,41 < 174, we have
n Cin Nr-1 Cime-1
At+1 + ﬁt_:_lAt-'—l + fyt__'_lté‘t*—l + S At + ;t AI + »y: 6[ +

2 +2C n,ym(r'z.

1 ,
- EmFt + Ut(,Bt+10'2 + 7t2+10' !

— 77 Cin
Define Y;11 = Asq + ,T;A”l + ymt Or+1 +| C174416141 |, we have

2 ) + 2Cl’]t'}’t+10"2-

1 1"
n:B; + Enlrt <Y, =Y +77t(ﬁt+10'2 + 7t2+10'

Hence

T-1 T-

1 ’ 1"
Z(U,B, + EU,F,) <Yo—-A.+ Z (77,,8,+10'2 +2C 11 Yi410 24 n,ytzﬂa' 2) .
=0

1=

Next, let us consider ; =, 8; = 3, ¥: = y. Then we have

~

-1
1 1 C
—T(Bz +5Th) < —; + (,80'2 +2yCio'% + yzo-”z)) )

I
(==}

t

Since 17; = 1,¥: = ¥, B: = f8, in order to ensure the RHS is less than €2, it suffices to

have

Since
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. LB Y
=mmn(—, ——,
7 (L VAC, \8C\C;

).

Thus the order of 7 becomes

B CyLr CyVC, CyVCiGC;
T = O |max

e ' e 7 ye?
( {CyLF CYVCiC30” Cyo?\C;, Cy\CC3Ci0"? })
= O [max R , >
€? e’ et et
where
n Cin 1 V€
CYZA()—A*+—A0+—60+C]T]5()SA()—A*+ Ao + 2———0p.
B Y 24C, V8Cs3

Finally, we state the convergence of SOX.

Theorem 5.1 Under Assumption 5.1 and 5.2, SOX with B = < < ﬁ,y =

402
: €2 n —in(_ L _B By ; _
mm(MG%L%m)Z, SBGIL 0_0),17 = mm(ZLF, NG nm), can find w with T ran
domly sampled from {1, ...,T} so that B [||VT||§ + ||VF(WT)||%] < €2 with an iter-

ation complexity of

T=0

5

2 e 7 e 7 B

{Cpr CyLloy CyLpo? CrLfnag}
max ,
€

2.2 232
_ 2 _ 2 _ 2 2 _ G GiG; n-B
where C; = 8G5L1,Cy = 4Ly +2,C3 = 2G5, 07 = =2 + =2 022,

O(F(Wo) = F. + 7= Ivo = VF(Wo)I3 + L1 £ luo = g(wo)13)-

@ Why it matters

3 2
Theorem 5.1 shows that SOX achieves a complexity dominated by O ( CY?}Z% ),

and Cy =

which is comparable to that of SCMA for finding an e-stationary solution. The
key difference is that the complexity of SOX is scaled by a factor of n/B, since
it must track and estimate n inner functions.

Proof. Assume that e is sufficiently small such that 88°G3L7 < 1. We have estab-
lished the following three inequalities:
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() B [F(wi)] < B[F(w)]+ TE[A] = ZE[IVF(w) 3] - T8 [Iwil13]

212 +1
(B E[Am1] < (1-B)E[A] + FT+n2E [Ivel13] +8BLIG3E [6]

+ B2 +4G5LiBY o,

G27]2

2 2 2
(©)E[641] < (1 - %)E[«»] + "B;

By“oy

E [IIveli3] +

Let us define y = ﬂ, the last inequality becomes
Y =5, q y

Gzn2 4n)720'§
2 E[lIvel13] + :

(E[6i11] < (1 =P)E[6:] + B

Define A; = 2(F(w;) — F(w,)) and B; = ||VF(wt)||2, I, = ||Vt||§ /2, A
IVF(w;) - Vt”%’ 0 = % lu; — g(Wt)”%, and Y; = A; + %At + %5t~
Then the three inequalities satisfy that in Lemma 4.10 with C; = 8G§L%, C,

Glo? GG}, _ 4no}
20212 +1),C3 =2G3, 02 = ZL2 4 L2 =B 602 = 20 72 = AG2L202. Then

B n-1° B
n, B,y satisfy
5 €2 _ . €2 € . €2B € )
= —, =mmn|——, —— | =min ) 5
402 7 8C0? 20" 128G2L2ncy? " 4G2L10g
1 B ¥ )
2LF " \4C, \8C\C3

Thus the order of T becomes

CyLF CY C1C30'" Cya2\/C_2 CYvC1C3C10'/2
T = O [max )

n:min(

2 7 €3 4 ’ et

€ €

=0

{CyLF CyL oy CyLpo? Cﬂ?naé})
max . s
€

2 e 7 e 7 éB
where
Cy
1 VG 1 ,
<2(F(wp) — F(w,)) + vo — VE(wo)||? + —|lap — g(w,
(F(wo) — F(w.)) 2«/c_2” 0 (wo)ll> mn” 0 —8(wo)llz

= 2(F(wo) ~ F(w.)) + O(L]—F)HVO ~ VEWOIE + O (L) 1w ~ g(wo)
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5.2. SMOOTH FUNCTIONS

5.2.2 Multi-block Single-Probe Variance Reduction

In this subsection, we present a second algorithm for solving FCCO with an im-
proved complexity than that of SOX under a stronger condition on g;. We replace
Assumption 5.2 by the following:

Assumption 5.3. There exist Gy, L1, L, > 0 such that

(i) fi : RY — R is G-Lipschitz continuous and Li-smooth;
(ii) Vgi(-, &) : RY — R is mean-squared Lipschitz continuous, i.e.,

E[IVgi(w, &) = Vei(W, O3] < L3lIw = w15, Yw, w';

(iii) F, = miny F(w) >> —c.

The idea is to leverage advanced variance reduction for tracking both the inner
functions and the gradient. A straightforward approach is to change the update of
u; ;-1 by using the STORM estimator and do similarly for the gradient estimator. In
particular, one may change the update for u; ; according to STORM:

u;; =

(1 =y)w -1 +7:8i (Wt;gi,l) + (1 =y (g (Wt§§i,t) — & (Wz—l§§i,t)) i€B

error correction

U r-1 i ¢ B
(5.9)

However, this naive approach does not work as the standard error correction term
marked above only accounts for the randomness in g;(w;; {; ;) but not in the ran-
domness caused by sampling i € B;.

In order to tackle this challenge, we introduce the following estimator termed
multi-block single-probe variance reduction estimator (MSVR):

= {(1 =Y +Yi8i (Wi Gie) + 7 (80 (Wes dir) = 81 (Ween3 i) P € B
’ u; i¢8
(5.10)
The difference from (5.9) lies at the value of y;, which is set as B(nl;—i) + (1 -
vy) with B = |8B;|. The MSVR estimator can track multiple functional mappings
(21,82, »&n), simultaneously, while the number of sampled blocks B; for probing
can be as small as one. It is notable that when B = n, i.e., all blocks are probed at each
iteration, y; = 1 —y; and MSVR reduces to STORM applied to g(w). The additional
factoriny;,ie., a; = B("l;f;) is to account for the randomness in the sampled blocks
and noise in those blocks that are not updated.
With u,, we compute a vanilla gradient estimator by
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1 ,
Z; = B Z Vgi(wﬁgi,z)vfi(ui,t),

ieB;

where B; C [n] is a mini-batch of B indices independent of B;.
Similar to SCST, we apply another STORM estimator to estimate

1 n
My =Egq[u] = 21] Vi (W)Y fiuis),

with an extra vanilla gradient estimator at previous iteration:

_ 1 ,
1= Z Vei(We-154; )V fi(ui —1).

i€eB]
This is computed by the following sequence:
Vi = (1= B)Vio1 + Beze + (1 = Br) (2 — Z—1). (5.11)

Then we use v, to update the model parameter. The full steps are presented in Algo-
rithm 15.

Critical: We use an independent batch $B; because z, depends on u,, which
depends on B;. If we use the same batch B; to compute z,, then

! :
M:=Esg.¢| 5 Z Vgi(Wr;é,-,,)Vﬁ(ui,z)]
i€B;
1 1<
=Es.5/|5 ZB] Vgi(we: 5;,,>Vﬁ-(ﬁi,t)] =~ Zl Vi (W)Y fi(ii ).
i€B; =

where U, independent of B; is defined in (5.12). However, we cannot construct
an unbiased estimator of M, _; since W,_; is not available in the algorithm.

An alternative approach is that we use u,_; and u,_, to compute z, and Z;_1,
respectively, with B;, i.e.,

1 ,
=y Z Vei(we; &l IV fi(wir-1)

i€B;

- 1 ,
T = ) Vai(Weri 4] )V fiio),

i€B,;
and compute v; by

Vi =(1=B)vi+ Bz + (1 = Br)(2; — Z,1).
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5.2. SMOOTH FUNCTIONS

Algorithm 15 MSVR
T T

1: Input: learning rate schedules {7:},_;, {v:},_;, {B: tT: |» starting points Wo, o, Vo
2: Let wi = wg — 170V
3:fort=1,...,Tdo

4: Draw two batches of samples B;, B, C [n]

5: fori € B, do

6: Draw two samples i ¢, &/, ~ Pi

7 Update the inner function value estimators

Wi = (L= ye )it +¥:8i (Wi Gie) + 7 (80 (Wes Gie) — 83 (We-13 Gie)

8: end for

9: Setuw;; =w;,-1,i ¢ B,
10: Compute the vanilla gradient estimator z, = % Yies, V& (Wi & )V fi(ui )
11: Compute the extra vanilla gradient estimator Z,_; = % Yies, V& (We13 & )V fi(ui 1)

12: Update the STORM gradient estimator v, = (1 — B¢)Vs—1 +B:2: + (1 — B¢ ) (s — Zs—1)
13: Update the model w by w41 = Wy — 17,V
14: end for

The converge analysis can be performed similarly with slight modifications.

Convergence Analysis

We first analyze the error recursion of
1 ) 1 n )
8= ~lu = g(Wl3 = = > Il — gi(wo) 3.
n n 4

Similar to the analysis of SOX, we introduce virtual sequences u; ;, Vi :

U= (L=y)w 1 +v:&i (Wes Gie) +v7 (80 (Wes Gie) — &0 (Wem13 i) 5 Vil (5.12)

Lemma 5.5 Consider the u; updates in Algorithm 15. Under Assumption 5.1 and
5.3 (ii), by setting y; = B(”l;_l;) + (1 =), fory, < %, we have:

12nG?2

B
- 2 [llw = wii ]

2B
E[6;] < (1 - T)E[(S,_l] + 7%200%

Proof. Let us consider a fixed i € [n]. With a probability B/n that i € B;, we have
u;; = u;;; otherwise u; ; = u; ;1. Hence,

2 [l — g (W) IB] = = 8 [l — (W3] +(1 = =) B w1 - gi(w) 3]

Ay Az
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Note that the first term A; in the R.H.B. can be bounded similarly as in Lemma 4.12
for using the STORM estimator by building a recursion with |[u; ;—1 — gi(w,_1)||%.
However, there exists the second term due to the randomness of 8B;, which can be
decomposed as

Ar = E[|lw; -1 — gi(We—1) + gi(We—1) — g (W) |I3]
=E[llw—1 — & (W3] +ELllg: (Wi—1) — g: (W) 13]

Az] A22
+E[2(w,r-1 — g:(We—1)) T (gi(Wio1) — gi(Wi))] .

Anz

The first two terms in RHS (A and Aj;) can be easily handled. The difficulty comes
from the third term, which cannot be simply bounded by using Young’s inequality. If
doing so, it will end up with a non-diminishing error of u; ;. To combat this difficulty,
we use the additional factor brought by y; (g; (W;; &!) —gi (W,—1;&!)) in A to cancel
A»ss. This is more clear by the following decomposition of A;.

A =E[II(1 —y) (i -1 — gi(We—1)) +a; (g (W) — gi(Wr 1))

Aqg A

+ Y (8i(Wes $iv) — 8i(We))

A3

+ ¥/ (gi(Wis &it) — 8i(Wi—13€i0) — 8i(Wi) + gi(We1)) 131,

Ay
where a; = y; +vy; — 1. Since E,;[A3] = 0, E,[A 4] = 0, then we have

Ay <E[||A1 + Apl3] +E [llA13 + Awl3] -

In light of the above decomposition, we can bound E[||A}; + A12||%] <E[||A; ||% +
|A12ll3+2A], A12] and E[||A13+A4ll3] < 2E[||A13][5]+2E[ || A14]I5]. The resulting
term E[ZAITIAQ] has a negative sign as A»3. Hence, by carefully choosing y;, we
can cancel both terms. Specifically, we have
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5.2. SMOOTH FUNCTIONS

B B
A1 < = (BUANIB+ A} +24T, A + 2E[I1 A 18] + 2B (11 A1e]13])

+E

=512 =P - om0 B[+ 2| Z ) - w0
+E §2az(1 —¥e)(8i(We) = gi(Wi—1)) " (Wi -1 = gi(wt—l))}

| B
| 2 st ) - w0 |

| B
+E ;27;2 (| Cgi (Wi ie) = 8i(Wem1: Lie) — 8i(Wy) + gi(“’z—l))”i ]

Combining the upper bounds of A; and A;, we have

n—B
n

EA] + A2
n
B B
< E[;(l —yo) 2w m1 — gi (w13 + ;%2 llgi(we) — gi(we—1)I5]
(B
+E ;2%(1 —ye)(gi (W) — gi(We—1)) " (w1 — gi(wt—l))]
B
+B|—2v7 [lgi(wis i) - gi(wt)||§]
B
+E ;2(7{)2 [[Cai (Wes Gie) = gi(Wamis Gie) — gi(we) + gi(Wimi )2 ]

+En

n—B
lJui o1 = gi(we—) 3] + E[Tllgi(wz_O - gi(wt)”%]

,n_

+E

- Bz(ui,t—l —gi(wi—1)) " (gi(Wi—1) — 8i(wt))}~

Since 82¢,(1-7y,) =22 B(("l__liz) (1—=7:) =222 then cross terms will cancel out.

The remaining terms can be merged and handled separately. First,

n—B

B
E ;(1 —yo) o1 — gi(weo) 15 + llw; ;-1 — gi(wt—l)”%]

B
< (1= Zy0Elluii-1 - gi(wi-DIB],

where weuse Z(1-y,)?+28 < 1-28y, 4+ By2 <18y, duetoy, < 1.Second

n—B
llgi(w:-1) —gi(Wr)H%

4n — 4B

B
;af llgi(we) = gi(We)l13] +

B (n-B)? L n-B
n B2(1-y,)? n

n

G%”Wz — W] ||% <

G%”Wt — W] ||%,
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B _(n-B)’ -B -B ( _(n-B)
where we use ;m+"7 < = (B(TW + 1)

due to y; < 1/2. Third,

4(n-B) 4n—4B 43
2 (fe e d) = 2

B
E[;M'f [[Cai(Wes i) = ge(Wamrs Gie) — gi(we) + g (Wi }

B_, 2
< ;2)’ zzE[ |(gi(Wis &ie) — gi(Wi—1s §i,z)“2}
2
B n—B 2 2 8n 4B , 5
< 2l——+1- G — W < G ~1ll5»
n (B(l ) 7t) 2||Wt W 1||2 ||Wt W 1||2
where we use BZ(B +1-y)% < %2(2(”—1_;3) +1)2 < BBy =

2(2n- B)(Zn B) < 8n-4B.
B

Combmmg the above results, we have

B
E[llu;, — gi(wo)ll3] < (1- —%)E[Ilui,t-l - gi(wi—1)I3]
12n
+

B G2||Wt Wi 1||2+ 2'}’10'0

Averaging over i = 1, ..., n concludes the proof. O

Lemma 5.6 Consider the u, updates in Algorithm 15. Suppose that Assumption 5.1
and 5.3 hold. With y,; < % and y; = B(I y 5+ (1 = y;), we have

2G2

E [”“t — U ||%] < 6B7’t 0'0 + 6B%E[5t 1]+ E [”Wt — Wi ||%] .

Proof. Since ||u; —u,— 1||2 Yy g —u;;_1]|2, with a probability B/n we have
u;=1u;;anda probablhty 1 — B/n we have w; ; = u; ;_1, then

E [”“t —W- ||§]

B n
= > E[H = YeWimt + Ve (Wes Gie) + 1 (80 (Wi i) — 8 (Wem1: Gie) IIE]
i=1

IA

B n
— >E [273 llgi (Wes i) = wiema|s + 2072 |lg (Wes Zir) = &0 (W {i,t)”i]
i=1

B < ,
= S E|2vE s (wii i) = wiamaB] +2BG)2GE Iwe = w5
i=1

IA

To the first term on the RHS, we use the Young’s inequality and Lipschitz continuity
of g;:
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5.2. SMOOTH FUNCTIONS

E [”gi (Wt§§i,t) - ui,t—l”i] <3E [”gi (WZ; gi,t) —&i (Wt)Hi]
+38 [llgs (w) = g (Wi-) 13+ 3 Jgi (W) = wroa

2
< 307 +3G3E I, = wi 1B+ 3 [lgs (wi-1) = i3]
Combining the above results, we have

E [”“t —W- ||§]

< 6By?0¢ + 6By E [6,-1] + 2BG3(3y? + (¥)DE [llw: — w,1113] -

With y, < % we have y, < %", which yields (3y? + (y))?) < 53%2. O

Next, we analyze error recursion of A; := ||v; — M; ||%

Lemma 5.7 Consider the v, updates in Algorithm 15 and suppose that Assump-
tion 5.1 and 5.3 hold. Then we have

24G2L?By?
%E[é,-] ]

E[A/] < (1 - B)E[A1] +
472 272
40G4L3n 24G2L3B

+ 4L§G% + E [||W,_1 - w,||§] + 2[3?0'2 + Ty, oy

Glo}  GIG:,_
where 0> = 212 i T B

B n—-1"

Proof. Similar to Lemma 5.2, we have E,[||z, — M;II%] < o2 Since v, = (1 —
Be)Vi—1 + Bz, + (1 = B¢)(z; — Z;—1), applying Lemma 4.11, we have

E; [IIve = Mel3] < (1= Bo) IVect = Moo |13 + B [2l|20 — 71 |12] + 28202
To bound E; [||z; — Z;- ||§], we have

E:[llz; — Z;— ||§]

1
<2E |5 DV gi(Wes & IV £i(wi) = Vgi(wes £ )V fi w3

: ’
i€eB;

1
+2E; 3 Z Vei(we: &{ DV fi(wi-1) = Vgi(Wt—1;({,t)vfi(lli,z—l)”;

ieB]
1
<2GILTE, |2 > s = wiell3| + 223G Iwe = wii

s [°24
i€ B,

1 N 2 22 2
= D i = w3+ 213G Iwe = w1,

i=1

=2G;L1{E,
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where the last inequality follows the Assumption 5.3.
As a result, we have

4G3L3

E[A/] <(1 - B)E[A_1] + E [lla; — w1 |5] +4L5GIE [llw,—1 — w,|[3]

n
+28%0°.

Combining with the result in Lemma 5.6, i.e.,

22
G
E [l —w1l13] < 6By7og + 6By E[Sr1] + ——2E [Iw, = wiall3]
we have
24BG3L7
E[A:] < (1 = B)E[A 1] + ————¥;E[6-1]
40G3L3n 24BG3L3y20?
+|4L3G? + —I"; ! )E (Wi = well3] + 28707 + — 2100 Y%
n
which completes the proof.
O

Lemma 5.8 For the update Wyy1 = W, — Ve, t >0, if n; < 1/(2LE) we have

1
F(Wy1) < F(w,) + G%L%T},é, + 1A = % ||VF(Wt)||% - H (IWie1 — Wt||%~
t
(5.13)

Proof. It follows directly from Lemma 4.9 by noting that

v, = VF(Wt)”% =|lvi = M; + M; - VF(WI)”%
2

<2A 42

Y VWOV i) — Y e (WO Vil (w)
i=1 i=1 2
2 n

1 2
Dl = ge(wo) 3.
i=1

2G3L
<2A +

n

Taking expectation over all randomness on both sides yields the desired result. O

Now we state the convergence theorem for MSVR.

Theorem 5.2 Suppose that Assumption 5.1 and 5.3 hold. Let 8 = 0(%5), v =

. nlL .
mln(s(ioé",l),n = m1n(i,O(Lleﬁz),O(L;oin),O(%)). Then MSVR can

find wo that is sampled randomly from {0, . .., T — 1} satisfying
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E[[Iv- 113+ IVF(wo)ll3] < O(e).

with an iteration complexity of

( {CyLF CyLin CyLiovn CrLfcron})
T = O| max R .

€2 eB° &VYB T €B

> _ Glo}  GiGi(n-B) _ B B
=5 *t B(n-1) Cy = O(F(WO) - Fi+ nlenAO + _”le’léo)‘

¢ Why it matters

Theorem 5.2 indicates that when the initial estimators uy and v have an esti-
mation error in the order of O(€) such that Cy is O (1), MSVR attains a better
complexity than SOX for finding an e-stationary solution under stronger assump-
tions of the mean-Lipschitz continuity of g and Vg. Its complexity is comparable
to that of SCST in Theorem 4.4, up to a factor of n/B.

where o

Proof. We have established the following:

1
() F(Wist) < FW) + G3Lines, + iy = S IVE ORI = 7= Iweer = wil
t

24BG3L;
(ﬁ)E[At] <(1=-B)E[A ]+ TV;E[(St—l]
40G4L%n 24BG2L%0?
+ (403G + —2" | E [lwi-1 — w,|3] + 28702 + ——21-0y2,
B 2B 12nG?
@10 = 1= 228 16,011+ 25207 + T8 [l - wea ).

In order to apply Lemma 4.15, we let A, = F(w,) — F,, B; = ||VF(wt)||%/2, I; =
v,|12/4,8; = L2G25,, 7, = B2t Then the following three inequalities
2 172 n g q
(*)E[Ar1] < E[A; +1:A; + ntgt =By — 1 14]
(DE [Ar1] S E[(1 = Brs1)Ar + C177,,61 + ConyTs + By 0 + 77,07,
(0)E [6_t+1] <E[(1- 77t+1)5t + C377t2Ft + 7_’,2+10'U2]-

2 2
hold with C, = O(n/B),Cy = O(L?n/B + L2),C3 = O(L*n/B), o> = S22 4

GiGUB)) 2 = 0(L202n/B).o"? = O(L22n/B). Following the settings i
Bn—1) )9 = 199/ b), 0" = 101/ b). Following the settings in

Lemma 4.15, we can finish the proof with
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| fi | 8i | F
Lipschitz ~ Weak Lipschitz ~ Weak
continuity convexity continuity convexity

Monotonicity Smoothness | Weak convexity (o)

5560)| G pi 20 | G ) - | GipVd + iG]
" af >0

5531 Gy o1 o gf <0 ‘ G, - L, ‘ G LVd' +pG3

Table 5.1: Conditions of f; and g; to make F(w) = % i1 fi(gi(w)) weakly convex,

where g; : RY - R? and f; : RY — R.

—min(l € eVGC, € VG, )
! L' NGo 3G 8§Cso " 4G5

. 1 € B eB B
o o K P K |
envy2C, enL; [n
= =0 —1,
B 20 ( 20 VB
B
77=min(6n‘/,c_2 ALY )=min(0(6n),0(—)),
o n

oo 2030 o)
2
7 = 0 max CyLF’ CyLli’l’ CyLlo'\/ﬁ’ CYLl(TOn
€2 €’B VB eB

_ _ 1 1
where Cy = F(wo) — Fi + 4c277A0 + 4C37760'

5.3 Non-Smooth Weakly Convex Functions

In this section, we consider non-smooth weakly convex functions, where either the
outer function or the inner function are non-smooth. The group DRO objective (5.2)
falls into this category. Another instance is the two-way partial AUC maximization
problem as discussed in Section 6.4.3.

Assumption 5.4. We assume that

(i) Egerllgi(w:0) - gi(Wll3] < o7
(ii) Eeep, 1G:(W: O3] < G2 for any Gi(w: () € gi(w: ).

The second condition above implies that g; is G»-Lipschitz continuous.
Assumption 5.5. We assume either of the following conditions holds:

(i) f; is p1-weakly convex, G-Lipschitz continuous, and 0 f;(g) > 0Vg; g; is p>-
weakly convex.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

(ii) f; is p1-weakly convex, G-Lipschitz continuous, and 0 f;(g) = 0 or d f;(g) <0
Vg, and g; is Lo-smooth.

We first characterize the conditions on f; and g; to induce weak convexity of F'.

Lemma 5.9 Under Assumption 5.4 and 5.5, the objective function F is p-weakly
convex for some p > 0. If Assumption 5.5(i) holds, then p = G1p,Vd' + plG% and

if Assumption 5.5(ii) holds, then p = G1L,Vd' + png.
Proof. The weak convexity of f; implies that for any v; € 9 f;(g;(W)):

fi(gi (W) 2 fi(gi(W)) + v (8:(W') — gi(W)) — %Ilgi(W’) ~gi(wli3

PlG%
2

> fi(gi(w)) + v/ (8:(W) = gi(W)) — Iw —w13.

Let us first prove the weak convexity under Assumption 5.5(i). Since g; is pa-
weakly convex, we have for any U; € dg;(w)

’ ’ p ’
8i(W) = i(W) = UT (W —w) = Z[|IW —wll31. (5.14)

where 1 denotes a vector of all ones. Since v; > 0, we have

2
p1G; 2
lw — w3

fi(gi (W) 2 fi(gi(W)) +v] (U (W = w) = '%IIW - w51 -

GVd'p, +PlG§

> fi(gi(w)) + (Uivi)) " (W —w) — 3

llw—wli3
Since U;v; € dg;(w)0 f;(g;(w)), the above inequality indicates that f;(g;(W)) is p-
weakly convex, where p = G Vd'p, + png. As aresult, F(w) = % >y fi(gi(w))
is p-weakly convex.

Next, we prove the weak convexity of F under Assumption 5.5(ii). Due to the
smoothness of g(-) we have

L
g(W) —g(W) < Vg(W)T (W= W)+ 2w - w31,
5.15)
’ ’ ’ L2 7112 (
g(W) ~g(W) 2 Vg(W)T(w - W) = Z[lw - w31

If 0f;(gi(w)) > 0, we use the second inequity above and follow the same steps

as before to prove the p-weak convexity of F with p = G Vd'L, + png. If
dfi(gi(w)) <0, we will use the first inequality above to get:
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Algorithm 16 SONX
1: Input: learning rate schedules {7, tT:I’ {7t zT:1’ {B: tT: |> starting points wo, U
2: Wi =Wy
3:fort=1,...,Tdo

4: Draw a batch of samples 8; C [n]
5: fori € B, do
6: Draw two samples ¢;; ~ P;
7 Update the inner function value estimators by
vl w, =1 =y -1 +v:8i (W5 &ie)
V2 Wi = (L= Y)Wt +e8i (Wes Gie) + v (80 (Wes Gie) — 8 (We154ie))
8: end for
9: Setw;; =u; ;1,0 ¢ B,
10: Compute z; = é i 08i(We; &/ )i (i) o check text for discussion
11: Update the model w by w41 = w; — 17,2,
12: end for
P1 2
fi(gi(W) = fi(gi(W) + v/ (g:(W) — gi(W)) - 7”81’(“',) —-gi(Wli3
2
Ly 2 P1G2 2
> fi(gi (W) + v (Vgi(w) " (W —w) + - lw- w31) - Iw—wl3
G\Vd'Ly + p1G?
2 2
> fi(gi(W) + (Vgi(w)vi)) (W —w) — —— lw- w3
This concludes the proof. O

5.3.1 SONX for Non-smooth Inner Functions

Since we do not assume smoothness for the overall objective function, the key differ-
ence from the previous two sections is that we no longer have the descent lemma in
Lemma 4.9, hence cannot leverage the MA or STORM gradient estimators. Conse-
quently, we employ the vanilla gradient estimator z, to update the model parameter
w;+1. The updating steps are summarized in Algorithm 16, referred to as SONX.
The two options correspond to different strategies for updating the inner function
value estimators: v1 uses a coordinate MA estimator, while v2 adopts the MSVR
estimator.

For ease of presentation, we compute the vanilla gradient estimator z, using a
batch B, independent from 35;:

1
2= 5 D 98i(Wid] )9 fi(ui).

. ’
i€ B,
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

However, for SONX-v1 with MA estimator, we can indeed use the same vanilla
gradient estimator z, as in SOX:

1
7 = E Z agi(wt;gf,t)aﬁ(ui,t)~

i€B;

An alternative method for using both options is to compute z; by

1 ’
n= g 2 08w 6D i)
i€B;
Convergence Analysis

Similar to Section 3.1.4, we state the convergence using the Moreau envelope of F:
—mi 1 2
Fi(w) = min F(u) + ﬁllu - wl5.
Recall the definition:
. 1 2
prox ;p(w) = arg min F(u) + 1 o — wl|5.

We first present a result similar to Lemma 3.5 for standard SGD to account for
the bias of z,.

Lemma 5.10 Suppose Assumption 5.4 and 5.5 hold. Let p = p + p2G1 + 2p1G%.

Consider the step update of SONX, we have

n;pG*
2

— n
+ L [2GI||gi<w,> —uiella + pillgi(w) —ui,fn%].
i=1

n
Egr 8 [F1/5(Wee1)] < Fryp(We) + - éHVFl/ﬁ(WI)”%

If f; is further Ly-smooth, then

n;pG?
2

n
Egr 8 [F1/5(Wee1)] < Fryp(we) + - Et”VFI/ﬁ(wt)”%

- n
el Ly
=D [7||gi<w,> — i3+ pillgi (W) - ui,,n%].
i=1
where G* = G%G%.

If u;; = gi(w;), i.e., there is no bias in z, then the terms in the square bracket
are gone, the above lemma reduces to Lemma 3.4.

Proof. Define W, := proxg ;(w;) and E;[-] = E s [-]. First,
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(lze 1] [ > ||agi<wt,4;,t>aﬁ-<ui,,>||§]

i€B

<E [ leagl(wt, I)IIZGZ]<GZG2 G2,
i€B;

Following Lemma 3.4, we have

npG?
2

E; [Fl/p(wz+1)] < Fl/ﬁ(wt) + o (Be[2,1) T (W, —w,) + (5.16)

Next we bound the term E; [z;] T (W, —w, ) on the RHS of (5.16). Note that E, [z,] =
" 08gi(w)df;(u; ;). For a given i € [n], we have

fi(gi(We)) — fi(wiz)
2 000 (@i V) i) = Zlgi () = w1
> afi(w) (gi(W) — i) — p1llgi(W,) — gi(Woll3 = pillgi(we) — w13
> 0 i) (81 W0) ~0s) — 1 G~ will3 = prllgs(w) — w3
20007 |g1(0w0) — w4 i w) T (g = i) — 2 = i

~ G = will3 = il () — w13
000 51 W0) = 1) + 0 w1, D ()T (%1 = )

02Gy
—( +P1G MIw; — Wt”% - pillgi(w;) - Ui,t”%,

where (a) follows from the p|-weak-convexity of f;, (b) follows from that 9 f;(-) > 0

and the weak convexity of g;, (c) is due to ||0 f;(w; ¢)||2 < G1. When df;(-) < 0 and

g; 1s smooth, we can bound similarly with p, in the last inequality replaced by L.
Then rearranging the above inequality and averaging over i yields

1 n
Bylz) (W = we) = 30 fi(w ) T0gi(wi)T (%1 = wo)
i=1

Iy [fl-(gi(wf)) — figi(we)) + fi(gi(we)) = filur,)
i=1

S

ANTES 2 2
+P1G)IWe = well5 + pillgi (W) — w3

i (5.17)
Due to the p-weak convexity of F(w), we have that F(w) + %Ilwt - W||§ is (P — p)-

— 3 (i) (i (W) — i) + (PzTGl

strongly convex. Then [F(wt)+§||w,—w,||%] - [F(Wt)+§||wt—€vt||§ > 5L ||W, -

w,||3. It follows that:
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

L) ) = v | = PG = Fow)
i=1

. O - O O - 5.18
=[P Sl - [Fow+ 2w = wl | - B, -z O

P - N
< (5 -p)llw, - Wz||%

Combining inequality (5.17), (5.16) and (5.18) yields

meG> '
2 2

E/[Fi/p(WirD)] < Fiyp(we) + lIw; = W13

* % Z [fi(gi(wt)) = fi(uiy) = 0 fi(wi )" (gi(We) —uiy)

i=1
+p1llgi(we) — lli,z||§ .
We finish the proof by noting that [|[VFy5(W;)|l2 = pllw; — W,]|2, using
fi(gi(w) = fi(uiy) = 3 fi(ui ) " (gi(We) —wi) < 2Gyl|gi(Ws) —wisll2,
if f; is G1-Lipschitz continuous, or using
filgi(wy)) = fi(wi,) - Bf,-(u,-,,)T(g,-(Wt) -u;;) < %Hgi(wt) - ui,t”%’

if f; is L1-smooth. O

Convergence of SONX-v1

Recall the definition:

1 n
6r=— > I = gi(wo)l3.
i=1
Let us also define: \
, 1
67 =~ > I = gi(wo)lla-
i=1

From Lemma 5.10, the key is to bound ¢, and d;.

Lemma 5.11 Consider the update of SONX-v1, under Assumptions 5.4 and 5.5, with
constant parameters y; =y < 1 and n; = n, we have
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2 2422
B'y 8n GZGIU 2
El[6] <|1-—"] dp+——+4 .
[6:] ( 4n) 0 B2y? 70

By\' , 4nG? 5G 1
E o] < (1—4n)5()+ By +2+/y00.
Proof. From the proof of Lemma 5.1, we have
2
E [”ui,t - gi(w)||, ]

A G2 By2o2
(1_l) [”U,t L= gi(we-nl5| + ] ByzE[”w’” -wilz] + :1 ;

B nG2n? 22
@_lﬁﬂmw MMM”-T%Q[MMH

By:\’ 2mGAG22 . Bylo?
< (1= 22 s s ]+ ;o.

Applying the above inequality recursively for y, = y and n, = 7, we obtain

{Jucs - siowo)2]

b__)mo&mMﬁZ@‘_)

4 2.2
2nGj G By 0'0)

By n
2t 2
8n G2G177 3
(1—4—) |luio - gi(wo)|> + BQ—yz+4Wo,
where we use
t—1 oo 1 1 1
l—a)¥ < 1—a)¥ = = < —,Ya € (0,1).
JZ:;)( @) _jZo( @) 1-1-a)? a-a) " « @ e 1)

Averaging the above inequality over i, we prove the first result in the lemma.
It follows

& [l vl ] < /B s i)

By 8n? G4 2
< (1—5) Hulo gl(WO)HZ W+4y0

4nG3Gn
—_—+

(1 - i;_n) ||ul 0~ gl(W0)||2 27

Averaging the above result, we prove the second result.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Theorem 5.3 (Convergence of SONX-v1 with Lipschitz f;) Consider SONX-v1
and suppose Assumption 5.4 and 5.5 hold and f; is G- Lipschitz continuous. Let
) iterations, we have

(Bsz) ve = v = 0( 62) Then after T = 0(

n=n=
(IVF5(woll3 ] < 0(éd).
Proof. From Lemma 5.10, we have
23T (Fiy3 - Fy;5
sE[ 2 ( 1/p(wt)T 1/5(Wr41)) +npG?
n

T
1 2
E[; Zl IV F15 (w3

+2pp1E[ Z 5,]

1
+4pG1 [
Next, we bound the last two terms. From Lemma 5.11, we have
T 2t 2420
1 1 By 8n GzGlr] 5
R I (R R e
t=1 t=1
T T t
1 1 By 4nG3 5Gin
E|l=) 6| <= 1-—] 6+ ———+2 .
T;’ T;( 4n) 0T g, e
Since Zthl(l —-n)! ;14 for u € (0, 1), we have
1 4n50 SnZG;‘G%n2 5
+4yoy.
BZ)’Z

OWIE

T
=1

t

4ns|, 4nG Gm
+2\/_0'0

T
Z(s
t:l

From Proposition 3.2, we have

T
Z(Fl/p(wt) Fi5(Wei1)) = Fis(Wi) = Fis(Wryr) < F(wyp) = F(w.)

=1
Combining the above results, we have
+ r]ﬁG2

<E
nT

8n2G4G2 2
211 +4’yo‘§.

T
1 2
E[; 21 IV F1p(wo)ll3
4ns,  4nG3iGn 4né
+4pG 0y —2" " 42 +2p +
P I(ByT By \/70'0) ppl(ByT By

Plugging the order of 7, y, we finish the proof
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Theorem 5.4 (Convergence of SONX-v1 with smooth f;) Consider SONX-v1, and

Be3)
na'g ’

suppose Assumption 5.1 and 5.5 hold and f; is Li-smooth. Let n; = n = O(

no’2
Ve =y = 0(;—22), then after T = O(5_3) iterations, we have ]E[||VF1/ﬁ(W,)||%] <
0
0(€).

Proof. By using the result for smooth f; in Lemma 5.10, we have

<E

T
[221—1(F1/ﬁ(wt;_ Fl/p(WHl)) +TIﬁG2
n

T
1 2
E[; Zl IVF1p (w13
1
+p(L1+201)E|= ) 6.
P(Li+2py) [T ; t]
Plugging the bounds for the first and last term in the RHS, we have

2(F(wi) - F))

T
1 2 =2
E T ;1 IVF5(wo)ll3| <E T +1npG
4nsy  8n°G3Gin’ 2
+p0(L1 +2 + +4yoy|.
p( 1 pl)(ByT Bzyz 7/ 0

Plugging the order of 7, y, we finish the proof.

Convergence of SONX-v2

Similar to the first option, we need to bound ¢, §; first.

Lemma 5.12 Under Assumption 5.4, 5.5, by setting y; = y < %, =0y =

BZ’I;_B),) + (1 =), we have:
2t 204 32,,2
By , 24n°G,Gin
E[é;] < (l—Z) 50+4)/O'0+B—27,
, By\' 12 5nG3Gn
E 5] < (1—5) 5o +2y o0t =T

Proof is omitted as it is similar to that of Lemma 5.11 but based on Lemma 5.5.

Theorem 5.5 (Convergence of SONX-v2) Consider SONX-v2, and suppose As-
sumption 5.4, and 5.5 hold.

e If f; is Gi-Lipschitz continuous, by setting n = 0(3—54),7 = 0(;—2), then after
0

noyo

T = 0(%) iterations, we have E[||VF1//3(X,)||§] <€
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Bé?
noyy

o [f f; is further Li-smooth, by settingn = O(

reduces to T = O(32}).

),y = 0(;—22), then the complexity
0

The proof follows similarly to that of Theorem 5.3 and Theorem 5.4 and is left as
an exercise for interested readers.

5.3.2 SONEX for Non-smooth Outer functions

When f; is Lipschitz continuous and non-smooth, the best complexity derived in last
subsection is O (n/(Be®)). Can we further improve the complexity when the inner
functions are smooth? We present a method and its analysis in this section.

Let us make the following assumptions.

Assumption 5.6. We assume that

(i) Ezplllgi(w:0) —gi(w3] < o}
(ii) Erz[IVg:(W;{) = Vgi (W3] < 0
(iii) Bg-z,[IIVg:i (W O3] < G2,

Assumption 5.7. The following conditions hold:

(i) fi is p1-weakly convex, G-Lipschitz continuous,
(ii) g; is Lo-smooth and G,-Lipschitz continuous.

Moreau Envelope Smoothing of the outer function
A classical approach of improving the convergence for non-smooth functions in con-
vex optimization is smoothing, i.e., first smoothing the function and then using an

optimizer for solving the resulting smoothed function. We define the Moreau enve-
lope smoothing of f; as follows:

fi(e) = min 2iu - g|2 + fi(w), (5.19)
ueRd’ 2

where p; > p;. We present a lemma below regarding f;.

Lemma 5.13 If f; is G-Lipschitz continuous and p-weakly convex, then f; is L;-

smooth and G Lipschitz continuous, where L| = %

Proof. Define prox ;5 (g) = argmin,,cga %llu - gllg + f;(u). We have

Vi(g) = p1(g = proxy, ;5 (8))-

Due to the optimality condition of prox 5 (g), we have
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p1(g —proxy, 5 (8)) € 0fi(proxy, ;5 (2)).

Hence, Vfi(g) € 0f; (prox .5 (8)), which implies IV fi(2)|l < G1.The smoothness
of f; follows from Proposition 3.1. O

Relationship with Nesterov Smoothing

When f; is a convex function, its Moreau envelope smoothing is also equivalent to
the well-known Nesterov smoothing. To see this, let f;* denote the convex conjugate
of fi, ie., fi(w) = max, pa u'g — fi(g). Since f; is convex, we have f;(g) =
maxyeq W' g — f*(u), where U = dom(f;") is bounded as [|df;(g)|| < Gi. As a
result,

= . Pl 2 . Pl 2 a Sy
: = min —|ju - + f;(w) = min —|ju— +maxu 'u- f(u).
Fi(g) = min - jju— gll3 + ficw) = min, Sl — g + max uTu — ;7 (u)
By Sion’s minimax theorem, we can switch the min and max. Hence,
fi(g) = max min é||u—g||§+u'Tu—fi*(u’).
wel yeRd 2

By solving the minimization over u and plugging the optimal solution into the ex-
pression, we get

_ 1

T../ Py m2
- - — f - . 5.20
fi(g) max g u fi ') % [lu’{3 (5.20)

This is known as Nesterov smoothing of the function fi(g). When p is sufficiently
large, we can prove that f; is sufficiently close to f;.

Example

Example 5.1. Let us consider the Nesterov smoothing of the hinge function
f(x) = [x]4+ Let py = 1/& for some small € < 1. Then, the Nesterov smooth-
ing of the hinge function is

_ &
f(X)=ugg§Jux—§u2: £ ifo<x<e.
’ 0 o.W.

This is also known as the smoothed hinge function.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Solving the smoothed problem

With a smoothed outer function f;, we consider optimizing the following problem
with some proper value of p;:

min F(w) = 1) fi(gi(w). s21)
i=1

Following Lemma 4.3, F () is smooth with a smoothness parameter Ly =GiLy +
G3L,.

The key concern is how the convergence of solving the above problem translates
to the convergence of solving the original problem (5.1). To address this question,
we introduce a new convergence measure, named approximate e-stationarity.

Definition 5.1 (Approximate e-stationary solution) A point w is an approximate
e-stationary solution to the original problem (5.1), if there exists (uy,...,u,) and
A; € 8 f(u;), Vi such that

| 2

lu; — gi(W)ll2 < O(e), Vi. (5.23)

<e, (5.22)

1 n
- Z Vegi(w)a;
py

We note that this condition is closely related to the KKT condition of the following
equivalent constrained formulation of the original problem (5.1):

1 n
i - 7 (u; 5.24
min = — ; fi(w;) (5.24)
st gi(w)=wu;,Vi. (5.25)

The Lagrangian function of this constrained formulation is given by
1 n n
F(w.ud) =~ Zl filw) + Zla,.T(g,-(w) ~w).
1= =
A solution (w, u, A) satisfies the KKT condition, if

1 n
= > Veiw); =0, 4 € 9 fi(w;)
n i=1

u; = g;(w).

Hence, an approximate e-stationary solution satisfies the KKT condition approxi-
mately when € < 1.

If f; is L1-smooth, an approximate e-stationary solution is also a standard O (¢)-
stationary solution. To see this, we have

219



Algorithm 17 SONEX
1: Input: learning rate schedules {7,
2 Wy = Wo — 170V0
3:fort=1,...,Tdo

T T T . : :
=1» \¥t},—1» {Br},_,; starting points wo, Vo, Ug

4: Draw a batch of samples 8; C [n]
5: fori € B, do
6: Draw two samples ¢;; ~ P;
7 Update the inner function value estimators by
vl w, =1 =y -1 +v:8i (W5 &ie)
V2 Wi = (1= )Wt +e8i (Wes Gie) + v (80 (Wes &ie) — 81 (Wem13 &ie))
8: end for
9: Setw;; =u; ;1,0 ¢ B; B
10: Compute the vanilla gradient estimator z, = % Yies; V8i(Wi; &/ )V fi(uwiy)

11: Update the MA gradient estimator v, = (1 — B;)V,—1 + B:Z;
12: Update the model w by w;; = w; — 17, v,
13: end for

H% 7 ViV igi (W)
i=1

2

1 v 1 & L&
HZ ; V&i(W)V fi(gi(W)) = — ; Vgi(W)V fi(w) + ; Vg (W)V fi (u;)

2

IA

] n
= > GaLiflui = gi(W)ll2 + € < O(e).
n i=1

The following proposition states that an e-stationary solution to the smoothed
problem (5.21) is an approximate e-stationary solution to the original problem when
p1 is sufficiently large.

Proposition 5.1 Let w be an e-stationary solution to (5.21), when p| = 1/€, then w
is also an approximate €-stationary solution to (5.1).

Proof. Given that w be an e-stationary solution to (5.21), we have

<e€.

H% > ViV igi(w)
i=1

2

We define u; = prox 5 (g:(w)) = argminy f;(u) + %Hu - gi(w)llg and A; =
Vfi(gi(w)). Since V f;(gi(W)) € 8 fi(prox, 5 (g:(W))) = 8 fi(u;). As a result, we
have A; € f;(u;) and H% " Vgl-(w)/ll-”2 <e.

Due to the optimality condition of u;, we have g;(w) —u; € d f;(u;)/p;. Since f;
is G|-Lipschitz continuous and p; > 1/€, hence, ||ju; — g;(W)||2 < O(e). |
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Next, we discuss algorithms and complexities for solving the smoothed problem
when p; = 1/e. Since both inner and outer functions of the smoothed problem are
smooth, we can leverage the moving average gradient estimators. We present detailed
steps for solving the smoothed problem in Algorithm 17, which is referred to as
SONEX.

