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Preface

知者行之始，行者知之成
—王陽明

“The best theory is inspired by practice.
The best practice is inspired by theory.”

— Donald Knuth

Optimization is central to machine learning (ML), which in turn forms the foun-
dation of artificial intelligence (AI). From training deep neural networks to fine-
tuning Large Language Models, almost every advancement in AI relies on solving
some form of optimization problem. While classical methods based on empirical
risk minimization (ERM) have powered much of early progress in ML, they are no
longer sufficient to address the growing complexity of today’s AI challenges. This
book aims to bridge that gap by offering a systematic treatment of the emerging op-
timization paradigm known as compositional optimization and its applications in
modern AI. Many critical optimization problems in ML now exhibit intricate com-
positional structures as 𝑓 (𝑔) or ∑𝑛

𝑖=1 𝑓𝑖 (𝑔𝑖) that go beyond traditional frameworks,
where both 𝑓 and 𝑔 are non-linear functions and potentially non-convex, extend-
ing beyond the scope of traditional optimization paradigms. However, most existing
texts remain focused on classical stochastic optimization and ERM, overlooking the
depth and diversity of these newer challenges.

Motivation of writing the book

Optimization once held a central spotlight at leading ML venues such as NeurIPS
and ICML. In recent years, however, the field has seen an influx of new topics in AI,
capturing the interest of students and early-career researchers. While attention has
increasingly shifted toward foundation models and AGI, the importance and impact
of optimization remain as vital as ever.

As someone working at the intersection of optimization and machine learning, I
feel a dual responsibility. First, to bring cutting-edge optimization techniques to the
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broader ML/AI community. When I speak with researchers in ML/AI and mention
my focus on optimization for machine learning, I am often met with questions like,
“What problems are you working on?”or“Are these theories truly useful, given that
they rely on assumptions that may not be easily verified in practice?”Some even re-
marked that optimization’s only practical contribution to AI is the Adam algorithm.
This reflects a common misconception that optimization in ML is limited to training
algorithms like SGD or Adam, which is far from the truth. Second, I feel a responsi-
bility to encourage researchers in mathematical optimization to engage more deeply
with the challenges of modern AI. Many researchers in traditional optimization are
eager to contribute, but the rapid pace of AI along with the constant influx of new
models and terminology can make it difficult to identify core problems where opti-
mization insights are most needed. Working at this intersection gives me a unique
perspective: recognizing fundamental challenges in modern AI, such as the training
of large foundation models, and abstracting them into rigorous mathematical frame-
works where optimization methods can offer meaningful solutions. I hope this book
contributes to bridging the gap between the AI and optimization communities and
inspires new collaborations across these fields.

At first glance, the focus on compositional optimization in this