A step in implementing SONEX for solving the smoothed problem (5.21) is the
calculation of V f;(u; ;), which amounts to solving a proximal mapping of f;, i.e.,

_ . Pl 2
proxy, 5 (w;,) = arg [min, 7 o=l + fi(u).

In fact, V f; (w; ;) = p1(u;; — prox s, 5 (ui 1))

Convergence of SONEX-vl

Finally, we present the complexity of SONEX-v1 for finding an e-stationary solution
to the smoothed problem when p; = 1/e.

Corollary 5.1 (Convergence of SONEX-v1) Under Assumptions 5.6 and 5.7, if we
n 62 64
set wo such that LE[ZL, w0 — gi(Wo)ll3] < O(e), B = O(5),y = 0(5z)n =

min(e, 0(Be), 0(B2)), 5y = 1/e > pi, then SONEX-vI finds an approximate

n

2
no
Be(7) )

O (e)-stationary solution to the original problem (5.1) with a complexity of O(

Proof. The proof can be completed by using the convergence result of SOX with
noting the order of L; = O(p1) = O(1/e) and Ly = O(L1) = O(1/e). i

Convergence of SONEX-v2

SONEX-v2 is a combination of SOX and MSVR, i.e., with u; sequence from MSVR
and v; from SOX.

Theorem 5.6 (Convergence of SONEX-v2) Under Assumptions 5.6 and 5.7, if
2
we set uy such that %E[Z?:l |la; o — gi(wo)||§] < 0(€¥)oy), B = O(%),y =
0(2—22),77 = min(O(€), O(Be), O(B‘nﬁe )) and p; % > p1, then SONEX-v2 finds
0

an approximate €-stationary solution to the original problem (5.1) with a complexity

of ,
1 o° noy
T = O | max 35 s s
e’ € Be
G*0? G?*G%*(n-B
where 02 = -2 + ‘B(Zn_l))

Proof. The proof is similar to that of Theorem 4.3 except that the ¢ inequality in
Lemma4.10is replaced by the following for using MSVR estimators (see Lemma 5.5):

221



(©) E[8m] <E[(1-9)d, + C’Ty + 720",
2
where 37=%,0"2 = 2"]_;r‘),C3 =0(n/B)
We only highlight the changes below and leave details as an exercise. First, the
condition on 77 in Lemma 4.10 is changed to

n<0

L B |7
L’\/C_‘Z’ CiCs

The settings on 3, ¥ remain the same as 8 = 0(5—22), y = 0(%). The iteration
complexity becomes:

_ CyLrp CyVCy CyvCiCs
T = O [max s >
e e e
( {CTLF CYO'ZVCQ CTVC3C10'/})
O [max s .

€? et ’ el

and Cy is changed to

n C]T] 1 VC]
CY:Ao—A*+—A0+f50SA()—A*+O(—)A0+O( 00
B Y v

2 VC3y

1 C10")

=A)g—A.+O0|—|Ag+ O 90.
° (ch) ° (V8C36 °

Then, as in the proof of Theorem 5.1, we substitute C; = O(L?), C, = O(L%),

_ 2 _ Gio? G?>G2%(n-B)
Cs; = O(n/B), o° = ]BZ + IB(Zn—l)

complexity expression and Cy, and obtain

,and ¢’ = O(no}/B) into the above

CyLr CyLpo? CynL?c
T = O | max YF,YFO—,Y 170 >
€? et Be3

_ 1 Z%O’O

Cy <O(F(wy)-F.)+0|— Ao+ O 00.

Lrp €

We finish the proof by noting that L; = O(1/e) and Ly = O(1/€) and Cy = O(1)

if 99 < 0(63/0'0).
a

5.4 Convex inner and outer functions

In Chapter 3, we discussed standard stochastic convex optimization and estab-
lished the iteration complexities of various algorithms. For general convex problems,
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Algorithm 18 ALEXR
T T

1: Input: learning rate schedules {7, },_,, {a:},_,, 6 € [0, 1]; starting points wo, y1 € Y X
Lo X yn,

2: Letw; = wy

3: fort=1,...,T - 1do

4: Sample a batch 8; c {1,...,n}, |8;|=B

for eachi € S; do
Draw a sample &; ¢, {,.’J ~ P;
Compute &;.; = gi (We3 4ie) + 0(8i(Wes Gie) — 86 (We—154it))
Update y; r+1 = arg maxy, ey, {y?gi,t - f7(3i) = &= Dy, i yi,t)}

9: end for

10: Foreachi ¢ By, yir+1 = Vit

® D9

11: Compute the vanilla gradient estimator z, = % Yies, [08i(Wy; {i”t)]Tyf,H]
12: Update W4 = arg miny, {z;rw+ Tl;, lw — w, ||§ + r(w)}
13: end for

stochastic gradient descent (SGD) achieves a complexity of O(1/€%), while for u-
strongly convex problems, its complexity improves to O(1/(ue)). These analyses
rely on the assumption of unbiased stochastic gradient estimators, which does not
hold for convex compositional optimization problems.

In this section, we introduce stochastic algorithms for a family of convex FCCO
problems, where both the inner and outer functions are convex. We establish that
these algorithms attain the same order of iteration complexities as SGD in standard
stochastic convex optimization. In particular, let us consider a regularized convex
FCCO:

. 1 ¢
min F(W) := = " fi(gi(W) +r(w), (5.26)
weRd n i~

where g;(w) = E;p, [gi(W; {)], the outer and inner functions satisfy the following
assumption.

Assumption 5.8. The following conditions hold:

(i) f; is convex, G1-Lipschitz continuous, and 9 f;(-) > 0.
(ii) gi is convex and G,-Lipschitz continuous.
(iii) r is u-strongly convex for some yu > 0.

Group DRO (5.2) could satisfy the above assumption when the individual loss
function is convex and Lipschitz with respect to the model parameter. Two-way par-
tial AUC maximization considered in Section 6.4.3 is another example satisfying the
above assumption when the loss function is convex and Lipschitz continuous.

Let f;* denote the convex conjugate of f;. We can write f;(g;(W)) as

fi(gi(w)) = max (y; gi(w) = f (yi)s
vieY;
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where Y; = dom(f;"). Since 0 < df;() and ||df;(-)|| < G1, hence Y; is a compact
set following from Lemma 1.8.
Then, we can convert (5.26) into an equivalent minimax optimization problem:

min max— 3 (57 g:(W) = £; (v)) + r(w), (527)
=1

weRd yeY n ‘

wherey = (y1,...,yn)", Y = Y X ---Y,. Thus, the above problem is convex-
concave problem under Assumption 5.8.

We introduce a method to optimize the above minimax problem. However, there
are several unique challenges: (i) updating all coordinates of y is difficult because it is
computationally prohibitive to traverse all data points i = 1, ..., n at each iteration;
(ii) we only have access to stochastic evaluations of the functions g;(w;{), which
limits our ability to update both the corresponding coordinate of y and the parameter
w.

5.4.1 The ALEXR Algorithm

To present the algorithm, we assume a strongly convex prox-function ¢; for the i-th
coordinate and impose the following conditions.

Assumption 5.9. Suppose y; is differentiable and obeys the following conditions

(i) i is py-strongly convex with respect to ||-||2, i.e., i (y) = i (y")+Vy; ()T (y—
’ Hy w12
)+ 5y =yl
(ii) Dg:(y,y") 2 pDy,(y,y’) for some p > 0.
(iii) The following proximal mapping can be easily computed:

Yi,r+1 = arg max {yiTg'i,z - fi i) = isz,— (yi,yi,t)} :
€Y [e7
A meta-algorithm, termed ALEXR, is presented in Algorithm 18. ALEXR em-
ploys stochastic block-coordinate proximal mirror ascent to update y, using the prox-
function y; for the i-th coordinate, and applies stochastic proximal gradient descent
to update w. Below, we consider different choices of the prox-functions ; and the
corresponding updates for y; r41.

ALEXR-v1 for smooth f;: using ; = f;

When f; is L-smooth, its convex conjugate f;" is 1/L;-strongly convex. We can use
i = f; to define a Bregman divergence Dy, (y,y") = Dz (y,)’).
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Critical: In this case, Assumption 5.9 (i) and (ii) hold with u, = 1/Ly, and
p=1

Let us consider the update of y; ;.1, which becomes:

. . 1 .
Yi,r+1 = arg max {)’,-Tgi,t =1 i) - _Df-*(yi’yi,t)} Vi€ B;. (5.28)
Yi€Y: a; !

i

The following lemma provides an efficient way to compute y; ;+1, which also builds
the connection to the sequence of u; ; in SOX and MSVR.

Lemma 5.14 Let w; ;1 € 0f(yi,s). Then fori € B, we have y; 41 = V fi(u; ),

_ 1 [ 7
where u; s = mum_l + Té,gi»f'

Proof. For the problem (5.28), we have

T~ * l

Vi &ie — 1 (yi) — _Dfi* (Yi»yise)
@y
~ * 1 * * *
=¥, & = [7(yi) - a—(fi ) =08 i) T (i = yiu) = f7 (i)
t
T(~ 1 * 1 * l * T 1 *
=y; @in+ —0f (i) —(L+ )7 (i) = —0f (Vi) Yie + — 1 Yine)-
Qy ay (077 077

Hence y; 41 € argmaxyey, ] (1558 + 12707 (Vi) = f7(vi). If we define
5 1
Ui = Tp5-8ie + Tog 07 (Vi) we have

Fluig) = max yluie = f7 (i) = Vi Wio = f7 Gisn).

IE L
Hence, u; ; € arg max, yl.THlu — fi(u) and therefore y; ;41 = Vfi(u; ;). ]

If f; is a Legendre function such that V fi’l = V /7 (see Lemma 1.8). Then, we can
derive the following equivalent update of u sequence such that y; , = Vfi(u; ;_1).

1 a ~ s
w, = {Tarui,t—l T Tiq, 8its ifi € B, . (5.29)
W -1 O0.W.
When 6 = 0, the equivalent u update (5.64) becomes:
a o .
Wi = (1= et g (Wi G) Vi € By (5.30)

This is the same as the moving average estimator in SOX with y, = @, /(1 + a;).
Using the equivalent u sequence, the stochastic gradient estimator becomes z; =
% Yies, [0gi(xs; {l.”t)]TVﬁ(u,-,,). If the regularizer r is not present, the update of
the model parameter becomes W, = W; — 1;Z;. In this case, ALEXR with 6 = 0 is
the same as SOX with 8; = 1. We will prove its convergence for convex and strongly
convex regularizer r.
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When 6 > 0, the equivalent u update (5.64) becomes:

a a ba
u,=(1- 1+tat)ui,t71 + 1+zatgi(wt;§i,t)+ 1+;I (8i(Wi: &r) = gi(Wi-1:41)).
(5.31)
This is similar to the MSVR estimator with y; = lf{tz, and y, = ﬁ‘;’ . However,

the key difference is that y; in MSVR is larger than 1, while it is smaller than 1 in
ALEXR for convex problems. In practice, setting y; < 1 is a better choice. We will
prove a better convergence of ALEXR with 6 € (0, 1) for a strongly convex r.

ALEXR-v2 for non-smooth f;: using a quadratic function ; (-)

When f; is non-smooth, we cannot use f;* as the prox function. In this case, we will
use a smooth and strongly convex ;. a quadratic function ;(y) = %H y||%.

Critical: In this case, Assumption 5.9 (i) holds with uy = 1, and Assump-
tion 5.9 (ii) holds with p = 0.

Example

Example 5.2. For the update of y; 111, consider the example f;(-) = [ -4, as
used in GDRO and TPAUC maximization. In this case, the conjugate f;'(y)

is the indicator function of the interval [0, 1]. Consequently, y; ;41 can be
computed as:

_ 1 . )
Yi+l = arg max {y?gi,t -—(i- yi,t)2} =Ijo,11(Vi,r — @:8ir), Vi € By,
yi€[0,1] 2a,

where 1| 1](+) projects the input into the range of [0, 1].

5.4.2 Technical Lemmas

To facilitate the analysis, we define (W, y.) as the saddle point to the minimax prob-
lem and
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1< \
F(W.y) = — 3 v78i(W) = f; (30) +r(w).
i=1
8= @ Bn).

_ _ . 1 .
Vir+1 = arg max {y?gi,z =17 (yi) = —Dy, (yi,yi,z)} ,Vi € [n]
i€Y; (073

Yi€Ji

n
Dy(y,¥) =) Dy, (vir 7).

i=1

Note that y, is a virtual sequence, which is updated for all coordinates from y,
making it independent of B;.
We make the following assumption regarding the stochastic estimators.

Assumption 5.10. We assume that

(i) Beerlllgiw:0) —gi(wli3] < 0.
(i) Beop [IVgi(w:0) = Vei(WI3] < o3
e n 2
(iii) Ej-u, [||y,~Vg,-(w) - % 2 y,-Vgi(w)”z] < 62 for any fixed y, where U, de-
notes a uniform distribution.

Lemma 5.15 The following holds for any w,y € Y after the t-th iteration of Algo-
rithm 18.

F(wt+1’ Y) - F(W, yt+1) (532)

2, 21,

1 1 1
< —w- Wr||% - (2_77t + 5) W — Wi ||§ = — |Wes1 — Wz||§
+ A (y) + B (y) + Ci (w),

where
1 1 Jel _ 1 _
Ai(Y) = —Dy(y.¥)) = (— + =)Dy (¥, ¥1+1) = — Dy V41, ¥1)
nay na; n nay

1< _ ]
Bi(¥) =~ > (8i(Wiat) = 8i) (i = Fise)
i=1

CZ(W) = %Z(&'(WHI) - gi(w))T)_’i,Hl - Z;I—(WHI - W)~

i=1

Proof. Following Lemma 3.10, for all i € [n] the dual update rule implies that for
any y € Y it holds

8L i = Viue) + [ Giert) = f7 (i)
1 1 _ 1 _

< —Dy, i, yip) = (— +P)D¢,» Vi» Vire1) — —Dy, (Vire+15 Vi)
077 7 (o7

Averaging this inequality overi = 1,...,n.

227



L, - v, 1<,
n ;gi,t(yi,t = Vies1) + n lzzlfl (Fir+1) — 0 l:Zlfl (i) (5.33)

1 1 _ 1 _
< —Dy(y.¥0) = (— + 2Dy (y.5101) = — Dy (Fra1.¥0)-
nay nay n nay
According to Lemma 3.6, the primal update rule implies that
2/ (Wie1 = W) +7(Weg1) — (W) (5.34)

1 u 1

2 2 2

llw— Wt||2 - (_Zr] + 5) [lw — Wt+l||2 - — W1 - Wt”z .
t

S _
2n, 2n,

By the definition of F(w,y), we have

F(Wei1,y) = F(W, ¥r41)
1< 1< 1 ¢
= ; i 8i(Wis1) — - ; F i) +r(Wesr) - - ; Vi 10181 (W)
1 n
= 3 Giaen) = r(W)
i=1
1< . - I o, v,
= Z 8i(Wrs1) (Vi = Viee1) + - Z 17 Gige1) = p Z 1)
i=1 i=1 i=1
1 n
= (@ (Wert) = 8i(W) T w1 +7(Wist) = r(W).
nia
Combining the equation above with (5.34) and (5.33), we can finish the proof. O

Next, we bound the three terms A; (y), B;(y), C;(w) separately.

Lemma 5.16 Let 7, = 1/a,. Fory that possibly depends on all randomness in the
algorithm and any Ao > 0, we have

T T+ _ T, _
BA/(W] =B | 2Du(y.¥) = T LDy (v.5em) = DGy | (535)

n+p(1-2) T +p | = _
<E|—— "Dy (y.¥0) - tB Dy(¥,¥s1) | = —E[Dy (Fr41,¥1)]
n
Ao(7: + p) . .
+B|——2(Dy(y.9:) = Dy (¥, §1+1))
n

L =B+
2,u¢,/lonB

D UIVei i) = Vi ol
i=1 |

where the sequence {§,}:,¥, € Y is virtual. In addition, fory., we have
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T T+ _ T _
E[A;(y.)] =E [;tD.p(Y*,Yt) - tTpD¢(y*,Yz+1) - ;tD«p(Ytﬂ,Yt)] (5.36)

w+p(1-7) Ttp T ]
<8 Dy vy = LDy (v v | - SB[y Gy

B

Proof.

T T + _ T; _
;’Dw(y, ye) - tTpr(y, Vis1) — ;tsz(YHI,Yt) (5.37)

Cn+p(1-2)
- B

T, +p T; +p -
+ ZTDlﬂ(y’ Ve+l) — ZTDw(y’ Yis1) +

T; +p T, _
Dy(y.y:) = ——=—Dy(y, Y1) — ;’D¢(y”1,yz)

B
(B—n)(1: +p)
—F——FD .
B v(¥.y1)
For bounding the last three terms, we consider the following:

B —n)
nB

1 1 _ (
=Dy, (yi» Yies1) = ;Dd/,— i Vire1) + Dy, (yi»yiz) (5.38)

B

1
=3 Wi o) =i Yiger) = Vi i) T (Vi = Yises1))

1
- (Wi (i) =i Gige1) = Vi Fise1) " (i = Fiee1))
(B—n)
nB

1
= [; (‘//i()_’i,tﬂ) - %'ﬁi()’i,m) +

+

(Wi(yi) —wi(yie) = Vi (i) " (i — i)

n—

B
B l//i(yi,z))]

+ Vi (i) Vi

1 1 B _ (B-n)
Vi Yier1)  Vinr — =i (Fige1)  Vigr1 +
B n B

B
Vi (yie)) T yi -

1 n - n-
+ = (=S Vi (Vi) + Vi (i) +
n B B

#

Taking expectation over B; for the first two terms in the brackets of the above bound
will give zeros. This is because that both y; ;41 and y; ; are independent of B; such
that

n—

B
Wi (Vit)s

B
Eg, [Wi(yie1)] = ;‘/’i(yi,ml) +—

n—B
Vi (i) Vi

B _ _
Eg, [Vi(yis1)  Yige1] = ;Vlﬂi(yz',m)Tyz‘,m +—

n—

B
Vb (i)
n

B
Eg, [V¢i (i) = ;Vlﬁi(yi,m) +

Next, we bound the § term. When y = y., expectation of § is also zero which
proves (5.36).
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When y is possibly random, let us apply Lemma 3.13 to the update $; 41 =
arg min, —Aztv + 20Dy, (v, $i,1), Vi (Ap to be determined), where

n—

B
3 Vi (vir)

Air = —%V¢i(yi,z+1) + Vi (i) +
is a martingale sequence due to
B, [(Wi 1) = VO] = = (Wi Giasn) = Vi (i),
We have

E[#] <E

A . . 1 2
FO(D% (Vi i) = Dy, (,Vi,)’i,m))] + WE [”Ai,tnz] .
Note that Eg, [(V¢; (yi.i+1) — Vi (vi )] = 2(V; (Fie1) — Vi (viye)) such that

2
2

By, ||l | = B,
n? 2 i} 2
5 Vi Yiaer) = Vi eo)|s = (VWi Gret) = Vi (i)

% Vi (Fira1) — Vl//i(yi,t)ni —|(Vei i 1) - Vd’i(yi,z))”i .

(Vi Fiee1) = Vi (i) — %(V%()’i,m) = Vi (vir)

Eg,

IA

IA

Thus, we have

E[f] <E

Ao R N
7(D¢/,- (i i) = Dy, (yis yi,z+l))]

n—-B
E

+ 21y AonB [”V%(ii,m) - Vlﬁi(yi,t)”;] .

Averaging (5.38) multiplied by 7; + p and combining (5.37) finishes the proof. O

Lemma 5.17 Suppose ; is p1y-strongly convex. For any Az, A3, 44,45 > 0 and y
that possibly depends on all randomness in the algorithm, we have

l n
BIBi(y)] = — > E(8i(Weet) = &) (i = ient) SE[La —61] (5.39)
i=1

, G+ UOBIDy Gyl | G2E||Wes1 — Wl . G20E ||w; — w,_1 I3

Hyh 243 244
(1+3.50+3.50%) 020,  (1+60)0f 003ls
+ + +
My 2y 2y
1+0 ~ N 0 . .
+——E[Dy(¥,¥:) = Dy (¥, ¥r+1)] + —E[Dy (y,¥:) — Dy (¥, ¥i+1)],
I’l/lz I’l/lj
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where I'; = % Z:’:I(g,-(w,) —gi(wWwe )" (yi — yir) and §;,§; are some virtual se-
quences. In addition, we have

1 S * *
E[B;(y.)] = - ZE(gi(Wm) = &i0)  (Vie — Yirr1) < B[, —6I7]  (5.40)
i1

+ (/13 +/149)E[Dw()_’t+l,Yt)] + GﬁE ||Wl+l - Wt“% + G%QE ||Wt — Wi ||%
My 2/13 2/14
(1+3.50+3.560%) 0,

+ b
Hy

where T} == 1 57 (gi(W;) = gi(Wi—1)) T (Vi = Virt)-
Proof. Since
&it = 8i(We3 Lit) +0(8i(We Live) — 8i(We-154it)),

we have

1 n
= D (81 Wia1) = 80T (i = Fias) (5.41)
i=1

_1+0
- n

Z(gi(wt) —8i(Weis Gie) " (i = Fisee1)
im1

I

0 n
D) )G =)

I

13 i (Wean) = g (W) + 68 (We—1) = g (W) (vt = Fiert)
n i=1

I

Define
. 1 .
Vil = Mgifé?;({UT((H@)gi(Wz)—Hgi(Wz—l))—fi (U)_Q_Dwi(l}’yi,l)}v\/l € [n].
i t

This update differs from that of y; ,,; in that it uses full gradients instead of stochastic
gradients. We decompose the I term in (5.41) as
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”QZ@(W» 8(Wi )T Ot = Fiann)

- 10 Z(gl(wt) 80 (Wi &) (ot = Fier)

I

1+92(g1(wt) 8i(Wii i) T yi— 1+92(&(W:) 8i(Wii i) Vit -

I I3
Taking expectation over ¢; ;, Vi will make E, [I3] = 0. Below, we will bound I; and
L.

[ <— Z “gz(wz) 8i(We i, t)||2 Hyz t+1 = Vi, I+1||2

Since Dy, (yi, yi,r) is py-strongly convex, Lemma 3.8 implies that

1¥ire1 = Viestll2

< 2L ((1+0) lgi(w) = gi(wes i)l + 0 s (wi1) = giwe1: 20,
Hy

Hence
(1 + 9)0/,

E& L] <
n,u,/,

VB |1+ 1.50) [Jgi (wo) = gi (Wi £ +0.56 [lgr(wi-1) = gr(wi-1: 0|

i=1

(1+0)(1+20)07a;
< .
Hy

5.42)
Next, let us handle I,. Let us define an auxiliary sequence {¥; };>1,
- . T 1 -
Vw1 = argmin{(g; (w3 i) — 8:(We)) v+ —Dy, (v, 5i1)},
veY; A

where A > 0. Lemma 3.13 implies that

/120’3
2,uw

1 3 N
(gi(We) = gi(Wes &ig)) Tyi < A—ZE[D% (Vi Fist) = Dy, (vis Fise1)] +

Averaging over i = 1,...,n and multiplying (1 + 6) yields a bound of I:
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1+6 (1+0) 107
E[I,] <« —E[D y;)— D ¥ +— .
2] < ) [Dy (¥, ¥:) = Dy (¥, Vr+1)] 2
As aresult, the I term in (5.41) can be bounded as
146 y y (1+0)0? (1+6)(1+20)02a;
E[l] £ ——E[Dy(y,§) = Dy (¥, Frs1)] + 2+ et
ny 2py Hy
(5.43)
Similarly, the II term in (5.41) can be bounded as
e y } 0ds07  0(0.5+1.50)03a;
E[I] < —E[Dy(y,¥:) = Dy(y,¥r+1)] + + . (544
nds 2y Ky

where
Vir+1 = arg Helgl_{(gi(wt—l) —8i(We—154i4)) v+ AsDy, (v, ¥i )}, Vi

Next, let us bound III. Recall I'; = %Z;’zl(gi(wt) —gi(we—1)) " (y; — yir). For
any A3, A4 > 0, Il can be rewritten as

1 v _
Il =Ty — 61 + - Z(&'(Wm) =8 (W) (Vir+1 = Visee1)
i=1

- g Z(&'(Wr) = 8i(Wim1)) " (Viye = Vie1)
i1

2 = 2
G% IWis1 — Wt”z + A3 |lyee1 — Yt+1||2

< TIyy — 6T
Sl rt 215 n
G20 Wi —wiill2 A40llys = Vet
2 t t-1llp 40 |ly: Yt+1||2
+ + .
2/14 2n

- e ‘ o

Note that y; ;+1 = J;,41 if i € B, and y; 141 = yi,, otherwise. Then, |ly;+1 — ¥e+1l5 <
o 2

ly: — ¥:+11l5 such that

G% ”Wt+1 - Wt”% G%G ||Wz - W1 ||%
R * 2
. (43 +/149)D¢/(}_’t+1»Yz)_
fyn

M < Ty — 6T, +

(5.45)

Combining (5.43), (5.45), (5.44), we have
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E[B;(y)] < E[I}41 - 617]

1+6 - - 0 . .
+ n_/le[D“’(y’ ¥0) = Dy (¥, 5] + @E[Dw(y, Y1) = Dy (¥, ¥141)]
, B+ UOBIDY Frt, )] GRE Wi = wWilly  GIOE [Iwi = Wil
My 213 224
L ax 0) 207 . o s L (1+3.56+ 3.50%) 05y
24ty 2ty Hy

O

Lemma 5.18 When 0 = O, for any A2,44 > 0 and y that possibly depends on all
randomness in the algorithm, we have

1 & ~ . G2E [IWes1 — will3]
B[B,(y)] = — > B(gi(Wir1) = &) (v = Fiin1) < ———— 2+ 40,6
e 44
1 _ ~ /120'3 Uga/,
+ —E[Dy(y,¥:) = Dy (y, V)] + + : (5.46)
nA, 2y Hy

Proof. For ALEXR with 8 = 0, we have g; ; = gi(W;; {;.,). Then, for any 14 > 0 we
have

1< 3 B} 1\ i}
- Z E(gi(We1) = 80) T (yi = Vije1) = — Z E [(gi(Wes1) — 8 (We) T (i = Fiee1) ]
e i
1 n
= > B (8w = 8i(Wei L) T (i = Fian)] - (5.47)
i=1
We bound the first term on the RHS by Young’s inequality:
1 ¢ _
" Z: E [(8i(Wrs1) = 8i(W:)T (i = Fis1) ]
i=

1 v G%||Wt+l - Wt”% 2 G%||Wt+l - WIH%
< - E ——= + ||y — Vi <2 2 14G2
n L ( A 4||Yt yt,t+1“2 4 1

The second term in (5.47) can be bounded similarly as (5.43) by:

1 n
= D E[(si(w) = gi(We i) T (i = Fien)]
i=1

1 . .
< —E[Dy(y,¥) — Dy (y,¥er1)] +
n/lz

Combining the above inequalities together, we have
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1 <& B _ G3E [lw; I—V"t”2
;;E(&'(Wm) ~ &) (i = Fiue1) < —2 [ 4;4 2 +424G3

2 2
/120'0 . loryedt

2y gy

1 5 _
+—E[Dy(y,¥:) — Dy (y,¥ir1)] +
n/lz

Lemma 5.19 If g; is Ly-smooth and n < 2(;1?, then

E[Ci(w.)] =E

i=1

1 n

- Z(gi(wtﬂ) - gi(w*))Tyi,Hl - th (Wt+1 - W*)l (5.48)
n

2 1 2

<noT+ 4_77 [IWeer = well5 .

If g; is Go-Lipschitz continuous, then

E[Ci(w.)] =E

1 n
- Z(gi(wm) = &i(W.) Fige1 — 2] (W1 — W*)] (5.49)
=1

1
< (e +4GiG3) + ™ [[Weat = well3 -

2.2 22
2 _ Gio; G{G;(n-B)
where 0° = —5 Bon=T)

Proof. We define A; = 5 S, [08i(We; £l ) yiest — 5 20 [08i (W1 T Fi 1
Similar to Lemma 5.2, we have E, [||A, ||§] < 2. To proceed, we have

1 n
= D (81 We1) = i (W) Tt = 2 (Weat = W)
i=1

1 v _ 1 v _
= Z(gi(wm) —8i(W)) i1 + - Z(gi(wt) —&i(W.)) Pi e
im1 =

1 n
+ = > ([9g: (W) Tt + A)T(We = Wiaa).
n i=1

Since g; is convex and Y; c R as 4 f; = 0, we have

1 ¢ 1<

- Z(&'(Wr) —8i(W.) Jism < - Z[Vgi(wt)]T(wt - W) Fise
i=1

i=1

Adding the above two inequalities, we have
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1 n
- D (& (Wia1) = 8i (W) Fi a1 = 2] (Wiw = W.) (5.50)

i=1

1 ¢ 1
<~ D (@i (Wit) = i (Wo) = Vi (W) T (Weat = W) 5001 + - Z AL (We = W),

n
=1

i=1 i
If g; is Ly-smooth, the first term in (5.50) can be bounded by
1 n
- Z(gi(wm) —8i(We) = Vgi(we) T (Wes1 — We)) Fira
i=1

Gi1L,
2

G n
< 71 Z ||gi(wt+1) —gi(w;) = Vgi(w,) " (Wi1 — Wt)“2 < IWes1 — Wt”% .

i=1

(5.51)
To bound the second term in (5.50), we note that Eg [A,;] = 0. Let us define
W41 = arg miny WT,ll Vg (W) 91 + # lw — w, ||§ + r(w). Then we have

E =E

1
n

1 n
- Z Al (We = Wra)
)

n
T ~ N
Z Ay (Wo = Wi +Wpyg — Wt+1)l
i=1

=E

>

1 n
" Z Al (Wes1 — Wea)
i1

where we use the fact that

E =E

1< .
= D AT (W =)
i=1

1 v .
n Z Eg,.¢ [A]T (W, - wt+1)l =0.
i=1

According to Lemma 1.7 we have

no?
1+ un

E[A:(WHI - Wt+1)] < l+,u77

Then, combining (5.50), (5.51) and (5.52) leads to

ElA 3 < (5.52)

] n
- ZE[(&'(WHI) - 3i(w*))T)_’i,t+1] - EZ,T(W,H - W)
n i=1

no? N LyG,

2
> W, - W ’
P e il

which finishes the first part by noting the condition on 7.
If g; is G,-Lipschitz continuous, we have
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G n
= D l8i(Wear) = gi(We) = Dgi(We) (Wear = W)l (5.53)

i=1

1
<2G1G [|Wi1 — Willp < 774G%G§ + % [Wes1 — Wt||§ .

Combining (5.50), (5.52), and (5.53), we get

n
Z E[gi(Wi1) — &i(Ws) " i 1] — Bz (Wit — Wo)

1
n
i=1

1
< n(c? +4GiG3) + i [West — w13

5.4.3 Strongly convex objectives

In this section, we derive a complexity of O(1/¢) under the the following condition.

Assumption 5.11. We assume that the function r is u-strongly convex (u > 0) and
each f; is Li-smooth, both with respect to the Euclidean norm || - ||5.

With this assumption, the minimax problem becomes strongly convex and strongly
concave since the dual f;" is 1/L1-strongly convex with respect to || - [|2. In this case,
we will establish the convergence of u||w — w, ||§

Critical: Under Assumption 5.11, parts (i) and (ii) of Assumption 5.9 hold
for both variants of ALEXR. For ALEXR-v1, we have 1y, = 1/L; and p =1,
whereas for ALEXR-v2, we have 1y, = 1 and p = 1/L;. Hence, the following
theorem holds for both variants of ALEXR.
Let us introduce a few notations:

_ EUyp

a= 207 by =3(0? +4G3G3), by =30".

Theorem 5.7 Suppose Assumptions 5.8, 5.10 and 5.11 hold.

o [f g; is Go-Lipschitz continuous, by setting a = W, n= % and

(,l§ HE
f=max{1-—2,1- )
l+a by + ue

ALEXR finds a solution Wt such that E[ u||Wr.1 — W, ||%] < € with an iteration
complexity of
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i 5 log(3Y/6)) =0

r-of

(n (0'2+G%G§) n(rg ))
max | . .

1 Ue " Bepyp

o [f g; is further Ly-smooth, by setting a = W, n= 10__/19 and

al ue 7
#=max{l - —2- 1 1 ,

l+a _b2+,u6’ _2G1L2+u

Jor sufficiently small €, ALEXR finds a solution wr, such that E[u||wrs, —
W, II%] < € with an iteration complexity of

1 - GiL 2 nog
T=0 log(3Y/€e)| = O | max L 2,2,0-—, 0 .
1-6 B e Beuyp
h Y = H 2 2/7D d 2 _ G%O—ZZ GIZG%(nfB)
where Y = 5{[Wi = W.l5+ F Dy (ys, y1) and 0° = =5 Bn-D)

@ Why it matters

For smooth functions g;, the iteration complexity is improved in the sense that

the O(1/€) dependence is scaled by the variance of the stochastic estimators. In
GG}
HE

contrast, for non-smooth g;, the complexity always has a term
of variance.

2 independent

Proof. We first consider non-smooth g;. Combining (5.32), (5.36) for A;(y.), (5.40)
for B;(y.), (5.49) for C;(w.) together we have

E[F(WtﬂaY*) - F(W*, yt+l)]

1 u 1
2 2 2
W = Wil = (5= + ) IWe = Weaill; = 5= IWee1 = will3

P
2n, 2n, 2n,

B
+E ij(y*,y;) - %Dw(y*,ym) ~ 2B Dy ey
n
(A3 + UO)E[D y (Fi+1,¥1)]
Hyn
. G2E [|Wrs1 — W I3 . G20E |lw; — w,_1l3 . (1+3.50 +3.56%) 0 e,
2/13 2/14 My

+E[T

t+1

-0r7] +

1
+17: (02 +4G3G3) + I, Wee1 — w3
t

Define Y, ; = % [|w. — W,H% and Yo, = %Dlp(y*,y,). Since
F(wt+l’Y*)_F(W*’yt+l) > F(wt+],y*)_F(W*,Y*)+F(W*,Y*)_F(W*,ytﬂ) = 07

multiplying the above inequality by 8~ on both sides, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1 B
0<67'E [—Yl,t + (e +p(1==))Yo, - 01“;*} (5.54)
un n

_ 1 *
—907'E (n_ + ) Y141+ (70 4+ 0) Vo041 — Ft+1]
t

(A3 + A40)E[D y (F1+1, 1)1
pyn

1 T _ -
=07 (Bl = Well3 + B [Dy (F141,9)]) + 67
un n

G3E |[West — Will3 G30E [lw, — w113 1
o122 +o-122 2 0 R _ 2
215 2, 47, Wt Wt”z
1+3.50 +3.50%) 0%
+67° ( )7 +n: (02 +4G%G§) )
Hy
Let
1 1 1 B
tu=—, (r-1+p)=—(r+p(l--)). (5.55)
-1 n:0 0 n
Hence,
S, B \
DA = Yu+ (r+p(1 = =) Yo, - 0T
po] n: n
—t 1 *
-6 (77_ + )Yy + (7 +0) Yo = Ty
t
L 1
< Z {9_(t_1) [( +) Y1+ (t-1 +p) Y2 — F;*]
o Ne-1
-6 (’7_ + W)Y 1+ (T + )Xo 41 — I,
t
1
= (% +w) Y+ (o +p) Yo — T
_ 1
-0 (77_ + )Y+ (tr+p) Yo 741 — FT+1] .
T
Since

1 n
~Tra 2 == > Galwrer = wrlallyi = yirall
i=1

1 & G%B , npy(p+1r) 5
> —— _ - |y — Vs
2~ ;Zl(n(P”T)Mw”Wm wrl3 1B lyis = yirell)
G%B
2 2, PTTT
> (—m—— - +—Y . 5.56
> (Zl’l(p+TT),Lt¢,”WT+l wrll; 5 2.T+1) (5.56)
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Summing (5.54) over t = 1,...,T and utilizing the above two inequalities, we have

Q_TE + 1T

1
(77_ + )Yy 11 + L Yo 741
T

1
< (%+M)Y171+(T0+p)Y2,1—F1 +
0-TG2B et 1 G G}

2 2 2 2 2
~———E|wry —wrll; -E (=== === = 5=) [IWrr1 = W]l
2n(p+1r)py : ,:Z, 2 A3 A 2y T TR

T _

| A3 + 40

-E — (= - =Dy (Fr41s
E " (a, i )D y (F141,¥1)

t=1

+1, (o'2 + 4G%G§)

b}

T 2\ +2
+29_t (1+3.560 +3.56%) 0,
Hy

t=1

where we use the fact 57, [[we = we—113 < S74 l[we = we-1[3 = £ [Iweer - wel.

Letn; = n,a; = TL, =a, A3 = A4 = 877G%. Ifa < 2 (to be verfied later),

1617G?3
4nG:B G2B 16nG?
we have 7 > 122 Asaresult, =——2-— < L and - > =722 Then the terms
npy 2n(p+7e )y 8n a Hy

related to [|[W.1 — W,|| and D (§:41,Y/) is less than zero. As a result,

1 1
(=+w Y141 + (/—) + _)YZ,TH]
n 2 2

<o

1 1
(=+WY 1+ (=+p)Y2
n a

T 2
8o
# Y07 | == 4 n(0? +4G1G)
( Uy -2

t=1

1 (80’3&

<o

1 1
(5+ﬂ)Y1,1+(;+,0)Y2,1 +—— | —— +n(c? +4G3G3)

1-6 [Jl//

Due to the relationship between 77, @ and 6 in (5.55), we have

1 l+ap(l-B/n) S 1
S l4unp 1+ap T l+ap
1-6 1-6
a = 5 n= .
p(8—=(1-B/n)) Ou

Then, we have

240



5.4. CONVEX INNER AND OUTER FUNCTIONS

1
(1Y 1741 = ﬂ(— + ) Y1141

L+nun
1+ 1 802
<0Tu Y, L Uraon O‘p)"Y + Uln 07 1 n(c? +4G2G2)
a(l+np) 1-01+nu\ uy
802
=0"Y + —— +n(c? +4G1G3)

1-6 805 1

-0
<Y+ ————— 2+ — (0 +4G3G?),
p(0—(1-B/n) uy  6Ou 2

WhereY:pY],l +ﬂ(1 P)UY 2.1-

a(l+nu)
To let the RHS be less than e, it is sufficient to have

1
T > 5 log(3Y/e) > s (9) log(3Y/e) = 67Y < ¢/3,
€ B/(2402n 1- 802
S| R /( 02)=> 0 8% _ o3,
1 +euyp/(240y) p(0—(1-B/n) py
> = o°+4G1G5) < -.
1+ pe/(3(02 +4G3G2)) Ou ( 162) 3
As a result,
0%+ G2G? no?
T=0 10g(3Y/6) max ( L 2),2, 0
HE B Bepyp
232
Finally, we verify that if €2 < % then it holds that
o Me _ Uy € uw3(0' +4G2G2) MmO py
T 2407 240%e 16G2e 16G2(1 -0) 16;7G§
Since ap < O(1), we have
(I+pma =™ a ™ p

thus Y],l + S{Y:ﬁazY 21 <Y 1+ ng . Thus, Y < ﬂY] 1 +2pY21
For smooth g;, the proof is s1rmlar by using (5.48) instead of using (5. 49) Hence,
n (o +4G2 2) becomes 7; (0%) and there is additional condition 77, < 2G o which

transfers to a condltlon on 6. ]
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5.4.4 Convex objectives with non-smooth outer functions

In this section, we only consider ALEXR-v2 for solving convex objectives with
non-smooth f;. For ALEXR-v2, we have that i is 1-smooth and 1-strongly convex.
Hence, we have

(n-B)(T+p)_|x _

%E Z”Vl/fi()’i,m)—Vwi()’i,z)ni (5.57)
(n-B)(z+p) (n—B)(t+p) i

= 2/10,; : ZHyl 1+1 ‘ytt”zl s %E [Dy (Fes1.¥0)] -

Theorem 5.8 Suppose Assumption 5.9 holds with p = 0,uy = 1, and Assump-
tions 5.8, 5.10 hold. If g; is G,-Lipschitz continuous, setting 0 = 0 and

€ €

6(c2 +8G2G2)

ALEXR-v2 returns an €-optimal solution Wr = Zthl w, /T in expectation with a
complexity of

2 202 2 2

_ o+ GiG5 QO'O Qo-o
T=0 , )

€2 Be?’ ne?

where Q is a constant such that E[Dy(y;,y1)] < Q < O(G%n), and y; =
arg Maxye y, x...x y, F(Wr,Y).

@ Why it matters

S GiG}  nGio}
In the worst case, the complexity is O [ —32 Lo
€2 Be?

). This will match the
lower bounds established in next section.

Proof. Combining (5.35) with (5.57) yields

T
T T AT .
E ZAz(y)] < ZEDy(y.y)] - ~E +— “EDy(y.§1)

t=1

T
Z Dl//(yt+1’yt)

t=1
(5.58)

N (n-B)T

T
E Dy (Y41, 5.59
b Zl o (Fra yz)l (5.59)

Adding this inequality with (5.32), (5.46), and (5.49) overt =1,...,T, we have

242



5.4. CONVEX INNER AND OUTER FUNCTIONS

T T
_ 1 1
E[ D F(Wey) - F(W*,yHl)] < o llwe =il - 5 Zl B[t = will3]
t=

t=1

AoT N
+ TEDw(y, y1)

T
T T _
+ ZEIDy(y.y)] - ~E Z}] Dy (¥r41.%1)

(n—B)T 4
+—F Dy (¥i41, ,
AonB ; o (Fi+1, Y1)
G _|< Do
+—E (|Wee1 — Wz”z +444TGT + _E[D(//(y’yl)]
4/14 oy n/lz
/120'2
> Or + o'gaT,

T
1
2 2,2 2
+nT(0c° +4G1G3) + —477 ,zgl E[[weer — well5.

G? . .
ﬁ = ﬁ,we observe that the terms 1nvolv1ng1E[ZtT=l [[Wes1 — w,||2]

and E[ZL Dy (Y141, y,)] cancel out, leaving us with the following:

If wesetdg = % and

T
E[ Z F(Wee1,y) — F(w,, yt+l)]
t=1

1 5 [T(1+29B/n) 1
< — |lwe — +|——————+ — |EDy(y,
< ool = il (e, )
2

/le’
+T (0% +8G3G2) + TOT +02aT.

Lety =y} = argmax F(Wr,y). Since & 37, F(W,11,y) > F(Wr,y}) = F(Wr)
and F(W.,¥:+1) < F(W.,Y.), we have

_ 1 (7(1+B/n) 1
E|F(Wwr) - Fw)| < — W, —wi [P+ = [—22 10
[ (1) = Fwo)| < 5z llwe = willd+ 7 [ T+ o
0?2
+ (o2 +8G2G2) + % +ola. (5.60)
Let
€ € €
a4 =—:, = —, =
62’ 7302 1T 602 +8G2GY)
wi — w.||?
7> 0 |max [lw1 ||2,9(1+/103/n)’ Q '
12ne 6Bea 6nlse

Then, the RHS of (5.60) is less than €. As a result, the complexity is in the order of
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0

2 22 2 2
loa +G1G2 QO'O QO'O)

€? " Be?’ ne?

max (

O

Theorem 5.9 Suppose Assumption 5.9 holds with p = 0, uy, = 1, Assumptions 5.8, 5.10
hold. If g; is G,-Lipschitz continuous and Ly-smooth, for sufficiently small e, setting
6 =1and
€ . € 1

T e 1T (802’ ZGILZ)
ALEXR-v2 returns an €-optimal solution Wr = Zthl w; /T in expectation with a
complexity of
G1L2 0'2 Q(Tg Q(Tg

5

T=0 —
€ €2’ Be?’ ne?

where Q and y}. are defined similarly as in last theorem.

¢ Why it matters

For smooth functions g;, the iteration complexity is improved in the sense that

the O(1/€*) dependence is scaled by the variance of the stochastic estimators.
. . GG?
In contrast, for non-smooth g;, the complexity always includes a term 152 2,

regardless of the variance.

Proof. The proof is similar to that of previous theorem except that we use (5.39)
instead of (5.46), and using (5.48) instead of using (5.49). Additionally, we use

T n
1
Z(Fm -I)=Tra -T1 < - Z Gollwrsr = wrllallyi = yirsillz - (5.61)

t=1 i=1

2
5 ™/B
Wit — WT||§ +

S -
2nt n

Dy (y,yr+1).

Combining this with (5.39), we have

E

T
G§B 2 T

E Bt(y)] < ST E[llwrs1 — wrll3] + EE[Dw(y, y7+1)] (5.62)

P nt

T
2 - (/13+/l4) _
+—E[Dy(y, +—— > E|D ,
BT+ Zl o (Fra1.30)

G <
2
ton ;E[uwml - wil3]

G} ¢ 2 2 2 T3 1 y
to ;E[Hwt = Wietl3] + 805aT + LogT + =T + —-BIDy (3. §)].
Summing the inequalities in (5.32), (5.58), (5.62), and (5.49) overt =1,...,T, we
have
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T
E ZF(WHI,Y) - F(W.,¥141)

t=1

T
1 2 1 2
< —||w, — -— >3 E -
< g lIwe =il - 5 Zl [lIweer = well3]
- T
—E[Dy(y,y1) = Dy (y,yr+1)] - p ZE [Dy (Fis1.¥0)]
=

AoT (n-B)T U
+ —ED V) + —— E|Dy(Yit1, s
N v (¥, 91) AonB ,Z:; [ v (Y41 Yt)]

2

2 29, T
+ %E[Hwnl —wrl3] + EE[Dw(y, yr+1)]

2
+n E[Dy(y,y1)] + MZ [Dw(}’m»)ﬁ

2 T

o2
As 1
2 2 9 v
2—2 [Ilwi = w1131 +8050T + LogT + —5=T + —-E[Dy (v, 3],

ZE[HWM will3]

T
1
+ ™ ZE West — Well5 +nTo?.
=1

2 2
Similarly as before, if we let dg = 2220 2 = 22 = oL 4344 = 167G} < 7/2,
G2 1
< L

and T S gy We observe that all the cumulated terms cancel out, leaving us the
followmg:

T
E| > F(We1,y) = F(We,§101)
t=1

1 7(1+ A9B/n) 1
— ||w. — +|—+ —+ —|ED ,
o [lw W1||2 ( B n/lz s (¥, ¥1)

o2
As
+ 17T0' + 80'0aT + /lza'OT + 02 T.

Lety = y; = argmax F(Wr,y). Since /| F(Wre1,y) > F(Wr,y}) = F(Wr)
and F(W.,¥:+1) < F(W.,Y.), we have

E[F (Wr) = F <w*>} < w2 e L (FLE B 2]

Q
2nT T B n/lz

n/l5
0’0/15

> (5.63)

+ 17(0'2) + 80‘3(1 + /lza'g +

Let
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smoothf, g

convexf, g

Fig. 5.1: Relationship between different algorithms for FCCO.

€ 1 € 1 € min 1
a=—-:, = —, = —, = mi _—
6402 T80 T ag 822G L

T=>0

Iwi —=w.ll3 Q(1+2B/n) Q@  Q
32ne 8Bea ' 4ndye’ 8ndse

max (

2
Then the conditions 167]G2 < 71/2, % < # hold for sufficiently small €, and the

RHS of (5.63) is less than €. As a result, the complexity is in the order of

o

Gil, o2 Qoj 3Q
max T TR T 5
€ € Be* ne
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Critical: The convergence results above remain valid for ALEXR-v2 even
when the outer functions f; are smooth. If f; is a smooth Legendre function,
ALEXR-v1 can also be applied and its convergence can be established. The
key is to note that

Vi Gir) = Vi Gio)ls = IV £7 Gie) = VI iz = i = w2

where u; ;_; is defined in Lemma 5.14 and u; ; is a virtual sequence similar
to u; ; (5.64) except that all coordinates are updated by:

1
Wit + i Vi (5.64)

0, =——
b ]+at 1+(1,

Then, similar to the analysis of SOX, we can establish a bound of
Zthl :'l:l E[”ﬁi,t —W ||§] and use it to prove the convergence of ALEXR-
vl. However, it remains unclear whether ALEXR-v1 provides any conver-
gence advantage over ALEXR-v2 when f; are smooth.

5.4.5 Double-loop ALEXR for weakly convex inner functions

ALEXR can be also useful for solving non-convex FCCO with convex outer func-
tions and weakly convex inner functions. In particular, we consider the following
non-convex problem:

mvgn%;fi(gi(vv)) +r(w),

where g; : R — R and f; : R? — R satisfy the following conditions:
Assumption 5.12. Assume

(i) fi is convex, G-Lipschitz continuous and 0 f(g) = 0.
(ii) each dimension of g; is pa-weakly convex and G,-Lipschitz continuous.
(iii) r (W) is a convex function.

The key idea is to solve the following quadratic problem sequentially:
1 < p

Wit ~ argmin F(w, W) = = " fi(gi(w)) + Sllw = w3,
n 2

where p > p, with p being the weak-convexity parameter of F (w). We can employ
ALEXR to solve miny F (W, W,) approximately up to an e-level. This yields a double-
loop scheme.
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| fi | & | r | F | Algorithm |Convergence Measure| ~ Complexity  |Theorem

2
sm - 0 nex, sm SOX Stationary o (2‘:‘3 ) Thm. 5.1
sm mss 0 nex MSVR Stationary o ( % ) Thm. 5.2
sm - pm [ncx, sm SOX Stationary o ('l;:‘} ) Thm. 5.1
sm mss pm ncx MSVR Stationary o ('L'g‘:‘{ ) Thm. 5.2
we, nd we 0 ncx | SONX (vl) | Nearly Stationary o (Z:‘; ) Thm. 5.3
2
sm, nd we 0 | ncx |SONX(vl)| Nearly Stationary o ('};2 ) Thm. 5.4
we, nd we 0 ncx | SONX (v2) | Nearly Stationary o ('g: 0 ) Thm. 5.5
sm, nd we 0 ncx | SONX (v2) | Nearly Stationary o (Z‘:ﬂ ) Thm. 5.5
C 2
wc, pm sm 0 ncx  |[SONEX (v1)| Approx. Stationary o (;:‘; ) Cor. 5.1
we, pm sm | 0 | nex |SONEX (v2)| Approx. Stationary o (’;;Ef 2) Thm. 5.6
nd, cvx, f pm |sm, cvx|cvx,pm| cx [ALEXR (v2) Obj. Gap o (max (‘:—:, Z(Z )) Thm. 5.9
nd,cvx, ffpm | ovx |ovx,pm| cx |ALEXR (v2) Obj. Gap o (max (ﬁ 2% )) Thm. 5.8
2
sm, nd, cvx cvxX [scx,pm| cx ALEXR Dist. Gap o (max (;:]T’ V;:;’ )) Thm.5.7
sm, nd, cvx sm, CVX|scx, pm| cx ALEXR Dist. Gap ] (max (}‘j—;, ';rs“ )) Thm.5.7
b, 2
sm, nd, cvx, fl* pm| wc cX, pm ncx | ALEXR-DL | Nearly Stationary |O (max (ﬁ, ;:‘4’ )) -
2
nd, cvx, f;' pm we  |[cx,pm | ncx |[ALEXR-DL| Approx. Stationary |O (max (%, %)) -

Table 5.2: Complexity of solving FCCO F(w) = % 1 fi(gi(w)) +r(w) under dif-
ferent conditions of f; and g;, where f; is a deterministic Lipschitz continuous and
g 1s mean Lipschitz continuous. pms means “proximal mapping is simple to com-
pute”, mss mean “mean squared smoothness”, and ALEXR-DL denotes a double-

loop method that employs ALEXR in the inner loop.

We highlight the key results as follows. If each f; is non-smooth, the double loop
2

method achieves a sample complexity of O (%) for finding a nearly e-stationary

solution. The analysis can be found in (Zhou et al., 2025).
nL, o2
3540
ing a nearly e-stationary solution. This result further implies that, for non-smooth f;,
we may apply the Nesterov smoothing f; in (5.20) with p; = 1/e, so that f; becomes
Ly = p1-smooth. Hence, Proposition 5.1 implies that the double-loop ALEXR algo-
rithm can find an approximate e-stationary stationary solution of F'(w) with a sample

n 2 n 2 .
complexity 0( IL;;O ) =0 (B—(:%) . The analysis can be found in (Chen et al., 2025b).

Finally, we summarize the sample complexities of all methods introduced in this
chapter in Table 5.2, and illustrate the relationship between different methods in Fig-
ure 5.1.

If each f; is Li-smooth, the sample complexity improves to O( ) for obtain-
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Algorithm 19 Abstract Stochastic Update Scheme for Convex FCCO

1: Initialize affine subspaces Xy, 9o, 80, ®o
2: fort=0,1,..., T —1do

3: Sample a batch 8; c {1,...,n}, |8;|=B
4. for eachi € B, do
5: Sample ¢ ;, ;.. from P;
6: ory =9, +span{gi (%:4i0) | £ € X}
7.
i i A (i « 1 o (i NG NG, i
D4 = ;" +span {argrr;gx{yig< D= £ 1) = — Dy (39" >>} 187 egh 9@ e; >}
8: end for ) ) ) )
9: Foreachi ¢ S;, 95?1 = g;'), ‘{)z(?l = t(’)

100 Gy = 6, +span{z Tiep, 3V Vi (2:4i0) [ £ € X0 9 € Ve }
11: X1 = X; +span {argminx {GTx+r(x) + ﬁ [|x - fc||%} |2e€%,G¢e (ﬁ,”}
12: end for

5.4.6 Lower Bounds

In this section, we prove that the complexities of ALEXR for strongly convex and
convex FCCO problems are nearly optimal by establishing the matching lower
bounds.

What is a lower bound?

A lower bound states: for any algorithm in a certain class, there exists a “hard”
optimization problem such that the algorithm cannot converge faster than a
specified rate.

Lower bounds for convex optimization are typically derived under the standard
oracle model, where the algorithm has access only to first-order information—either
exact gradients in the deterministic setting or unbiased stochastic gradients in the
stochastic setting. In the latter case, a classical result by Nemirovski and Yudin es-
tablishes that no stochastic algorithm using unbiased gradient oracles can achieve a
convergence rate faster than O (1/VT) in terms of the objective gap after T iterations.
For strongly convex problems, this lower bound improves to O (1/T). Nevertheless,
these lower bounds do not apply to convex FCCO problems or to ALEXR, because
the algorithm does not have access to unbiased stochastic gradients.

Below, we establish lower bounds for an abstract stochastic update scheme de-
scribed in Algorithm 19, where the symbol “+” denotes Minkowski addition. We
consider an oracle model that, upon receiving a query point, returns unbiased stochas-
tic function values and stochastic gradients of the inner functions g;, as well as the
solution to the proximal mirror-descent update of f;* with respect to a proximal func-
tion ;. Since there are n inner functions in total, we assume that at each iteration
the algorithm is allowed to access information from only B randomly selected in-
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Fig. 5.2: Visualization of f (left) and F (right) in (5.65).

ner functions. Algorithm 19 is sufficiently general to encompass ALEXR, as well as
SOX and MSVR.

Theorem 5.10 Consider the abstract scheme (Algorithm 19) with an initialization
% = {0}, 95" = {0}, g =0, 67" = 0.
o There exists a convex FCCO problem (5.26) with smooth f; and u-strongly con-

vex r such that any algorithm in the abstract scheme requires at least T = Q (’;20 )

iterations to find an X that satisfies E [% |lx — x*||§] <eorE[F(x)-F(x.)] <e
o There exists a convex FCCO problem (5.26) with non-smooth f; such that any

2
algorithm in the abstract scheme requires at least T = Q. (%) iterations to find an
X that satisfies E[F(X) — F(x.)] < e.

¢ Why it matters

In light of this theorem, we see that ALEXR (v1/v2) attains a nearly optimal com-

plexity up to a logarithmic factor for solving strongly convex FCCO problems,
. = 1 no} .
as its upper bounds are O (max (E, - )) Moreover, ALEXR-v2 achieves the

optimal complexity for solving convex FCCO problems with non-smooth outer
functions.

Proof. We construct the hard problems for (i) smooth f;; and (ii) non-smooth f;
separately.

(i) Smooth f; and strongly convex r: Consider the following strongly convex
FCCO problem
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5.4. CONVEX INNER AND OUTER FUNCTIONS

min F(x) = i Z] Flgi() +r(x),

(v—l)u+%(v—1)2+v—1—"72, u € (—oo0,—1) |
Fl) =13ty =5, wel-11] . ()=,
(1+v)u+%(1+v)2—1—v—7, u e (1,c0)
(5.65)

where X = [-1,1]", the outer function f : R — R is smooth and Lipschitz
continuous for some v € (0, 1/2). Besides, the inner function g; : R* — R is
8i(x) = Esop(gi(x;¢)] and g;(x;) = x; + £, where ¢ follows a distribution P de-
fined below:

) =1 2
P: Pr(f==v) =1-p, ,Wherep:=V—2<1.
Pr({=v(1-p)/p)=p o,

We will determine the values of v later. We can verify that

201 N2 201
By llgi (65 ¢) - i) ] = B[22 = v3(1 = p) + 2 “p Py _Y “p P g2

By the definition of convex conjugate, for any y; € R we have

u<-1

f o0 :maX{SUP {Myi - ((v— l)u+%(v— D2 +v—1- V;)}

1 , Vv
sup juy; — —(u+v) +—;, (5.66)
—l<u<l1 2 2

s { = (1+v) +1(1+ 2 —1- —V—Q}}
up {uy; v)u ) v v 5

u>1

(5.67)

_ T Yi € (o0, vy = 1) U (v + 1, )
10i=v2 yielv-Lyv+l].

We define F;(x;) = f(gi(x)) + %[xi]2 such that F(x) = % " Fi(x;). Let x,
arg min,c x F(x). Since the problem is separable over the coordinates we have x;

argminye[—1,1] Fi(x;). Thus, we have x; . = % Y and F;(x;.) = _T
Since P; = P in the “hard” problem (5.65), the abstract scheme (Algorithm 19)
only needs to sample shared ;, ; ~ P for all coordinates i € S; in the ¢-th iteration.

For any i € [n], suppose that gm 0 or {-v}, ‘D(i) = {0}, %(i) ={0} forall T < t.
Note that when g(T = (), it means that the corresponding y(*) will not be updated.
Then,

o Ifi ¢ B, the abstract scheme (Algorithm 19) leads to

aiy =0or {—v}, 9 ={0}, X ={0}.
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e Ifi € B, and {; = —v, the abstract scheme (Algorithm 19) proceeds as
gt(i)l = gt(’) + span {)?l- +4 | &€ x,([)} ,
(i) (l)
29t+1

i€[v-1,v+1]

L1 1 . R
+ span{ arg max {yigi ) (i —v)* - ;D% (yi,yz')} | 8i € Q,H,yz € ‘D(l)} )
¥i

%(1)

t+1

. I, 1 2 1 (i) (i)
+ —Vi i+_ i + — — le s le%
sPan{erglnEnJ{Byx 4n[x] 277( xi) }Iy ‘D,+1 X

x"

Then, we can derive that g([) =0or{-v}, ‘D(i) = {0}, and x = {0}.

t+1 t+1

To sum up, given the event (1’ _ l{g(l) =0or {—v}, 9% = {0}, xV = {0}},
we can make sure that {gt(jr)1 =0or{-v}A ‘Dt(i)l = {0} A %t(i)l = {0}} for the
abstract scheme in Algorithm 19 when one of the following mutually exclusive events

happens:

e Eventl:i ¢ B,
e EventIl:i € B, and {; = —v.

Note that the random variable Z; is independent of B;. Thus, the probability of the
event Et(jr)l = {ggi)l = 0 or {-v} A 2) = {0} A %Hl {0}} conditioned on
*_ EY can be bounded as

t
(i) (i)
lst+l | (—W Eq
7=1

t+1

t
Pr 2|l =00r (-} 99 = (0} A 2D, = (03} 1 £V

>P{i¢ B} +P[{{i € B} A& =-v}}]
=P[{i¢ B} +P[{i € BIP[{& =-v}]

B\ B B
=(1——)+—(1—p)=1——p.
n n n

Since B; and {; in different iterations ¢ are mutually independent, we have

T- t T

; Bp TBp
|| ES ) ED =(1——n) >3/4- =2
t=0 t=1

where the last inequality is due to the Bernoulli inequality (1+x)" > 1+rx for every
integer r > 1 and x > —1.

Thus, if T < éﬁ we have Pr [E(T’)] > %.Letus setv = 3\/2_esuchthatp = (‘;—22 =
0

T-1

M ED | =

t=0

(0
pr|Ef| 2 2

lj—g. For any i € [n] and any output X; € 3€(Ti), we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

T 2 () ?
E [(Xi —Xi,*) ] =E HE(') ( - X; *) o) (x _xi,*)
T
>E []I (l) — X *)2]
. 2
=B []IE(’ (xi,*)z] =Pr [E;l)] (xi,*)z > % =4e,

where Ir denotes the indicator function of an event E. Moreover, we have

E[Fi(xX;) — Fi(x;i )] = E[ EW (Fi(%;) = Fi(xi0)) + I 0 (Fi(%;) = Fi(xi,2))

> E|l g (Fi®) = Fi(x, )]
-E []IE(,) (F:(0) - F; (x,-,*))] = Pr[E] (Fi(0) - Fi(x;..))
4

> — > €.
6

Since the derivations above hold for arbitrary i € [n] and the r(x) in (5.65) is 2i—
strongly convex (u = ﬁ), we can derive that

- i Zn:E | (& = xi.)*| > e

E[F(¥) - F(x,)] = ZE[F(x) Fi(xi.)] > e.

Ko 2 [ 2
B[S k- 13| =B [E % - .1

Thus, to find an output ¥ that satisfies E [§ [|¥ — x. ||2] <eorE[F(%) - F(x.)] <€

the abstract scheme requires at least T > g 72 5= iterations.

(ii) Non-smooth f;: Let g;(x) = E;[x; + {] = x; be defined the same as in the
smooth case. Let F;(x;) = f(gi(x)) + $[xi]* = Bmax{x;, —v} + % [x;]* such that
F(x) = ﬁ 1 Fi(x;), where @, 8 > 0. Let the domain X be [-2v, 2v]". Hence, f
is B-Lipschitz continuous and F is a-strongly convex. By the definition of convex
conjugate, we have f(2;) = maxy,cfo51 {yidi - v(B - i)}

Since the problem is separable over the coordinates, we have

Xi» = argmin F;(x;) = argmin {,8 max{x;, —v} + g[)ci]z} .
xe[-2v,2v] x;€[-2v,2v] 2
Considering
2 s
F,(x,) — ﬁxl ['xl] 5 'xl = v ,
—Bv+F[xi]* xi<-v
we have
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{—ﬁ/a ifa>,8/v {—,82/(2(1) ifa>,8/v
Xix = F‘(xi *) <
’ -V ifaet [0 1]’ —Bv/2 ifaet [0 1].

Since F;(0) = 0, we can derive that F;(0) — F;(x; ) > min{,Bv B%/a}. Consider

an arbitrary i € [n]. Suppose that g(T =0 or {-v}, %< ) = {0}, ‘D(’) = {0} for all
T<Ut.
o If i ¢ B;, the abstract scheme (Algorithm 19) leads to

o =0or {—v}, 99 =0}, x2 =0}

t+1 t+1

o If i € B,, the abstract scheme (Algorithm 19) proceeds as

gﬁi)l = gt(l) + span {)2,- +4 | &€ %fi)} ,

i) _q)
2)t+1_ t
1 . .
+ span {arg[ma;i {ylgz -v(B-yi) - —Dw(yl,yz)} | &i € gffl,yt ‘Df’)},
0.8
x@ _ %51)

t+1

1 1 1 l l
+ span {x,-ir[%?f?vj {Eﬁm =[]’ + 7 (i =50 } |9 €D % € X! )}

Due to the same reason as in the smooth f; case, the probability of the event £, () =

{g(l) 0O or {—v} A ‘D(Tl) ={0} A %(Tl) = {0}} can be bounded as

Q) Ao -TTe |0 ) Bp\" TBp

L L 12 12

pr|E| 2| E E! ]|| ]E ( —) >3/4-—L.
t=0 t=0

Thus, if T < 4L we have P [E(i)] > l. Letusset 8 = Gy, v = 4G—El such that

B
2
p = ;_g = Cl;?f ~. For any i € [n] and any output ¥; € %m we have

E[F; (%) - Fi(x;«)] =E

]IE(i) (Fi(fl) F; (x, *)) +— <l> (Fi(fi) - Fi(x,-’*))]

T

[]IE(T,) F ()El) - Fi(xi,*))]
- [ g (Fi(0) - Fi(Xi,*))]
=Pr[Ey"] (Fi(0) - Fi(x;..)) > min{Bv, % /a}/4 = €.

Since the derivations above hold for arbitrary i € [n], we can derive that

254



5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

E[F(3) - F(x,)] = % D IEIFi(E) - Fi(xi.)] > €.
i=1

Thus, to find an output X that satisfies E[F(X) — F(x.)] < €, the abstract scheme
nGlz(rg . .
p 1terations. O

. 0
requires at least 7 > 155 =GB

Critical: From the proof of the non-smooth case, we can see that even when
the overall objective is strongly convex, the lower bound complexity is still 7" =

2
Q(%) as long as f; is non-smooth. This behavior contrasts with standard

strongly stochastic optimization with an optimal complexity of O(1/€) and
highlights a fundamental challenge in solving compositional problems.

5.5 Stochastic Optimization of Compositional OCE

The goal of this section is to present and analyze stochastic algorithms for solving
compositional OCE (COCE) risk minimization as introduced in Chapter 3. In par-
ticular, we consider the following abstract problem:

weR4 yeRn

1 n
min _ F(W.v) = Z Fi(w,vi), (5.68)
i=1

where

Fi(w,v;) =E;p, [@i(W,v;;0)], Di(w,vi;{) = TW(M) +vi,

where 7 > 0 is a constant.
In the special case when ¢*(-) = [-]+/a for some a € (0, 1), the general COCE
minimization problem reduces to

, 1< [s:(w; £) = vi
min F(w.v) = ~ le Bgp, o Vi (5.69)

We refer to this problem as the compositional CVaR minimization (CCVaR) prob-
lem. The direct one-way partial AUC optimization problem (2.39) can be reformu-
lated as an instance of CCVaR minimization as shown in (6.26).

In the special case when ¢* () = exp(-) — 1, the problem (5.68) reduces to

ngn F(w) = % Z 7 log (]ngpl. exp (M)) . (5.70)
i=1
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Algorithm 20 The ASGD Algorithm for solving (5.68)
1: Initialize w, v, step sizes 77, and y,
2: fort=0,1...,T - 1do
3: Sample B, c {1, ..., n}and |B;| = B
: for eachi € B, do

4
5 Update v; 111 = Vis — Y10 @i (We, vigs Lir)
6: end for

7: Compute Z; = é ZiGBf 61@1' (Wt, Vits gi,t)

8: Update Wy = Wy — 17, Z;

9: end for

We refer to this problem as the compositional entropic risk minimization (CERM)
problem. The cross-entropy loss for multi-class classification, the listwise cross-
entropy loss for ranking, the indirect one-way partial AUC loss for imbalanced classi-
fication, and the contrastive losses for representation learning discussed in Chapter 2
are all instances of the CERM problem. In particular, for cross-entropy loss mini-
mization, the proposed framework becomes especially relevant when the number of
classes is very large, so that the normalization term in the loss cannot be computed
efficiently. This setting naturally motivates the stochastic algorithms developed in
this section.

Although we can cast the CERM problem into a special instance of FCCO, there
remain some gaps to be filled. (i) For the convex CERM problem with a convex loss
function s;(-; {), the ALEXR algorithm and its convergence analysis are not directly
applicable, since the outer function f(-) = 7log(-) is not convex, as required by
ALEXR. Consequently, a convergence rate of O(1/€?) for solving convex CERM
remains to be developed. (ii) For the CCVaR problem, the optimal solution of v
given w is typically difficult to derive in closed form, and hence the problem cannot
be reduced to an instance of FCCO. As a result, previous analyses for FCCO do not
directly apply. We address these gaps in this section.

5.5.1 A Basic Algorithm

For optimizing the general COCE minimization problem, we present a basic stochas-
tic algorithm in Algorithm 20. It alternates the stochastic block-coordinate update for
v and a SGD update for w, which is referred to as ASGD. Below, we present its con-
vergence analysis for both convex and non-convex loss functions.

5.5.1.1 Convex loss

For notational simplicity, we set 7 = 1 throughout the analysis.

Assumption 5.13. s;(-, ) is a convex function.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Lemma 5.20 F(w, v) is jointly convex in terms of (W', v") T if s;(+; 0) is convex.

Proof. We prove that ®; (w, v;; £) is jointly convex in terms of (w', ;) 7. Then the
convexity of F(w,v) follows. Let u = (w',v)T. Consider uj,uy, @ € [0,1], and
i = au; + (1 — @)uy. Then

D () = " (5:(W;0) =) + V.

If s;(+; £) is convex, we have s;(W; ) <; (W1;0) + (1 — a@)s;(wa; £). Since ¢*(-) is
non-decreasing (cf. Lemma 2.3), we have

" (si(W;0) =) < @™ (a(si(wi: Q) —vi) + (1 — @) (si(W230) = v2)).

Since ¢*(+) is convex, we further have

" (a(si(wi;0) = vi) + (1 = @) (s:(W2; ) —2))
< ag*(si(wi3 ) —vi) + (1 —a)¢*(si (W23 ) —v2).

As a result,
®;(1;{) < a®;(uy; ) + (1 — )P;(uz; ),

which proves the convexity of ®;(u; ).

Assumption 5.14. Assume that either of the following conditions hold:

o (i) F(w,v) is smooth satisfying:
IV1F (W, )3 + [[V2F (W, )[[3 < 2Lp (F(W,v) = F(W., v.)),

e (ii) F(w,v) non-smooth such that for any vi € 01F(W,v),Va; € 02F;(W,v;) it
holds
Ivill; < GT,  Ival* < G5,

where W, v.. denotes an optimal solution to (5.68), and V| F (w,v)(0,F(w,v)), and
VaoF (w,v)(02F (w, v)) denote (partial) gradients with respect to w, v, respectively.

Critical: For CERM, the smoothness assumption is satisfied when s; (w; ¢) is
bounded, Lipschitz, and smooth. For CCVaR, the non-smoothness assumption

is satisfied when s; (W; ¢) is bounded and Lipschitz.

Assumption 5.15 (Bounded Variance). There exist 07,07, 6% such that
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E Vi@ (W, vi;¢) = ViFi(w,v;)|[3 < o2, Vi€ [n],
B |Vo2®@; (W, vi58) = VoF; (W, vi)|3 < 03, Vi€ [n],

1 n
= D IViE ) = ViF(w )l < 67,
i=1
In the non-smooth case, the gradients above are replaced by subgradients. The sub-
sequent analysis proceeds analogously.
Lemma 5.21 Let D%v,o =E|wp — W*||§ and n; = n, we have
2

T-1
1 Do
7 2, CEIVIE W v)T (Wi = W)l = nEIIViF(Wev)[3) < —22 47707,
r =0 T

2 2
_ T 2 _ O 6°(n-B)
where vi = (Vi4,...,Vny) and o~ = 5 + B -

Proof. Let E, denote the expectation over the random samples in the #-th iteration.
First, we note that E; [z;] = V| F(w;, v;). Similar to Lemma 5.2, we have

Eyllz: = ViF (Wi, vo)ll3

:El[
:Et[

0'12 §*(n— B) 2

B Bw-n

2

J

1

E Z O1Fi (W, Vi) — VIF(W:,v)
ieB,;

1 1
-3 Z O1Fi(Ws,vig) + 3 Z O1F; (W, vis) — ViF (W, vp)
i€B; i€By

+E,;

1

2
2

1
7 — E Z 01 F; (W, Vi)
i€B;

Due to the update of w, we have
2 2 2 2
[Wert = Wall3 = llwe = wall3 = 20z (W = w.) + 17|z |l
Then,

Ellwrs1 — w.l3 < Bllw, — wall3 = 27E[Vi F (Wi, v,) T (W, — w.)] (5.71)
+ P BIIViF (Wi, vo) |3 + 00,

Summing over t = 0,...,T — 1 and rearranging it finishes the proof. |

Lemma 5.22 Let D3, = Ellvo — v.||3 and y; =y, we have

= D2,
T 2, (CEIV2F (W v) (v = v.)] = ynBIIV2F (Wi, v)ll) < Z55 + 7073,

=l
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Proof. Let E, denote the expectation over the random samples in the ¢-th iteration.
Note that E,[Vo®;(W;, vis:{ie)] = VoFi(We,vip) and B ||Vo®;(We, vig: Lie) —
Vo F;(wy, vi,,)||§ < 0'5 foreachi € [n] (Forthosei ¢ By, Vo®;(W;, v +; {i.r) are not
explicitly computed). For each i € [n], we have

Ellvie1 = visll3

B B
=(1- ;)E”Vi,t — Vi3 + ;EHVU — yVa®i (Wi, visi i) — Vil

2yB y?B
< Ellvis —vi.l3 - E[VoF;(We,vie) T (Vie — vioe) ] + TE”VZFi(Wt’ vi)ll3
’y 05 ’B
n

Summing over i € [n] leads to

2yB
Ellvis1 — V*”% =Eljv; - V*”z - _E[ Z VoFi(We, vi, t) Viye = Vi)

+ —E[Z IV2Fi (Wi, vi) 3| +¥2 03 B. (5.72)

Since

l n
VZF(Wt,Vt)T(Vz - V*) = - g VzFi(Wt, Vi,t)(Vi,t - Vi,*)
n &

1 n
IV2F (Wi v)I3 = 5 ) IV2Fi (Wi i) I,
plugging these into (5.73) we have
Ellvist = vall < Ellve = vl - ZVBE[VZF(Wu V)T (ve = v)

+ yZnBE[||V2F(w,, vo)ll3| +y*o3B. (5.73)

Summing over t =0, ...,T — 1 and rearranging it finishes the proof. O

Theorem 5.11 (Smooth case) Suppose Assumption 5.13, 5.14(i) and 5.1 5 hold. If

2
—20) then

o
we set y = min{;—, ﬁ} n= mln{gL s 507} and T = max(—== ,75 » SBe

ASGD guarantees that

T 1
Z(F(wt’yt) _F(W*9V*))l <e.
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The iteration complexity is

2 2 2 22 2
T=0 maX{Dw,oLF nD; oLr D5 007 Dy 2})
6 9

b}

Be ° €  Be?

2 _ op | 8% n-B)

where o° = ?+m

Proof. From Lemma 5.21 and Lemma 5.22, we have

T-1 2
1 D3 o
= (2EV(F(w,, Vt) (w; —w.) = nE||V1 F(w;, Vt)”%) <—=+ 710'2,
T parc nT
= 2 .
= 2 BV F (W )T (v, = v.) = ynEIIVaF (Wi, v)I3) < — +y03.
parc yBT

1
If F is smooth and n < 2L and yn < T

5= (19 F v B+ 192w 1B)
< F(wy,vy) — F(W,, vy,

nIViF (W, vo)ll5 +ynl|VaF (we, v 5 <

where the last inequality uses the Lemma 1.5(b).
On the other hand, the joint convexity of F' implies

F(w;,v;) — F(W,,v.) < ViF(w,, Vt)T(Wt - Ww.) + Vo F(w;, Vt)T(Vt - V).

Then combining the above inequalities, we have

T-1 2 2 2

1 DwO 770'2 DVO Yo,
E|= ) [F(W,v;) = F(Wa,v)]| < =+ — + 57—+ ——
T;[MW)<wvﬂ T Y5t 2

In order to let the RHS above be less than €, we set y = min{ﬁ, #} and n =

2 2
m1n{2L s 53}, and T > max( 776 , yBE) As aresult, the complexity is the in the
order of
D} Ly nD3} Lp D (o> D3 o3
T = O | max , ) ) .
€ Be 62 Be?

O

Theorem 5.12 (Non-smooth case) Suppose Assumption 5 13, 5 14( ii) and 5.15
2
hold. If we set y = —20), then ASGD

guarantees that

andT = max(

€ — €
26+ T T 2GR 776 ’ 736

T-1
E % ;(F(w,,v,) - F(w*,v*))l <e€.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

The iteration complexity is

- {Di,o(G% +0?) D} (G} +03) })

T=0

€? ’ Be?

We leave the proof as an exercise for the reader.

¢ Why it matters

Since F(w,v) is jointly convex in (w, v), the above two theorems imply con-
vergence of the objective with respect to the primary variable w, i.e., Fj(w) =
min, F(w,v). In particular, if we define the averaged iterate wy = % Z,T:_Ol Wy,
we have

~

E[Fi(wr) - F1(w.)] <E (Fi(w;) — F (W*))l

N~

~

~
[ =)

IA
es]
S| —

(F(ws,vy) — F(w*,v*))l <e.

(=)

1=

5.5.1.2 Non-convex loss

If s;(w, £) is non-convex, we consider two different cases: (1) smooth case and (2)
non-smooth weakly convex case. If F'(w, v) is smooth in terms of w, v and is strongly
convex in terms of v (e.g, compositional entropic risk or COCE with y? divergence
for ¢(+)), we can follow the analysis in Chapter 4 [Section 4.5] to design an algorithm
and an analysis to prove the convergence for finding an e-stationary point of Fj(w) =
min, F(w;v). We leave this as an exercise for the reader.

Below, we analyze the convergence of ASGD for non-smooth weakly convex
losses. We also assume ¢* is non-smooth such that it covers the CCVaR minimiza-
tion.

Assumption 5.16. Suppose the following conditions hold:

o 5;(W; () is po-weakly convex with respect to W, and E [||ds; (w; §)|I§] < G%;
o Assume |%;q)| < Gy forany q = s;(w,{) — v;.

Lemma 5.23 F(w,v) is p-weakly convex with respect to (W, v), where p = poG.

Proof. We first prove that ¢* (s;(w; ) — v;) is weakly convex in terms of (w, v;), i.e.
there exists p > 0 such that ¢ (s;(w; ) — v;) + §|lwl|3 + §v? is jointly convex in
terms of w, v;.

Since s;(W; ) is po-weakly convex, we have that g(w, v;,{) = s;(W,{) — v; is
po-weakly convex in terms of v; = (W, v;):

’ ’ ’ PO/ ’
q(vi’ g) 2 q(vi7 g) +aq(vi’ g)T(Vi _Vi) - THV[ _Vi”%’vvi’vi'
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For any £, we abbreviate ¢(v;; ) as ¢g(v;). Since ¢* is convex and monotonically
non-decreasing, for any w € d¢*(q(v;)) € [0, Go] we have

¢ (q(vi)) = ¢*(q(v)) + w(gq(vi) — q(v}))
> ¢*(q(vD) + w(dq(v) T (vi = V) — %

G
> ¢"(g(vD) + 96" (q(v)) (vi = v)) = T2 lvi = Vi,

2
v = vill3)

The above inequality implies that ¢*(s;(w; () — v;) is p = Gopp-weakly convex in
terms of (w,v;), i.e., B¢ ¢ (5;(w; 0) — vi) + 5 (Il + |v;|?) is convex. As a result
F(w,v) + 51wl + £|Iv||3 is jointly convex in terms of (W, v). |

Similar to the SGD for weakly convex objectives in Chapter 3[Section 3.1.4], we
use the Moreau envelope of F(w;v). In particular, let v = (w',v")T and consider
some p > p, we define:

Fijp(v) = min F(w) + £ lu - v, (5.74)
,_ - P 2
proxg;(v) = arg min F(u) + 5”“ = v|l5. (5.75)

Convergence Analysis
Lemma 5.24 Under Assumption 5.16, we have

E/llz:3] <G, |&:Fi(w,v)|* < G,
where G = G3G?, and G5 = (1+ Go)*.

Proof. For the first part,

1 2
E:[llz113] =Et[ 3 Z 0@ (Wi, Vi i) ] < G}G?.
i€B; 2
For the second part,
0¢* 2 Vis :
(BaF(w, vl = ‘Eg |- 20 < 1+ G

O

Lemma 5.25 Under Assumption (5.16), let v, = (w;,v])T, for one iteration of
ASGD, we have
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_ — P —
E: [Fi/5(Vie1)] £ Fry(ve) + pns (F (V) — F(vy) + EHVI - Vt“%)
, P1i(Gi+G3/B)
— s
where V; = proxg 5(V;).

Proof. Let E; denote the expectation over the random samples at the z-th iteration
conditioned on that in all previous iterations.

B [Fup(ven)] < Bi|F(30) + SlIvier = %3
< F(¥0) + SEi[lIwi = ey = Wall3 + 1vier = ¥i3]

_. P _ 20 P -2
S F(v) + EEt[”wt -z — W3] + EEt[”Vt+l =151

Gy
2

< F(¥0) + S W = W3 + pniE,[(% = w) T F (Wi vi)] +

+ gEt[uml Ak

where the last step uses E,[z;] = 9, F (w;, v;) and E[||zt||§] < G%.
Similar to (5.73), we can prove that

B ||veer — f’t”% =|lvi - ‘_’z”% = 2y;Bo F(wy, Vt)T(Vz - V) +712G%B~

Let y,B = n;, combining the above we have

E; [Fl/p(Vt+1)]

SF@)+ gllvz 3+ o B [(V: = v)TOF (V)] + ‘w
S F(v) + gllvt =I5+ P B [(V, = Vi) TOF (v,)] + ’w
< Fiyp(ve) + pne(F (V) = F(ve) + %’uv, - i[5 + M,

2

where the last step uses the definition of Fy;(v;) and the p-weak convexity of F.
Rearranging this inequality finishes the proof.

O
Theorem 5.13 Suppose Assumption (5.16) holds and F, = inf F(w,v) > oo, by

setting p =2p, n = 62/(2/5(G% + G%/B)), vy=n/BandT > A%w, ASGD
guarantees that

E <ée

T

1

7 2 IVF (01l
t=1
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2 2
with a complexity of T = O (M)
Proof. Since F(v) + §||V - V,H% is (p — p)-strongly convex and have a minimum
solution at V;, then we have

F(v) = F() = Slvi =913

= (FO) + Slve = vilB) = (FG) + 519 = vl + (5 = D)live = w13

(0 —p)
ZTII
p=p

=— IVE15(vo)ll5-

(p-p)

<2 SN2 (= < 2
Vi — Vt”2 + lv: — Vz”z =@ -pllvi - Vt”z

Combining this result with that in Lemma 5.25 and noting that p = 2p,n, = 1, we
have

T-1
1 2(Fy)5(vo) — F.)
2| 25 VR0l | < SR n(@ i)
2(F(vg) — Fx _
< AF () 1) (7;); ) +pn(G7 + G3/B)

By settingn = €2/(26(G1+G3/B)) and T > A%L_F*),WC have E[||VF/5(v-)|3] <

€2 fora randomly selected 7 € {0,...,T — 1}. m]

5.5.2 A Geometry-aware Algorithm for Entropic Risk

Although last section presents a general algorithm for solving COCE risk minimiza-
tion, it may exhibits numerical instability issue and slow convergence when solving
compositional entropic risk minimization:

1 n
minmin | F(w,v) = — Z{]Eg exp(s;(w;¢) —vi) —1+v;}
vy ni

l n
=min - ; log (E¢ exp(si(w:))) .

The numerical instability issue is caused by dealing with exponential functions, e.g.,
exp(s;(w; {) —v;), in calculation of stochastic gradients of v;. The slow convergence
arises because the standard SGD update for v; fails to exploit the geometric structure
of the problem.

264
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5.5.2.1 Stochastic Optimization of Log-E-Exp

We first consider a simplified problem where there is only one component n = 1,
ie.,

ngn Fi(w) :=log (B exp(s(w; {))) . (5.76)

The KL-regularized DRO problem (2.14) is a special case. It is also known as log-
E-Exp, a more general form of the log-Sum-Exp function, where the middle “E”
denotes an expectation and highlights the associated computational challenges.

Application of SCGD

At the beginning of Section 4.1, we treat this problem as a special case of stochastic
compositional optimization (SCO), where the outer function is f(-) = log(-) and the
inner function is g(w) = E; [exp(s(w; ))]. Let us first apply the SCGD algorithm.
The key updates are presented below:

ur = (L =y)ur—1 +yrexp(s(we; &),
1 !’ !

Z; = — exp(s(w;; &) Vs(wes £]), 5.77)
t

Wiil = We — N2y,

where u, is an estimator of the inner function value g(w;) andz, = V f(u;)Vg(w;; {;)
is a gradient estimator of w;.

From a practitioner’s perspective, the algorithm can be readily implemented and
applied to real applications. However, from a theoretical perspective, several open
problems remain. In particular: (1) Can we establish an O (1/€?) convergence rate
for this algorithm to find an e-optimal solution when s(w; ) is convex? (2) If yes,
what are the practical advantages of this algorithm compared with the ASGD method
presented in the previous section?

Wait! Shouldn’t we established the convergence rate of SCGD in Chapter 47 It is
true that we presented a convergence analysis of the above algorithm for non-convex
problems under proper conditions, however, it remains an open problem to establish
the complexity of O(1/€?) for finding an e-optimal solution under the convexity
of s(w; ). A naive analysis of SCGD for convex problems yields a complexity of
O(1/€*) (see Wang et al. (2017a)).

A Novel Algorithm

To address these open questions, we present a novel algorithm based on the min-min
reformulation of log-E-exp, i.e.,
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mvin min F(w, v) :=E; exp(s(w;{) —v) +v. (5.78)

where we ignored the constant —1 in the objective. As proved in Lemma 5.20,
F(w;v) is jointly convex in terms of w, v when s(w; {) is convex.

Motivation

The key novelty of our design is a geometry-aware algorithm for solving the equiv-
alent min-min optimization (5.78). Let us first discuss the motivation. One challenge
for solving the min-min optimization problem is that the objective function F(w, v)
could have exponentially large smoothness constant in terms of v. We will formally
analyze this phenomenon in next section. Hence, a vanilla gradient method that uses
the firs-order approximation of F will inevitably impacted by the large smoothness
parameter.

To mitigate the adverse effects of a large smoothness parameter with respect to
v, we resort to the classical approach of employing a proximal mapping. Proximal
mappings have been widely used to handle a non-smooth function in composite ob-
jectives consisting of a smooth loss and a non-smooth regularizer. This approach
enables optimization algorithms to retain the favorable convergence properties of
smooth optimization and often leads to faster convergence despite the presence of
non-smooth terms. Analogously, even when a function is smooth but characterized
by a very large smoothness parameter, applying its proximal mapping can effectively
alleviate the negative impact of this large smoothness constant.

However, there is an important distinction from classical proximal methods,
which typically rely on direct access to the function of interest for computing the
proximal mapping. In our setting, we cannot directly apply the proximal mapping of
F(w,v). Instead, we only have access to a stochastic estimator

D(w,v; ) =SV 4y,
defined for a random sample £. As a result, it becomes necessary to explicitly account

for the noise introduced by this stochastic approximation.

Algorithm

To account for the stochastic noise, we introduce a Bregman divergence D, (-, -) and
update v, according to the following scheme:

1
v, = argmin ®(w,, v; {;) + a—D¢(v, Vi), (5.79)
v t

where {; ~ P is a random sample and @, > 0 is a step size parameter. We refer
to this step as stochastic proximal mirror descent (SPMD) update. To respect the
geometry of the stochastic objective ®(w,, v; {;), we construct a tailored Bregman
divergence induced by the function ¢(v) = ¢, namely,
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Algorithm 21 The SCENT Algorithm for solving Log-E-Exp (5.76)

1:
2:

4
5
6:
7
8:

Initialize wy, vy, step sizes 1, and a;, ¢ (v) =e™".

forr=1...,T-1do
Sample &, ¢/

Update v, = argmin,, exp(s(W;; &) —v) + v + L%D‘p (v, ve-1)
Compute z; = exp(s(W;; ) — ve)Vs(we /)
Compute v, = (1 = ;) Vi—1 + Br2s
Update W;41 = W, — 17, V;
end for

If the problem is non-convex, we compute a moving-average estimator v, = (1 —
B:)Vi—1 + B:Z, and then update the model parameter w,,;. We present the full steps

Dy(v,vic))=e™”

Once we have v;, we compute a vanilla gradient estimator by

z; = exp(s(w; 4}) — vi)Vs(we; £)). (5.81)

in Algorithm 21, which is referred to SCENT.

SCGD is just a special case of SCENT

To see the connection with SCGD, we present the following lemma.
Lemma 5.26 The update of v, defined by (5.79) can be computed by

vt = ! Vi-1 e’ . 5.82
¢ = 1+ asevt-1 ¢ * 1+ a e exp(s(Wi3 1)) (5.82)
t t

If y: = e, we have
i1t
Ve = 1+ a/tes(wt;{t) ’

Proof. We compute the gradient of the problem (5.79) and set it to zero for
computing v;, i.e.,

1
—exp(s(wg &) —ve) + 1+ a—(—e“” +e 1) =0.
t

Solving this equation finishes the proof. O

If we define u; = ¢ and y; = %, then the updates of SCENT (5; = 1)
are equivalent to
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u;=(1- 7;)’/%—1 +’Y; exp(s(ws; ¢r))
1 ’ !’

z; = u—exp(s(w,;{t))Vs(w,;g“,), (5.83)
t

Wieel = Wr — 12y

Comparing this update with that of SCGD (5.77), the key difference lies in
the choice of the moving-average parameter: SCENT adopts an adaptive pa-

Vi o
rameter y; = y& w7, whereas SCGD uses a non-adaptive ;. If we set

a; = ly’y e -1 then the updates of SCENT reduce to that of SCGD.

e

Convergence analysis for convex problems
Since z; = Vy exp(s(w;; {;) — v;), we have
Eg[z:] = VwEg [exp(s(Wes £)) = ve)] = ViF(We, vy).
Let w.., v, be the optimal solution:
(W, vs) = argmin F(w, v).
w,v
It is straightforward to derive v, = log[E exp(s(w.;{))].

Assumption 5.17. Assume that the following conditions hold:

(i) s(w; ) is convex;
(ii) the loss function is bounded such that s(w;{) € [co,c1], YW, (.
(iii) there exists G such that E;||Vs(w;, {)H%] < G*,Vt.

Critical: To relax the second assumption, we can assume that w is restricted
to a bounded domain ‘W and s(w; £) is regular. In practice, we always enforce
the boundness of w; through either projection onto W or using a regularizer
r(w). The update of w;,; can be modified as the SPGD update:

1
Wy = argminz, w+r(w) + —||lw — w, ||§.
W/ un
The analysis can be performed similarly.

Lemma 5.27 Under Assumption 5.17(ii), v. € [co,c1] and if vo € [co,c1] then
v € [co,c1], V2.

Proof. v. € [cp, c1] can be seen from v, = log[E exp(s(w.,;¢))]. The second result
can be easily seen from the update of e** as in (5.82) by induction. O
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For the ease of analysis, we define two quantities to capture the variance terms
caused by using stochastic estimators.

o7 =By llexp(s(wis &) = v) Vs(wis D31
67 =By, [e7 |8 Vi) — By [eS MO,

Under Assumption 5.17 (ii) and (iii), oy, d; are bounded because e'’,e~' and
es(W:4) s upper and lower bounded.

Critical: These two quantities are related to the variance of stochastic estima-
tors in terms of w, and v;, respectively. Both quantities have a normalization
term e ore” V1.

Lemma 5.28 Under Assumption 5.17 and B¢ = 1, we have

2.2
;0%

2

1 1
BOn V1 F (Wi v) (W = wo)l <B [ S11we = wall3 = S wee = will3] +

Proof. The proof is a simple application of Lemma 3.3. O

If the SPGD update is used, we can use Lemma 3.6 giving us
T 1 2 2
z, (Weat = Wa) +7(Wepp) —7(W,) < 0 (Ilw; — W*”z — || W1 — W*“z)
t

1
— =W — Wey ”2
2n, 2

Then,
T 1 2 2
z, (W — W) +7(W;) —r(w,) < ﬁ(HWt - W*||2 = lwegr — W*Hz)
t

1 2
+2] (W, — W) — 2 lw; = Wertll; +7(We) = r(Weyp)
t

2 2 Ui 2
< 2 (Iwe = Wall5 = W1 = Wel3) + 3||Zt||2 +7(W) = r(Wie1).
t

Taking expectation on both sides, we have

E[TIzVIF(Wt»Vt)T(Wt = w.)] +n:(r(we) — r(w.))

2 2
Und

2

+

<E

1 1
(Uzr(Wt) + §||Wt - W*”%) - (Utr(Wt+1) + §||Wt+1 - W*“%)

If 941 <y and r(w) > 0, then 1,7 (W) < 14417 (Weyp), then the terms in the
square bracket will form a telescoping series over + = 1,...,7T. As a result, the
following analysis will proceed similarly.
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Lemma 5.29 Under Assumption 5.17 (ii), we have
Vo ®(W, vy {t)T(Vt S Dga(V*, Vio1) — Dtp(V*» V) — DLp(Vta Vio1)-
Proof. Recall the definition

D(w,v;4) =exp(s(Wes &) —v) +v
e(v)=e™", Dyl(a,b)=g¢(a)-p(b) —(Ve(b),a-b),

and the update of v;:
v, = arg H{/in @; ®(W;,v; ) + Dy (v, vi-1).
The first-order optimality gives
a;Vo®(we, v &) + Vo(vy) = Vo(ve—p) = 0.
Taking inner product with (v; — v,) and rearranging gives

@ (Va®@(We, V3 8r), ve = vi) = (Vo (vim1) = Vo(vi), ve — Vi)
= D¢(V*, Vio1) — D(ﬁ(v*’ V) — Dtp(vt» Vi-1)

where the last equality holds by three-point identity as in Lemma 3.9. O

Critical: To proceed the analysis, we need to bound E[a; Vo F (W, v,)T (v, —
v,)]. In light of the above lemma, we will bound the following difference in
expectation:

E[(V2F (We, ve) T (vi = vi) = Vo® (W, v &) T (v — vi)].

The challenge lies at v; depends on {;, making the above expectation not equal
to zero.

Lemma 5.30 Assume a; < pe™"'~! for any constant p > 0, then we have
[E[(V2F (Wi, v))T (vi = vi) = Va® (Wi, vii )T (v = vi)]| € @:6°C. (5.84)
where C = (1 + p)(1+c| — ¢p).

Proof. In the following proof, we let ¥;_; denote the filtration (the “information
available”) up to time ¢ — 1.

Let us define z, = e*™34) m, = B, [e*™:¢)|F,_1], and y, = e™*. Let z and 7’
two independent variables so that E[z|F; -] = E[Z’|F;-1] = m;, . Since v; depends
on z;, let us define random functions:
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Yot
CZ[Z+1 ’

he(2) = e (vi(2) = vi) = 30 (D) (v (2) = vs).

yi(z) = vi(z) = —logy,(2)

According to the update of v,, we have y, = y,(z;),v; = v;(z). For the target, we

have
E[(Vo®(W;, i3 &) — Vo F (wy, Vt))T(Vt =vi) | Fi-1]

— E[E; [eS(Wt;é)] _ eS(wt;,(t))e—Vr (V; _ v*) | F-1]
=E[(m; — z1)he(2¢) | Fi-1] = Bz [(m; — 2) e (2)|F7-1].

Since 7’ is an i.i.d. copy of z and independent of z given F;_,
m; =E[z | Fi-1] =E[Z" | Fi-1].
Using the conditional independence,
E[(m; = 2)h:(2) | Fi-1] =E[(Z' = i (2) | Fi-a].
By exchangeability of (z, z") conditional on %;_1,
E[(Z - 2)h(2) | Fi-1] = —E[(z' = 2)h(2) | Fiz1].

Averaging the last two displays gives the standard symmetrization:

B[y = (D) | 1] = 3 B[ = () = b)) | Fia].

Next, we show that /(z) is Lipschitz continuous. By definition,

Yi-1t+ @

vt 1’ he(2) =y (2) (v (2) = va).

yi(z) =

Differentiate with respect to z:

dy;(z) d 1 @ (ye—1 +ay)
— =(y 1 +a) — +1 =
dz (yi-1+ ) dz ((a/tZ ) ) (arz+ 1)2
Using y;(z)(a;z + 1) = y;—1 + a;, we can rewrite this as
dyi(z) _ _ ayi(2)
dz a;z+1°
Since v;(z) = —log y;(z), we have
dvi(z) _ 1 dyi(z) @
dz v:(z) dz az+ 1

As a result,
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dhi(2) _ dy:(2)
dz dz

dvi(2) _ a:y:(2)
dz a;z+1

(ve(2) = vi) +3:(2) (1= (ve(2) = vs)).

Since v;(z), v« € [co, 1], then
|1 = (vi(z) =v)| < L+¢1 = co,

Y1+

and since y;(z) = ol SY-1+ar < (1+p)y;—1, we have

dhy
dz

< aryi-1(1+p)(1+c1 = co),

which means i.e. &, is L;-Lipschitz with
Ly < ary:—1C.
Then, it holds
|z = 2)(he (2) = he(2))] < Ly (2 = 2)* < Carye—1 (2 - 2)%.

Thus,

E[I(Z' — ) (h(2) = he(2)) | Fio1| < CaBly—1(2 = 2)») | Fi-1l

=Cao; ‘2E[Yt—l(z —E[Z])2 | Fi-1] < 2C6Vt5t2,

where the last step uses the definition of §7. Applying this result to (5.86), we have
1 ’ ’
)E[(,Ut - 2)h(2) | 9?1]’ < EE[’(Z = 2)(he(2) = b ()| | Fizr| < Cas6;.

By noting (5.85), we finish the proof. O

Combining Lemma 5.29 and Lemma 5.30, we have the following lemma for one-
step analysis of the v-update.

Lemma 5.31 Under Assumption (5.17) (ii), we have
Ela,VaF (Wi, v))T (v = vi)] S E[D o(va, vi—1) = Dy (ve, v,) + Ca?6?].  (5.87)

Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.14 Suppose Assumption 5.17 holds. Let 8, = 1,1, = nay, a; < pe™ "1,
then SCENT guarantees that
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T
E Z a; (F(we,ve) = F(W., vy))
t=1

1
%le W||% +D,(vi,v0) +E

e

Proof. Since n; = na;, from Lemma 5.28, we obtain

2 2
770’,0}]

2
W1 —W*”z )

1
Ela;ViF(w;, Vt)T(Wz -w)] <E|—llw - W”% il

2n 2n
Combining this with Lemma 5.31, we have

Ela; (Vi F(w;, Vt)T(Wt - W.) + Vo F(wy, Vt)T(Vt = v)l

1 1

<E Z“Wt - W“% - E”WHI - W*”% + D(P(V*’ Vio1) — Dcp(V*, Vt)]
2.2

+E| 1% +Ca,26t2].

By the joint convexity of F(w, v), we have
@ (F(We,vi) = F(Wa, vi) < @ (ViF (Wi, v) T (W = W) + Vo F (Wi, vi) T (v = ).

Combining the last two inequalities and summing over ¢ = 1, ..., T, we have

T
E| Y a(F(Wive) = F(W., )

t=1

1 2
< E”Wl = W[5+ Dy(ve,vo) +E

We present two corollaries of the above theorem.

Corollary 5.2 Suppose Assumption 5.17 holds. Let B; = 1,n; = nay;, a; = <

@
NT
pe~ V=1 for some constant p > 0, then SCENT guarantees that

DO CZV

E[(Fi(Wr) = Fi(w))] < —=+—

T T

where w = Lo Do = 5=||lw; — 24D d
T="7 0= 7,V W*||2+ w(V*,Vo)a"

n Zszl 0'z2 + ZtT:l C6,2

V=E
2T T
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Proof. Plugging a; = a/VT into Theorem 5.14, we have

() aV

(F(we,ve) — F(We,vy)) +—.

Z o oNT T
Using Fi(w) = min, F(w,v), F|(w,) = F(w.,v.) and the Jensen inequality, we
can finish the proof. O

@ Why it matters

Since &;, o are finite, the above result implies a convergence rate of O(1/VT)
for SCENT.

Corollary 5.3 Suppose Assumption 5.17 holds. Let B; = 1,n; = nay, ay = “—=—
if % Zthl e V=1 > § almost surely, then SCENT guarantees that

D() aV

[Fl (WT) F (W* a\/_S ﬁ

Zz Wy
[e73

where W = and

t 1

V=

T ,-2vi_1,2 T -2vi1 52
E nzz:l e oy + t=1 Ce ™ ]61 .
2T T

Proof. Let @; = . From Theorem 5.14, we have

Z,lz

E

zT: a; ZT] & (F(We,vy) = F(w., V*))l

>

t=1

Wi = w3 + Dy (ve, vo) +E

+ Z C01262

Since ¥, @, =Y, %;H > aVTS, then

2,7||W1 W||%+D(,D(V*’ o) aV

+ .
aVTS TS

Applying the joint convexity of F(w,v) and F; = min, F(w,v), we can finish the
proof. O

T
E Z @ (F(wy,ve) — F(w,, V*))l
t=1
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@ Why it matters

Under the stated setting, SCENT reduces to SCGD with y; = ‘/ﬁ ~. Since S can

be lower bounded by a constant, the above corollary implies O(1/VT) conver-
gence rate for SCGD to minimize log-E-Exp.

Analysis of the Variance Terms

Since the final convergence bound depends on the variance terms o2, 52, we would
like to provide further analysis on them.
Let us introduce some notations:

2w ) = es(w;f)’ wu(w) = logEges(w;{), (5.88)
m; = Eges(w';n, My = pu(w;) = logm,. (5.89)
For the analysis, we make two reasonable assumptions.
(Elz(w:)1)?

. 2
Assumption 5.18. Assume there exist constants k, o> such that (i) B [M] <

« for all w; (ii) E||e* ™€)~ #Vs(w,; £)||> < o for all t;
Critical: These assumptions are necessary. In next section, we show that

the dependence on « is unavoidable. The second assumption is the standard
bounded stochastic gradient assumption for optimizing F} (w).

Lemma 5.32 (Dual Variance Term) Under Assumption 5.18, we have

82 < 2(k - Dm, (F(w,, Vee1) = F(Wa,v.) + 1). (5.90)

¢ Why it matters

When F(w;, v;_1)—F(W., v.) — 0, the variance term in the convergence bound
caused by the stochastic update of v, will be dominated by 2(x — 1)m,. Large m;
can be mitigated by choosing small «;.

Proof. Recall that
6? = E{t I:eivtil (Z(W;; {t) - m,)z]
By Assumption 5.18(1),
Var(z(w;;0)) < (k — l)mtz.

Hence
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62 = 7V Var(z(w;3 0)) < (k= De ™ 'm? = (k = Dmy - (mge™ 1),
Let 7,1 := mye™""-'. By the definition:
F(w;,vi_1) = Bes WiVt 4y | =F 4 v,
Since 7_; = €'°8™M V-1 we have
F(wi,vi1) —(T+ ) =F-1+vio1 — (L +logmy) =71 —log#—1 — 1.
Using r < 2(r — logr) for all r > 0 yields
Frot < 2(F(We,vee1) — (1 + ) +1).

Since w, minimizes u(w), we have u; = u(w;) > u(w,) and thus (1 + u;) >
(1+ p(wy)) = F(w.,,v.), implying

F(we,vic1) = (1 +uy) < F(We,vimy) — F(Wa, vi).
As a result, we have
Frot < 2(F(We,vim1) = F(Wa, vi) +1). (5.91)
Combining this with the bound of 62, we complete the proof. |
Lemma 5.33 (Primal Variance Term) Under Assumption 5.18, we have

of <40 (F(we,ve) = F(W,,v.) +1)°,

@ Why it matters

When F(w;,v;) — F(W.,v.) — 0, the variance term in the convergence bound
caused by the stochastic update of w; will be dominated by O (o "?).

Proof.

of =Egllexp(s(Wi: &) = vo) Vs(wes )31,
=By [ H7)| exp(s(wis &) — ) Vs(Wei Z)IR] < rfo?,

where r; = e# ™, Similar to (5.91), we have show that
re < 2(F (W, ve) — F(We,vi) +1).
Hence,

of <40 (F(we,ve) = F(Wa,v.) +1)°,
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Algorithm 22 The SCENT Algorithm for solving CERM
1: Initialize wy, v, step sizes 1, and a;, p(v) =e™".
2: fort=1...,T-1do
3: Sample B, c {1, ..., n} with |B,| = B

4: for eachi € B; do

5: Sample &i ¢, &/, ~ Pi

6: Update v; , = argmin, exp(s; (W3 &ir) — V) + v+ iD(p(v, Vit-1)
7 end for

8:  Computez; = 3 Yieg, exp(si(We; &/,) = vir)Vsi(Wis &/ ,)

9: Compute v, = (1 = B¢) Vi1 + B2

10: Update w;1 = Wy — 17,V
11: end for

5.5.2.2 Compositional Entropic Risk Minimization

In this section, we extend the results to solving compositional entropic risk mini-
mization (CERM):

min Fi (w) = ) log (B, explsi (w: )
i=1

via its equivalent min-min formulation:

n

1
min min F(w, v) ;= — Z{EKNPL. exp(s;(w; &) —vi) +v;}.
w \4 n N

i=1

The difference from Log-E-Exp is that there are multiple v;,i = 1,...,n, which
needs to be updated using stochastic block coordinate method. The technique has
been used in algorithms presented in previous sections of this chapter.

We present an extension of SCENT to solving CERM in Algorithm 22. The major
change lies at the stochastic block coordinate update of v in Step 5. This extension
is analogous to SOX for FCCO, employing stochastic block-coordinate updates for
the inner estimators. Indeed, SOX applied to CERM can be recovered as a special
case of SCENT by choosing the coordinate-wise step size a; ; = 13”7 - e~ Vit-1 using
an argument similar to (5.83).

Convergence analysis for convex problems
Let us define some notations:

D (W, vis &) = exp(si(Wes &) —vi) +v;
Fi(w;,vi) = Bpop, [®i(W;,vi50)]
(W, v.) = argmin F(w, v).

w,v
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Similar as before, v; . = log[E;.p, exp(s;(W.;))]. Since we deal with stochastic
block coordinate update, we introduce a virtual sequence v;, where

_ . 1 .
Vi = arg mvlneXp(Si(Wz; lip) = V) +v+ a—Dq;(v, Vii-1), Vi
t

Following Lemma 5.26, we have

. 1 ) atevi,t—l

Vid = ——————¢"" 1 4 ————exp(s; (W5 4)), Vi.
e 1+a,e"r¥t-le 1+ a eV p(si(We; 4r)), Vi
Assumption 5.19. Assume that the following conditions hold:

(i) s;(w; ) is convex;
(ii) the loss function is bounded such that s;(w; () € [co,c1], VW, , 1.
(iii) there exists G such that B ||Vs; (w;, §)||%] < G%Vt,i

Define oy ¢, 6; ¢ as
O-iz,[ = E»{i’,t"Pi ” eXp(si (wh {1{,[) - Vi,l)Vsi (WI7 g;,z) ”%] > VI7 t,
61‘2,1 = By, P, [e” Vit |eSi(Wt;_(i,r) ~Eg-p; [eSi(Wt;_(i)] |2]’ Vi, t.
Similar to Lemma 5.27, the following lemma can be proved.
Lemma 5.34 Under Assumption 5.19, if vo € [co, c1] then v, € [co, c1], V.

Similar to Lemma 5.28, we have the following lemma regarding one-step update
of w;.

Lemma 5.35 Under Assumption (5.19) and B; = 1, we have

2,2
+ 19

E[n:ViF(w;, ‘_’t)T(Wt -w.)| <E 7

1 2 1 2
§||Wz -w.l3 - §||Wz+1 - w3

2 _1vyn 2
where oy = 4 2, 0y,

Proof. We first bound E, [ ||z, ||§ | F:-1], where E; denotes the expectation over ran-
domness in 7-th iteration given w;, v,_j.

2

2

l ’ !
’_ Z eXp(Si(W,;é'i’t) - Vi,t)VSi(Wﬁé’i,;)

B i€B;

3 Y k| =1y
i=1

i€B;

1 7 ’
Et[”%”%] =E, B Z CXP(Si(Wt§§i,t) - Vi,t)VSi(Wt§§i,z)

i€B;

=Es..Eq18,.4

il

<Es.

Since v; ; = v;;, Vi € By, we have
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

1 _ , _
= Z V(Di(wt,vi,t;{iz) =ViF(w;, 7).
B ieB ’

E (2] =Bz 4.8,

Then following Lemma 3.3, we can finish the proof. O
Next, we analyze the update of ;.

Lemma 5.36 Under Assumption (5.19) (ii) and a; < min; pe™"'~1, we have
_ _ 1
Ela;V2F (Wi, ) (7 = v)] < 2B [Dy (v vi1) = Dy (v, vi)| + Caj6y.

where Dy (vi,v;) = Y Do (Vi viy) and 67 = % o 5%.

Proof. By applying Lemma 5.30 and Lemma 5.29 for each coordinate of v; ;, we
have

Ela,VaF;(We, 7i0) " (e = Vi)l < Dy (Vioss Vise—1) = Dy (Viws Vip) + Cal 87, Vi

i,t?
Averaging the above inequality over i = 1,.. ., n, we have
n
ST (5 1 = 2
Ela;VoF (W, v;) ' (Ve —vi)] < r_l Z (Dtp(Vi,*, Vig—1) — D¢(Vi,*, Vi,t)) + Ca;6;.

i=1

(5.92)

Due to the randomness of B;, we have
B B _ .
E[Dw(Vi,*’ Vi,t)] =E (1 - ;)D¢(Vi,*’ Vi,t—l) + ;Dw(vi,*, Vi,t) , Vi.
Hence

E

1
n ZZ (D (Vs Vig-1) = Do (Vi s, Vi,z))l

n
=1
1
n

M=

=E

n n
Dy(vis,Vig-1) = 5D (Vi Vig) + (5 = DD o (Vis, Vii-1)
B B

13

—_

s |

1
=—E
B

(Do (Viws Vig-1) = Do (Vi s, Vi,z))l .
=1

Combining this with (5.92), we finish the proof. |
Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.15 Suppose Assumption 5.19 holds. Let 8; = 1,1, = na;, and a; =

\/—"T < pmin; e~ %=1 then SCENT guarantees that
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D(P(v*7v0) aV

1
E[(Fi(Wr) = Fi(w.))] < wy — w2 + 20 eV
2naNT 2 aBNT NT
r T 2 T 2
Where V_VT: Z’?wt’andV:E[nzé:T]‘ O + t:l,z-‘C&r:I )

¢ Why it matters

In order to achieve an e-optimal solution, the above convergence bound implies
the following complexity:

T=0

”Wl _W*”g D<p(V*’ VO)2 Cl’2V2
n202€2 a2B2e? €2 .

For simplicity of discussion, let us consider a setting of 7 such that the first term
matches the second term. As a result, the complexity becomes:

Dy (vi,v0)?  a?V?

r=0 a’B2e? €?

Insight 1: Since oy, d; are finite, and D ,(v.,vp) = O(n), if @ « \/m the
above result implies an iteration complexity of O(5%;) for SCENT.

Insight 2: When the loss s;(w;;{) > 0 is large, the term e~ ""*-! becomes very
small, suggesting that the step size parameter @ should be chosen small so as to
mitigate the large variance term ;. In contrast, when the loss s;(W;; ) < 0 is
small, the term e~"i*-! can become large, allowing « to be set relatively larger,

which helps offset the large distance measure D , (V. vo).

Proof. Since n; = na;, from Lemma 5.35, we obtain

_ 1 1 na20'2
E[a;ViF(W;, %) (w, —w.)] <E Z”Wt - W”% - %”WHI - W*”% + t2 -
Adding this to the inequality in Lemma 5.36, we have
Ela; (ViF (Wi, 7)) (W, = W.) + VaF (W, v,) T (v = v.))]
1 1 1 1
<E [anz - w3 - %HWM — w5+ EDtp(v*’ Viol) — ED"’(V*’ Vz)]
2.2
E[" Ty c ,265]

By the joint convexity of F(w, v), we have
@i (F(W;, v;) = F(Wa, v.) < @i (ViF (W, 7)) (W, = W) + Vo F (W, v,) T (7, = 7).

Combining the last two inequalities and summing over ¢ = 1, ..., T, we have
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E

T
D (F(W¥) = F(W.,v.)
t=1

1 , 1
< EHW] - W||2 + ED¢(V*,V()) +E

T T]CKZO'Z T
4N Cals?
2 -t
t=1 t=1

Since Fy(w,) = F(W,,v,), and F;(w,;) < F(w,,V,), we have

E

T
D (Fi(w) - Fl<w*>>l
t=1

T

o nejo? 252
t
tzgl > + E Caj;6;

t=1

1 , 1
< EHWI -wl;+ EDsa(V*,V()) +E

Plugging the value of @;, we finish the proof.

5.5.2.3 Why SCENT is better than ASGD?

In this section, we provide theoretical insight into why SCENT outperforms ASGD
for entropic risk minimization. The key distinction between the two methods lies in
their updates of the dual variable v: SCENT employs a stochastic proximal mirror
descent (SPMD) update, whereas ASGD relies on a standard SGD update. Accord-
ingly, our analysis focuses exclusively on the v-update while keeping w fixed. In
particular, we consider the following problem:

min F(v) := Ezes(g)_” +v, (5.93)
1 ¢

where we omit w in s(().

Recall the definitions z = ¢*¢), m = E[z], r(v) = me™ = e’ as used
previously, and the facts v, = argmin,, F(v) =logm, F(v.) =me™ ™ + v, =1+ v,.
Recall the SPMD update:

Vi-1
Vi — ; Vi-l 4 Le‘Y(é).
1+ ae-! 1+ a;e¥-1

e

Let us define an important quantity to characterize the difficulty of the problem:
E[z%]
K= 3>
(ElzD

which is known as second-order moment ratio. Larger « indicates heavier tails or
higher variability relative to the mean.
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A Clean Bound of SPMD

The optimality gap can be written as
Fv)-F(Wv,) =me” +v—-(1+v,) =r(v)—logr(v)—1. (5.94)

We assume s(¢) € [co, c1] and without loss of generality we assume c¢; < 0. If not,
we can define s'(¢) = s(0) —c1,2 = %) and F'(v') = E[z’¢””'] + v'. Then
F(v)-=F(v.) =F' (V') —min F'(v) if v =v' — ¢y.

Lemma 5.37 (Self-bounding inequality) For all r > 0,
r < 2(r—1logr). (5.95)
Equivalently, for all v € R,
r(v) <2(F(v) = F(v.) +1). (5.96)

Proof. If0 <r < 2,thenr <2 < 2(r —logr) since r —logr > 1 forall r > 0. If
r > 2,thenlogr < r/2, hence r —logr > r/2,i.e. r < 2(r — logr). Substituting

r = r(v) and using (5.94) yields (5.96). m|

Theorem 5.16 Suppose s({) € [co,ci] < 0 holds. By setting a; = ,/% <
min(m, p) for sufficiently large T, SPMD guarantees that

el

T T
(5.97)

T
LS BIF () - F)l < Mz\/c (k=D -ro+rologro) | Flvo) = F(v),
t=1

where C = (1 + p)(1 + ¢y — co), and rg = r(vg) = ¥,

¢ Why it matters

When vy > v, (over-estimation), then 1 — rg + rologro = O(1), the dom-
inating term becomes 0(\/?). This upper bound characterizes the intrinsic
complexity of SPMD, which depends on the second-order moment ratio «. If

5(£)) ~ N(ps, 02), then k = ¢+, which does not depend on the exponential of
the mean ug but rather e%s.

Proof. From Lemma 5.31, we obtain the SPMD averaged bound

D(P(V*’ VO)

Gr =
T aT

T
ZE[F(V,) —F(v)] <

t=1

+ CaV, (5.98)

Nl -

where
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T
V= 1 ZE[étZ], 6; =E[e™"'(z; —m)*] = e Var(z).

r t=1
Since e~ "1-1 = r(v;_1)/m, we can rewrite
V= Var_(z) . l ZT:E[r(vt,])]. (5.99)
m T P

By Lemma 5.37,

! E[F(vi-1) — F(v.) + 1]

IR
1~

el
i

T

D Elr(vi-n)] <
t=1 t
1

T
=21+ Z]E[F(V,_l) ~FOv)l|.

=1
Next, observe the index shift:

T-1

D BIF(vi-1) = F(v)] = E[F(v0) = F(v)] + ) | E[F(v,) = F(v.)]
t=1

t=1

T
<E[F(v0) = F(v)] + ) E[F(n) - F(v.)].

t=1

Dividing by T yields
T
1 E[F(vo) = F(v.)] = =
T;E[F(vt_l) —F(vy)] < - +Gr. (5.100)
Combining this with (5.99) we have
y < 2Var@ (1 +Gr+ E[F(VO)T_ Fv)] ) . (5.101)
m

Plugging (5.101) into (5.98) yields

T < 1+GT+ T

G <D¢(v*,vo)+2ca\/ar(z)( - E[F(VO)_F(V*)]).
aT m

Ifa <

m 2C a Var(z)
= 4C Var(z)°’ m

then

< %, and therefore
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G < 2D ,(vs, vo) R 4Ca Var(z) (1 N E[F(vo) = F(v)]

aT m T
2D (v, vo) N 4Ca Var(z) N F(vp) — F(vs)
N aT m T ’

Optimizing the right-hand side over « (assuming 7 is large enough) gives:

ZE[F(V;) - F(V*)] < 4\/5\/CD90(V*» Vo)Var(Z) N F(VO) — F(V*).
mT T

N =

T
1=1
With rg = r(vg) = €70,

1
Dy(vi,vo) =™ —e " +e (v — ) = —(1 —ro+rolog ro).
m

Since Var(z)/m? = k — 1, thus the convergence upper bound becomes

4\/5\/C(K—1)(1—Tr0+rologro) . F(Vo);F(V*).

Comparison with SGD.

Benefit under the noise setting

In order to control the variance, we consider projected SGD. Let IIj., ] denote
projection onto [cg, ¢1]. The projected SGD update is

vier = Migge (i =@ &), go=1-ze™, (5.102)

where {z;};>0 are i.i.d. copies of z and @’ > 0 is a constant step size. Note that
Elg: [vi] =VF(vi) =1—-me™™.
We present a corollary of Theorem 3.5 for SGD to minimize F(v) below.

Corollary 5.4 Suppose s({) € [co, c1] holds and F(-) is L-smooth in the range of

[co. c1]. Let {v;} follow (5.102). If n < L, Then

T
G3OP = lZJE[F(V,) “F(v)] < Co=v)” | .
g T £ 2a'T

where
T

T-1 -1
2(5;)2 _ Va;(z) ZE[e‘ZV'].
t=0 t=0

7’

v =2
T
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

We quantify the smoothness on the bounded domain of the objective, which in-
troduces an exponential constant.

Lemma 5.38 On [co, c1], the function F(v) = me™" + v is L-smooth with

L= sup F’'(v)= sup me™V =me < =¢"™,

ve[co,ci] ve[eo,ci]

Proof. We have F”'(v) = me™”, which is decreasing in v, so the maximum over

[co, c1] is attained at cy. |
Theorem 5.17 By choosing the optimal o’ = l\;% < % = % SGD’s upper
bound becomes

_ . -1

G35P < V2|vg — vu| "€ "T (5.103)

where k = E[z%]/(E[z])>.

Proof. The proof follows Corollary 5.4 by noting that V' < Var(z)e > and
Var(z) = m?(k = 1) = e?(k = 1). O

¢ Why it matters

By comparing the convergence bound of SPMD with that of SGD, the resulting

ratio is: 1

Vo — valer——eo”

Notably, this ratio becomes exponentially small in regimes where v, > ¢, high-
lighting the superior efficiency of SPMD.

Benefit under the noiseless setting

We further show that, even in the noiseless setting, the dependence of the GD up-
date on |vg — v.| is unavoidable, whereas the PMD update does not exhibit such
dependence when v > v..

In the noiseless setting, where m = E[e* ¢4 )] is known, the gradient descent (GD)
iteration becomes:

Vietl = v —@'VF(v;) = v — /(1 —me™), t >0, (5.104)
where @’ > 0 is a step size. For deterministic PMD, its update is equivalent to (cf.

Lemma 5.26):
yeta

Yl = (5.105)

1+am’
where y; = e™".

Lemma 5.39 (GD vs PMD) Assume vy > v.. Let {v;}:>0 follow (5.104) with o’ <
1. Then in order to have |VF (v;)| < €, then we need at least
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L Yo~ ve—logrg)
a/

(5.106)

In contrast, for deterministic PMD update (5.105), in order to ensure |VF(v;)| < €.

it suffices that
o Fogﬂl - rOI/G)w

log(1 + am) (5.107)

Proof. Recall the definitionr(v) = me™ = e~ V. Wehave |[VF(v)| = |[1-r(v)|.
From (5.104),
Vel = v —a' (1= e 7").

If v, > vi, then vy — vi = v, —vi —@’(1 — ™) > 0 provided @’ < 1. Let
ry = "~ > (. Then, from GD update we have

Fee1 = re® 17 < p e < ppe® UFD),

In order to have ||VF (v;)||3 < €2, it is necessary to have r, > 1 — €. Hence, we need
1

log —= vo— v« —logl
atleast 1 > —% = (1“9).

a/
For deterministic PMD update (5.105), since r; = my; we have

lI-€

1= re—1
Fr+l Cl+am’
Taking absolute value yields
IVF(v:)|
VF =—,
| (Vi+)] (1+am)
Solving |VF (v;)| < |[VF(vo)|/(1 + am)’ < € yields (5.107). O

@ Why it matters

Deterministic GD needs at least Q((vyp — v.)/a@’) steps to enter a constant-
accuracy region, whereas PMD reduces |VF (v;)| geometrically with rate (1 +

am)~!, yielding a complexity of order O ( log % , which does not scale

Tog Ty
with vo due to [1 —rg| = |1 — &% < 1.

Indeed, in the noiseless setting for PMD, taking the formal limit @ — oo yields
y1 — 1/m thus vi — v,. This highlights that the PMD update is an implicit,

geometry-matched step.

5.5.2.4 An Optimal bound for SPMD

In fact, we can improve the convergence rate of SPMD to O (KT’I), which matches
a lower bound to be established. The key is just to use a specially designed learning
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rate scheme «;. Recall the SPMD update:
e = —, Viz1, (5.108)

where y,_| = e "1, z; = €541,

Lemma 540 Let S; = Z;:I z; and Z; = Sy /t. Initialize y| = 1/z; (or equivalently
a1 = o) and for t > 2 choose

@ = = . (5.109)

Then forallt > 1,

s
o= ov= —logy = 1og(7’) = logZ,. (5.110)
t

In particular, v, is the exact minimizer of the empirical objective

I?,(v) = Z;e Y +v since argmyinf,(v)zlogzt.

Proof. We prove (5.110) by induction. For t = 1, y; = 1/z; = 1/8; holds by ini-
tialization. Assume y;_; = (t — 1)/S;-1. Then (5.109) gives a; = 1/S;_1, and the
recursion (5.108) yields

t—1 1 t

Vv, = Sr-1 + Se-1 S _ t _ t
t = = = = -
1+ Sfil —St_|+zf S[_l + 2 St

-1
Thus y; =1/S; and v, = —logy, = log(S;/t) = logZ;. O
Assumption 5.20. Assume s(¢) is o-2-subgaussian, i.e.,

E[et()-E(@D] < L2 yieR.

This includes Bernoulli distribution (indeed, if s({) € [co, c1] a.s., then s({) —
E[s()] is (¢1 — co)?/4-subgaussian by Hoeffding’s lemma).

Since ~ar(z)

EE = K 1, we have

Var(z) _ (k = 1)m?

Var(z7) =
ar(Zr) T T

Since Lemma 5.40 gives vz = log Zr, in light of (5.94) we can write

F(vr) - F(v,) = —

i X _
—1+log(Z—T)=—+logQT—1, 0r =L, (5.111)
ir m Or m

Note that E[Q7] = 1 and Var(Q7) = (k — 1)/T.
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Let Ur == Qr — 1 = (Zr — m)/m. Then E[Ur] = 0 and E[UZ] = (k — 1)/T.
Define

1
gu) = —— +log(1+u)—1,Yu > -1
1+u
so that by (5.111) we have F(vy) — F(v.) = g(Ur).

Lemma 5.41 Forallu > —%,

g(u) < 2u”.

Proof. Define h(u) := 2u* — g(u) for u > —1. Since g’ (u) = we have

—u
(14u)?°

’ _ _ u _ _ 1
I (1) = 4u —(1+u)2—u(4 (1+u)2).

For u > —%, (1+u)? > 3—‘, hence (1+1_u)’ < 4. Therefore h’'(u) < 0 foru € [—%,O]

and A’ (u) > 0 for u > 0. Thus & attains its minimum over [—%, o) at u = 0, where
h(0) = 0. Hence h(u) > 0 on [—%, ), i.e., g(u) < 2u? there. O

Lemma 5.42 Let z; > 0 i.i.d. with finite k. Then
- T
P(Qr < 1/2) =P(zZr < m/2) < exp( - 8_K)

Proof. For any A > 0, by Chernoff bound,
T T
P(Zzi < TTm) = P(e_’lz"r:l > e_’le/z) < e’le/z(E[e_’lz]) .
i=1

Usinge™ <1 —x+x2/2 forx > 0,

22 22
Ble™] < 1-m+ SB[ < exp( _am+ ?]E[zz]).

Therefore
P(zr £ m/2) < exp(T(/lm/Z —Am + gE[zz])) = exp( - T(/l—m - /l—zE[Zz]))-

Choose A = m/(2E[z?]) to get the exponent —Tm?/(8E[z?]) = —T/(8«). o
Lemma 5.43 If s is o->-subgaussian, then

m?E[z?] = (B[e*])’Ele™>] < &7
Proof. Let u=E[s] and X =5 — y. Then E[X] = 0 and z = ¢ = e#eX. Thus

m*E[z7?] = (e"E[eX])2 (eTE[e™X]) = (]E[ex])zE[e_zx].
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By subgaussianity,

E[ex] < 602/2’ E[efzx] < 8(22)02/2 :620‘2‘

2 2 2
Hence m’E[z72] < 7 27 =37, O

Theorem 5.18 Under Assumption 5.20, the SPMD iterate vy produced by a; =
ve—1/(t = 1) satisfies

2(k=1)
T

3 2 T
E[F(vr) - F(v.)] < + 37 exp(—m). (5.112)

In particular, since the second term is exponentially small in T |k,
B[F(vr) - F(v.)] = O(x/T),
for every o--subgaussian s({).

Proof. Since F(vr) — F(v.) = g(Ur), we split the expectation on the events {Ur >
—1/2} and {Ur < -1/2}:

Elg(Ur)] =Elg(Ur){Ur = -1/2}] +E[¢(Ur){Ur < —1/2}].
On {Ur > —1/2}, Lemma 5.41 yields

Var(z)  2(x—1)
mT T

Elg(Ur){Ur > —-1/2}] < 2E[U3] = 2 Var(Qr) =2
On {Ur < —1/2} we have Q7 < 1/2, and since logQ7 — 1 < 0,

1 1
g(Ur) = —+logQr—1< —.
YT or ger Or
Hence, by Cauchy—Schwarz,

1/2

Elg(Ur)1{Ur < -1/2}] < E[Q7'1{Qr < 1/2}] < (E[Q72]) /" P(Qr < 1/2)"2.

By Jensen inequality and Lemma 5.43,

E[Q;%] = m*E[z;2] < m*B[z72] < 3.

By Lemma 5.42, P(Q7 < 1/2) < exp(-=T/(8«)). Therefore,
; T
Blg(Un1{Ur < ~1/2}] < 37 exp( - = ).
16«

Combining the two pieces proves (5.112). O
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A Distribution-free lower bound

Indeed, we can show that O (K—;]) is an optimal bound by establishing matching a

lower bound for a black-box oracle model where the underlying distribution of z is
unknown and for any query v the oracle returns

D(v;) =ze "+, g(v;) =V, ®(v;)=1-ze".
Since

2(8) =" (@(v: ) —v) =e"(1 - g(v:0)),

hence, any T-query algorithm can reconstruct 7 i.i.d. samples zi,...,z7 from P.
Thus, it suffices to prove the lower bound in the standard i.i.d. sampling model for z.
Let us define a distribution class. For k > 2, define

Ep[2’]
szz:P: zZO,O<Ep[z]<00,(EIIZ—[ZZ])2§K}.

Equivalently, Varp(z)/(Ep|[z])? < k—1.For P € P, letm(P) = Ep[z] and v.(P) =
log m(P).

Lemma 5.44 Let ¢(u) =e ™ +u—1. Then $(0) = ¢’(0) =0 and ¢"' (u) = e ™. In
particular, for all |u| < 1,

p(u) > — u’. (5.113)

Proof. On the interval [-1,1], ¢”(u) = e™ > e~!, so ¢ is e~ !-strongly convex
n [—1, 1]. Since ¢(0) = ¢’(0) = 0, strong convexity implies ¢(u) > "T_IMZ for all
lu| < 1. O

Lemma 5.45 Let ¢(u) = e ™™ +u— 1. Fix vog < vy and let A == v| — vy. Define
H(v) = ¢(v —vo) + ¢(v — v1).

Then H is strictly convex and its unique minimizer v' lies in (vo, vi). Moreover, if

A <1, then

-1
. e 2

> — A°. .
inf H(v) = A (5.114)

Proof. We have ¢’ (u) =1 —e¢7" and ¢’ (u) = e ™ > 0, hence H is strictly convex
with
H») =¢' (v=v)+¢'(v=v)) =2—e ") — v,

At the endpoints,

H' (vo) =2-1-e" ™) =1-¢2 <0,  H'(v))=2-e "1 =1-¢">0.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Since H’ is strictly increasing (because H”” > 0), there is a unique root v e (vo, v1)
and thus inf, cg H(v) = inf, c[y,,v,] H(V).

Assume A < 1. Then forall v € [vg, vi] we have |[v —vg| < A< land|v-v| <
A<1.0n[-1,1],¢"(u) =e™ > e, s0¢p(u) > %uz for all |u| < 1. Therefore,
for all v € [vg, v1],

H(v) > %((V o)+ (v - vl)z).

Minimizing the RHS over v yields inf, ((v — v9)> + (v — v1)?) = A?/2, hence
infyer H(v) 2 &A% O
Lemma 5.46 (Le Cam’s Two-point Method) Let Py, P, be two distributions and

let Lo(+), L1(+) be nonnegative loss functions. For any estimator @ measurable w.r.t.
the data,

#PO’P‘) inf(Lo(a) + Li(a)). (5.115)

Proof. Let M = (Py+ P1)/2 and write dPy = (1+ f) dM, dP; = (1 - f) dM where
|f] < 1and f |fldM = TV (Py, Py). Then for any (possibly random) decision A,

max{Ep,[Lo(a)], Ep,[Li(a)]} >

B [Lo(A)] + B [Li()] = [ (Lo(A)(1+ )+ Li(A)(1 = 1) de
= [ ((Lata)+ Li(a) + £(Loa) - Li(a)) ant
> [ {(2o(a) + LaCa) = 171 (L) + Li(a))) ant
- [ (o) + Lican( - i) am

> inf(Lo(@) + Li(a) [ (=17 dm
= (1= TV(Po. P) inf(Loa) + Li(a).

Taking half and using max{x, y} > (x + y)/2 yields (5.115). |

The final distribution-free suboptimality lower bound is stated in the following
theorem.

Theorem 5.19 Let z = ¢5¢) > 0 with m(P) = Ep[z] and v.(P) = logm(P). For
K > 2, define

E 2
szz{P: 7220, 0<Ep[z] < o0, plZ] <K}.

Eplz]®> ~

Let Fp(v) :=m(P)e™ +v and v.(P) = argmin,, Fp(v). Then there exists an abso-
lute constant ¢ > 0 such that for all T > «, any (possibly adaptive) algorithm using
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T value/gradient oracle calls and outputting v satisfies

sup Ep[Fp(3) - Fp(v(P))] > ¢ <=1,
PePy T

(5.116)

Proof. We construct two strictly positive hard instances in P,. Fix € € (0, 1] and
define two distributions supported on {&, «}:

Py P(z=«) =pi, P(z=¢)=1-p;, i €{0,1},
where
1 1
po=-  pr=poth, h =

 8VkT

Since T > k, we have h < ﬁ so p1 € (0,1).
Next we show that P§, PY € $,. For a generic p € (0,1) and support {e, k},
define
E[2]  pk*+ (1 - p)&?
E[z]*  (pk+(1 —p)s)z.

Letu :=¢&/k € (0,1/«] c (0, 1]. Then

Re(p) =

2
Rg(p)sz)uz'
(p+ (1= pu)

We claim R.(p) < %for all u € [0, 1]. Indeed,

2

(p+(1=pu) = p(p+1-pu?)

=p>+2p(1 = plu+ (1 -p)’u® - p> = p(1 - p)u’

— (1 —p)u(2p +(1- 2p)u) > 0
because u € [0,1] and 2p + (1 — 2p)u > min{2p, 1} > 0. Thus R.(p) < 1/p.
Since pg = 1/« and py > pg, we have 1/p; < «, hence R.(p;) < « and therefore
P, Py € Py

Next, we compute the separation A between v.’s. Let m{ = Ep# [z] = e+pi(k—&)

and v{ = logm?. Then

1
my —m§ = h(k—¢&) > h(k—-1), mg=8+p0(/<—s)=l+(l——)s€ [1,2].
K

Hence

mf—m§)> 1 h(k—1) «-1
T2 2 32VkT
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

where we used log(1+x) > x/2 forx € [0, 1/2] and the fact that h(fn—%g) < hk < 1/8.
In particular, A < hk < 1/8 < 1.

Next, we show the lower bound of inf,, ((Fo(v) - Fo(v§)) + (Fi(v) — Fi (vf))).
Under P{ the objective is F;(v) = m{e™"+v and the optimal value is F; (v{) = 1+v7.
Thus the suboptimality can be written as

F(v) = Fi(vf) = e’ 7+ (v=vF) = 1 = ¢(v — vf), d(u)=e“+u—1.
Let v(‘)E < vf andsetu = v — vg. Then

¢(v—vg) +d(v —vi) = d(u) + ¢(u — A).

The function u — @(u) + ¢(u — A) is convex and its minimizer lies in [0, A]. Since
A <1, applying Lemma 5.45 gives

-1
d(u) +d(u—A) > %AZ.
Therefore,
-1
igf((Fo(v) — Fo(vE)) + (F1(v) —Fl(vf))) > "’TAQ. (5.117)

Next, we show the total variation between P(‘)g, and Pf is bounded. Because the
two distributions differ only in the Bernoulli parameter,

1 -
KL(PE, PY) =p010gI;—(l) +(1 - po)log 7 p?.

Using the bound KL(P, Q) < x*(P,Q) and the fact that for Bernoulli measures

2 _ h?
x-(P§, PY) = Sri—p We get
h2
KL(PZ,P?) < ——.
pi(1=p1)
Since h < %, we have p; < po+h < % < %, hence 1 — p; > 1/4, and also

p1 = po = 1/k. Therefore pi(1 —py) > ﬁ and
KL(P§, PY) < 4xh*.

For T i.i.d. samples, this gives

1
KL((P)®". (PD)®T) = TKL(P§. PY) < 4«Th* = —.

By Pinsker’s inequality,
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TV((PE)®T, (P9)®T) < \/%KL((Pg)@’T, (Pe)eT) <

Finally, we apply Lemma 5.46 to Po = (P§)®”, Py = (Pf)®" and losses
Li(v) = Fi(v) - Fi(v{) 2 0.
Using (5.117) and TV < 1/4 yields for any estimator v,

1-TV e! , 3 ', 3e!
Ep: [Fi(V) - Fi(v®)] > R Ry C i
iefot) rel ) - FOP] 2 — 47 8 4 32

A

oo A2 s (Kk=D)? —1 .
Substituting A* > {55757 2= sze7 (Since k > 2) gives

3 k—1
E & Fi — Fi £ > °
s, Bre (RO = FROD] > Gres 77
Since P¢, P¢ € Py, this implies (5.116) with ¢ = = O

5.6 History and Notes

Finite-sum coupled compositional optimization (FCCO) was first formalized in our
work (Qi et al., 2021c) for optimizing average precision, an empirical estimator of
the area under the precision—recall curve. We proposed the SOAP algorithm for AP
maximization and established the first complexity bound of O (%) for finding an
e-stationary solution. Their algorithm is closely related to SOX, but differs in that it
does not employ a moving-average gradient estimator. The framework was demon-
strated on applications including image classification and molecular property predic-
tion for drug discovery. The analysis of SOAP draws inspiration from the original
SCGD analysis Wang et al. (2017a), while significantly improving upon its O (1/€®)
complexity with the a better hyper-parameter setting, leading to Theorem 4.1.

To accelerate convergence, we subsequently adopted the moving average gradi-

ent estimator for FCCO (Wang et al., 2022). While this approach achieves a com-
plexity order of O (#), it does not benefit from the variance reduction gained by

using mini-batches to estimate inner function values. The limitation arises because
we treat all inner functions as a single vector variable and compute a sparse unbiased
stochastic estimator for this vector; consequently, the estimator does not enjoy the
advantages of inner mini-batching. This improved rate and analysis was inspired by
the stochastic compositional momentum method (Ghadimi et al., 2020).
Subsequently, we proposed the SOX algorithm-a significant advancement for
solving FCCO (Wang and Yang, 2022), encompassing new design, theoretical analy-

2
sis, and practical applications. In that work, we established a complexity of O (2—3{)
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5.6. HISTORY AND NOTES

for SOX to find an e-stationary solution in non-convex smooth FCCO problems. It
integrates the analysis of stochastic block coordinate update of the u sequences with
that of stochastic compositional momentum method.

Building on this, we developed a double-loop restarted algorithm that utilizes
SOX in the inner loop to address non-convex problems under the u-PL (Polyak-
Lojasiewicz) condition, i.e., |[VF (w)ll% > u(F(w) — miny F(w)). This approach

2
noy
u’Be

yields an improved complexity of O ( ) for finding an e-optimal solution. This

2
nop
u’Be

result further implies a complexity of O ( ) for strongly convex FCCO prob-

2
lems and O (2;:2) for convex FCCO problems, requiring no assumptions on the in-

dividual convexity of inner and outer functions beyond the overall convexity of the
objective. The improved convergence analysis under the PL condition for the double-
loop restarted algorithm was inspired by our prior work on stochastic compositional
optimization for distributionally robust learning (Qi et al., 2021b). A comparable
complexity bound of O(#) for a single-loop algorithm in the context of Stochastic
Convex Optimization (SCO) under the PL condition was subsequently established in
(Jiang et al., 2023), which considers the application of SCO in training energy-based
models.

Furthermore, for convex FCCO instances where the outer function is both convex
and monotonically non-decreasing and the inner functions are convex, (Wang and
Yang, 2022) reformulated the problem as a convex-concave min-max optimization
problem and established a complexity of O (’;—fi) under a weak duality convergence
measure. Finally, when a u-strongly convex regularizer is present, the complexity is

}’l(T2 . . . . .
further refined to O (,12_305) for finding an e-optimal solution in terms of Euclidean

distance to the optimum. This analysis was mostly inspired by (Zhang and Lan,
2024), which is the first work that establishes the optimal complexity for solving con-
vex SCO where the outer function is both convex and monotonically non-decreasing
and the inner function is convex.

Later, Jiang et al. (2022) proposed the Multi-Block-Single-Probe Variance Reduc-
tion (MSVR) algorithm for FCCO, establishing improved complexity bounds over
SOX by leveraging the mean squared smoothness of the inner functions. For non-

convex smooth FCCO problems, MSVR improves the complexity to O (Z—‘:‘;) for

identifying an e-stationary solution.
For objectives satisfying the u-PL condition, a double-loop restarted MSVR al-

no
uBe

gorithm achieves an improved complexity of O ( ) to find an e-optimal solution.

noyg
uBe

Consequently, this approach yields a complexity of O ( ) for strongly convex

FCCO problems and O (Z—‘S) for convex FCCO problems.

The analysis for non-smooth weakly convex FCCO and the SONX (v2) algorithm
was studied in our work (Hu et al., 2024b). This work established a complexity of

o (;—Z‘;) for finding a nearly e-stationary solution for weakly convex inner and outer
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functions. A similar analysis for a special case of weakly-convex SCO was conducted
in (Zhu et al., 2023c). When the outer function is smooth, the complexity is improved

in this book to O (';—‘:ﬁ{) The SONEX algorithm for solving weakly convex FCCO

with non-smooth outer functions was proposed in our work (Chen et al., 2025b).
The ALEXR algorithm and its analysis for convex FCCO instances appeared in

our work (Wang and Yang, 2023), where the outer function is both convex and mono-

tonically non-decreasing and the inner functions are convex. For the first time, we

established a complexity of O ( %) for finding an e-optimal solution of convex

FCCO. Our analysis of the stochastic block coordinate update for the dual variables
is primarily informed by the framework in Alacaoglu et al. (2025), which addresses
convex-concave minimax problems with bilinear structures. The extrapolation for the
gradient of the dual variable is inspired by (Zhang et al., 2021). It is worth mention-
ing that for strongly convex FCCO with smooth outer functions, we only established
the convergence of ALEXR for the Euclidean distance to the optimum. However, it
is possible to establish the convergence for the objective gap and even the duality gap
following our work on strongly-convex strongly-concave min-max optimization (Yan
et al., 2020b).

In (Wang and Yang, 2023), we also established the lower bounds for convex FCCO
and strongly convex FCCO, which matches the upper bounds. Our derivation of the
lower bound for convex FCCO with non-smooth outer functions builds upon the
construction presented in (Zhang and Lan, 2024) for SCO.

The double-loop ALEXR was developed in Chen et al. (2025b), which was mostly
inspired by a line of work on weakly-convex concave min-max problems (Rafique
et al., 2018; Yan et al., 2020b; Zhang et al., 2022). (Rafique et al., 2018) is the first
work that proves the convergence for weakly-convex (strongly)-concave problems.
Yan et al. (2020b) simplified the algorithm for weakly-convex strongly-concave prob-
lems with u-strong concavity on the dual variable and established a complexity of
O(ﬁ) for finding an nearly e-stationary point. The later work (Zhang et al., 2022)

improved the complexity to O ( ﬁ) with a simple change on the number of iteration
for the inner loop.

The non-convex analysis of ASGD for compositional CVaR minimization first ap-
peared in (Zhu et al., 2022b) for one-way partial AUC optimization. The geometric-
aware algorithm SCENT for CERM and its analysis were developed in (Wei et al.,
2026). It remains an interesting problem to conduct fine-grained analysis of SCENT
for non-convex problems.

A more general framework than FCCO is the so-called conditional stochastic op-
timization (CSO), defined as:

minEe [fe (B¢je[g(w: . 6)])]

This paradigm was formally introduced by Hu et al. (2020), who analyzed a biased
SGD (BSGD) algorithm employing a large inner mini-batch and a constant outer
mini-batch. For non-convex smooth problems, using an inner batch size of O (e~2)
results in an iteration complexity of O(e~#), which translates to a total sample com-
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plexity of O(e~%). This performance is inferior to that of SOX when n/B < €~2. For
convex and p-strongly convex CSO problems, an inner batch size of O (e™!) yields
iteration complexities of O(e~2) and O (u~2e™!), respectively. Notably, the latter
complexity is likewise worse than that of restarted SOX when n/B < O(e!).
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Chapter 6

Applications: Learning Predictive, Generative
and Representation Models

Abstract In this chapter, we present applications of stochastic compositional opti-
mization and finite-sum coupled compositional optimization (FCCO) in both super-
vised and self-supervised learning settings. These include training predictive mod-
els, generative models, and representation models based on advanced objective func-
tions such as distributionally robust optimization (DRO), group DRO (GDRO), AUC
losses, NDCG loss, and contrastive losses. We also highlight applications of compo-
sitional optimization in solving multiple inequality-constrained optimization prob-
lems, optimizing data compositional neural networks, and a new paradigm of learn-
ing with a reference model called DRRHO risk minimization.

Unity of knowledge and action!
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6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Algorithm 23 Stochastic Optimization Framework of DL

// The Meta Algorithm

1: Set the learning rate schedule 7,

2: fort=1,---,Tdo

3: Compute a vanilla gradient estimator z,

4: Update w,,; by calling the update of SGD, Momentum, Adam, or AdamW optimizer
5: end for

// The SGD optimizer update
1: Update W, = W; — 1,2,

// The Momentum optimizer update
1: Update v, = B1v,—1 + (1 — B1)z; o the MA gradient estimator
2: Update Wyyp = Wy — 17:V;

// The Adam optimizer update

1: Update v; = B1vi—1 + (1 — B1)z; o the MA gradient estimator
2: Update s, = Bose—1 + (1 — B2) (2,)?

3: Update ¥, = v,/(1 - B3])

4: Update 8; =, /(1 - 33)

5: Update w;1| = w; — n,ﬁ € is a small constant

// The AdamW optimizer update

1: Update v, = B1v,—1 + (1 — B1)zs o the MA gradient estimator
2: Update s, = Bosy—1 + (1 — B2) (2,)?

3: Update ¥, = v,/(1 - j3})

4: Update 8; =, /(1 - 3)
5 Se

: Update w1 = Wy — 17¢ (@ + /lW,) A is a weight-decay constant

6.1 Stochastic Optimization Framework

For practioners who may skip Chapter 3, Chapter 4, and Chapter 5, we first provide a
brief introduction to the stochastic optimization framework commonly used for deep
learning. We also highlight the challenges in solving advanced machine learning
problems introduced in Chapter 2 and summarize the key ideas behind the solution
methods presented in Chapters 4 and 5.

The standard procedure for implementing a stochastic optimization algorithm typ-
ically involves computing a vanilla gradient estimator, followed by updating the
model parameters using a step of an optimizer. We present a meta-algorithm in
Algorithm 23, along with four classical optimizers: SGD, Momentum, Adam, and
AdamW.
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Three forms of the Momentum Method

The Momentum method represents a key milestone (as further discussed in
the next subsection). The stochastic momentum method originates from the
Heavy-ball (HB) method, whose stochastic version (SHB) has the following
update for solving miny, F(w) :=E/[f(w;{)]:

Wirl = W =V (W3 &) + Br(We — wi1), (6.1)

where 81 € (0, 1) is the momentum parameter. While we utilize a single
stochastic gradient V f (w;; ;) for illustrative purposes, practical applications
generally rely on mini-batch estimation. In Section 4.3, we show it is equiv-
alent to the the following update with moving average gradient estimator:

Vi = B1Vve—1 + (1 = BV (Wes 1)

7
Wil = W — 17 Vg,

(6.2)

Update (6.1) is equivalent to (6.2) if ' (1 — 81) = n. In PyTorch, the Momen-
tum method is implemented by the following update:

Ve = Biveo1 + V(W &)
Wip1 = W — Vg,

(6.3)

which is equivalent to (6.1). One key insight from the convergence analysis of
the Momentum method (6.2) (cf. Theorem 4.3) is that it ensures the averaged
estimation error of the moving-average gradient estimators {v; } converge to
Zero.

Thanks to well-developed deep learning frameworks such as PyTorch, implement-
ing training code for deep neural networks has become relatively straightforward.
The standard training pipeline is shown in Figure 6.1. The Dataset module allows
us to get a training sample, which includes its input and output. The Data Sampler
module (typically wrapped within the DataLoader module) provides tools to sample
a mini-batch of examples for training at each iteration. The Model module allows us
to define different deep models. The Mini-batch Loss module defines a loss func-
tion on the selected mini-batch data for backpropagation. The Optimizer module
implements methods for updating the model parameter given the computed gradient
from backpropagation. Most essential functions are already available in PyTorch.
In practice, users often only need to define a function to compute their mini-batch
losses. By calling loss.backward(), a mini-batch stochastic gradient, serving as
a vanilla gradient estimator, is computed automatically.
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[ Dataset HDataSamplerH Model H MlnleJsz:tch H Optimizer J

Fig. 6.1: Standard training pipeline for deep learning. Users typically only need to
implement the mini-batch loss function. It relies on a critical assumption that the
mini-batch stochastic gradient is an unbiased estimator of the true gradient

6.1.1 Milestones of Stochastic Optimization

While the Adam optimizer has become a standard in machine learning as of 2025, it
has deep roots in the innovations of stochastic optimization before deep learning era.
Below, we briefly discuss key milestones of stochastic optimization that have impact
on the Adam method.

Stochasticity. The fundamental concept of gradient descent (GD), dating back
to (Cauchy, 1847), uses the full dataset’s gradient to take a step in the steepest direc-
tion. Introduced by Robbins and Monro (1951), SGD improves upon GD by using
only a small batch of data (or even a single data point) to estimate the gradient, sig-
nificantly speeding up training on large datasets.

Acceleration. To improve the convergence rate of GD, Polyak (1964) proposed
the Heavy-ball (HB) method, which itself originates from the second-order Richard-
son method for solving a system of linear equations (Frankel, 1950). While Polyak
only proved a faster rate of local convergence than GD for smooth and strongly con-
vex problems, Nemirovski and Yudin (1977) proved the first nearly optimal rate
for general smooth and strongly convex problems. Their method was inspired by
the conjugate gradient method for solving quadratic problems and needs to solve
2-dimensional optimization problem using the method of centers of gravity every
step; cf. (Nemirovsky and Yudin, 1983)[Sec. 7.3]. Later, Nesterov (1983) derived
a simpler form of accelerated gradient method, which is now known as Nesterov’s
accelerated gradient (NAG) method.

Nesterov’s Accelerated Gradient (NAG) method

The original update form of the NAG method is given by:

Uy = w, —nVF(w,),

(6.4)
Wipl = Upgp + B (g1 — ).

It is equivalent to

Wil = W, = VE(W;) + B1((Ww = nVF (W) = (Wit = nVF(W;-1))).
(6.5)
Comparing with the HB method (6.1), the momentum term is changed from
B(w: —w;_1) to f(urg —uy).
If we let w1 = w; — nv,, then the NAG update is equivalent to
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Improved rate for smooth &
Gradient Descent (GD) ] strongly convex functions

( Accelerated Gradient (AG)

(Cauchy, 1847) J

Stochasticity

Stochastic Gradient Descent (SGD)

(Robin and Monro, 1950) .
.
¢
From Euclidean distance NS e
to Bregman divergence N °\% 601,
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Fig. 6.2: Evolution of Stochastic Optimization

v, = B1Vi—1 + VE (W) + B1(VF(w;) — VF(w;_1))

Wiil = We — 1JV;.

This is similar to (6.3) except that an error correction term B(VF(w;) —
VF(w;_1)) is added to the gradient estimator update.

We can also make the updates in (6.4) or (6.6) stochastic, leading to the
stochastic NAG (SNAG) method. In particular, if we use a stochastic gra-
dient estimator V f(w;; ;) in (6.4), we have the following update:

U =W, =V (Wi o),
Wesl = Upgp + 51 (g — 1),

If we use stochastic gradient estimators V f (w;; ¢;) and V f(w;_1; {;) in (6.6),

we have the following update:

(6.6)

6.7)
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6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Vi =B1Vic1 + V(Wi &) + Bi(VE(Wes &) = VE(Weo134r))

Wil = We —1]V;.

(6.8)

The difference between the two variants lies that (6.8) needs to compute two
stochastic gradient estimators at w; and w,_; per-iteration. However, inter-
ested readers can show that the update in (6.8) with a variable change is
equivalent to the STORM update as presented in Section 4.3.2 for optimizing

F(w) =E;[f(w;{)].

Lan (2012) pioneered the development and analysis of stochastic accelerated
gradient methods, achieving the optimal rates in both deterministic and stochastic
regimes. Its update is slightly different from the NAG update. (Yang et al., 2016) is
the first work to prove the convergence of stochastic NAG and stochastic HB methods
for non-convex optimization.

Adaptive step sizes. The technique of utilizing coordinate-wise adaptive step
sizes was pioneered by AdaGrad (Duchi et al., 2011), a method whose analysis is
rooted in the framework of Stochastic Mirror Descent (SMD) (Nemirovski et al.,
2009). Both AdaGrad and SMD are thoroughly examined in Chapter 3. RMSProp,
appeared in a course lecture (Tieleman and Hinton, 2012), moved from AdaGrad’s
simple average of the second moment (squared gradients) to a moving average of
the second moment. The moving average estimator has a long history in stochastic
optimization, see (Ermoliev and Wets, 1988)[Sec. 6.2.3]. Finally, RMSProp leads
to the current standard, the Adam method (Kingma and Ba, 2014), which combines
the moving average of the first moment (similar to SHB) with the moving average
of the second moment (similar to RMSProp). AdamW is a variant of Adam, which
decouples weight decay from gradient-based updates.

Recently, a new optimizer named Muon (Jordan et al., 2024) has emerged, specifi-
cally designed to optimize matrix-structured parameters, such as the weight matrices
between neural network layers. In contrast, conventional optimizers typically treat
these parameters as flattened vectors, potentially overlooking their inherent structural
properties.

The Muon method

Let W; denote a matrix-structured parameter at the ¢-th iteration. The Muon
update is given by:
M, = BiM;— +V f(W5 )
(Uy, S¢, Vi) = SVD(M;,) (6.9)
Wi =W, — UtUtVzT-

In practice, the Singular Value Decomposition (SVD) is often replaced by a
more computationally efficient Newton-Schulz matrix iteration. This process
produces an approximate matrix O, = U,S;V,”, where S/ is diagonal with
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Si[i,i]’ ~ Uniform(0.5, 1.5). The weight update is then applied as W;,; =
Wi —1:0;.

Summary: The evolution of stochastic optimization, which has had a major im-
pact on modern Al (see Figure 6.2), can be characterized by five key shifts in algo-
rithm design:

* From Full Gradient to Stochastic Gradient (Batch Size): Switched from using the
full dataset’s gradient (GD) to using noisy stochastic gradients (SGD) for faster
iteration speed.

* From Gradient Descent to Accelerated Gradient Methods (Momentum): The op-
timization technique was enhanced by introducing a momentum term (like HB
or NAG) to achieve an improved convergence rate for smooth convex functions,
while still using the full gradient.

e From Euclidean Distance to Bregman Divergence (Geometry): Switched the un-
derlying distance metric used for updates from the Euclidean distance to a Breg-
man divergence (SMD).

* From Static Step Size to Adaptive Step Size (Preconditioning): Switched from a
constant or manually decaying learning rate to one that is scaled by past gradient
magnitudes (AdaGrad).

e From a Mini-batch gradient estimator to a Moving Average gradient estimator
(Error reduction): Switched from a simple mini-batch gradient estimator to a
moving average gradient estimator (SHB, Adam).

6.1.2 Limitations of Existing Optimization Framework

The standard stochastic optimization algorithms and their analyses rest on a crit-
ical assumption: that the mini-batch stochastic gradient is an unbiased estimator
of the true gradient. As discussed in Chapter 4, this assumption breaks down in
the case of compositional functions of the form f(g(w)), where f is a determin-
istic non-linear function and g is a stochastic function. In such cases, the gradi-
ent of the mini-batch loss f(g(w; 8B)), where g(w; 8B) is an unbiased estimator of
g(w) with a mini-batch 8B, yields a biased estimate of the true gradient. Specifi-
cally, calling loss.backward() on the mini-batch loss will return a gradient of
Vf(g(w;B))Vg(w; B), which is inherently biased. The method that directly uses
this biased gradient estimator for SGD update is referred to as biased SGD (BSGD).
However, since the estimation error is inversely proportional to the batch size, small
batches can lead to large optimization errors. According to Lemma 2.1, such errors
can negatively impact the generalization performance of the learned model.

To address this challenge, Chapters 4 and 5 introduce solution methods tailored
to different families of compositional objectives. The key ideas underlying these al-
gorithms concern (i) how the vanilla gradient estimator z, is computed in Step 3 of
Algorithm 23, and (ii) how the estimator error is further reduced through the use
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6.2. DRO AND GROUP DRO
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Fig. 6.3: Histograms of class sizes of the iNaturalist2018 dataset, which contains
437,513 natural images of 8,142 species. The sizes of classes follow a long-tail dis-
tribution.

of moving-average (MA) estimators v, as in Step 1 of the Momentum optimizer
or more advanced variance-reduction techniques. In the following sections, we will
present their applications to various complex and advanced machine learning prob-
lems, with a focus on the presentation of the novel vanilla gradient estimators, which
allow us to integrate them into the standard optimization schemes such as Momen-
tum or AdamW for non-convex deep learning problems.

6.2 DRO and Group DRO

Let us consider supervised learning with a set of training data {(x, y)}, where x €
R denotes the input data and y € {1,...,K} denotes the output class label. Let
£(w; x, y) denote the pointwise loss function, e.g., the cross-entropy loss.

6.2.1 DRO for Imbalanced Classification

Imbalanced classification is prevalent in many areas, including medicine and cy-
bersecurity, where most training data may belong to one or a few classes. Mathe-
matically, it means that the marginal distribution of the class label is a non-uniform
distribution. An example of an imbalanced dataset is shown in Figure 6.3.

For imbalanced data, the conventional empirical risk minimization would focus
on minimizing the loss of data from those dominating classes, neglecting data from
the minority classes. DRO can address this issue by assigning larger weights to data
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with higher losses. Let us first consider the KL-divergence regularized DRO:

min max LW X, ) — T ilog(pin) +r(w), (6.10)
wpeAn;m vi) Z}p g(pin) +r(w)

where r(w) is a regularizer on w. A traditional way to solve this problem is to use
stochastic minimax optimization algorithms. However, there are several drawbacks
of this approach: (1) the variance of stochastic gradient for w depends on the sam-
pling distribution and the best sampling distribution depends on p; (2) the sampling
of data based on p incurs additional costs and is not friendly to practical implemen-
tation that uses random shuflling; (3) stochastic update of the dual variable p either
takes O (n) time complexity per iteration or requires maintaining a special tree struc-
ture to reduce the updating time to O (log(n)).

To circumvent these issues, we consider an alternative formulation that is equiv-
alent to the above minimax objective, i.e.,

n

rrgnflog(%ZeXp(M))w(w). 6.11)

i=1

For simplicity, we just consider the standard Euclidean norm regularization r(w) =
%lel%. As a result, the first term in the objective takes the form of a compositional
optimization problem, namely f(E [ g(w;{)]), where f(-) = tlog(-) and

B (gw 0] =1 ) e (M) |

i=1

The SCGD, SCMA, SCST, and SCENT algorithms can be applied to solve the
above problem. We now focus on the application of SCMA, whose key steps are
presented in Algorithm 24.

The vanilla gradient estimator z, of the first term in (6.11) at the ¢-th iteration is
computed by :

C(We3Xi,yi)
I exp(——=)
= > VX ). (6.12)

i€B;

It is motivated from (4.4) where the same mini-batch 5; is used for both updating u;,
and computing z;.

Let us compare this gradient estimator with that of stochastic optimization for
empirical risk minimization:

N 1 )
b= [EZB: VE(WXi, Vi) (6.13)

The difference between (6.12) and (6.13) lies in the blue term, which acts as a weight
for each data in the mini-batch. In the vanilla gradient estimator z, for DRO, the data
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6.2. DRO AND GROUP DRO

Algorithm 24 Attentional Biased Stochastic Methods

1: fort=1,--- ,T do
2: Sample a mini-batch of B samples B, C [n]

3 Compute g (w;, B;) = %Z[egr exp(€(We;Xi, yi)/T)
4 Compute u; = (1 = y)us—1 +vg(We, By)
LW xiyi)
5: Compute the vanilla gradient estimator z, = é > e e )V[(w,;x,, vi)
ieB, 4
6: Update w,, by an optimizer such as Momentum or Adam-W
7: end for

in the mini-batch with a larger loss £(w;; X;, y;) has a higher weight. This will facili-
tate the learning for data from the minority group. Due to this effect, we also refer to
Algorithm 24 as attentional biased stochastic method, named as AB-xx depending
on which optimizer is used.

The use of u; for normalization to compute the weight exp(£(w;X;, y;)/7)/u;
is also different from that using the heuristic mini-batch normalization where the
Ez(f’éf;?{f(:;rﬁ" ); ’_T)) Ty which does not ensure convergence if
the batch size is not significantly large. Let us consider a simple case such that only
one data is sampled for updating. In this case, the mini-batch normalization gives a
weight 1 for the selected data no matter whether it is from the majority or minority
class. However, if the sampled data denoted by (x;, y;) at the ¢-th iteration is from
a minority group and hence has a large loss, we would like to penalize more on
such an example. The estimator u; = (1 — y)u,—1 + y exp(£(W; Xy, y;)/7) is likely
to be smaller than exp(€£(w;;X;, y;)/7) asy < 1. As a result, normalization using
u, will give a larger weight to the sampled minority data compared with using the
mini-batch normalization, i.e., exp(£(w;;z,)/7) /u; > 1. Qi et al. (2020) empirically
demonstrated that using y < 1 outperforms the case y = 1, which corresponds to
using the standard mini-batch loss.

To illustrate the effect of AB-momentum on imbalanced data. We present an ex-
periment on synthetic data in Figure 6.4, which compares the result of using the Mo-
mentum method for ERM and AB-momentum for solving KL-divergence regular-
ized DRO. Figure 6.4(d) shows that AB-momentum learns a better decision bound-
ary than that of the Momentum method for ERM. Figure 6.4(b) shows that data from
the minority group that are close to the decision boundary get higher weights during
the training.

weight is computed by T

¢ Practical Tips

We discuss several practical tips for computing z, and other variants of DRO in the
context of deep learning.
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Fig. 6.4: (a): A synthetic data for imbalanced binary classification (green vs purple)
with a random linear decision boundary (black line). (c), (d): Learned linear models
optimized by the standard momentum method for ERM and AB-momentum for DRO
with logistic loss for 100 iterations, respectively. (b): The averaged weights of circled
samples in the training process of the standard momentum method for ERM and
AB-momentum method for DRO. Sample with indices in {1,..., 11} are from the
majority class and samples with indices in {12, 13, 14, 15, 16} are from the minority
class with sample 15, 16 close to the decision boundary.

Backpropagation.

In order to compute the vanilla gradient estimator z; using the PyTorch backward
function, we just need to have a slight change of computing the loss based on the
mini-batch data. Below we give the pseudo code in PyTorch for computing the gra-
dient estimator highlighted in Step 5 of Algorithm 24. It is worth noting that the line
of p=(exp_loss/u) .detach() calculates the blue part and detaches it from the
computational graph so that gradient is not computed again for it. With the gradient
estimator computed by loss.backward (), then we can use any existing optimizers,
including the Momentum method and AdamW.
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6.2. DRO AND GROUP DRO

sur_loss=surrogate_loss(preds, labels)
exp_loss = torch.exp(sur_loss/tau)

u = (1 - gamma)*u + gammax*(exp_loss.mean())
p = (exp_loss/u).detach()

loss = torch.mean(p * sur_loss)
loss.backward()

Avoiding the numerical issue.

However, a numerical issue may arise during the running tied to the computation
of exp(£(wy; X;, ¥;)/7), especially when 7 is small and the loss function of selected
data is large so that overflow. As a result, the running of the algorithm may crash
due to a NaN error. To address this issue, we maintain v, = logu,. Specifically, we
denote by ¢q;; = exp(w), where {pax,; = max;es, {(W;;X;,y;). Then
Step 4 can be reformulated to:

exp(logu;) =exp(log(l —y) +logu;—)

1
+ exp (logy +log (E ZieB, qt,i) +

gmax,t
. .

For simplicity, let b, = log(1 — y) + logu,_; and ¢, = logy + log (é Dies, qz,i) +

gmax.t

-, we have

exp(logu,) =exp(b;) +exp(q;).

The update in equivalent to following:

exp(logu;) = exp(max{b;, q:}) (1 +exp(=|b; — q:|))
= exp(max{b,, qr})a‘l(lbr = q:),

where o () denotes the sigmoid function. Taking the log on both sides gives the
update for log u;. To summarize, we maintain and update v, = logu, as following:

by =log(1 =y) + v

f(wﬁ X, yi) - fmax,t )) n fmax,t (6.14)
T

1
q: =logy +log (E ZieBt exp ( =
ve = max{b;,q,;} —log o (|b; — q.l).

At the first iteration ¢ = 1, we can just set

_ 1 g(wl;xi,}’i) fmax,l gmax,l
vl—log(EZthexp( = = + =
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Fig. 6.5: t-SNE visualization of feature representations of training & testing set on CIFAR10-LT
(o = 100) with different strategies of setting 7. Right: Fixed 7 = 1. Left: Two-stage decay of 7:
first phase 7 = 100 and second phase 7 = 1. For more details, please refer to (Qi et al., 2020).

With v;, the effective weight M can be computed by

Xi,Yi 14
exp (f(Wti(u)’z) _ max( m:x,r’ Vt))

exp (vt — max( fm:‘” , v,))

Thus, all computation involving exp(-) will not incure any numerical issue.

The Temperature parameter.

The last point we discuss here is how to set the value of the temperature parame-
ter 7. A simple way is to treat it as a hyper-parameter and tune it based on cross-
validation. However, there is a trade-off in the performance. A deep neural network
is a hierarchical learner with lower layers for low-level feature extraction, middle lay-
ers for more abstract feature extraction and the last layer for classification. A larger
7 indicates a more uniform weight, which is not good for learning the last classifier
layer and minority class specific features. A smaller 7 indicates a more non-uniform
weight, which is not good for learning class agnostic lower level features.

One approach to mitigate this issue is to use a two-stage approach. In the first
stage, we can use a relatively larger temperature T for learning class agnostic lower
level features. The second stage, we decrease 7 to finetune the upper layers for learn-
ing robust minority-class specific features and classifier layer. An example is shown
in Figure 6.5 on a long-tailed version of the CIFAR10 dataset, where the data is in-
tentionally made imbalanced such that the number of samples per class follows a
long-tail distribution, the imbalance ratio p means the ratio between sample sizes of
the most frequent and least frequent classes.

Another approach is to treat 7 as a parameter to be optimized. To achieve this, we
can consider optimizing a KL-divergence constrained DRO:
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6.2. DRO AND GROUP DRO

min max Zplf(w Xi, Vi) — 10 Z pilog(pin) +r(w),

W peA,

(6.15)
Z pilog(pin) < p,
i=1

where the regularizer term with a small 7y is added to avoid ill conditioning, making
the resulting problem smooth in terms of losses. Using the dual form of the maxi-
mization problem (see (2.19)), the above problem is equivalent to

min ‘1'10g(1 Zexp(w))*ﬁp. (6.16)
T

W, T2>T) .
i=1

We can extend Algorithm 24 to optimize the above problem by treating (w, 7) as a
single variable to be optimized. The vanilla gradient estimator in terms of 7 at the
t-th iteration is given by :

g 1A )1
<w o )) f(Wan,)’z)

1 exp(
Zr, =log(us) +p — 3 Z

u T
i€B; t t

6.2.2 GDRO for Addressing Spurious Correlation

Data may exhibit imbalance not in the marginal distribution of class label but some
joint distribution of the class label and some attributes. Please see a discussion on
the example of classifying waterbird images from landbirds images in Section 2.2.3.
As a consequence, the model may learn spurious correlations between the labels
and some attributes. GDRO can be used to mitigate this issue by leveraging prior
knowledge of spurious correlations to define groups over the training data.

Formally, if there is spurious correlation between class label y € Y and some
attribute a € A, we can group the training data into | Y| X |A| groups according to
the value of (y,a). Let D; = {(xi,j,yi,j)};fil denote the data from the i-th group
fori € {1,...K}. Then we can define the averaged loss for data from each group i
as L;(w) = nL, Z;f;l t(w;x; j,yi j). Then, the GDRO formulation with CVaR diver-
gence corresponding to the top-k groups is equivalent to (cf. (2.26)):

K

1 A
ng LML —vlerave Slwl3, (6.17)

min
w,

where a = % If we define W = (w, v) and the inner functions as g(W) = L;(w) — v
and the outer function as f(g) = [g]+, then the problem becomes an instance of
non-smooth FCCO, where the outer function is non-smooth.
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Algorithm 25 SONEX for solving (6.18)

T
t=1’

1: Input: learning rate schedules {7,
2: fort=1,...,Tdo
3: Draw a batch of B; groups B, C [K]

{7t szl; starting points wy, ug

4: fori € B; do )
5: Draw B; samples {l:ft ~Di,j=1,...,B;
6: Update the inner function value estimators by

1 &

i = (1 =y Ui AR Zf(wz;xi,j, Yi.j)
j=1

7: end for
8: Set w41 = Uiz, 1 & B
9: Compute the vanilla gradient of v;: z,,, = —BLI Yies, Ve(Uin —ve) + %
10: Compute the vanilla gradient of w,:

B,
1 1 J
v =g Z Vfe(uis — Vt)B_2 JZ:; VE(Wes X j, Viij)

i€B;

11: update v using SGD
12: Update w;,; using Momentum or AdamW
13: end for

An alternative way is to formulate the problem into an equivalent min-max for-
mulation:

K

A 2
i E iLi W)+ —||W][5. 6.18
I%HPGA,IB;);UQ = piLi(w) 2 I ”2 ( )

However, solving this min-max problem has similar drawbacks as discussed in DRO,
especially when the number of groups K is large.

Let us discuss the applicability of algorithms presented in Chapter 4 for solv-
ing (6.17). The theory of SOX and MSVR requires the smoothness of the outer func-
tions, which is not applicable to GDRO. Both ALEXR and SONX are applicable as
their analysis does not require the smoothness of the outer functions. However, their
updates is SGD-type, which could make it slow or fail in practice for learning modern
deep neural networks such as Transformer.

For deep learning applications, we can leverage SONEX. Its key idea is to smooth
the outer hinge function. In particular, we define the smoothed hinge function as
fe(g) with a very small ¢ (cf. Example 5.1):

c gz—gings
felg) = max yg—3y"=y5 if0<g<e.
' 0 0.W.

As a result, we solve the following smoothed problem:
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Fig. 6.6: An experimental comparison of different methods for solving GDRO (2.26) on the
Amazon-WILDS dataset. The dataset is a text classification benchmark derived from Amazon prod-
uct reviews, where the task is to predict binary sentiment (positive or negative) using TF-IDF fea-
tures extracted from review text. The data spans multiple product categories. We construct groups
based on the user attribute, resulting in 1,252 distinct groups. Only 4 groups and 64 data points
per-group are sampled per-iteration. SONEX uses the Adam optimizer, SONX uses the SGD opti-
mizer, and the PrimalDual is a stochastic primal-dual method for solving (6.18) that uses the Adam
optimizer for the primal variable (model weights) and uses the stochastic mirror descent update for
the dual variable p with a KL divergence. For more details, please refer to (Chen et al., 2025b).

K
. 1 /1 2
rg}gfj;fg@j(w) —v)+av+ Slwl3. (6.19)

We present a variant of SONEX in Algorithm 25. Figure 6.6 illustrates the effective-
ness of SONEX for solving GDRO comprising with SONX and a stochastic primal-
dual method.

6.3 Extreme Multi-class Classification

Multi-class classification is a cornerstone of machine learning. However, many mod-
ern applications involve an exceptionally large label space—ranging from millions to
even billions of categories—a challenge known as extreme multi-class classification
(XMCQ). For instance, for face recognition, the model learning is often formulated
as classifying images into unique identities. With millions of distinct individuals,
the model must navigate millions of corresponding classes. Similarly, when training
a language model to predict the next word, the problem is treated as a multi-class
classification task where each word in the vocabulary represents a category. Given
that the English language contains over one million words, the resulting number of
classes is immense.
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Algorithm 26 The SCENT Algorithm for solving XMC

1: Initialize Wy, vy, step sizes 1; and a;, ¢ (v) = e™".

2: fort=1...,T-1do
3: Sample a mini-batch data B, c {1,...,n} with |B,| = B

4: Let C; denote the set of unique labels in B;
5: for each (x;, y;) € B; do
6: Update v; ; by solving
. 1 T 1
Vig = argmin———r 3" exp((We,y, = Wiy,)TA(X:) = ¥) v+ —Dy (v, Vii-1)
v B -1 @y
yi€8B\yi
7 end for
8: Compute Z; [ C; ] = VL, (W;[C;]) by calling backprop on the mini-batch loss
1 1
L, (W:[C]) = B Z |Bt|——1 Z exp((Wr,y; — W,,y[)T/’l(Xi) - Vit)
ieB, V€8 \yi
9: Compute V,[C;] = (1 = B)Ve-1[Ce] + BeZi [ Ct ] (optional)
10: Update Wy,1[Cr] = Wi [Cr ] — 17,V [Cr ]
11: end for

A dominating approach of multi-class classification is logistic regression, which
minimizes the cross-entropy loss. Let us consider learning a linear model by solving
the following problem:

n T
minl Z—log ISxP(Wyihixl))
W n i=1 Zj:] CXP(WJ- h(xl))

where y; € {1, ..., K} denotes the true class label of x;, W = (W1, ..., Wg) € R¥*K
contains the weights for all classes, and 4(x) € R? denotes the feature vector of
each data. When K is huge, it is not efficient to compute the normalization term
Zf: h exp(ij.h(xl-)) for each data and loading all W into the memory might be pro-
hibited.

To solve this problem, we can use SCENT algorithm presented in Section 5.5.2.
To this end, we reformulate the problem into the following equivalent min-min op-
timization:

n K
mv‘i/nrrbin % ; % JZI exp(W} h(x;) = Wy h(X;) = vi) +vi — 1
We present an application of SCENT for solving this problem in Algorithm 26. At
each iteration, the algorithm begins by sampling a mini-batch B, (Step 3) to approx-
imate the outer summation over n data points. Following this, the algorithm updates
the dual variables v; for each i € B;. While the original SCENT algorithm requires
sampling from the full set of classes {j = 1, ..., K}, we observe that for all sampled
data, the weights corresponding to their true labels {w,, : i € B;} must already
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6.3. EXTREME MULTI-CLASS CLASSIFICATION

be accessed. Consequently, we utilize the ‘in-batch’ class labels to approximate the
inner summation, setting Y; = {{y;}ic5, be the multiset of labels and C; to the set
of unique labels in B;. To update v, and W;, the following calculations are imple-
mented.

e Computing Sampled and Shifted Logits. Given the mini-batch 8B, and the set of
sampled classes Y;, we first compute the inner products between the features A (x;)
and class weights w; for all i € B; and j € Y;. This is efficiently computed via
the matrix product Q = H[B,]TW[Y;] € REXI¥I where H[B,] = [h(x;)]ies,
represents the sampled feature matrix. We then derive the shifted logits matrix R,
defined by the entries R;; = WJT.h(Xi) - w;h(xi) foralli € B,,j € VY,.

* Closed-form update for v; ;. Given the shifted logits matrix R, we update the
state variable v; ; according to Lemma 5.26:

1 )
Vit =Vig—1 +log| 1 +a; —|~V| 1 E exp(R;;) | —log(1+ a;e’ 1),
tl— .
JEY\yi

where we treat the labels in ; \ y; as independent samples from {1,..., K}.
To ensure numerical stability when v; ;_; or R;; are large, we apply standard
logarithmic identities. Specifically, while v; ;_; typically remains within a sta-
ble range, the term log(1+a,e”"-!) can be computed as v; ;1 +log(e™ "~ + ;)
for large positive values of v; ;1. Furthermore, we stabilize the second term using
the Log-Sum-Exp trick by shifting the exponents by R; max = maxjey,\y, Rij:

Q¢
log|1+ exp(R;;
JeY\yi

a
= log exp(_Ri,maX) + —L exp(Rij - Ri,max) + Ri,max~
=T |
]e%\yl

¢ Updating W;[C;]. Finally, the gradient of W;[C;] is computed by performing
backpropagation on the mini-batch loss L, (W, [C;]). Because the loss function is
defined only over the sampled classes, the gradient updates are sparse and operate
exclusively on the sampled subset W, [C;]. This approach eliminates the need to
load the entire weight matrix W into the main memory, significantly reducing the
memory overhead in hardware-constrained environments.

¢ Empirical Comparison with baselines
An empirical study demonstrating the effectiveness of SCENT for XMC is presented
in Figure 6.7, which compares Algorithm 26 with ASGD, BSGD, and the SOX

method. The key differences between these methods and Algorithm 26 are as fol-
lows: (i) SOX is closely related to SCENT, but uses a step size «; ; = ye™">*~! when

317



updating v; ; (ii)) ASGD employs a standard stochastic coordinate update for the
dual variables v; and (iii) BSGD simply computes the gradient of W, [C;] using the
following mini-batch loss:

1 Z log exp(wy, h(x;))
Yjey\y eXP(Wih(x;))”

—— BSGD ASGD —— SOX  —— SCENT
w10 10
2 2
= S
£ -
© ©
S 5 > 5
0 20 40 0 20 40
Epoch Epoch

Fig. 6.7: Left: training curve on Glint360K dataset. Right: accuracy curve on the
validation data. The Glint360K dataset (An et al., 2021) is a face recognition dataset
consisting of 17 million images of 360 thousand individuals (i.e., 360K classes).
To obtain the features for linear classification, we leverage a pretrained ResNet-50
model. For all the methods, we use a batch size of 1024 and update the model weights
for 50 epochs using the SGD optimizer (no momentum). We tune the learning rate
of W for all methods and decrease it in a cosine manner during training. For ASGD,
SOX and SCENT, the learning rate of the v update is also tuned. For more details,
please refer to (Wei et al., 2026).

6.4 Stochastic AUC and NDCG Maximization

In many domains such as radiology and drug discovery, areas under the curves are
commonly used to assess the performance of a predictive model. In domains that in-
volve ranking or recommendation, normalized discounted cumulative gain (NDCG)
is commonly used as a performance metric. We present applications of SCO and
FCCO algorithms for optimizing these metrics directly.
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

6.4.1 Stochastic AUC Maximization

In this section, we focus on optimizing the area under ROC curve (AUC) for binary
classification as depicted in Figure 2.3.

Method 1: Pairwise Loss Minimization

The training data consists of {x;, y;}!" , where x € R4 is the input and y € {1,-1}
is the binary label. The traditional surrogate objective for AUC maximization is the
pairwise loss given in (2.31). To optimize the pairwise surrogate objective, we just

need to sample positive and negative data and then define a mini-batch pairwise loss:

1 1
— C(h(W;X;) — h(W;X;)).
|B| % |B-| ;9

Calling backpropagation on this mini-batch pairwise loss gives an unbiased stochas-
tic gradient estimator. Then any appropriate optimizer can be leveraged to update the
model. This is same as the conventional algorithm except for that the data sampler
needs to sample both positive and negative data (see Section 6.4.5).

A limitation of this approach is that it increases the communication costs of dis-
tributed training when data are distributed across different machines as it requires to
form positive-negative pairs across different machines.

Method 2: Minimax Optimization

The second approach is to solve the formulation as in (2.32). To illustrate the algo-
rithm, we give its formulation below:

! 1
min hW;X'—a2+—Z hw;x-—b2
weRd (ab)eR? |54 x,-EZS+( ( ) : |S-| Xjesf( ( j) :
(6.20)
1 1
e E h(W;Xj) — —— E h(w:x;) |,
151 Xj€S- S+l X €Sy

where h(w;-) € R is the prediction output of the model for any input, S is the set of
positive data and S_ is the set of negative data and f is a non-decreasing surrogate
function.

Let us illustrate the algorithm for a squared-hinge surrogate function f(s) =
max(m + s,0)%, where m > 0 is a margin parameter. Since f is non-linear, the
last term of the above objective function is a compositional function of the form
f(g), where g(w) = L;T 2ixjes. h(w;x;) — |Sl—+| 2xes, h(w:x;). We consider the
minimax reformulation similar to (5.27). In particular, using the conjugate of f(-)
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(see Example 1.12), we convert the above minimization problem into a minimax
optimization problem:

. 1 ) 1 )
vinérz I(I;IEZ%( F(w,a,b;a) = m Z (h(w;x;) —a)” + |S__| Z (h(w;x;) — b)
X; €S, X; €S-
+a|lm+ — (w;x;) — h(w;X;) ,
|S-| x;S TS ng;g 4
] - 1 +

(6.21)
Compared to pairwise loss minimization, the advantage of the above minimax for-
mulation is that its objective is decomposable over individual data points, making it
well-suited for distributed training.

We present a practical framework in Algorithm 27 built from SMDA for solving
the above problem, where the primal-dual Momentum method (PDMA) employs
the momentum update for the primal variable w or a primal-dual Adam method
(PDAdam) employs the Adam update for the primal variable. The effectiveness of
PDMA/PDAdam over SGDA for solving (6.21) on a real-world dataset is shown in
Figure 6.8.

Squared-hinge surrogate vs Square surrogate function

The minimax optimization framework (6.20) and PDMA/PDAdam algorithms with
a small modification on the dual variable update can handle any smooth surrogate
function f. When f(s) = (m + s)? is a square surrogate, the minimax formulation
is equivalent to the pairwise loss minimization with a square surrogate loss (AUC
square loss). Nevertheless, the minimax AUC margin loss with the squared-hinge
surrogate is more robust than the AUC square loss. Figure 6.9 illustrates the robust-
ness of the minimax AUC margin loss.
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Algorithm 27 PDMA or PDAdam for solving (6.21)

Input: learning rate schedules 77;, 7;; starting points W, = (W, aj, by), @)

1:
2: fort=1,...,Tdo
3: Draw B positive data 8] c S, and B, negative data B; c S-
4 Update a1 = |(1 - 71/2) ay + 74 (m+ A Sy en h(W:x)) = 3= Sy em h(w,;xi)) ]
+
5 Compute the vanilla gradient estimator
1 2, 1 2
u =5 Z Vo, (xi) = @)” + 5 Z Ve (h(We3X;) = by)
ieB} X;j€B;
l . 1 .
vaVs| g Dy hwixg) - g D) h(wex)
X;E€B; x; €8}
6: Update w;,; by Momentum or AdamW
7: end for
Pretrained + Easy Samples + Noisy Samples
/’l /’/ :l >
/ O ,Q’ O O v
? ¢ =
Qo
/ ]
/0 e (% 5
/ e i n
a s
>
I( C
S oo e 9]
)y O O <
’ 4 Q
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e | e
/ /’/ —
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/ /’ (7]
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Fig. 6.9: Anillustrative example for optimizing different AUC losses on a toy data for
learning a two-layer neural network with ELU activation. The top row is optimizing
the AUC square loss and the bottom row is optimizing the new AUC margin loss as
in (6.21). The first column depicts the initial decision boundary (dashed line) pre-
trained on a set of examples. In the middle column, we add some easy examples to
the training set and retrain the model by optimizing the AUC loss. In the last column,
we add some noisily labeled data (blue circled data) to the training set and retrain the
model by optimizing the AUC loss. The results demonstrate the AUC margin loss is

more robust than the AUC square loss.
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CE (scratch) AUC (scratch) CcT

Fig. 6.10: t-SNE visualization of feature representations of an imbalanced training
set for the Cat vs Dog visualized by t-SNE learned by different methods (from left to
right): optimizing CE loss, an AUC loss, and a compositional training (CT) objective.
For more details, please refer to (Yuan et al., 2022a).

@ Feature Learning

Feature learning is an important capability of deep learning. However, like the DRO
objective, the end-to-end training based on the AUC surrogate objective does not
favor feature learning as compared with traditional ERM. The reason is that AUC
surrogate objective gives unequal weights to different data points due to the imbal-
ance of training data. To address this challenge, one way is to employ a two-stage
approach, where the first stage pretrains the encoder network on the training data
by traditional supervised learning (e.g., ERM with the CE loss) or self-supervised
representation learning and the second stage fine-tunes the feature extration layers
and a random initialized classifier layer by optimizing an AUC surrogate objective.
An approach for performing effective feature learning and AUC maximization in
a unified framework is to optimize a compositional objective (Yuan et al., 2022a):

min max F(w — tVLcg(Ww),a, b;a),

w,a,b a>0
where Lcg(w) is the empirical risk based on the CE loss and 7 > 0 is a hyper-
parameter.

To understand this compositional objective intuitively, let us take a thought exper-
iment by using a gradient descent method to optimize the compositional objective. To
this end, we denote the objective by Layc (W —7VLcg(Ww)), where Layc denotes the
AUC surrogate objective. First, we evaluate the inner function by u = w—a'V Lcg(W).
We can see that u is computed by a gradient descent step for minimizing the empir-
ical risk Lcg(w), which facilitates the learning of lower layers for feature extraction
due to equal weights of all examples. Then, we take a gradient descent step to update
w for minimizing the outer function Layc (+) by using the gradient VL ayc (u) instead
of VLauc(w). Because u is better than w in terms of feature extraction layers, taking
a gradient descent step using VLayc(u) would be better than using VLayc(w). In
addition, taking a gradient descent step for the outer function Layc(-) will make the
classifier more robust to the minority class due to use of the AUC surrogate loss.
Overall, we have two alternating conceptual steps, i.e., the inner gradient descent
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

stepu = w — 7VLcg(W) acts as a feature purification step, and the outer gradient
descent step w—1(I —7V>Lcg (W) VLauc () acts as a classifier robustification step,
where 77 is a step size.

For practical implementation, the intermediate model w — TVLcg(w) can be
tracked by the MA estimator u; = (1 —y)u,_1 +y(W, — TVLcE(W,)), where Lcg is
a mini-batch CE loss. Then, u, is used to update the primal variables (w; a; b) and
the dual variable a.

Finally, we remark that the data sampler is different from traditional one because
it needs to sample both positive and negative examples. It also has great impact on
the performance. We defer the discussion to section 6.4.5.

6.4.2 Stochastic AP Maximization

Using a surrogate loss, AP maximization can be formulated as an FCCO prob-
lem (2.36), i.e.,

1 .
min~ > f(g(wix;. ), (6.22)

X; €S,
where S, denotes the set of n positive examples, S is the set of all examples, and

__leh
f(g = el

g(w;x;,S) = [g1(w;x;,S5), 82(w; x;, S)],
@1 wixie8) = o D 10 = DUHOWEx;) = h(wix),

Xj€S

(wixi,S) = 5 D h(wix,) = h(wix),

XJ'ES

where £(-) is a non-decreasing surrogate pairwise loss (see examples in Table 2.3).
We present an application of SOX to solving the above problem in Algorithm 28,
which is referred to as SOAP.

Q Initialization of u

Unlike traditional algorithms, Algorithm 28 for AP maximization requires initial-
izing an additional set of auxiliary variables uy,...,u,. In contrast to the model
parameter w, which is randomly initialized, these auxiliary variables can be initial-
ized upon their first update. Specifically, when index i is first sampled, we set u; ;—;
to the corresponding mini-batch estimator of the inner function value. As a result,
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Algorithm 28 The SOAP algorithm for AP maximization (6.22)

T
t=1’

1: Input: learning rate schedules {7,
2: fort=1,...,Tdo

3: Draw B positive data 8] c S, and B; negative data 8, c S_
4: for x; € B/ do

5 Update the inner function value estimators

{7t szl; starting points wy, ug

ul) = (1 —yul)  +y D1y = DEh(wix;) = h(Wisx:),

Bi+B, x; €|BTUSB; |
1
(2) _ (2) . .
w = (= yup tyvigmp ), COwexy) = h(wexi),
x;€|87UB; |
6: end for
7 Setw;; =w;,-1,i ¢ B
8: Compute the vanilla gradient estimator
(1 (2)
1 1 upp —u; Ay =1)
Zr =7 Z Z +V[(h(wt;xj)—h(w,;x,¢))
Bi (G BBy s (ME,,))2

9: Update w;,; by Momentum or AdamW
10: end for

the initial update of u; ; coincides with the mini-batch estimate of the inner function
at that point. This technique will be used in other FCCO applications.

@ Feature Learning

Similar to AUC maximization, the end-to-end training based on the AP surrogate
objective does not favor feature learning. To mitigate this issue, one can first pretrain
the encoder network on the training data by traditional supervised learning (e.g. ERM
with the CE loss) or self-supervised representation learning and then fine-tune the
feature extraction layers and a random initialized classifier layer by optimizing an AP
surrogate objective. The compositional training could be also employed for unified
feature learning and AP maximization.

¢ Moving-average parameter y,

In practice, we can set y; = y and tune 7y in the range (0, 1) to optimize the validation
performance.
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Fig. 6.11: Comparison of different methods for AP maximization. TFCO refers to
the constrained optimization algorithm implemented in the Google TensorFlow Con-
strained Optimization library. The experiment was conducted on a constructed im-
balanced binary classification task of CIFAR 10, which originally contains 10 classes.
These classes are partitioned into two equal groups to form the positive and negative
classes based on their class IDs. The test data is unchanged (i.e., the testing data is
still balanced). For more details, please refer to (Yuan et al., 2023b).

6.4.3 Stochastic Partial AUC Maximization

Stochastic OPAUC Maximization

We focus on maximizing the OPAUC with the false positive rate (FPR) restricted to
the range [0, 8]. As shown in Section 2.3.3, OPAUC maximization can be formulated
as minimizing a surrogate objective:

min il Z Z t(h(w;x;) — h(W;X;)), (6.23)

wong
X €S+ x;eS[1,k]

where k = [n_B], S*[1, k] € S denotes the subset of examples whose rank in terms
of their prediction scores in the descending order are in the range of [1, k], and £(-)
denotes a continuous surrogate pairwise loss such as in Table 2.3.

The challenge lies at how to tackle the top-k selection x; € St [1, k]. Below, we
present two approaches: a direct approach that leverages the dual form of CVaR and
an indirect approach that replaces the top-k selection by soft weighting.

A Direct Approach

This approach will be restricted to a non-decreasing pairwise loss function £(s).
Under this assumption, the ranking over negative samples by their prediction scores
h(w;X;) is equivalent to that by the pairwise loss £(h(W;X;) — h(W;X;)),X; € S;.
Hence, the average of pairwise losses over top-k negatives
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Algorithm 29 SOPA for solving (6.26) of direct OPAUC maximization

1: Initialize wandv; =0

2: fort=1,...,Tdo

3: Draw B positive data 8/ C S, and B, negative data 8, c S_
Compute p;j = I(£(h(W;,X;) — h(W;,X;)) —vi, > 0) forx; € B},x; € B
fori € B/ do

Update v; 141 = vi,, — 12(E - BLZ Yxje8; Pij)

end for
Set vi 41 = Vig,i & Bf
Compute a vanilla gradient estimator z; by

LR R

1
z, =
BB,

Z Z Dij Vwl(h(we, x;) — h(We, X))

X; €8/ x; €8,

10: Update w,,; by SGD or Momentum or AdamW
11: end for

Lw=1 S fhwix)) - h(wix) (624)
kx,-e:s%[l,k]

is equivalent to the average of top-k pairwise losses over negative data, i.e., an em-
pirical CVaR estimator. Then leveraging the dual form of CVaR (2.15), we transform
the above loss into a minimization problem, i.e.,

Liw) =min > [€hw:x)) = hwx) = vily v (629)

X eS_

As a result, we have the following equivalent reformulation.

Lemma 6.1 (Reformulation of OPAUC maximization.) When {(-) is non-decreasing,
then the problem (6.23) for OPAUC maximization is equivalent to

1 k 1
min F(w,v) = — Z Sy — Z (L(h(W, X;) = h(W, X)) = vi)s ¢ »
n XiES+ n n XjES_

(6.26)

The above problem is a special case of compositional OCE studied in Section 5.5.

A benefit for solving (6.26) is that an unbiased stochastic subgradient can be com-
puted in terms of (w, v). We present a method in Algorithm 29, which is an appli-
cation of the ASGD and is referred to as SOPA. A key feature of SOPA is that the
stochastic gradient estimator for w (Step 9) is a weighted average gradient of the pair-
wise losses for all pairs in the mini-batch. The weights p;; (either O or 1) are dynami-
cally computed by Step 4, which compares the pairwise loss (£(h(w;, X;)—h(w;,X;))
with the threshold variable v, ;, which is also updated by an SGD step.
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Algorithm 30 SOPA-s for solving (6.28) of indirect OPAUC maximization

1: Initialize w, ug

3: Draw B positive data 8] c S, and B; negative data 8, c S_
: fori € B/ do

£(h(WiiX)) —h(Wexi
Update u; ; = (1 — y)u; ;-1 + 73% DixjeB; €XP (M)

4
5
6: end for

7: Setuir =ui 1,0 ¢ Bf
8: Compute p;; = exp(£(h(Ws;Xj) — h(We3X;))/7T)/ui; forx; € Bf,x; € B
9 Compute a vanilla gradient estimator z; by

1
" BB,

z;

DD piVe(h(wix;) = (W)

X; €8] x;€8;

10: Update w;,; by Momentum or AdamW method.
11: end for

The convergence guarantee of SOPA using the SGD update for w, has been es-
tablished in Section 5.5. In practice, the convergence speed of SOPA may be further
accelerated by integrating Momentum or Adam updates for the model parameter w.

An indirect approach by FCCO

Due to the connection between CVaR and DRO (2.13), an alternative approach is to
replace the top-k pairwise loss L;(w) by a KL-regularized DRO, i.e.,

Li(w) = max
PeAn Txjes. pjt(h(Wx;)—h(w:x;))-7KL(p,1/n-)
! (f(h(w; X)) = hw: xi>>) ©27
=r1log| — Z exp .
- X_,’ES_ T

As a result, an indirect approach for OPAUC maximization is to solve the following
FCCO problem:

1
min — » tlog| — Z exp (6.28)
v - x;€S- T

n | (f(h(w; X;) — h(w; Xz’)))

An application of the SOX algorithm is given in Algorithm 30, which is referred
to as SOPA-s. The key difference between SOPA-s and SOPA lies at the pairwise
weights p;; in SOPA-s (Step 8) are soft weights between 0 and 1, in contrast to the
hard weights p;; € {0, 1} in SOPA.
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Fig. 6.12: Comparison of different methods for OPAUC maximization with FPR less
than 8 = 0.3 (left) and B8 = 0.5 (right). The dataset is Melanoma classification from
Kaggle competition. The training set has only 1.76% positive (malignant) samples.
MB refers to the BSGD approach that computes gradients using only the top 8% of
negative examples within each mini-batch; AW-Poly is a heuristic weighted method
that assigns weights to negative samples in the mini-batch using a manually designed
weighting function. For more details, please refer to (Zhu et al., 2022b).

Stochastic TPAUC Maximization

As shown in Section 2.3.3, empirical maximization of TPAUC with FPR < g, TPR >
a can be formulated as:

11

in —— t(h(w;x;) — h(w;X;)), 6.29

min - - Z Z (h(W: X)) = h(W;X;) (6.29)
X[ES+[1,k1]Xj€S_[1,k2]

where k| = |[n.(1 — @), ko = |n_B]. If we define
1
Li(w) = - DT Eh(wix)) = h(wixy), (6.30)
x;€S[ 1,k ]
then, the problem in (6.29) can be written as:
1
min - Z Li(w). 6.31)
x; €SI [1,k]

Similar to OPAUC maximization, we will present a direct approach and an indi-

rect approach.

A Direct Approach

The first approach is based on the following reformulation of TPAUC maximization.
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Algorithm 31 STACO for solving (6.32) of direct TPAUC maximization
1: Initialize wand v; =0,v' =0
2: fort=1,...,Tdo
3: Draw B positive data 8] c S, and B; negative data 8, c S_

4 Compute p;; = I(€(h(W;,X;) — h(W;,X;)) — vi, > 0) forx; € Bf,x; € B
5: fori € B/ do
6: Update y; ;+1 and v; ;41 by
Yit+1 =
1 k2 ’
yie=my g D CRWeX;) = h(WeXa)) = Via)s + == (Vi = ])
2 - n_
X;j€B; [0,1]
k> 1
Vijt+l = Vit — M Yi,t+1 (Z - B—2 Z_ Pij)
X; €8,
7: end for
8: Set yir41 = iy, 0 € Bf and v s = vy, t ¢ Bf
9: Update vt’+] =v,—-1m (i‘% - ,lf—fBLl inez;; Vi,r+1)
10: Compute a vanilla gradient estimator z, by

1
;=
BB,

DD Vi Pi Vnl (h(We, X)) = h(We, X))

X; €8/ x; €8/

11: Update w,4; by SGD, Momentum or AdamW
12: end for

Lemma 6.2 (Reformulation of TPAUC maximization.) When £(-) is non-decreasing,
the problem (6.29) for TPAUC maximization is equivalent to

kiko

nyn_

v, (6.32)

min > flei(wv,v) +

wy,v' Ny
. Xi€S+

wherev = (vi,...,vn,)", f(-) =[]+ and

GOy = 3 (Ewixg) = RO X)) = v+ 22 (= V).

T xjeS. -

We leave the proof as an excise for the reader.

It is clear that the problem (6.32) is an instance of FCCO, where the outer func-
tion is non-smooth and monotonically non-decreasing. Hence, SONX, SONEX, and
ALEXR can be applied. We present an application of ALEXR for solving the above
problem in Algorithm 31 (referred to as STACO) based on its min-max reformula-
tion:
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Algorithm 32 SOTA-s for solving (6.33) of Indirect TPAUC Maximization

1: Initialize wy, u;, vy,
2: fort=1,...,Tdo
3: Draw B positive data 8] c S, and B; negative data 8, c S_

4: fori € B/ do
5: Update u; ;= (1 = yo)ui -1 + Y0 g; Zx,csr €XP (%W)
6: end for
7 Setuir =ui 1,0 ¢ Bf
8 Letvr = (1= y)v1 + 715 Sy e (i)™
9: Compute
exp(£(h(WeX;) — h(We3 X))/ 72) (g ) /71
pis = p(£(h(W:;X;) (vz i)/ 72) (uir) Vxi € B.x; € By
t
10: Compute a vanilla gradient estimator z, by
1

= BB, Z Z pijVE(h(Wiix;) = h(WeiXi))

X;€B/ x; €8,

11: Update w,,; by Momentum or AdamW

12: end for
e e yl’[_ Z (E(W; X, X)) = vi)s + — (v = V) | + ==/
w,v,v’ ye[0,1]™ ny XS, n_ <cs n_ nyn_
1 J —

An Indirect Approach

Following the strategy used in OPAUC maximization, we adopt an indirect approach
by replacing top-k estimators with their KL-regularized DRO counterparts, which
yield smooth surrogate objectives.

With a non-decreasing pairwise surrogate loss £(-), L;(w) is a non-increasing
function of 1(w; X;), the average of L; (W) over bottom-k positive examples in (6.31)
is equivalent to the average of top-k; losses L;(w) over all positive data. Hence, we
approximate the resulting top-k; estimator by a KL-regularized objective:

71 log (ni Z exp (LiT(lw))) )

+ X; €S,

Then, we substitute L;(w) with L;(w) as defined in (6.27), leading to the following
smoothed objective:
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F(w) =1 log (ni Z exp (%IW)))

X,'ES+

T2log (i1 By . exp (LA ))

1
= 1 —_
T1 log . E exp T

X,‘ES+

V3

((h(w;x)) = h(w:x)) | |
L I P EE e

X;€S; T xjeS.

To minimize this objective, we formulate the problem as a three-level composi-
tional stochastic optimization:

1
min f; (n— D f2<gi<w>>), (633)
+ Xi€S+

where fi(s) = 71 log(s), f2(g) = g™/™, and

gr(w) = ni Z eXp(é’(h(W;Xj) —h(w;xi)))_

- XJ'ES_ n

The inner function of f; exhibits a finite-sum coupled compositional optimiza-
tion (FCCO) structure. To accurately estimate V fl( ) at the inner function value, we
maintain a moving average estimator v; to track - lee s, J(gi(wy)).

We present a stochastic optimization al gorlthm—referred to as SOTA-s—for solv-
ing this problem in Algorithm 32. We update u; ; to track g; (w;) in Step 5 and main-
tain v; to estimate —- le es, J2(gi(w;)) in Step 8. The gradient estimator in Step 9
is given by:

Vi) 1z D, Vhuin) - VEi(w),
|B+| xie B}
0 C(h(WeXj)—h(Wex;
where &;(w;) = BLZZXI"B; exP( (h(w x_,)T2 (Weix ))).

6.4.4 Stochastic NDCG Maximization

In Section 2.3.4, we have formulated NDCG maximization as the following empirical
X-risk minimization problem:

N .
1 1 - 2%
e Zz_ Z logz(ng(w Xy, Sg) + 1) (6.34)
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Algorithm 33 SONG

1: Initialize wy, ug

2: fort=1,...T do
3 Draw some relevant Q-I pairs 8, = {(¢,X4,;)} € S
4: For each sampled g draw a batch of items B; c Sy
5.
6
7

for each sampled Q-I pair (g,x4,;) € B; do
Compute ug i r = (1 = y)ug.ii-1+ 7@ Ywes, L(s(We3X', q) — s(Wi3Xq.i,q))
Compute
(2Ya1 — 1) Ny
Zy(Ngug ir+1)10g3(Nyug i +1)In(2)

pz/,i = qu,i(uq,i,t) =

8: end for
9: Compute a vanilla gradient estimator z, by
1 1 ,
weig 2, Paitgm 2 CGNXL@) - s(wixq)
g (q-Xq,i)€B; 4" xes,
10: update w1 by Momentum and AdamW optimizer
11: end for

where N,g(W;x,S;) = Zx’esq L(s(w; X', q) — s(W; X, q)) is a surrogate of the rank
function r (w; x, S;) = Zx'esq I(s(w;x’, q) —s(w;x, q) > 0), and s(W; X, ¢) denotes
the predicted relevance score for item x with respect to query ¢, parameterized by
w € R? (e.g., a deep neural network).

As a result, NDCG maximization can be rewritten as an instance of FCCO:

1
min 5 Do fai(g(Wixgi, Sy)), (6.35)
(9.%q,i)€S

where S = {(¢,x4.0) | ¢ € Q,x4; € S;} represent the collection of all relevant
query-item (Q-I) pairs, and

1- 2)’(1,1'

1
fa.i(®) = 5-T—— -
! Zglogy(Ngg +1)

We apply the SOX method to this problem as shown in Algorithm 33, which we
call SONG.

Top-K NDCG Maximization
In practice, top-K NDCG is the preferred metric for information retrieval and recom-

mender systems, as users primarily focus on the highest-ranked items. It is defined
as:
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1 ) 2vai — 1
- S I . € S( . s
- Z (Xqi €Sq77) log, (r(w;x4,i,Sg) + 1)

where SéK) is the set of top-K items based on predicted scores, and Z;K) is the ideal
DCG in the top-K positions.

Optimizing top-K NDCG introduces an added complexity: selecting the top-K
items is non-differentiable. Unlike pAUC, where a top-K estimator exists, the surro-
gate function

2Yai — ]
log, (Ngg(W;Xq,i,Sy) +1)

is not generally monotonic in the score s(W; X, ;, ¢) unless all y, ; values are iden-
tical. We consider two approaches to handle this problem.

Approach 1: Surrogate for Top-K Inclusion

We use the identity I(x, ; € S;K)) =I(K —r(w;xg4,;,Sg) > 0) and approximate it
by a non-decreasing surrogate ¥ (K — Ny g(W; X4 i, Sy)), €.g., the sigmoid function.
The resulting objective becomes:

N .
1 1 — 2%

min — Z Z (K - Ngg(w;Xg.i,Sy)) - :

weRrd |S] xS Z;IO log,(Ngg(w;X4.:,Sy) + 1)

(6.36)

This can be optimized using FCCO techniques.

Approach 2: Threshold Estimation via Bilevel Optimization

Denote by A,(w) the the (K + 1)-th largest score among all X’ € S,;. We use
the identity I(x,,; € SéK)) = I(s(W;Xg4,i,q9) > A4(W)) and approximate it by
W (s(W;Xg.i, q) —Aqg(W)). The threshold A, (w) can be computed by solving a convex
optimization problem as shown in the lemma below.

Lemma 6.3 Let 1,(w) = argminy (K + £)A + Zx’esq (s(w; X', q) — A)4 for any
g € (0,1), then A,(w) is the (K + 1)-th largest value among {s(w; X', q)|x’ € Sy }.

As a result, we formulate the following bilevel optimization problem for top-K
NDCG maximization:

L i Z Y(s(W;Xg,i,q) — Ag(W)) - (1 = 2%47)
S|

min )
v q=1x4,€S} Zq logz(ng(W; Xq,i’Sq) +1) 6.37)
. K+¢ 1 , -
st Ag(w) = arg min N, A+ N_q Z (s(w;x’,q) — )+, Vq.

’
X' €S,
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This bilevel formulation is challenging due to the non-smooth and non-strongly-
convex lower-level problem. One remedy is to apply Nesterov smoothing to the hinge
loss (see Example 5.1) and add a small quadratic regularization term of A to the lower
level objective. This allows employing the Approach 1 of using moving-average es-
timators from Section 4.5.3.

In practice, we can ignore the gradient of  and adapt the SONG algorithm by
updating A, iteratively and modifying p, ; as:

K+¢ N 1
Ny |8y |

’

D Uswix,q) > )|, VYge8B,

t
x'e€B,

/lq,t+l = Aq,t -n

Pq.i = ‘//(S(Wt;xq,i’ q) - /lq,t+l) : qu,i(”q,i,t)-

As with other non-decomposable metrics, it is beneficial to first pretrain the model
by optimizing the listwise cross-entropy loss, which itself is an FCCO problem, as
defined in (2.47).

6.4.5 The LibAUC Library

The algorithms presented in Section 6.4 for various X-risk minimization tasks share
several common features: (1) they all require sampling both positive and negative ex-
amples; (2) their vanilla gradient updates involve a weighted sum of gradients from
pairwise losses computed on the sampled data; and (3) they utilize moving-average
estimators to track inner function values. These shared characteristics motivate the
design of a unified implementation pipeline. To this end, the LibAUC library was de-
veloped to encapsulate these principles within a modular and extensible framework,
built on top of the PyTorch ecosystem. Below, we highlight several key components
of LibAUC. For tutorials and source code, we refer interested readers to the GitHub
repository:

LibAUC GitHub Repository

https://github.com/Optimization-AI/LibAUC

Pipeline

The training pipeline of a deep neural network in the LibAUC library is illus-
trated in Figure 6.13. It consists of five core modules: Dataset, Controlled
Data Sampler, Model, Dynamic Mini-batch Loss, and Optimizer. While the
Dataset, Model, and Optimizer modules align closely with those in standard train-
ing frameworks, the key innovations lie in the Dynamic Mini-batch Loss and
Controlled Data Sampler modules.
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Dynamic
Dataset CTLCE Model Mini-batch Optimizer
Data Sampler Loss

Fig. 6.13: Training pipeline of the LibAUAC library for deep learning.
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Fig. 6.14: Tllustration of DualSampiér for an imbalanced dataset with 4 positives e
and 9 negatives e.

The Dynamic Mini-batch Loss module defines the loss using dynamically
updated variables, which are computed and refined with forward propagation re-
sults. This design ensures that compositional gradients can be correctly estimated
from mini-batch samples using backpropagation. The Controlled Data Sampler
module, in contrast to standard random sampling strategies, allows fine-grained con-
trol over the ratio of positive to negative samples. This control can be tuned to im-
prove learning effectiveness and overall performance.

Controlled Data Sampler

Unlike traditional ERM, EXM requires sampling to estimate the outer average and
the inner average. In algorithms for AUC, AP, OPAUC and TPAUC optimization,
we need to sample two mini-batches 8, c S, and 8. C S_ at each iteration .
When the total batch size is fixed, balancing the mini-batch size for outer average and
that for the inner average could be beneficial for accelerating convergence according
to our theoretical analysis in Chapter 5. Hence, the Controlled Data Sampler
module can help ensure that both positive and negative samples will be sampled and
the proportion of positive samples in the mini-batch can be controlled by a hyper-
parameter.

DualSampler. For binary classification problems, DualSampler takes as input
hyper-parameters such as batch_size and sampling_rate, and generates the cus-
tomized mini-batch samples, where sampling_rate controls the number of positive
samples in the mini-batch according to the formula:

#positives = batch_size * sampling_rate.
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1.00 Fig. 6.15: The training curves
e of AP for different number
of positive examples per
0:90 mini-batch in DualSampler
o 085 when the total batch size is
<0.80 fixed to 64. The algorithm
is SOPA - a variant of SOX.
0.75 Experiments were conducted

—— SOX (B, =1) i
0.70 SOX (B, —8) on a constructed imbalanced
—*— SOX (B, =32) binary classification task
065 5 s " " ~, derived from  CIFAR-10,
Iterations led identical to the setting used in

Figure 6.11.

Figure 6.14 shows an example of DualSampler for constructing mini-batch data
with even positive and negative samples on an imbalanced dataset with 4 positives
and 9 negatives. To improve the sampling speed, two lists of indices are maintained
for the positive data and negative data, respectively. At the beginning, we shuffle
the two lists and then take the first 4 positives and 4 negatives to form a mini-batch.
Once the positive list is used up, we only reshuffie the positive list and take 4 shuffled
positives to pair with next 4 negatives in the negative list as a mini-batch. Once the
negative list is used up, we re-shuffle both lists and repeat the same process as above.
An illustration of the impact of the DualSampler on the convergence is shown in
Figure 6.15.

TriSampler. For multi-label classification problems with many labels and rank-
ing problems, TriSampler first samples a set of tasks controlled by a hyperparam-
eter sampled_tasks, and then sample positive and negative data for each task.

The following code snippet shows how to define DualSampler and TriSampler.

from libauc.sampler import DualSampler, TriSampler
dualsampler = DualSampler (trainSet,
batch_size=32,
sampling_rate=0.1)
trisampler = TriSampler(trainSet,
batch_size_per_task=32,
sampled_tasks=5,
sampling_rate_per_task=0.1)

Dynamic Mini-batch Loss
To compute the vanilla gradient estimator, we invoke backpropagation using the Py-

Torch function 1loss . backward () on a defined loss. The vanilla gradient estimators
for pAUC, AP, and NDCG maximization share a common structure of the form
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1

18] Z é Z piiVE(h(w;x;) — h(W;X;)),

x; €8 XjEBZ

where the weights p;; are computed from dynamic variables within the algorithm.
To enable the use of loss.backward(), it suffices to define a mini-batch loss as
ﬁ Dxie B @ ijegz pijt(h(w;x;) — h(w;X;)), where p;; is detached from the
computation graph to avoid unnecessary backpropagation through these variables.
Since p;; is evolving across iterations, the mini-batch loss is called dynamic mini-
batch loss. A high-level pseudocode example for SOPAs is provided in Figure 6.16.

# define dynamic mini-batch loss
def pAUCLoss (**xkwargs): # dynamic mini-batch loss

sur_loss = surrogate_loss(neg_logits - pos_logits)
exp_loss = torch.exp(sur_loss / Lambda)
ulindex] = (1 - gamma) * ul[index] + gamma * (exp_loss.mean(1)

)
p = (exp_loss / ulindex]) .detach()
loss = torch.mean(p * sur_loss)
return loss

# optimization

for data, targets, index in dataloader:
logits = model(data)
loss = pAUCLoss(logits, targets, index)
optimizer.zero_grad ()
loss.backward ()
optimizer.step ()

Fig. 6.16: High-level pseudocode for SOPAs.

Comparison with Existing Libraries

We present some benchmark results of LibAUC in comparison with other state-of-
the-art training libraries.

Comparison with the TFCO Library. We compare LibAUC (SOAP) with
Google’s TensorFlow Constrained Optimization (TFCO) library for optimizing av-
erage precision (AP). Both methods are trained for 100 epochs using a batch size of
128, the Adam optimizer with a learning rate of 1e-3, and a weight decay of le-4 on
a binary classification task derived from CIFAR-10 with imratio € {1%,2%}. The
training and testing learning curves, shown in Figure 6.11, demonstrate that LibAUC
consistently outperforms TFCO.

Comparison with the TF-Ranking Library. We evaluate LibAUC, using SONG
for NDCG maximization, against Google’s TF-Ranking library, which implements
ApproxNDCG and Gumbe1NDCG. Experiments are conducted on two large-scale datasets
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Fig. 6.17: Left: Benchmarks of NDCG optimization on MovieLens (ML) 20M and
25M datasets, @K means NDCG at top K. Right: Runtime Comparison between
LibAUC and TF-ranking for NDCG maximization. For more details, please refer
to (Yuan et al., 2023b).

—MovieLens20M and MovieLens25M—from the MovieLens platform. As shown in
Figure 6.17, LibAUC achieves superior performance on both datasets. Furthermore,
the runtime comparison shows that LibAUC’s NDCG maximization algorithm is
more efficient than the corresponding implementations in TF-Ranking.

6.5 Discriminative Pretraining of Representation Models

In Chapter 2, we briefly introduced the core concepts of representation learning and
highlighted its growing significance in modern Al systems. In contemporary Al,
representation models are learned through Self-supervised learning (SSL), which has
emerged as a powerful paradigm for learning representation models without the need
for labeled data. Among the most prominent frameworks within SSL is contrastive
learning, which forms positive pairs by applying different augmentations to the same
data sample or taking different views of the same data, while treating different data
as negatives. In this section, we delve deeper into contrastive learning, with a focus
on its applications to both unimodal and multimodal representation learning.

6.5.1 Mini-batch Contrastive Losses

A contrastive loss is used to pull the representations of positive pairs closer together,
while pushing apart those of negative pairs in the embedding space. One of the most
widely used contrastive losses is the so-called InfoNCE loss, which operates over
samples within a mini-batch. Below, we illustrate its use in two well-known con-
trastive learning methods and discuss its limitations.
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Fig. 6.18: Illustration of SimCLR for Contrastive Visual Representation Learning.
(x, x*) are augmentations of the same image, {x~ } is a set of other images. An image
encoder is a deep neural network and a projector is a lightweight multi-layer percep-
tron.

SimCLR

We now illustrate the contrastive loss in the context of visual representation learning
by the well-known method SimCLR. The framework is illustrated in Figure 6.18. The
model typically consists of a deep encoder backbone followed by a small projector,
often implemented as a multi-layer perceptron (MLP). During downstream tasks, the
projector is discarded, and the encoder’s output is used as the final representation.
The inclusion of the projector during training improves the quality and transferability
of the learned embeddings by helping disentangle the contrastive learning objective
from the representation space.

Let (x,x") ~ P, denote a positive pair, which are different augmented copies
from the same data. For a mini-batch 8 = {xi,...,Xg}, each anchor x; is paired
with an augmented positive sample x!. The resulting mini-batch-based contrastive
loss (commonly referred to as the InfoNCE loss) for anchor x; is given by:
exp (h(w;Xi)Th(w;X,f) )

T

exp (h(w;x,-)Th(w;x,f)) + ijegli exp (h(WZXi)Th(WZXj))

(6.38)

Lg(w;x;,x}) = —log

where 2(w;x) denotes the normalized embedding of input x, i.e., [|A(W;X)|]2 = 1,
and 7 > 0 is the temperature parameter. The set $B;” includes all negative samples in
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“Kitty in a basket”

attract

“pup in a blanket”

Fig. 6.19: Illustration of Contrastive Language-Image Pretraining (CLIP). A projec-
tor is usually a single linear layer.

the mini-batch excluding x; and its augmentations. The positive pair can be removed
from the denominator.

CLIP (Contrastive Language-Image Pretraining)

CLIP is a multimodal representation model that aligns images and text via contrastive
learning on large-scale image—caption datasets. It comprises an image encoder and a
text encoder, each followed by a corresponding projector, all jointly trained through
contrastive learning (see Figure 6.19). CLIP models are typically trained on mil-
lions to billions of image—caption pairs, denoted as S = {(x1, t1), ..., (X, t,)}. Let
h1(w;-) denote the image encoder and /,(w; -) denote the text encoder, which out-
puts normalized embedding vectors.

With a mini-batch 8 = {(xi,t;),...,(Xp,tp)}, a mini-batch-based contrastive
loss for each image x; is given by:

exp ( hy <w;xi)1h2<w;ti) )
Lg(w:x;) = - log . (639)
hi (wixi) Tho (Wit; hi (Wx;) Tho (Wst;
exp( L (wix )‘r 2 (wit )) +2tjeBZ’i exp( 1(wix )T 2(w ./))

where the set 8, includes all negative texts in the mini-batch excluding t;. Similarly,
a mini-batch-based contrastive loss for each caption t; is given by:

exp ( hy (W;Xi); hy (witi) )

Lg(w:t;) = ~log Ry (wix;)Thy (wit;) hi(wix;) Tha(witi) ) (6.40)

exp (f) + ijeBl‘i €xp (f)
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where the set B, includes all negative images in the mini-batch excluding x;. Back-
propagation is then performed on the two mini-batch contrastive losses to compute
gradient estimators, which are summed to update the model parameters.

CLIP enables zero-shot image classification, cross-modality retrieval and plays a
crucial role in text-to-image generation by guiding models to synthesize images that

semantically align with textual prompts.

What is zero-shot classification?

Zero-shot classification means classifying data without any labeled data
for learning a classifier. In a multi-class classification task with K classes
{Cy,...,Ck}, where each class corresponds to a specific label (e.g., ‘dog’),
we apply the CLIP model by first constructing a natural language prompt for
each category (e.g., ‘a photo of a dog’). We then compute text embeddings
for these prompts and calculate their cosine similarity with the image embed-
ding generated by CLIP. Finally, the model predicts the class that yields the
highest similarity score.

The Challenge of Large Batch Size

While efficient, the InfoNCE loss is known to heavily rely on large batch sizes to
ensure a rich and diverse set of negatives. For example, SimCLR requires a batch
size of 8192 to achieve state-of-the-art performance for training on the ImageNet-1K
dataset. This dependence on large batches imposes significant memory and compu-
tational burdens, especially when using large network backbones or processing high-
dimensional inputs such as videos. Indeed, optimizing the InfoNCE loss is equivalent
to using the BSGD method for optimizing the global contrastive loss as discussed in
next subsection, which sufffers from non-convergence if the batch size is not signif-
icantly large.

6.5.2 Contrastive Learning without Large Batch Sizes

While the mini-batch contrastive loss offers computational convenience, it contra-
dicts to the standard optimization principle where the objective is typically defined
over the full dataset, followed by the development of efficient optimization algo-
rithms. The mini-batch contrastive loss emerged naturally from the prevalent training
pipeline (see Figure 6.1) that practitioners are familiar with. However, as previously
discussed, this pipeline originating from ERM assumes that the loss for each data
instance is independent of others, which does not hold for contrastive objectives. To
resolve this, it is essential to decouple the design of the objective function from the
optimization procedure.
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Global Contrastive Loss: Separating Objective from Optimization

A global contrastive loss contrasts each anchor data point against all other examples
in the training set. For a given positive pair (x;,X), the global contrastive loss is
defined as:

h(w;x;) Th(w; X;) = h(w;X;) "h(W; X])

1
L(w;x;,x}) =7log| —— Z exp( ,

|Sl | Xj 65,7 T
(6.41)
where S/ is the set of all negative samples excluding x; and its positive counterparts.
The full global contrastive objective over S = {xi, ..., X,} is then given by:
. 1 1
n&nF(w) = Z 5 Z L(w;x;,X]), (6.42)
x; €S xteSt

where S denotes the set of all positive samples corresponding to x;.

SogCLR: The Optimization Algorithm

To optimize the global contrastive objective, we cast it into the following:

eS T xteSt
" ™ (6.43)
1 W; X; W, X;
+—Zlog Zexp( ( ) h(w:x;) .
n _ T
X; €S X;€S;

The first term is a standard average and the second term is an objective of FCCO,
where the outer function is f(-) = tlog(:) and the inner function is g;(w) =

ﬁ Y zes- €Xp (M) For readers who are familiar with Chapter 4 and 5,

it is easy to understand the challenge of optimizing the above objective. It lies at the
compositional structure of the second term with both summations over many data
outside and inside the log function. As a result, the using the mini-batch-based In-
foNCE loss will suffer from a biased gradient estimator whose error depends on the
batch size.

To address this challenge, we can extend the SOX algorithm to solving (6.43) as
shown in Algorithm 34, which is referred to as SogCLR. The estimators u; ;41, Vi
are for tracking the inner function values g;(w;) and p; ; = - v— is for estimating
Vlog(g;(w;)), where ¢ is small positive value added to avoid numerical issue and
facilitate the learning.
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Algorithm 34 SogCLR for optimizing the global contrastive objective (6.43)

1: Input: Initial model w;, uy € R”

2: fort =1toT do

3 Sample a mini-batch 8 = {x;};>, with augmentations

4. for each x; € B do

5: Construct the positive and negative set within mini-batch B/, 8
6 Update u; , via:

wig ==Y 1 +ym=

1 (h(wt;X.-)Th(wt;Z)
Z exp| ———

|B;| 2€B; T
7: end for
8: Compute the vanilla gradient estimator z,:
1 1 T
w= g ZB ] ZB V(Wi x0) Th(wi X))
exp (h(wt ;X;);h(Wz i) )

V(h(w;x;)Th(w;2)),

1
+@Z

1
x;€B |Bl_| 2B Et Uiy

9: Update w,,; by Momentum, Adam or AdamW
10: end for

Q Initialization and Update of u

Unlike the model parameter w, which is typically initialized randomly, the auxiliary
variables u can be initialized upon their first update. Specifically, when an index i is
sampled for the first time, we set u; ; to the corresponding mini-batch estimate of the
inner function value.

As with the practical considerations discussed for distributionally robust opti-
mization (DRO), the vanilla update of u can suffer from numerical instability due
to the use of exp(-), particularly when the temperature 7 is small. To address this,
we can instead maintain a log-transformed variable v; ; = logu; ,, following the
technique in Equation (6.14).

¢ PyTorch Implementation

A PyTorch implementation of SogCLR for self-supervised visual representation
learning is shown in Figure 6.21. Each image in the dataset is augmented twice.
To facilitate the computation of the vanilla gradient estimator, we define a dynamic
contrastive loss function. For each augmented instance, we call this loss function to
update its associated u variable and compute the dynamic loss using the updated u.
These individual dynamic losses are then aggregated over the mini-batch, and the u
variables for the two augmentations of each image are averaged.
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Finally, we invoke loss.backward() to compute the gradient, followed by an
optimizer step to update model parameters.

@ Comparison with SimCLR

The effectiveness of SogCLR is illustrated in Figure 6.20 with comparison with Sim-
CLR for self-supervised visual representation learning on ImageNet-1K dataset with
1.2 million of images. With a standard mini-batch size 256 and the same other set-
tings as SIimCLR, by running 800 epochs, SogCLR achieves a performance of 69.4%
for top 1 linear evaluation accuracy, which is better than 69.3% of SimCLR using a
large batch size 8,192. Linear evaluation accuracy is measured by training a linear
classifier atop a frozen encoder and subsequently assessing its performance on the
validation set.

6.5.3 Contrastive Learning with Learnable Temperatures

The temperature parameter 7 plays a critical role in controlling the penalty strength
on negative samples. Specifically, a small 7 penalizes much more on hard negative
samples (i.e., the degree of hardness-awareness is high), causing separable embed-
ding space. However, the excessive pursuit to the separability may break the under-
lying semantic structures because some negative samples with high similarity scores
to the anchor data might indeed contain similar semantics, to which we refer as false
negatives. In contrast, a large 7 tends to treat all negative pairs equally (i.e., the de-
gree of hardness-awareness is low) and is more tolerant to false negative samples,
which is beneficial for keeping local semantic structures.

Existing approaches based on the InfoNCE loss often treat the temperature param-
eter T as a learnable scalar to be optimized. However, this strategy lacks theoretical
justification and may not yield optimal performance. Moreover, real-world data dis-
tributions typically exhibit long-tail characteristics, with substantial variation in the
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# Note: This is a simplified version of SogCLR, we compute u

from each augmentation separately for computing the dynamic
contrastive loss

and then aggregated them from all augmentations.

model: encoder + mlp projectors

aug: a set of augmentation functions

tau: temperature

N: data size

ind: indices for images in mini-batch

u: 1d tensor with shape (N,1) by zero initialization

g: parameter for maintaining moving averages of u

+*

HOH O O HH HH

for ind, img in dataloader:
x1, x2 = aug(img), aug(img) # augmentations
hl, h2 = model(x1l), model(x2) # forward pass
hi, h2 = hl.norm(dim=1, p=2), h2.norm(dim=1, p=2)
lossl, ul = dcl(hl, h2, ind) # dcl for hil, h2
loss2, u2 = dcl(h2, hil, ind) # dcl for h2, hi
#
#

ulind] = (ul + u2)/2 update u
loss = (lossl + loss2).mean() symmetrized
loss.backward ()

update (model.params) # momentum or adam-style

# dynamic contrastive loss (mini-batch)

def dcl(hil, h2, ind):
B = hil.shape[0]
labels = cat([one_hot(range(B)), one_hot(range(B))], dim=1)
logits = cat([dot(hl, h2.T), dot(hl, h1.T)], dim=1)
neg_logits = exp(logits/tau)*(1-labels)
u_ = (1-g) * ulind] + g*sum(neg_logits, dim=1)/(2(B-1))
p = (neg_logits/u_).detach()
sum_neg_logits = sum(p*logits, dim=1)/(2(B-1))
normalized_logits = logits - sum_neg_logits
loss = -sum(labels * normalized_logits, dim=1)
return loss, u_

Fig. 6.21: PyTorch-style implementation of SogCLR for global contrastive learning.

frequency of samples across different semantic categories. This diversity suggests
the need for individualized temperature parameters that better adapt to the inherent
heterogeneity of the data.

To improve feature qualities, samples with frequent semantics should be assigned
with a large T to better capture the local semantic structure, while using a small 7
will push semantically consistent samples away. On the other hand, samples with
rare semantics should have a small T to make their features more discriminative and
separable.
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Robust Global Contrastive Loss with a Learnable Temperature

Owing to the equivalence between the global contrastive loss and KL-regularized
DRO (see Eq. (2.14)), the loss in Eq. (6.41) can be rewritten as:

L(w;x;,X]) =

max " pj (h(w;xi) Th(Wx;) = h(wix) Th(ws X)) = TKL(p, 1/1S7 1),
pea X; €S
(6.44)
where A is the probability simplex over S;” and 7 serves as the regularization param-
eter in the KL-regularized DRO.
To enable learning of the temperature parameter, we formulate a robust global
contrastive loss using a KL-constrained DRO framework:

L(w;x;,x}) =

max " p; (h(wsx)Th(wix;) = h(wsx) Th(w X)) = 70 KL(p, 1/1S; )
peA X,‘EST

subjectto  KL(p, 1/|S7]) < p,
(6.45)
where 7 is a small constant to ensure smoothness of L(w;x;, x). Using the dual
formulation (cf. Eq. (2.19)), this can be equivalently expressed as:

L(w;x;,x}) = (6.46)

. 1 (h(w;xi)Th(W§Xj) —h(W;Xi)Th(W;x;'))
min 7log| —— Z ex +7p
T

T27) | i |X_/'ES;
Let £;(w;X;) = h(w;x;)Th(w;X;) — h(W;x;) "h(w;x}). The above loss simplifies
further to:

. 1 i (w;x;)
L(w;x;,x") = min 7lo exp [ ——L | |+ 7p.
(w: %3, x7) ram S |Si_|x;9- P( T ) w
J i
Minimizing the average of these robust global contrastive losses yields the fol-
lowing objective, which learns individualized temperatures:

Ci(W; X
ngn % Z Tr'nZnTlo 7; log |Sl.‘| Z_ exp (%) +T0¢.- 6.47)
X;€S Ll xjeS§;

The SogCLR algorithm can be modified to solve this problem. We present the
resulting algorithm, referred to as iSogCLR, in Algorithm 35. The vanilla gradient
estimator with respect to w, is computed as in SogCLR, except that the temperature
7 is replaced with the individualized 7;, at iteration ¢. The gradient estimator with

346



6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Algorithm 35 iSogCLR for optimizing the robust global contrastive objective (6.47)

1: Input: Initial model w;, uyp € R"

2: fort =1toT do

3 Sample a mini-batch 8 = {x;};>, with augmentations

4. for each x; € B do

5: Construct the positive and negative set within mini-batch B}, B;
6 Update u; , via:

1 ti(w;z
u,-,,:(l —y)ui’,_1+7ﬁ Z exp( l( ))
i

ZGB,T Tit
7: Compute the vanilla gradient estimator z; ; of 7; ;
£i(wiz)
1 P\ " ) €i(w;z)
Zip = =T +log(ui) +p
|Bl~ | rep- EtUig Ti,t
8: end for
9: Compute the vanilla gradient estimators z;:
exp ( Ci (We32) )
1 1 T
zZ, = — Vi (w;z),
S TE L TE A e, A0

x;€B szi’

10: Update 7; ¢+1, VX; € B by the Momentum method
11: Update w,,; by the Momentum or AdamW method
12: end for

respect to 7; , is computed in Step 7 and it can be updated using the Momentum
method.

An application of iSogCLR to CIFAR-10 dataset yields more discriminative fea-
tures than SimCLR and SogCLR as shown in Figure 6.22.

CLIP Training with Learnable Temperatures

CLIP with Individualized Learnable Temperatures

We can integrate the robust global contrastive loss for temperature learning into the
contrastive language-image pretraining (CLIP), yielding the following objective:
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SimCLR SogCLR iSogCLR

Fig. 6.22: The learned embeddings (projected onto 2D space using t-SNE) for CI-
FAR10 samples learned by self-supervised learning algorithms SimCLR, SogCLR
and iSogCLR. For more details, please refer to (Qiu et al., 2023).

“ s(w;x;,t) — s(w; x;, t;)

. 1 1
min - > 1i1log ﬁ Z exp +71p
W, T1270,T22T0 N . Ti
127012270 11 4= i |e7- il

=1

n

1 1
+- > 1islog| —
w 27218 7

i=1

(s(w; X, t;) — s(W; X, t;))
Z exp

) + 720,
Ti,2

xel~

(6.48)
where 7, denotes the set of all negative data of an image x; and Z,~ denotes the set
of all negative data of the corresponding text t;, and s(w;x, t) = h;(w;X) " hy(w; t)
is the similarity score of the image and text embeddings.

While optimizing robust contrastive losses enables the learning of temperature pa-
rameters, it may compromise generalizability in downstream tasks by introducing a
large number of additional parameters, which can lead to overfitting—particularly in
noisy real-world datasets where mismatched samples are common. Two approaches
can be used to tackle this issue.

CLIP with a Global Learnable Temperature

A straightforward approach to reduce the number of temperature parameters is to
learn a single global temperature parameter for images and texts, respectively. This
is formulated as the following optimization problem:

1 ¢ 1 X, t) — X, t;
L  log __Zexp(s(wx ) — s(w;x )) rip

WTI270, 12270 1L 4= |7~ | T

1< 1 X, ) — (WX,
+;Z 7, log = Zexp(s(wx )~ S(W3 i l)) +Top

™

(6.49)
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CLIP with a Temperature Prediction Network

An alternative strategy is to learn a temperature prediction network (TempNet) that
outputs an instance-dependent temperature for each image and text. The correspond-
ing optimization problem is defined as:

1 & 1 w:x;, t) — s(W; X;, t;
min —Zr(wi;xi)log — Z exp(s( ) ’s( d l)) +7(W5X;)p
Wy 1A |7;~ | e T(W5X;)

n
+ % Z T(wh; t;) log |Il__| Zﬁ exp (S(w’ X’:_’()W, st(l‘;v’ X“t’)) +7(Whit)p.
i=1 I xel; 2
(6.50)
The temperature prediction network 7(w7;-) for images can share the encoder
layers of the image encoder & (w;-), followed by a lightweight MLP. Similarly, the
text-side temperature prediction network 7(wj;-) can share the encoder layers of
the text encoder hy(w; -), also followed by a small MLP. Again this problem can be
optimized by modifying SogCLR to account for the update of TempNet.

9 Scheduler of y

Like the standard learning rate 7 in the update of w,., the hyper-parameter y can be
also interpreted as a learning rate of SGD (4.3). The theoretical analysis shows that
v should be set to a very small value close to 0 in order to guarantee convergence.
Ideally, y should be large to rely more on the current mini-batch at earlier iterations
and be smaller to rely more on history in later iterations. To achieve this, we can use
a decreasing scheduler, e.g., a cosine schedule for y,: Let ¢ be the current iteration,
to be the number of iterations per epoch and E be the number of decay epochs, then
we sety; = 0.5 (1 +cos(x|t/tg]/E)) - (1 = Ymin) + Ymin. With this schedule, y; will
decrease from 1.0 to ypin. Note that | ¢/f9] denotes the current epoch, which means
the value of y, stays unchanged within one epoch. Also, The number of decay epochs
E is a hyperparameter, and it is not necessarily equal to the total number of training
epochs. If the current epoch exceeds E, y, will be set to yin.

¢ PyTorch Implementations

PyTorch implementations of SogCLR and iSogCLR are available in the LibAUC
library. Their distributed versions, including support for solving (6.49) with a cosine
scheduler for vy, are provided in the FastCLIP GitHub repository:

https://github.com/Optimization-AI/FastCLIP

Three versions are available: FastCLIP-v1 implements SogCLR with a tuned global
temperature, FastCLIP-v2 implements iSogCLR with individualized temperatures,
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= OpenCLIP FastCLIP-v3

Fig. 6.23: FastCLIP-v3 vs
250 2200 A100 Hours OpenCLIP. The training was
conducted on LAION315M
with 315M image-text pairs for
learning ViT-B/16 using a total
of 5120 batch size on 8 A100.
Y-axis is the zero-shot accuracy
on ImageNet validation data. For
more details, please refer to (Wei
et al., 2024).
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and FastCLIP-v3 implements SogCLR for solving the global temperature optimiza-
tion in (6.49).

A distributed implementation of iSogCLR for CLIP training with the Temperature
Prediction Network (TempNet) is available at:

https://github.com/Optimization-AI/DistTempNet

Figure 6.23 presents a comparison between FastCLIP-v3 and the prior state-of-
the-art distributed implementation of optimizing the mini-batch-based InfoNCE loss,
known as OpenCLIP (Ilharco et al., 2021). This highlights the effectiveness of the
advanced compositional optimization algorithm, demonstrating clear improvements
in both convergence speed and representation quality.

6.6 Discriminative Fine-tuning of Large Language Models

Large Language Models (LLMs) have revolutionized modern Al. Their training typ-
ically consists of three stages: self-supervised pretraining on internet-scale text cor-
pora, supervised fine-tuning (SFT) on question—answer datasets, and learning with
human preference for alignment. An improved paradigm, reinforcement learning
with verifiable rewards (RLVR), further advances large reasoning models by lever-
aging automatically verifiable signals from synthesized outputs.

6.6.1 Pipeline of LLM Training

Figure 6.24 illustrates the pipeline of LLM Training. We briefly introduce these com-
ponents below.
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Reinforcement Learning
with Verifiable Awards

Py x) > Priy-x)

H v
Self-Supervised Supervised Learning with Human
Pretraining Fine-tuning Preference

Pr(oy, o) = [[ Priwdacs) Pr(ys,- - ymbx) = [] Pr(selx, y<o) Pr(y, - y_|x)

t>1 t>1

Fig. 6.24: Different Phases of training LLMs.

Self-supervised Pretraining

Self-supervised pretraining is formulated as next-token prediction. Letx = (xy, ..., X;,)
be a sequence of tokens where x ; belongs to a vocabulary of tokens V = {vy, ..., vk }.
The probability of x is modeled auto-regressively by

px) =] [ pxslec)),
Jj=1

where x.; denotes the prefix (xi,...,x;_1). The conditional probability is modeled
via a softmax over a Transformer representation:

exp((wo;x<;) T Wy;)

Zf:] GXP(h(Wo;xq)TWk) ,

p(xjlx<j) = mw(xjlx<;) = (6.51)

where h(wo;x<;) € R9 is produced by a Transformer network and Wy; € R4 is the

token embedding. The full model parameters w = (W, Wy, ..., W) are learned by
minimizing the negative log-likelihood over a dataset S = {xi,...,X,}:
.1
min —— Z log p(x;). (6.52)
v

Supervised Fine-tuning (SFT)
In SFT, a dataset S = {(x;,y;)} is used, where x; is an input prompt and y; is the
desired output. Let x = (x1,...,x;) andy = (y1, ..., yn) be token sequences from

the vocabulary V. SFT models the next-token prediction of tokens in y given X using
the autoregressive factorization:

ml
pyIx) =] Jrw(rslx y<p),
j=1
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where each term is computed using the same Transformer-based model as in pre-
training. SFT minimizes:

1 n
min —— Z log p(y;i|x;)- (6.53)
oI

Learning with Human Preference

SFT does not penalize poor responses. Hence, it does not necessarily guarantee that
the likelihood of tokens in a poor answer is low. Let us consider a simple example:

Motivation Example

(x) What is the bigger number between 9.11 and 9.9?
(y) The bigger number between 9.11 and 9.9 is 9.9.
(y") The bigger number between 9.11 and 9.9 is 9.11.

The good answer y and the bad answer y’ only differ in the last token. The like-
lihood of all preceding tokens are the same. Even though the likelihood of the last
token “9” in y conditioned on preceding tokens is increased during the fine-tuning
with this data, the likelihood of the token “11” as the last one might still be high,
making generating the bad answer y’ likely.

To address this issue, learning with human feedback fine-tunes the model using
preference tuples (X, y4+,y-), where y, is preferred over y_. Two main approaches
are reinforcement learning from human feedback (RLHF) and direct preference op-
timization (DPO).

RLHF

A reward model rg (X, y) is first trained to match human preferences by modeling the
preference probability Pr(y, > y_|x) as

exp(re (X, y+))

= y-|x) = , (6.54)
P Y = ety +exp(ra(x.y)
and minimizing the following:
minExy, y_ —log p(y+ » y-[x). (6.55)

The policy model (i.e, the target LLM) is then optimized by solving the following
problem with some RL algorithms:

mv?XEx,ywrw [79* (x,y) = BKL (7w (-[x), nref(‘|x))] . (6.56)

where the KL divergence is defined as:
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7w (y[X)
KL -x), . =Eyer (. log ———=|, 6.57
(7w (+1%), Zref (+1X)) = By (-1x) |10g g (6.57)
where s denotes a base model. If we decompose y = (yy, ..., yx) as a sequence

of tokens, then using the autoregressive factorization the KL divergence can be ex-
pressed as a sum over tokens:

k

KL (7 (-[X), et (-[X)) = By [Z log Ml . (6.58)

= Tret (Ve X, Y<r)

Direct Preference Optimization (DPO)

DPO directly optimizes the policy without a separate reward model. A closed-form
non-parameterized solution of 7 by solving (6.56) for any reward model r(x,y),
gives:

1
n(ylx) = mﬂ'ref(ﬂx) exp(Br(x.y)), (6.59)
where Z(x) is the normalization factor. Substituting into Eq. (6.55) leads to:
Aw(V-1%) g Aw(ye[X) )) .

6.60
Tret(y_ %) Trer (Vs %) (0.60)

minEyy, , log (1 +exp (ﬁ log
w

In practice, a set of tuples {(x;, Yi+, Yi— i, is constructed and used for learning.

Connections with Discriminative Learning and AUC Maximization

DPO can be also motivated from discriminative learning, particularly AUC
maximization. We view generating the answers of x as a task, and y, denotes a
positive data and y_ denotes a negative data. Let s(w, X, y) denote a scoring
function, which indicates the likelihood of generating y given x. By AUC
maximization with a continuous surrogate loss £(s(W,X,y-) — s(W,X,y+)),
we have the following problem:

mgin Exy,y f(s(W,X,y_) — s(W,X,y4)). (6.61)

DPO can be recovered by setting s(w, X, y) = log n”i(y)l,’l‘i) and £(s) = log(1+
exp(ps)).

Reinforcement Learning with Verifiable Rewards (RLVR)
RLVR is an emerging paradigm for training reasoning models, particularly suited

for tasks like mathematical problem solving, where models are expected to gener-
ate step-by-step solutions followed by a final answer. Unlike RLHF, which relies on

353



Outputs Rewards

Questions
{Xla s 7xn}

Algorithm
Told g

q {}’1,17~~7Y1,m} Verifier {T1.17“~7T‘1,1n}
Ex: If $3x + 5 = 208, what

is the value of $x$? {Yn,h cee 7yn,m} {rml-v‘: . . 77’77,.711}

Ex of outputs: Ex of rewards: 1
Start with the equation: $3x + 5 = 20$.

Subtract $5$ from both sides: $3x = 15$.

Divide both sides by $3$: $x = 5%.

The final answer is 5.

7Tnew

Fig. 6.25: The one-step iteration of RL for reinforcing Large Reasoning Model. For
each question x;, the model generates m outputs y; i,...,Yim and each of them
receives areward r; j, j = 1,...,m from a verifier. Then an algorithm will leverage
the inputs, their outputs and the reward information to update the model.

subjective preference labels, RLVR leverages verifiable signals such as whether the
final answer is correct.

What is a Large Reasoning Model?

A large reasoning model is a type of LLM that is specifically designed or fine-
tuned to perform multi-step logical reasoning, such as solving math prob-
lems, answering complex questions, or generating structured arguments. It
generates intermediate reasoning tokens before producing the final answer,
mimicking System 2 reasoning in humans, which is deliberate, logical, and
slow.

RLVR is illustrated in Figure 6.25. The old model in one step of learning is de-
noted by moq. It is used to generate multiple answers for a set of input questions.
Given a question x (with prompt included), one generated output y follows the dis-
tribution 7414 (-|X), which includes reasoning traces and the final answer. Specifically,
output y is generated token by token, i.e., y; ~ moa(‘|X, y<;), fort =1,--- ,|y|.

A key to RLVR is to assume that there exists a verifier, which can automatically
verifies the quality of the generated answer, giving a reward. Let us consider a binary
reward setting where the verifier returns a binary value for a given question x and
its corresponding answer in the output y. For answering mathematical questions,
this can be achieved by comparing the generated answer with the true answer. For
generating mathematical proofs, we can use a formal verification tool such as LEAN
to verify if the proof is correct.

Proximal Policy Optimization (PPO)

PPO is a classical RL algorithm. Let

7w (y1X)

pw(X,y) = m
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denote the likelihood ratio between the new policy my and the old policy mq4. Let
A(x,y) be an advantage function for taking action y given input x, which measures
how much better a specific action is compared to the policy’s average behavior in a
given state. The PPO objective is given by:

‘[:PPO(W) :EX,y»v]rQ]d [mln (pW(X’ Y) : A(X9 Y)’ Clip(pw(x7 y)’ I- €, 1+ E) : A(X’ y))]
— BKL (7w, Tref) (6.62)

where € > 0 is a small hyperparameter (typically around 0.1 or 0.2), and the clip
function restricts the likelihood ratio py (X, y) to the range [1 — €, 1 + €], defined as:

1-¢€ if pw(x,y) <1—¢€,
Chp(pW(X7Y)»] — €, 1 +6) = ,Ow(X,y) ifl—e< pw(X, y) < l+E,
l+e€ if pw(X,y) > 1 +e€.

The intuition of using clipping mechanism is that

¢ When A(x,y) > 0 (the action is better than expected), the clip operation prevents
nw from increasing its probability too aggressively.

e When A(x,y) < 0 (the action is worse than expected), the clip operation prevents
mw from decreasing its probability too drastically.

This clipping mechanism was used to reduce variance and maintain stable training
dynamics for reinforcement learning. However, it also suffers from zero gradient
when py (X, y) is out of the range [1 — €, 1 + €], which might slow down the learning
process.

Trust Region Policy Optimization (TRPO)

TRPO is a principled policy optimization method that improves stability and effi-
ciency by restricting each policy update to stay within a small trust region. It max-
imizes a surrogate objective function based on the advantage estimates under the
old policy, while constraining the average Kullback—Leibler (KL) divergence be-
tween the old and new policies. Formally, TRPO solves the following constrained
optimization problem:

max Ex y~roq [ow(X, ¥)A(X,y)]
subject to  Ex [KL (o1a(+[X), mw (:[x))] < 6, (6.63)

where ¢ is a predefined trust region threshold. The KL divergence is taken in the
reverse direction to ensure that the updated policy does not deviate too much from
the old policy on average across the state distribution.
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Group Relative Policy Optimization (GRPO).

GRPO is a reinforcement learning algorithm designed to optimize policies by lever-
aging group-wise relative reward information.

For inputs {x;}",, let {y; j}f: , denote the corresponding set of K generated an-
swers for each x;. the objective of GRPO for maximization is defined by:

1 &1
Jorpro (W) = Z T Z
. P

i=1
_ﬂKL(ﬂ'Hs”ref)» (664)

lyijl

, P iit|X Vi

_Zf( w(y,],z| y1,<t) A(xi,yz'j))]
|le| t=1

Towd (Vij,e X, vij,<t)’

where y;; ; denotes its #-th token and y;; ; denotes the prefix of the #-th token of
Yij, f(s,t) = min(st,clip(s,1 — €, 1 + €)t), mrr is a frozen reference model, and
A(x;,yi;) is the group-wise advantage function defined as

Ay = " T
q

with 7, being the average reward of outputs for x and o, being its standard deviation.
This advantage function quantifies how much better the reward of an output y is

compared to average reward in the group. For analysis, we consider the expected
version:

|yl
1 7Tw(yt|x»)’<t)

Farot) =528 o 1 S (b
K ( ) =y~ o (-1x) Zf 7T01d()’z|X,y<t)

A(X, Y)) ] - BKL(7g, mref),
lyl <

(6.65)
where

X) = By ni (- 1x ’|x
A(x.y) = r(¥IX) = Ey <z (107 (Y] ). 6.66)

\/VMY’~7rold('|X)r(y,|X)

6.6.2 DFT for fine-tuning Large Language Models

While learning with human feedback addresses the limitation of SFT, traditional
supervised learning methods never use human preference data. For example, in im-
age classification, training data (x, y) denote an input image and its true class label
y € {1,...,K}. We do not need the preference optimization step on preference data
saying that a dog class is preferred to a cat class for an image of a dog. So what is
the difference between traditional supervised learning and supervised finetuning of
LLMs that makes SFT not enough? The answer lies in the fact that traditional su-
pervised learning methods are usually discriminative approaches, while the SFT
method is not discriminative.
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By casting the supervised fine-tuning of LLMs into data prediction, we can lever-
age discriminative learning approaches, e.g., the discriminative probabilistic model-
ing (DPM) approach and the robust optimization approach.

DPM over an Infinite Data Space

Let X and Y be infinite data spaces. Let us consider X as an anchor space and Y
as the target space with a Lebesgue measure y. When Y is countably infinite, the
Lebesgue measure y is replaced by the counting measure. We model the probability
density Pr(y | x) of an objecty € Y given an anchor object x € X by a parameterized
scoring function s(W; X, y):

exp(s(wW;X,y)/7)
Jy exp(s(wix,y)/T)du(y")’

Py(y | x) = (6.67)

where 7 > 0 is a temperature parameter. We assume that exp(s(w;X,y)/7) is
Lebesgue-integrable for w € ‘W, ‘W c R9. Here Py (y | X) is a valid probabil-
ity density function because fy Py (y | X)du(y) = 1. Given {(x1,¥1),.--» (X, ¥n) }
sampled from the joint distribution py y, the maximum likelihood estimation (MLE)
can be formulated as the following:

. 1< exp(s(w;x,y)/7)
-~ > 7l
ngn{ n ; e Jy exp(s(w:x, Y’)/T)du(y')}

-1 Z s(w;x,y) + 7log (/ exp(s(w; X, y')/‘r)d,u(y')) . (6.68)
nia v

If V is finite, the above DPM framework recovers the traditional multi-class classi-

fication and learning to rank. In particular, if Y/ denotes the label set {1, ..., K} and
s(w; x, y) denotes the classification score for the y-th class, then the above approach
recovers logistic regression. If Y denotes the set of items YV = {X41,...,Xg, Ny }

and the anchor data x denotes a query, then the above approach recovers the List-
Net (2.47).

Optimization via FCCO
The main challenge for solving the DPM problem over an infinite data space lies
in computing the integral g(w;x;, Y) = /y exp (s(w;x;,y¥")/7) du(y’) for each i €

[n], which is infeasible unless Y is finite. Below, we discuss two general approaches
for tackling the challenge.
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Sample and Optimize

The first approach is to introduce a sampling distribution P;(-), satisfying that (1) it
is easy to sample data from P;; (2) it is possible to compute the probability value of
a sample y’. Then we write

s(W:x;,y') " exp(s(W;x;,y')/7)
/y exp (f) du(y’) = Ey.p; () Pi(y) :

The optimization problem becomes an instance of FCCO:

1 n
min — — Z s(W;yi, X;)
voonig

1 exp(s(W ¥, X0) /)
= Z‘ rlog (Ey,wpl.(.) pln). (6.69)

Approximate and Optimize

In some cases, we may only have sampled data from P;(-) without access to P;(-).
LetS; ={y; ;....,¥;,,} denote a set of outputs sampled for each data x; following
some P;. Then we approximate g(w; x;, Y) by

1 'y, 1 ;Y
g(wixi, Y) ~ — Z exp(S(Ij,-V(;)X)/T) “m Z eXp(S(wT—YX))’ (©70

YeS, yeS;

where the last step assumes P;(y’) are approximately equal. Then the optimization
problem becomes an instance of FCCO:

1 n
min —— Z s(W;yi,X;)
0 n4
i=1
n

¥ % 2.l (% Dyes, FPBOWYX0/T)) (6.71)

i=1

DFT for fine-tuning LLMs

Let us apply the DPM approach to fine-tuning LLMs, which is referred to as dis-
criminative fine-tuning (DFT).

Discriminative Likelihood

Unlike SFT that maximizes the generative likelihood of tokens, DFT will maximize
the discriminative likelihood of data as defined in (6.67). By maximizing the dis-
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0 0
| et AV —T SFT
— = — DFT
X x
> —500 >, —2000
> =
N o
g SFT g
-1000{ — T g
— DFT 000
0 50 100 150 0 50 100 150
Training Steps Training Steps
(a) Log-likelihoods of positives (b) Log-likelihoods of negatives

Fig. 6.26: (a) Log-likelihoods of (annotated) positive examples during training for
different methods. (b) Log-likelihoods of “negative” examples (generated from the
base model) during training for different methods. For more details, please refer
to (Guo et al., 2025).

Algorithm 36 The DFT Algorithm

1: Initialize wy as the base LLM, and ug = 1
2: fort=1,...,T - 1do

3: Sample a mini-batch 8; C {xy,...,X,}
4 for each x; € B, do
S: Sample a mini-batch B, from ¢ (+|X;) via an offline pool
6 Update u; ;41 according to
1 exp(S(Wz:y/,Xi) )
Uit = (1 - )ui, 1+Yy—= T_ (672)
! Y ! yB ZO ﬂref(yl|xi)
Y8,
7: end for
8: Compute a vanilla gradient estimator z, according to
1 .
Z, = —@ x;gr Vs(We;yi, X )+
s(Weiy' . Xq) -
1 1 ex Vs(we v, x;
_ Z _ Z p( p= ),_( [0 l). 6.73)
| B | X €8, Ui t+1 |Bi,t| VeB;, Trer (Y’ |Xi)
9: Update w;,1 using Momentum or AdamW
10: end for

criminative log-likelihood of the training data, we not only increase the score of the
true output y; for each input x;, corresponding to the numerator of the discriminative
likelihood, but also decrease the scores of other potentially bad answers in Y/, which
correspond to the denominator of the discriminative likelihood; see Figure 6.26.
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Fig. 6.27: Using moving average estimators with vy < 1 is important for improving
the performance. For more details, please refer to (Guo et al., 2025).

The Scoring Function

For fine-tuning LLMs, the scoring function can be defined based on the generative
log-likelihood log 7w (y|Xx), as it measures the likeliness of generating y given x by
the model ny,. For a good model, we expect that a high value of the generative log-
likelihood log 7w (y|x) would indicate a high fitness score of y to answer x. With
such correspondence, the above discriminative learning framework would increase
the chance of generating a good output y given x and decrease the chance of generat-
ing possibly bad outputs given x. Common choices for the scoring function include
the raw log-likelihood s(w;y,x) = logaw(y|x) and a length-normalized version
s(w;y,Xx) = |yL| log 7w (y|x). Using the unnormalized version sy (y, X) = log 7y (¥|X)
leads to the following DFT objective:

R
min —- ;logﬂw(yl’|xi)

1< log 7w (y'[%:)
+T;leog(zy/eyexp(f . (6.74)

Comparing the DFT objective of to that of SFT in (6.53), we observe that the first
term in (6.74) is identical to the objective of SFT. The key difference lies in the
second term, which penalizes the possibly poor outputs in Y for each x; by reducing
their generative log-likelihood, thereby discouraging their generation.

Sampling Distribution

The optimization analysis reveals that the variance bound oy of the mini-batch es-
timator for the inner function g(w;x;,Y) significantly impacts convergence speed
(cf. Theorem 5.1). Ideally, the variance-minimizing distribution is Py (-|x;). How-
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ever, this distribution is impractical to evaluate and difficult to sample from directly.
Moreover, we aim for the sampled outputs y’ ~ P;(-) to represent likely poor re-
sponses to X;. A practical approach is to define P;(-) = met(+|X;), where mr denotes
the base LLM to be fine-tuned and X; is an augmented version of x; with added sys-
tem prompts to encourage the generation of suboptimal outputs. This relies on the
assumption that the base model is unlikely to generate high-quality answers in this
context.

The Optimization Algorithm

An application of the SOX algorithm for solving (6.69) is presented in Algorithm 36.
The sequence {u} plays a critical role in effectively penalizing the sampled “negative
data,” as illustrated in Figure 6.27. A PyTorch implementation of DFT is at

https://github.com/Optimization-AI/DFT.

6.6.3 DisCO for Reinforcing Large Reasoning Models

DisCO, short for Discriminative Constrained Optimization, is a recent approach for
reinforcing large reasoning models. It is motivated by the connection between the
GRPO objective and discriminative learning objectives, and is designed to overcome
key limitations of GRPO and its variants.

Limitation of GRPO and Connection with Discriminative Learning

Letr(y|x) € {1, 0} denote the reward assigned to an output y with respect to the input
X. A quantity that is important to the analysis is p(X) = By (. 1x) [7(¥[x)] € [0, 1],
which quantifies the difficulty of the question x under the model 7,9. We denote by
! 4(-1x) the conditional distribution of outputs when the reward is one (i.e., positive
answers) and by 7 ,(-|x) the conditional distribution of outputs when the reward is
zero (i.e., negative answers).

In the following analysis we assume p(X) = By, (.x)7(¥[X) € (0, 1); otherwise
we can remove them from consideration as done in practice.

Proposition 6.1. Let us consider the objective of GRPO and its variants with the
following form:

ly

! T (Ve [%, y<1) )]
= BxByr(iv) | = | 6.75
Jo(w) = BxEy ’“(”[yuzf(m,,d(ytm S AGY) (6.75)

where A(X,Y) is given in (6.66). Assume that f(x, y) is non-decreasing function of x

such that f(x,y) =1(y > 0)yf*(x,1) =I(y < 0)yf (x, 1), where both f*, f~ are
non-decreasing functions of x, then we have
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Jo(w) = ExvVp(x)(1 - p(x))Eywrgld(-|x),y’~7r;ld(~Ix) [s*(w;y,x) — s~ (W;y',x)],

(6.76)
where
+( ) 1 Zy|:f+(77w()’t|xa)’<t) 1)
sT(wyy,x) = — _—
Iyl &7 \7oia(yel%, y<r)
Iyl
l &
Iyl po Toid(ye X, y<t)
In particular, for GRPO we have
1 i . w(Ye]X, y<r)
st(wyy,x) = — Z min(————=—=_1+¢), 6.77)
lyl < Totd (Ve |X, y<t)
|yl
l 9
sT(W;y,X) = — Z max(w, —€). (6.78)
lyl por Toid(ye X, y<t)

PrOOf: Since Ey~7r01d(~|x)r(Y|X) = P(X),Va-ry~ﬂ01d(-|x)r()'|x) = p(x)(l - P(X)), we

have
[1=p(x) :
——= ifr(y|x) =1,
Axy) ={V X b (6.79)

BRY, 1?1(:2()’ 1fr(y|X) =0.

By the law of total expectation, we have
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[yl
1 Ttw (Ve]X, y<r) )]
E E - . —9A X’ )
XLy~ 7to1a ( IX)[|Y| ;f(ﬂold(yt|X,)’<t) oy

[ 4 ( 7w (3%, Y.<)

P OBy 10 Ty Zf Toan oy ”)

mod (Ve X, y<1)

lyl
Tw (Ve X, Y<r) 1-p(x)
~ X R 6.80
[p(x) Y °'d(')lylz (ﬂ'old(yt|X,}’<t) V p(x) ) (50

i Tw(yelX, y<s) p(x)
1= PO By |y|Z (nold(y,|x,y<t)’_ 1-p<X>)}

lyl

7Tw()’t|x’y<t)
y~7h C1X) Tor Iyl Z (—————D

Told (Ve lX, y<r)

lyl
+ (1= p(X)Eyx O,dux)'ylz (M,Am))]

=Exvp(x)(1 - p(x)) |E

|yl

— Tw(yelX, y<r)
y ﬂold( IX) |y| Z‘f - 1):|

ﬂold(Yz|X yar)

where the last equality follows from the assumption about f(x, y). For GPRO, we
have f*(x,1) = min(x,clip(x,1 — €,1 + €)) = min(x,1 + €) and f~(x,1) =
max(x,clip(x, 1 — €, 1 +€)) = max(x, 1 — €). O

@ Why it matters

We derive two insights from Proposition 6.1 regarding the two components
of Jy. First, let us consider the component By zt (10,5 ~75, (%), [sT(w;y,x) —
s~ (w;y’,x)]. Since both f* and f~ are non-decreasing functions of the first ar-
gument, then both s*(w;y, x) and s~ (w;y, X) are non-decreasing functions of
o (y:|X, y<¢). Hence, maximizing 5 would increase the likelihood of tokens
in the positive answers and decrease the likelihood of tokens in the negative
answers. This makes sense as we would like the new model to have a high like-
lihood of generating a positive (correct) answer and a low likelihood of generat-
ing a negative (incorrect) answer. This mechanism is closely related to traditional
discriminative methods of supervised learning in the context of AUC maximiza-
tion, which aims to maximize the scores of positive samples y ~ 77, ,(-|x) while
minimizing scores of negative samples y’ ~ r_,(-|x), where the x acts like the
classification task in the AUC maximization. Hence, in the context of discrimi-
native learning, we refer to s* (y, x) and s~ (y, X) as scoring functions. Therefore,
EYW&d('\X)’Y’N”&d(W")» [s*(y,x) — s~ (y’,x)] is a discriminative objective.

Second, let us consider the component w(x) = /p(x)(1 — p(x)), which acts like
a weight scaling the discriminative objective for each individual input question.
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Fig. 6.28: (a) Weight on questions based on correctness probability p; (b) Histogram
of per-question accuracy evaluated in the GRPO learning.

It is this component that leads to difficulty bias. As shown in Figure 6.28(a),
questions with very high p(x) values (close to 1) or very low p(x) values (close
to 0) receive small weights for their discriminative objectives, causing the opti-
mization to focus primarily on questions of intermediate difficulty while paying
little attention to hard questions (p(x) ~ 0) and easy questions (p(x) ~ 1). This
mechanism may significantly hinder the learning efficiency. Intuitively, if the
generated answers have only one correct solution out of 10 trials, i.e. p(x) = 0.1,
we should grasp this chance to enhance the model instead of overlooking it. On
the other hand, even when we encounter an easy question with a probability of
p(x) = 0.9, we should keep improving the model rather than being satisfied
because it still makes mistakes with respect to this question.

DisCO: A Discriminative Constrained Optimization Framework

Motivated by the analysis of GRPO and its connection with discriminative learning,
discriminative objectives can be borrowed directly for learning the reasoning model.

Below, we introduce two approaches.

Discriminative Objectives

For a given question x, let s(w;y, x) denote a scoring function that measures how
likely the model 7y, “predicts” the output y for a given input x '. Then the AUC score
for the “task” x is equivalent to ]EyN,r;d,y/~,,(;d [I(s(w;y,x) > s(w;y’x))]. Using a
non-decreasing continuous surrogate function £, we form the following objective (in

expectation form) for minimization:

Li(W) = ExEy-rt (x),y'~75, (10 C(s(W %) = s(w3y,X)).

(6.81)

! in the context of generative models, “predicts” is like “generates”.
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One difference from the objective of GRPO is that we use a single scoring function
s(w;y, x) for both positive outputs y and negative outputs y’. The different scoring
functions for positive and negative outputs in GRPO actually arise from the clipping
operations. The clipping could cause the vanishing gradient, which may also slow
down the learning process. To avoid these issues, we consider non-clipping scoring
functions.

One advantage of designing the objective based on the principle of discrimina-
tive learning is the ability to leverage a wide range of advanced objectives to im-
prove training. A key challenge in RL fine-tuning for reasoning models is the sparse
rewards, which leads to imbalance in generated outputs. Specifically, for some ques-
tions where p(x) < 1, the number of negative outputs can significantly exceed
the number of positive ones. The objective function £ is motivated by maximizing
AUC for each question X, i.e., By .+ vn- [I(s(w;y,x) > s(w;y’x))]. However,
when there is much more negative data than positive data, AUC is not a good mea-
sure. For example, let us consider a scenario that there are 1 positive y; and 100
negatives {y!,...,y'%}. If the scores of these data are s(y',x) = 0.9, s(y,,Xx) =
0.5,5(y2,x) = s(y>,x) ... = s(y'%, x) = 0.001, then the AUC score is 155 = 0.99.
The AUC score is high but is not informative as the model still generates the negative
data y! more likely than the positive data y,.

To address this issue, we leverage the pAUC objective (6.28), leading to the fol-
lowing objective for minimization:

T

{(s(w;y',x) = s(w;y, X))
Lo(w) = ExEy-nt (x)7 log (Ey/wﬂold(.m exp ( .

(6.82)

Lemma 2.4 indicates that £,(w) > £;(w) by Jensen’s inequality for the concave
function log. Hence, minimizing £, (w) will automatically decreasing £ (w). How-
ever, the reverse is not true. This also explains why minimizing £, (w) could be more
effective than maximizing £ (w).

Scoring functions
Different scoring functions can be considered. Two examples are given below.

* The log-likelihood (log-L) scoring function is defined by

|yl
1
s(Wiy,%) = 10 ) log i (yifx,v<o).
t=1

¢ The likelihood ratio (L-ratio) scoring function is computed by

|yl
1 Tw(YelX, y<s)
s(w;y,x) = — _—
lyl rz:; 7o (Ve X, y<r)
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Stabilize the training with Constrained Optimization

Training instability is a long-standing issue in RL. Instead of using the clipping op-
eration of PPO, an effective approach is to use the idea of trust region constraint of
TRPO, which restricts the updated model w in the trust region using the reverse KL:

KL (7014, Tw) < 6.

Putting It All Together

DisCO formulates policy learning as a discriminative constrained optimization prob-
lem that combines discriminative objectives with a trust-region constraint. Specifi-
cally, it solves one of the following two formulations:

min £ (w)
w (6.83)
s.t. KL(mod, Tw) < 6,
or alternatively,
min £, (w)
w (6.84)

S.t. KL(ﬂ'o]d, w) < 0.

Optimization Algorithm

To tackle the constrained optimization, we can use the penalty method presented
in next section, which converts the constrained problem into an unconstrained one
with an appropriate penalty parameter 8. For example, with a squared hinge penalty
function, we solve

min L(W) + B[KL(ola, ) = 613, (6.85)

where [-]+ = max{-, 0}. We will show that under an appropriate assumption regard-
ing the constraint function and £, solving the above squared-hinge penalized objec-
tive (6.85) can return a KKT solution of the original constrained problem (6.83).

We discuss the difference between using the squared-hinge penalty function and
the regular KL divergence regularization SKL (74, 7). The squared-hinge penalty
function has a dynamic weighting impact for the gradient, VB[KL (714, Tw) — 613 =
2B[KL(7o1d, mw) — 6]+ VKL(7o14, Tw), such that if the constraint is satisfied then
the weight 28[KL (74, mw) — 6]+ before the gradient of the regularization term
KL(7o14, Tw) becomes zero. This means the KL divergence is only effective when
the constraint is violated. In contrast, the regular KL divergence regularization
BKL (714, y) always contributes a gradient SVKL (7014, Tyw) no matter whether the
constraint is satisfied or not, which could harm the learning.

The effectiveness of DisCO over GRPO and other methods has been demonstrated
in (Li et al., 2025) for fine-tuning distilled Qwen and LLaMA models on a mathe-
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Fig. 6.29: Comparison of DisCO and GRPO for finetuning a 1.5B distilled Qwen model: left
plots the training reward (averaged over generated outputs for questions used in each step) vs the
number of training steps; right plots the generation entropy vs training steps. Each training step uses
128 questions sampled from the dataset, each associated with 8 generated responses to define the
objective, and a mini-batch size of 32 is used for updates for a epoch. For more details, please refer
to (Li et al., 2025).

matical reasoning data with approximately 40.3k unique problem-answer pairs. A
comparison of the training dynamics for different methods is shown in Figure 6.29.

A PyTorch implementation of DisCO is included in the following Github reposi-
tory:

https://github.com/Optimization-AI/DisCO.

6.7 Constrained Learning

Constrained learning is a machine learning framework in which the model is trained
not only to minimize a specified risk but also to satisfy additional constraints. These
constraints can encode domain knowledge, prior information, regularization terms,
or other application-specific requirements. Unlike simple domain constraints w €
‘W, we consider complicated functional constraints in the form:

min  F(w)
weR? (6.86)
s.t. gi(w)<0,i=1,...,m.

In many cases, g;(w) also depends on the data, making its evaluation and gradient
computation expensive.

Traditional works for constrained optimization include three primary categories:
(1) primal methods, e.g., cooperative subgradient methods and level-set methods; (2)
primal-dual methods that reformulate constrained optimization problems as saddle
point problems; (3) penalty-based approaches that incorporate constraints by adding
a penalty term to the objective function. In this section, we demonstrate how FCCO
enables penalty-based approaches to be both efficient and practically effective.
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6.7.1 A General Penalty-based Approach via FCCO

To tackle the constraints, a penalty-based approach uses a penalty function f(-) to
convert the constrained problem into an unconstrained one:

min F(w) + £ 2 &), (6.87)

where p > 0 is called the penalty parameter. Commonly used penalty functions in-
clude:

* Squared hinge penalty:
1
flg) =3Il

* Hinge penalty:

f(g) =lgl+
¢ Smoothed hinge penalty:
g—5 ifg>e,
flg) = % if0 < g <e,
0 otherwise,

where € < 1 is a small constant.

Different penalty functions yield different convergence rates. However, they share
a common property: when the constraints are satisfied at a point w, no penalty is
incurred; otherwise, the greater the violation, the larger the penalty.

We can see that the added second term in (6.87) is a form of FCCO. Hence, the
algorithms developed in Chapter 5 can be applied to solving the resulting uncon-
strained problem. Nevertheless, we need to answer several important questions: (1)
What is an appropriate value for p? (2) What convergence guarantees can be estab-
lished for the original constrained problem?

Equivalent min-max formulation

By using the conjugate of f, the unconstrained problem is equivalent to:

lm
0 IR ) ee— igi(W) = f* (i) s 6.88
o et pry O pm;(yg() ) (6.88)

For the three penalty functions, we have

¢ Squared hinge penalty: f*(y) = %yz, dom(f*) ={y:y > 0};
* Hinge penalty: f*(y) = lo,c[y € dom(f*)], dom(f*) ={y :y € [0,1]};
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¢ Smoothed hinge penalty: f*(y) = %yz, dom(f*)={y:y€[0,1]};

KKT solutions

Let us focus on non-convex optimization problems with a non-convex objective F (w)
and non-convex constraints g (W), Vk. For a non-convex optimization problem, find-
ing a globally optimal solution is intractable. Instead, a Karush-Kuhn-Tucker (KKT)
solution is of interest, which is an extension of a stationary solution of an uncon-
strained non-convex optimization problem.

Definition 6.1 (KKT solution) A solution w is a KKT solution to (6.86) if there
exists A = (A1,...,4,)" € RY such that (i) 0 € dF(w) + Xj°, Axdg(w), (ii)
gr(w) < 0,Vk and (iii) Aggr (W) =0, Vk.

For non-asymptotic analysis, we consider finding an e-KKT solution as defined
below.

Definition 6.2 A solution w is an e-KKT solution to (6.86) if there exists 4 =
(A1,...,A4m)T € R such that (i): dist(0,0F(w) + Y71, Axdgr(w)) < e, (ii):
[gx(W)]+ < €, Vk, and (iii): |Axgx(W)| < €, Vk.

If the objective and the constraint functions are non-smooth, finding an e-KKT
solution is not tractable, even the constraint functions are absent. For example, if
F(x) = |x| finding e-stationary solution is infeasible unless we find the optimal so-
lution x = 0. To address this challenge, we consider finding a nearly e-KKT solution
defined below.

Definition 6.3 A solution w is a nearly e-KKT solution to (6.86) if there exist w

and A = (A1,...,4m)7 € R such that (): lw — Wll» < O(e), dist(0, 3F (W) +
S A0gr(W)) < €, (ii): [gr(W)]+ < €,Vk, and (iii): [Axgr(W)| < €, Vk.

Theory

Solving the unconstrained problem (6.87) can yield a (nearly) stationary solution.
But is this solution close to satisfying the KKT conditions of the original con-
strained problem? We answer this question for the three penalty functions below.
Let g(w) = (g1(w),...,gn(W))T € R™ denote the vector of constraint functions,
and let Vg(w) € R"™*4 denote its Jacobian matrix.

Squared Hinge Penalty

Let us assume F and gj are differentiable. We make the following assumption re-
garding the regularity of the constraint functions.
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Assumption 6.1. There exists a constant 6 > 0 such that omin(Vg(w)) > 6 for any
w satisfying maxy=1,. . k gx(W) > 0, where omin(+) denotes the minimum singular
value of a matrix.

.....

This assumption implies that when any constraint is violated, its gradient direction
can be used to effectively reduce the constraint value. To illustrate this, consider a
single constraint defined by a L,-smooth function g(-). Suppose w is a point where
the constraint is violated, i.e., g(w) > 0. Taking a gradient descent step W' = w —
nVg(w) yields:

’ T ’ Lg ’ 2
g(w') < g(w) +Vg(w) (w - W)+ W = wii;

2

= g(w) - (n— < Ive .

If Assumption 6.1 holds, then ||Vg(w)||> > J, which implies:

L r}z
g 2
g(W’)Sg(W)—( 3 )5,
ensuring a sufficient decrease in the constraint function value.
In addition, we need to assume the objective function is Lipschitz continuous.
Assumption 6.2. There exists a constant C > 0 such that ||VF(w)||, < C,Vw.
Under these assumptions, we establish the following theorem.

Theorem 6.1 Suppose Assumption 6.1 and 6.2 hold. Let w be an e-stationary so-
lution to the unconstrained penalized problem (6.87) with a squared hinge penalty
such that

E [“VF(W) + %Vg(w)T[g(w)]JrHj <é. (6.89)

Ifp> maX(Zm(C +1) m\/Z(C +1)
problem (6.86).

) then w is also an €-KKT solution to the original

Proof. Let Ax = 2 [gx(W)]s, Vk. If maxg gx(w) < 0, then A = 0. As aresult, w is
an e-KKT solution to the original problem.

Below, let us focus on the case maxy gx(w) > 0, i.e., there exists one constraint
that is violated at w. Then, under Assumption 6.1, we have
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g (w1413 S%IIVg(W)T[g(W)LII%

> 2
= HVF (W) + £vg(w)T[g(W)]. - VF(W)H
po m )
2m? R o ) (6.90)
s [IIVF(W)IIZ +[vEw) + 2vgmlgwl. 2}
2
% [C2 +62] < ez,

where the last inequality follows from p > = "2(C e . Hence [gr(W)]+ < €, Vk.
Then, let us bound |A;gx (W)|. If gx (W) < 0, then A =0, we have |1 gx(W)| =0
If g« (w) = 0, then

Eltegr(w)]| = E|— gk(W)gk(W)]I < —Ell[g(W)] I3

< P 2m?
p252

IVFW) I3+ [VF(w) + £ vgwigw].

2
2] (6.91)
2_n12 [C2 +62] <e€

2m(C%+€?)

where the last inequality uses p > <52

Hinge Penalty

Since the hinge function is non-smooth, let us consider non-smooth F and gz. We
make the following assumption regarding the regularity of the constraint functions.

Assumption 6.3. There exists a constant § > 0 such that
, 1 < S
dist |0, — Z Agr(W)]s| = =.yweV (6.92)
m m

where V = {w : maxy gx(w) > 0} and d[ gy (W)] denotes the subgradient in terms
of w.

The above assumption is implied by Assumption 6.1 when g is differentiable and
hence is weaker. To see this, we have

m

1< 1
dist (0, —~ ; V[gk(w]+) = ”E > Vigk(wl,

k=1

0
= [[Vg(w) all> > dljall> > p

2

where a = ;- (¢1,..., &), and & € ([gx(W)]4) € [0,1].

Theorem 6.2 Suppose Assumption 6.3 and Assumption 6.2 hold. Let w be a nearly
e-stationary solution to the unconstrained penalized problem (6.87) with a hinge
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penalty such that there exists W satisfying |w — w||, < O(¢€), and

<e.

dist (0, OF (W) + % zm] A[gr(W)]+
k=1

Ifp > @, then w is a nearly €-KKT solution to the original problem (6.86).
Proof. By the definition of w, there exists w such that |w — w|[> < O(e), and

dist

0.0rw) + 2 S a[gk<v'v>]+) <e
mn k=1

Since 0[gr(W)]+ = £x0gr (W), where

1 if g1 (W) > 0,
& =1400,1] ifge(w) =0, € [gx(W]},
0 ifgi(W) <0,

there exists A € ”7& > 0, Vk such that

dist (O, OF(w) + i /lkﬁgk(v_v)) <e.

k=1

Thus, we prove condition (i) in Definition 6.3. Next, let us prove condition (ii). We
argue that maxy gx(W) < 0. Suppose this does not hold, i.e., maxy gx (W) > 0, we
will derive a contradiction. Since 3v € dF (W) we have

m
€ > dist (o,v+ ES olgi(w)] )
m

k=1

P X pé

> dist [0, 2 > 0[gi (W] | = IVl = =~ C.
“m = m
which is a contradiction to the assumption that p > M . Thus, max; gx(X) < 0.

This proves condition (ii). The last condltlon (iii) holds because A = p £k , which is

zero if g (W) < 0. Hence, Axgr (W) = 0. O

Smoothed Hinge Penalty

We make the following assumption regarding the regularity of the constraint func-
tions.

Assumption 6.4. There exists a constant § > 0 such that

dist (0,0g(w)"v) > §|lv|l2, YW € V,Vv € R™ (6.93)
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6.7. CONSTRAINED LEARNING

where V = {w : maxy gx(w) > 0}.

Theorem 6.3 Suppose Assumption 6.1 and Assumption 6.2 hold. Let w be a nearly
e-stationary solution to the unconstrained penalized problem (6.87) with a smoothned
hinge penalty such that there exists W satisfying ||w — w||2 < O(€), and

dist |0, OF (W) + % Dof(aw)| <e
k=1

Ifp > @, then there exists A € R} it holds (i) ||w—w|| < O(e), dist(0, 0F (W) +
Yo Ak0gk(W)) < € (ii) [gu(W)]+ < €, Yk, and (iii) Ax[gr(W)]+ < pe/m,Vk.

Proof. By the definition of f(-), we have

V() = < min{[],, €},

According to the definition of w, there exists W such that ||w — w|| < O(e) and

dist

0.0F(W)+ 23" Vf[gk(v-vnagk(v-v)) <e.
k=1

Let 4 = £V f(gi(W)) = £ min{[g;(W)], €}. Then,

dist (O, OF (W) + Z /lkagk(V_V)) <€
k=1

Suppose max;-;.... . g(W) > €. Then there exists kK’ such that [gx(W)]+ > €.

Hence

.....

A = 2= min{[ge (W), e} = e = £
Em Em m

Hence [|]|2 > £. As a result, there exists v € 9 F (W) such that

€ > dist (0, v+ Z ABgx (W)
k=1

m

s

> dist (O,Z/lkagk(v‘v)) —Ivll2 > % Yol (6.94)
k=1

which contradicts with p > @ Therefore, we must have

max gx(w) < e. (6.95)
k=1,....m

.....

Finally, let us prove |Axgx (W)| < O(e€). If gr (W) < 0, we have Ax = 0, then it holds
trivially. If 0 < gx (W) < €, we have
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Algorithm  Penalty F g; Complexity Loop

SOX sqH/smH SM SM O(e~7) Single
MSVR sqH/smH MSS MSS O(e™>) Single
SONX H WC WC O(e™®) Single
SONEX H SM SM O(e™>) Single

ALEXRDL smH WC WC O(e5) Double

Table 6.1: Summary of different algorithms for penalty-based constrained opti-
mization. “‘WC” means weakly convex, “SM” means smooth, MSS mean “mean
squared smoothness, ‘H’ denotes the hinge penalty, ‘smH’ denotes the smoothed
hinge penalty and ‘sqH’ denotes the squared hinge penalty.

gk (W] < £ g1, < £, (6.96)

Critical: One important difference among the three penalty functions lies in
the required order of the penalty parameter p. For the squared hinge penalty,
it is necessary to set p = O(1/€), whereas for the hinge and smoothed hinge
penalties, it suffices to take p = O(1). This lead to different complexities of
algorithms based on these penalty functions.

Optimization Algorithms

The SOX algorithm and the MSVR algorithm can be used to optimize the squared
hinge penalty function and smoothed hinge penalty function with smooth objective
function and constraints. SONX and SONEX can be used to optimize the hinge
penalty based objective, where the latter is equivalent to a variant for optimizing the
smoothed hinge penalty using the MSVR estimator for the inner functions and the
MA gradient estimator. ALEXR-DL (the double-loop ALEXR, see Section 5.4.5)
can be used to optimize the problem with a weakly convex objective and weakly
convex constraint functions. The computational complexities of these algorithms for
obtaining a (nearly) e-KKT solution are summarized in Table 6.1. The complexity
results for SONX and SONEX follow directly from their original theorems. The com-
plexities of SOX and MSVR are obtained by substituting Lr = O(p), L1 = O(p),
G| =0(p), and p = O(1/e€) into Theorem 5.1 and Theorem 5.2, respectively. The
complexity of ALEXR-DL follows the argument in Section 5.4.5.

Finally, we note that the value of the parameter ¢ in Assumptions 6.1, 6.3, and 6.4
has a significant impact on the complexity. In particular, smaller values of ¢ lead to
higher complexities.
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6.7. CONSTRAINED LEARNING

6.7.2 Continual Learning with Zero-forgetting Constraints

Continual learning usually refers to learning a sequence of tasks one by one and
accumulating knowledge like human instead of substituting knowledge. The core is-
sue in continual learning is known as catastrophic forgetting, i.e., the learning of the
later tasks may significantly degrade the performance of the model for the earlier
tasks. Different approaches have been investigated to mitigate catastrophic forget-
ting, including regularization based approaches, memory based approaches, network
expansion based approaches, and constrained optimization based approaches.

Regularization based approaches

These methods aim to preserve previously learned knowledge by penalizing changes
to important model parameters. These approaches usually solve the following objec-
tive:

mvin -Lnew (Wa Snew) + /lR(W, Wold), (697)

where Lw denotes the loss on the new task with a data set Syew, and R(W, Woq) is
the regularization of the new model with respect to the old model. It could regular-
ize directly in the weight parameters or regularize through functions of the weight
parameters (e.g., intermediate layers of the neural networks)

Memory based approaches

These techniques store a subset of past data or representations and replay them during
training on new tasks. This allows the model to rehearse old knowledge, effectively
mimicking how humans review what they’ve previously learned. Strategies include
storing raw data, or using generative models to simulate past experiences. These
replay data will be used in training as simple as a regularization approach:

min Lpew (W, Snew) + ALoa(w, Sold) (6.98)

where Lo1q(W, Soiq) denotes the loss of the model old tasks using their data Sojg.

Network Expansion based approaches

Network expansion based methods address forgetting by dynamically growing the
model’s architecture as new tasks are introduced. This can involve adding new neu-
rons, layers, or modules for each task while keeping older components fixed or par-
tially shared. By allocating new capacity, the model can learn new tasks without
overwriting old knowledge.
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A Constrained Optimization Approach

A key limitation of the replay and regularization approach in (6.98) is that it does
not necessarily preserve the model’s performance on all previous tasks, even with a
large regularization weight. Moreover, overly large weights can suppress learning on
the new task. This arises because not all prior tasks are equally challenging—some
may be inherently easier than others.

A straightforward remedy is to formulate a constrained optimization problem:

m\’}’n LHCW(“’? SI]CW)

st. Lr(w,Sr) — Li(Woid, Sk) <0, Vk=1,...,m,

(6.99)

where Sy denotes the dataset for the k-th previous task and Ly is its corresponding
loss function. These constraints ensure that the new model does not degrade perfor-
mance on any individual old task as measured on replayed data, which are referred
to as the zero-forgetting constraints.

Although this constrained optimization problem was traditionally considered dif-
ficult due to the number of constraints and data dependencies, the algorithms in-
troduced in the previous subsection make it tractable. Notably, this constrained for-
mulation serves as a unifying framework that connects all three major approaches:
regularization-based, expansion-based, and memory-based continual learning.

With a penalty function f (e.g., smoothed hinge penalty), we solve the following
problem:

m
Min Loew (W, Snew) + £ > (LW, S6) = Le(Waia, Se)-
v M=
Then the algorithms can be easily applied to solving this problem.

Connection with the Three Categories of Approaches

First, the above constrained optimization method falls under memory based ap-
proaches, as it requires access to data Sy from each previous task to define the zero-
forgetting constraints.

Second, the penalty term introduces a regularization perspective, establishing a
connection with regularization based approaches. However, it differs from standard
regularization as in (6.98). The penalty function adaptively weights the gradients of
each prior task. For example, consider the hinge penalty. The gradient of the penalty
term is given by

2N 69 Li(ws Sp). (6.100)
mn k=1

where & = 1 if Lp(w;Sk) — Li(Woa; Sk) > 0; otherwise, & = 0. Using
the FCCO technique, an estimator uy is used to track the quantity L (w;Sy) —
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6.7. CONSTRAINED LEARNING
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Fig. 6.30: Performance comparison with the standard regularization method (RM).
The new task is to improve the performance on classifying the class Dresssing Room
on Places365 Dataset, and other 354 classes serve as previous tasks each with 2k
samples. Red line denotes the old model’s performance, green diamonds denote the
performance on the target class. The RM baseline shown is for the regularization
parameter A = 10000. For more details, please refer to (Li et al., 2024)

L (Woid; Sk), based on which & is computed. Consequently, the algorithm assigns
adaptive weights to the gradients of prior tasks: if task £ shows no performance
degradation (i.e., ux < 0), the corresponding gradient receives zero weight. This
effect makes the constrained optimization approach more attractive than the regular-
ization approach for enforcing the constraints; see Figure 6.30.

Third, although the connection to network expansion based approaches is less
direct, it is suggested by the convergence analysis of the constrained optimization
algorithms. Specifically, the regularity assumptions in Assumptions 6.1 and 6.3 pro-
vide insight into the benefits of network expansion. Expanding the network from the
old model wqq can make it easier to find a new model that maintains or improves
performance on previous tasks, effectively increasing the regularity constant 6. This,
in turn, allows for a smaller penalty parameter p and potentially accelerates conver-
gence—an effect formalized in what follows.

Without causing confusion, we denote by w the parameter of the old neural net-
work, which consists of two components wy and W such that the output 2(w, x) €
R% can be represented as h(w,x) = W - ho(Wo, X), where ho(Wo, ) € R% is a back-
bone network and W € R%%41 ig the head. Given the old model w = (wo, W), we
expand the network by allowing task-dependent heads, which is to let each task k
have its own head Wy, = W+ Uy where Uj, € R%*"_ The output of this expanded net-
work for task k is h(W;X) = (W + Uy) - ho(wg, X), where W = (wo, W, Uy, ...,Up).
For simplicity, let us assume each task has only one example Sy = {xx} and let
L (w;Sg) = €(h(w, x)). Without the expansion, the Jacobian of the constraint func-
tions at w is Vg(w) = [Vh(w,x1), -+, Vi(W, X;;)] A, where A € R™*" a diagonal
matrix with Agr = €’ (h(w; Xg)). With the expansion, the Jacobian of the constraint
functions at W is Vg(w) = [VA(W,xq),- -+, Vh(W,Xx,,)]A’, where A’ € R"™*"™ a di-
agonal matrix with A}, = ¢'(h(W;xg)). If we initialize Uy = Up... = Uy, = 0,
then A = A’. Next, we quantify the increase of the minimum singular value of
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the matrix Vh(W) = [VA(W,x;),--- , VA(W,X,,)] compared with that of Vh(w) =
[Vh(wa Xl)7 R Vh(w7 Xm)]

Lemma 6.4 Suppose Uy = 0 for all k. We have
T aNTIh (G T . 2
Aumin (Vh(w) Vh(w)) > Ain (VH(W)T V(W) + min |y i (w3,

where Awin(+) denotes the minimum eigen-value of a matrix and hy (w) = h(w; X).

¢ Why it matters

This lemma indicates that expanding the network can increase the minimum sin-
gular value of the Jacobian matrix of the constraint functions, which in turn leads
to a lower complexity in finding a KKT solution, i.e., making the constraints eas-
ier to satisfy.

Proof. Let hy (W) = h(W;x;). We consider w, W, U as flattend vectors. Recall that
w has two component wy and W. The gradient of /i (w) with respect to W and wyg
are denoted by Vy hx(w) and Vy, hi (W), respectively. Hence,

Vhi(w)" = (Vo he (W) T, Vg hi(w) )
for k = 1,...,m. Similarly, after adding the task-dependent heads, W has three com-

ponent wo, W, U = (U, ...,U,). The gradients Vy,/ix (W), Vv (W) Vyhy (W)
are defined correspondingly, and

Vi (w)T = (Vwoflk(W)T, Vi hie(W)T, VUflk(W)T) .

Recall that
hk(W) = hk((Wo,W+ Uk)) fork=1,...,m.

Therefore,

Vo 1 (W) = Vo i ((Wo, W + Uy)),
Vi (W) = Vi hi ((Wo, W+ Up)),

and

Vuhi(W)T = (0,...,0, Viyhe((wo, W+ U)) 7,0, ... .,0),

The kth block

where the sparsity pattern of Vy/y (W) is because /1 does not depend on U, j # k.
Since Uy = 0 for all k. It holds that Ay (w) = h (W) and

V(W)™ = (Vug i) T, Vi (W) ) = (Vi (9) T, Vi (9)7)
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6.7. CONSTRAINED LEARNING

Consider any @ = (a4, ..., a;,) € R™. We have

Ao ([ (9), ., Vi ()] [V (W), ..., Vi (W)]

m 2

= min Zathk(W)

a,s.t.||a|=1 = )

= min || eV he(W)|| + (> exVwhi(W)| + > axVuhe(W)

a,s.t.||a|=1
k=1 2 k=1 2 k=1 2
m 2 m

. 2
= min || axVaW| + > af Vwhe(W)II3
a,s.ta]=1 =i

2 k=1

k
> Amin ([Vhl (W)7 B th(w)]T [Vh] (W), SRRR) th(W)])

+ min [V hic (w13

where the first two equalities are by definitions and the third equality is because
Uy =0 for all k. O

Q@ Practice: Squared Hinge Penalty vs. Smoothed Hinge Penalty

Both the squared hinge penalty and the smoothed hinge penalty are smooth functions,
but they have different practical implications. The squared hinge penalty typically
requires a much larger penalty parameter, on the order of p = O(1/¢) as indicated
by the theory, to enforce the constraints effectively. In contrast, the smoothed hinge
penalty achieves similar constraint satisfaction with a significantly smaller p. This
difference is illustrated in Figure 6.31 (right), which shows that a large penalty pa-
rameter p = 800 is needed for the squared hinge penalty, whereas the smoothed
hinge penalty achieves comparable results with just p = 20. As a result, optimiza-
tion of the objective function tends to be more effective when using the smoothed
hinge penalty as seen in Figure 6.31 (left).

6.7.3 Constrained Learning with Fairness Constraints

Machine learning models are increasingly used in high-stakes domains such as hir-
ing, finance, and healthcare, where biased predictions can lead to unfair outcomes
for individuals from protected groups (e.g., based on race, gender, or age). Learn-
ing with fairness constraints is a framework that aims to train models that are both
accurate and equitable by incorporating formal definitions of fairness directly into
the training objective. Various notions of fairness have been proposed, including de-
mographic parity, equalized odds, equal opportunity, AUC fairness, ROC fairness,
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Fig. 6.31: Training curves of Target AACC values (left) and constraint violation
(right) of different methods. The format of label is “Algorithm(penalty function,
p)”, and SH, smH mean square hinge and smoothed hinge, respectively. For more
details, please refer to (Chen et al., 2025b).

and ranking fairness. Below, we present an application of constrained optimization
to learning under ROC fairness constraints.

Constrained Learning with ROC Fairness

We consider a binary classification setting. Let 2(w;-) € R denote a predic-
tive model. Suppose the data are divided into two demographic groups D,
{(xP,y")}7 and D, = {(x¥,y*)}", where x denotes the input data and y €
{1, =1} denotes the class label. Traditional fairness measures usually assume the pre-
diction is given by I(h(w;x) > t) with a specific threshold. However, the threshold
may be dynamically changed in practice to achieve a balance between true positive
and false positive rate.

To accommodate this, a ROC fairness is introduced to ensure the ROC curves for
classification of the two groups are the same, which indicates the false positive rate
(FPR) and true positive rate (TPR) at all possible thresholds are equal across the two
groups. Since the ROC curve is constructed with all possible thresholds, we use a set
of thresholds I" = {7y, - - - , 75, } to define the ROC fairness. For each threshold 7, we
impose a constraint that the TPR and FPR of the two groups are close, formulated
as the following:

gr(w) =
1 np 1 My
= Zl 107 = Do (hwix?) =) = = zl] Iy = Do (h(w;x4) —7)| -k <0,
and
g (w) =
] np 1 Ny
|; Zn(yg’ = Do (h(w:x]) =) = — Zﬂ(y;f = —Do(h(w:;x*) - 1)| -k < 0,

P i1 U=l
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6.8. LEARNING DATA COMPOSITIONAL NETWORKS

where o (s) is a surrogate of the indicator function I(s > 0), e.g., the sigmoid func-
tion, and k > 0 is a tolerance parameter.
Then the learning problem can be imposed as:

min  F(w),
w
st gi(w)<0,g7(w) <0,Vrel.

where F(w) is an appropriate risk function.
By utilizing the penalty method, we solve the following problem:

min F(w) + 5 TZEF(f(gi(w)) + £ (g7 (W)). (6.101)
Let us define

g1 (wi) = %21@5’ = Do (h(w;x?) = 7)

ga(wiT) = n‘—;gw = Do (h(wixt) = 7).

Since f(-) is a non-decreasing convex function, hence f(|x|) is a convex func-
tion. Then the penalty term f(gt(w)) = f(lg1(W;7) — g2(W;T)| — k) is a com-
positional of a convex function f(g) = f(|g1 — g2] — ) and a smooth mapping
g(w) = [g1(w; 1), g2(w; 7)]. Hence, SONX, SONEX, ALEXR-DL can be employed
to solve the above problem.

6.8 Learning Data Compositional Networks

So far, we have considered the compositional loss function, which involves compar-
ing the output of one data #(w;x) with that of many other data. In this section, we
consider compositional networks, where the computation of z(w; x) for one data x
depends on many other data.

6.8.1 Large-scale Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful class of models designed to learn
representations from graph-structured data, where information is distributed across
nodes and edges. Unlike traditional neural networks that operate on grid-like inputs,
GNNSs leverage the connectivity structure of graphs to propagate and aggregate in-
formation from a node’s neighborhood, capturing both local and global patterns.
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GNNSs have been successfully applied to tasks such as node classification, link pre-
diction, and graph-level classification in domains including social networks, molec-
ular chemistry, and recommendation systems.

A key distinction in GNN-based learning lies between transductive and inductive
settings. In transductive learning, the model is trained and tested on the same fixed
graph, meaning all nodes (including test nodes) are present during training. Classic
GNN models such as Graph Convolutional Neural (GCN) Network in this setting.
In contrast, inductive methods aim to generalize to unseen nodes or entirely new
graphs not available during training. GraphSAGE (Graph Sample and Aggregate)
is a method that is designed for inductive learning, enabling flexible deployment in
dynamic environments where new nodes or graphs continuously emerge.

Let G = (V, &) denote a graph, where V is the set of nodes and & is the set of
edges. Each node v € V is associated with a feature vector Xx,. Given a node v with
neighbors N (v), a general scheme fo updating the node’s representation in layer & is
following:

hf\];()u) = Aggregate ({h,(lk_l) ‘u € N(v)}) ,

(k) _ (k=1) 4.(k)
h,”’ = Update (hv ,hN(v)) ,

where the first step aggregates the representations of the nodes in the immediate
neighborhood of node v into a single vector, and the second step updates the node’s
current representation h,gk_l), with the aggregated neighborhood vector to generate
a new embedding hf,k).

GraphSAGE (Graph Sample and Aggregate)

GraphSAGE is a scalable inductive framework for learning node representations in
large graphs. Let us consider a particular implementation of the above framework:

hD (6.102)
ue N(v)u{v}

A cue N() U {o}}) = NI

b = o (WE - AL cue Ny U {o}), (6.103)

where A(+) denotes the mean operator and o (-) is an activation function.

When working with large-scale graphs, GraphSAGE employs node sampling to
ensure scalability. At each layer, a node samples a fixed number of neighbors and
aggregates their features. However, as the number of layers increases, the number
of nodes involved in computing a single node’s embedding can grow exponentially.
Specifically, if each node samples K neighbors and the model has L layers, then
computing the embedding for a single node may involve up to K~ nodes. This ex-
ponential growth is known as the neighborhood explosion problem, which can lead
to significant computational and memory overhead, especially in deep models or
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large graphs. While reducing K (e.g., to 1) can mitigate neighborhood explosion, it
may also introduce high variance in the estimation of the mean operator potentially
degrading model performance.

GraphSAGE with Feature Momentum

The challenge discussed earlier arises from the compositional structure of hl(,k). To
address this, we leverage a moving average estimator. Let 8, C N(v) be a sub-
sampled neighborhood of node v, and define BU = B, U {v}. At the ¢-th iteration, we
estimate the aggregated feature vector as follows:

Rl ifv¢ Oy,

i (k1)

h = ki A ([ (k= _ 6.104
Y {(l - y)h,(,k’t D +yA ({hf,k Ly e BU}) otherwise, ( )
where Dy is the sub-sampled set of nodes updated at the k-th layer, y € (0, 1) is the
momentum parameter, and A(+) is an unbiased estimator of the aggregation function
A(+) over the neighborhood N, U {v}. The estimator is computed as:

o (g (k- 5 1 s ING] 1 & (k=1,1)
ﬂ({h,‘f Lo eB}): RO : RGO
ST T NG+ N + 1 |B”|ueZB,,

Next, we update the feature representation at the k-th layer:

b0 = o (W,(k) .ﬁl()k»f)) _ (6.105)

This process is repeated for L layers to compute the output representation lAll(,L’t) for
sub-sampled nodes v € Dy, which are then used to compute the mini-batch loss. We
refer to this approach as GraphSAGE with Feature Momentum.

This method effectively reduces the required number of sampled neighbors per
node while maintaining the performance of using full neighborhoods; see Fig-
ure 6.32.
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6.8.2 Multi-instance Learning with Attention

Multi-instance learning (MIL) refers to a setting where a bag of instances are ob-
served for an object of interest and only one label is given to describe that ob-
ject. Many real-life applications can be formulated as MIL. For example, the med-
ical imaging data for diagnosing a patient usually consists of a series of 2D high-
resolution images (e.g., CT scan), and only a single label (containing a tumor or not)
is assigned to the patient.

A standard assumption for MIL is that a bag is labeled positive if at least one of
its instances has a positive label, and negative if all of its instances have negative
labels. The assumption implies that a MIL model must be permutation-invariant for
the prediction function 2(X), where X = {x1, ..., X,,} denotes a bag of instances. To
achieve permutation invariant property, fundamental theorems of symmetric func-
tions have been developed. In particular, a scoring function for a set of instances X
denoted by 2(X) € R, is a symmetric function if and only if it can be decomposed as
h(X) = g(Xxex ¥ (X)) (Zaheer et al., 2017), where g and ¢ are suitable transforma-
tions. Another theory is that a Hausdorft continuous symmetric function 2(X) € R
can be arbitrarily approximated by a function in the form g(maxye x ¥ (x)) (Qi et al.,
2016), where max is the element-wise vector maximum operator and ¢ and g are
continuous functions. These theories provide support for several widely used pool-
ing operators used for MIL.

Deep learning with different pooling operations

Let e(W,;X) € R% be the instance-level representation encoded by a neural network
W, #(w;x) € [0, 1] be the instance-level prediction score (after some activation
function), and h(w; X;) € [0, 1] be the pooled prediction score of the bag i over all
its instances. Besides, o (-) denotes the sigmoid activation.

Softmax pooling of predictions

The simplest approach is to take the maximum of predictions of all instances in the
bag, i.e., h(w; X) = maxxeyx ¢(W;x). However, the max operation is non-smooth,
which usually causes difficulty in optimization. In practice, a smoothed-max (aka.
log-sum-exp) pooling operator is used instead:

1
h(w; X) = 7 log X Z exp(¢(w:;x)/7) ], (6.106)
xeX

where 7 > 0 is a hyperparameter and ¢ (W; X) is the prediction score for instance x.
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Mean pooling of predictions

The mean pooling operator just takes the average of predictions of individual in-
stances, i.e., h(w; X) = ﬁ Yxex ¢(W;x). Indeed, smoothed-max pooling interpo-
lates between the max pooling (with 7 = 0) and the mean pooling (with 7 = o).

Attention-based Pooling of features

Attention-based pooling aggregates the feature representations using attention, i.e.,

Eowid) = 3 < SRE)

e’ X), 6.107
245 cexp(gwix)) <Y (@107

where g(w;x) is a parametric function, e.g., g(w;x) = w/ tanh(Ve(w,; X)), where
V € R"™*4o and w, € R™. Based on the aggregated feature representation, the bag
level prediction can be computed by

(6.108)

) — ot Bl — o [ SREVX)s (W)
B =T OEMX) =0 | )5 e e )

where s(W; X) = W] e(W,; X).

Optimization Algorithms

Given the pooled prediction i(w; X), the empirical risk minimization (ERM) prob-
lem is defined as:

N

1
in — f,]’l sA\j)).
mvgnn; (h(W; X;))

The main challenge in solving this problem lies in the computational cost of evalu-
ating h(w; X;), as it involves aggregating over potentially many instances.

To address this, we employ techniques from compositional optimization. Specifi-
cally, we express the smoothed-max pooling in (6.106) as a composition 2(w; X;) =
2 (fi(w; X;)), where the functions f; and f, are defined as:

AWK = o S exp(@(wini, /).

|Xl| X; ,'EX,‘
f2(si) = tlog(s;).

Similarly, we express the attention-based pooling in (6.108) as a compositional func-
tion A(w; X;) = fo(f1(w; X;)), with:
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The key difference between the two pooling mechanisms is that the inner function f;
in attention-based pooling is a vector-valued function with two components. In both
cases, the computational bottleneck lies in computing f;(w; X;).

To reduce this cost, we maintain a dynamic estimator u; , for each bag X;. At
iteration ¢, for any X; € B, ; (a mini-batch of bags), we update the estimator as:

wig =1 =yui 1 +yfi(w;Bi;), (6.109)

where B; ; C X; is a mini-batch of instances sampled from Xj;, and y € [0,1] is a
smoothing parameter. For smoothed-max pooling, this becomes:

wip ==y + _|By | E exp(d(wsx; 7)/7), (6.110)
i,t
’ Xi’jGBi’r

and for attention-based pooling, we update:

@ Dixi e B, CXP(S (Wi Xi ;)6 (Wi Xy, ;)

6.111)
@ ZX,"J'E,(B,'J exp(g(wl; Xl,]))

==y, +y
The corresponding vanilla gradient estimator for softmax pooling is:

1 , 1
2= Z G (i )V foa(ui ) 75— Z Vexp(¢p(wesx; ;)/7), (6.112)
81 & Bl 24

t i,] it
and for attention-based pooling:
&= (6.113)

-
BT Sxesi, ¥ (exp(g (Wi xi,))s(Whixi )

1
—_— & u;
B 2, ) | ¥ explevii,)

Vfa(u;,).

Then we can update the model parameter w,;; by Momentum, Adam, or Adam-W
methods.

As established in Chapter 5, the theory of compositional optimization guarantees
that the moving average estimators u; , ensure the average estimation error,

T

1

= 2l = AW XIS,
t=1

converges to zero as T — oo, provided that the model parameters and hyperparam-
eters are properly updated.
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6.9 DRRHO Risk Minimization

As a last application of compositional optimization, we consider an emerging prob-
lems in Al. With the success of large foundation models, numerous companies and
research groups have entered the race to develop state-of-the-art models. While the
data and code are often proprietary, the resulting models are sometimes released pub-
licly, such as the CLIP models from OpenAl How can we leverage these open-weight
models? We discuss three commonly used strategies and then present an emerging
paradigm.

Using the Model As-Is

A straightforward strategy for leveraging open-weight foundation models is to use
them as-is. This approach requires no additional training and can be deployed im-
mediately, making it highly convenient and cost-effective. It is particularly attractive
when computational resources or labeled data are limited. However, the downside is
that the pretrained model may not perform well on specialized tasks or under distri-
bution shifts, where its generic knowledge does not fully align with the requirements
of the target application.

Fine-Tuning the Model

An alternative strategy is to use the pretrained model as a starting point for fine-
tuning. By performing minimal task-specific training, the model can be adapted to
new domains with relatively low computational and data costs. Fine-tuning gener-
ally yields better performance than using the model out-of-the-box. Nevertheless,
since the model architecture remains unchanged and the updates are typically mod-
est, the improvements in performance may be limited, particularly when the pre-
trained model is already near-optimal for its design.

Knowledge Distillation from the Model

A more flexible approach involves using the pretrained model as a teacher in a
knowledge distillation framework. Here, a smaller or more efficient student model is
trained to mimic the teacher’s outputs, enabling knowledge transfer that can improve
training efficiency and generalization. This strategy is particularly useful for deploy-
ing models in resource-constrained environments. The main drawback, however, is
that the student model is usually less expressive than the teacher, which can cap its
performance despite potential gains in speed and efficiency.
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Reference Model Steering for training from scratch

An emerging learning paradigm has recently surfaced that leverages a pre-trained ref-
erence model to guide and enhance training via strategic data weighting—a process
we term reference model steering. Unlike the knowledge distillation framework, ref-
erence model steering does not assume that the reference model is a stronger teacher;
in fact, it can lead to the training of a model that ultimately surpasses the reference
model in performance, i.e., enabling weak to strong generalization.

DRRHO Risk Minimization

Let z ~ P denote a random data point drawn from distribution P, and let w € ‘W rep-
resent model parameters from a parameter space “W. Given a loss function £(w, z),
the expected risk is defined as:

R(W) = Egep[€(W,2)].

Given a pretrained reference model wy¢, we define a new loss ¢ (w,)=L4(w,-) —
€(Wres, -), which is termed as RHO loss. Incorporating this into the distributionally
robust optimization (DRO) framework (2.12), we define DRRHO risk minimization
as:

n
min, Sup ) pi (EOV.2) ~ ((Wer. 7). 6.114)
Dy (pll1/n)<p/n i=1

Theoretical guarantees for DRRHO have been developed with the y? divergence,

2
ie,Dg(pllq) = X, %qi (% - 1) . Under mild conditions, it can be shown that
with high probability:

R(W,) < inf (ﬁ(w) + \/2—'0 Var(€(w, -) — €(Wref, ))) +0 (1) . (6.115)
weW n n

where W, is an optimal solution to DRRHO risk minimization.
In particular, plugging in w,. = arg minyeqy R(W) yields:

R(W.) < R(w.) + \/ 2 Nar(t(w, ) = (Wet, ) + O (%) .

This result provides valuable insight: if the reference model w;r is well-trained such
that €(Wee, -) closely matches £(w.,,-) in distribution, then the variance term be-
comes small. As a result, DRRHO achieves better generalization than the standard

O(+/1/n) bound of ERM.

Furthermore, if wy; € ‘W, we obtain a comparison in terms of excess risk:

R(W.) = R(W.) < R(Wrer) = R(W.) + O (%)
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This enables a direct comparison between the DRRHO minimizer w, and the refer-
ence model wr from the same hypothesis class. Suppose wr was trained via ERM
on a dataset with m samples. Then standard generalization theory gives an excess
risk of order O(1/+/m). In contrast, to match this level of generalization error, DR-
RHO requires only n = O(+/m) samples—significantly improving over the O (m)
sample complexity required by ERM without a reference model.

Optimization Algorithms

When the CVaR is used defined by ¢(7) = 1if r < n/k and ¢(¢) = oo otherwise, the
DRRHO risk reduces to the average of the top-k RHO losses:

k
min F(w) = ¢ D3 eCwm) = v (6.116)

where z[;} denotes the data point ranked i-th in descending order based on its RHO
loss. This problem can be equivalently reformulated as:

1 n
min — Z [6(W,2;) — C(Weer, Zi) — V], + v, 6.117)
wv k i=1

which is more amenable to gradient-based optimization techniques.
When DRRHO risk is defined using KL divergence regularization, the objective
becomes:

min 7log (% > exp (g(w’ 2i) = {(Wret 2:) )) . (6.118)

T
i=1

This formulation can be optimized by simply replacing the loss in Algorithm 24 with
the RHO loss. The vanilla gradient at iteration 7 is estimated by:

5>

i€B;

exp (E(w,,z,—)—Tf(Wref,Zi) )

Uy

Vi(w;,z;), (6.119)

where u; is the MA estimator of the inner function value. This gradient estimator
naturally assigns higher weights to data points with larger RHO losses, thereby pri-
oritizing samples with high learnability during training.

Finally, when DRRHO is formulated with a KL-divergence constraint, the opti-
mization problem becomes:

T n

1< £(W,2;) — €(Wref, 2;
min min Tlog(—Zexp( (W, 2;) = {(Wrer. 2 ))) + P (6.120)
W 7>0 n

i=1
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This formulation can be optimized using techniques similar to those introduced in
the first section of this chapter.

DRRHO-CLIP with a Reference Model

We now consider applying the DRRHO risk minimization framework to CLIP. Given
the established connection between robust global contrastive loss and DRO, as shown
in (6.44) and (6.45), it is straightforward to incorporate the RHO loss into the training
objective. Define the following loss components:

1 (w; X, t,t) = s(w; x;, 1) — s(w; x;, t;),
O(W; X, 6, X) = s(W; X, ;) — s(W; x;, t;),
01 (Wref; Xi, 6, t) = (Wref; X;, ) — 5(Wrep; X, £7),
O (Wrefs Xi, 6, X) = §(Wref; X, t) — 5(Weefs X, £7),

where s(-;-,-) denotes the similarity function, and wi is a pretrained reference
model.

Using these definitions, we modify the original objective in (6.49) to incorporate
the RHO loss:

77 2 O

L teT”

1< 1
+ - ) mlog| —
nzl dUA

i= xel~

(gl (wv Xi, tis t) B 51 (Wref; X, ti, t)

) + 7110
7]

Z b (W3 X, ti, X) — 02 (Wref X, £, X)
exp - +1p.

(6.121)
This objective can be optimized using an algorithm similar to that used in the
CLIP training. Empirical results show that this approach significantly reduces sample

390



6.10. HISTORY AND NOTES

I Reference [ Target

~
o

(o2}
©

D
o))

&
AN
@
&
Q_

(o]
g

[©2]
N

ImageNet-1K Top-1 Accuracy (%)

()]
o

OpenAl CLIP DRRho-CLIP

Fig. 6.34: Comparison between a target model (ViT-B/16) trained by DRRRHO-
CLIP and the reference model it leverages. OpenAl CLIP (ViT-B/32) was trained
on a private 400M dataset with 12.8B samples seen and 32768 batch size. DRRho-
CLIP model was trained on DFN-192M with 1.28B samples seen and 5120 batch
size, and using OpenAl CLIP as a reference model. DRRHO-CLIP training took
376 GPU hours on 8 H100 (2 days), OpenAl CLIP (ViT-L/14) model was trained
on 256 V100 with 12 days, which gives an estimate of 256*%12%24/11.6=6356 GPU
hours for training ViT-B/32 as its FLOPs is 11.6 smaller. For more details, please
refer to (Wei et al., 2025).

complexity and improves the empirical scaling law (see Figure 6.33), while also
achieving weak to strong generalization (see Figure 6.34).

6.10 History and Notes

DRO and GDRO.

We first formulated KL-regularized Distributionally Robust Optimization (DRO) as
a stochastic compositional optimization (SCO) problem in (Qi et al., 2021b), uti-
lizing STORM-based estimators. This line of research was further developed in (Qi
et al., 2020), which introduced an attentional biased stochastic momentum method
for KL-regularized DRO with specific applications in imbalanced data classification.
Subsequently, we extended both the algorithmic framework and theoretical analysis
to address KL-constrained DRO (Qi et al., 2023). Collectively, these works demon-
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strate the advantages of employing compositional optimization techniques over tra-
ditional primal-dual methods for solving DRO problems.

The formulation of FCCO for group DRO (GDRO) was initially identified in
(Hu et al., 2024b). Building on this, Wang and Yang (2023) applied the ALEXR
algorithm to convex group DRO, demonstrating significant improvements over tra-
ditional stochastic primal-dual methods. Most recently, the application of SONEX
to non-convex group DRO within the context of deep learning was investigated by
Chen et al. (2025b).

Stochastic AUC and NDCG Optimization.

Stochastic AUC maximization has a long-standing history in machine learning, as
detailed in our survey (Yang and Ying, 2023). The formulation of AUC maximiza-
tion with a square surrogate loss as a minimax optimization problem was first in-
troduced by Ying et al. (2016b). Building on this foundation, we developed the first
convergence analysis for stochastic non-convex minimax optimization in the context
of deep AUC maximization (Liu et al., 2020). While this work was inspired by our
previous work on weakly-convex strongly-concave minimax optimization (Rafique
et al., 2022), it established a superior complexity bound by leveraging the PL condi-
tion. These theoretical results were subsequently strengthened in (Guo et al., 2023).

This line of research eventually facilitated our winning entry in the CheXpert
competition for X-ray image classification (Yuan et al., 2021), which also introduced
the AUC-margin minimax objective. Notably, all of these proposed methods utilize
a double-loop algorithmic structure. The single-loop PDMA and PDAdam methods
for deep AUC maximization was first proposed and analyzed in our work (Guo et al.,
2021b). The compositional training method for deep AUC maximization that facili-
tates the feature learning and classifier learning in a unified framework was proposed
in our work (Yuan et al., 2022b).

The SOAP algorithm represents the first method of its kind to offer a convergence
guarantee that does not rely on the use of large batch sizes, which has challenged the
computer vision and machine learning communities for many years (see references
in (Qi et al., 2021c)). The SOPA and SOPAs algorithms for one-way partial AUC
maximization and STOAs for two-way partial AUC maximization were developed
and analyzed in (Zhu et al., 2022b). The STACO algorithm for two-way partial AUC
maximization was proposed in (Zhou et al., 2025). These stdudies have addressed
long-standing open problems for efficient partial AUC maximization with conver-
gence guarantee (Kar et al., 2014; Narasimhan and Agarwal, 2013).

The formulation of stochastic NDCG optimization as FCCO was proposed in our
work (Qiu et al., 2022), which also developed a multi-block bilevel optimization
formulation and algorithm for optimizing top-K NDCG. The complexity for multi-
block bilevel optimization was improved in (Hu et al., 2023) by using the MSVR
estimators.

The design and benchmark of LibAUC library was presented in (Yuan et al.,
2023a).
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Discriminative Learning of Foundation models.

The SogCLR algorithm was inspired by the SOX framework for FCCO; its advan-
tages over SimCLR, particularly regarding efficiency with small batch sizes in uni-
modal contrastive learning, were demonstrated in (Yuan et al., 2022c). Building on
this, we introduced iSogCLR in (Qiu et al., 2023) to optimize individualized tem-
peratures. This advancement was also informed by our previous research on KL-
constrained DRO (Qi et al., 2023).

Subsequently, we proposed TempNet (Qiu et al., 2024), which has been success-
fully applied to CLIP training and the pretraining of large language models (LLMs).
Furthermore, a comprehensive evaluation of FCCO-based techniques for distributed
CLIP training was recently provided in (Wei et al., 2024).

The discriminative fine-tuning approach of LLMs was proposed in our work (Guo
et al., 2025). The DisCO method for fine-tuning large reasoning models was devel-
oped in our work (Li et al., 2025).

FCCO for Constrained Learning.

The application of compositional optimization techniques to penalty methods for
constrained learning dates back to (Ermoliev and Wets, 1988). The first non-asymptotic
analysis of the penalty method with a squared hinge penalty function for non-convex
inequality constrained optimization based on FCCO was conducted in our work (Li
et al., 2024). This work investigated the problem within the context of continual
learning under zero-forgetting constraints and established a complexity of O(1/€’)
for finding an e-KKT solution. Additionally, we developed a theoretical framework
to characterize the benefits of network expansion in facilitating constrained learning
with non-forgetting constraints. The ROC fairness constraint was first considered
in (Vogel et al., 2020).

Subsequent advancements have further improved the complexity of penalty based
methods based on FCCO. By employing SONX for the hinge penalty, the complex-
ity was reduced to O(1/€%) (Yang et al., 2025). More recently, the introduction of
SONEX and a double-loop ALEXR method for the squared hinge penalty achieved
a complexity of O(1/€’) (Chen et al., 2025b). This currently represents the state-of-
the-art complexity for penalty methods in non-convex constrained optimization.

Learning with data compositional networks.

Graph convolutional neural network was proposed by Kipf and Welling (2017).
GraphSAGE was developed in (Hamilton et al., 2017). The use of compositional op-
timization techniques, specifically incorporating feature momentum for large-scale
Graph Neural Network (GNN) learning, was introduced in our previous work (Yu
et al., 2022). Furthermore, the application of compositional optimization to multi-
instance learning, utilizing compositional pooling operations, was first proposed
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in (Zhu et al., 2023a). Attention-based pooling for multi-instance learning was pro-
posed by Ilse et al. (2018).

DRRHO risk minimization.

The development of DRRHO risk minimization framework and its application to
CLIP training was introduced in our work (Wei et al., 2025). The theoretical analysis
of this method is largely built upon the foundations of DRO (Namkoong and Duchi,
2017), while the conceptual idea of using the RHO loss for data selection in a mini-
batch was originally proposed in (Mindermann et al., 2022).
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Chapter 7
Afterword

Dear Readers:

Congratulations on making it this far in the book. Even if you haven’t read every
chapter in full, I hope you’ve found parts of it useful and inspiring. If you are a
practitioner, I hope this book convince you that theory can, at times, be genuinely
useful in practice.

Before concluding this book, I would like to reflect on my journey into compo-
sitional optimization for advanced machine learning, which began in 2019. Before
that, I was primarily focused on traditional stochastic optimization theory. During
that time, we developed a stochastic algorithm for solving non-convex minimax op-
timization problems. In 2019, I spent a year in industry, where conversations with
young professionals made me realize the importance of practicability. After combing
back from the leave, I started to think about how to make the theory more practical.
The first project was to apply our non-convex minimax optimization to AUC max-
imization for learning deep neural networks, leading us to achieve first place in the
Stanford CheXpert competition for classifying X-ray images organized by Andrew
Ng’s ML group in 2020. In late 2020, my friend Shuiwang Ji at Texas A&M Uni-
versity introduced me to the MIT AICures challenge, which aimed to identify few
molecules with properties suitable for COVID-19 drug development among many.
Motivated by this challenge, I formulated the optimization problem of maximizing
the empirical estimator of areas under precision-recall curves, known as average pre-
cision. This led me to define the novel finite-sum coupled compositional optimiza-
tion (FCCO) framework. We developed the first algorithm for FCCO in 2021, which
ultimately helped us win the MIT AICures Challenge.

As T explored further, I discovered broad applications of this framework in ML and
Al, specifically in addressing the computational challenges inherent in contrastive
learning, learning to rank, discriminative learning and continual learning. This series
of work eventually led to the development of the LibAUC library for empirical X-risk
minimization, which has since been downloaded over 100,000 times by researchers
and developers across more than 85 countries. It also helped us to develop CLIP
models better than OpenAI’s models with 15 times less compute budget.
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As I reflect on the journey that led to this book, I am reminded of the principle
of “AlIfTA— (Zhi Xing He Yi) by Wang, Yangming (a legendary sage of ancient
China), cited in the preface. It is often translated as ‘unity of knowledge and action’,
which I interpret as the idea that theory should guide practice, and practice can, in
turn, inspire theory.

For decades, the field of machine learning has largely been framed through the
lens of Empirical Risk Minimization (ERM). This book argues that such a view is
increasingly insufficient for modern Al systems. As we have seen throughout these
chapters, the “X”” in EXM represents a diverse class of often non-decomposable ob-
jectives, such as AUC, ranking measures, cross-entropy loss with expensive normal-
ization, and contrastive losses, which define the frontier of modern Al. The develop-
ment of the LibAUC library and the success of the EXM framework in AI challenges
have shown us that when we move beyond standard stochastic optimization, we un-
lock new levels of performance in critical domains like medical imaging and drug
discovery. Yet, despite these successes, the systematic study of EXM is just begin-
ning.

During my years as a graduate student, I immersed myself in many books on op-
timization and machine learning, which were instrumental in shaping my mathemat-
ical foundation. Now, after more than a decade of study and research, I am humbled
to synthesize these insights—together with my own findings—into this book. I hope
that the methods and theories presented here are not viewed as a final destination,
but rather as a starting point. My hope is that this work encourages researchers to
look beyond standard training loops and to explore new forms of “X-risks” that bet-
ter capture the complexity of modern learning systems and the nuances of human
intelligence and societal needs. Ultimately, I look forward to seeing how the next
generation of researchers will build upon these ideas to bridge elegant mathematical
theory with transformative real-world applications.

Finally, I should note that this book may contain typographical errors and may
inevitably omit some important related works. I would be deeply grateful to readers
who are willing to share corrections, suggestions, or feedback to help improve future
revisions.
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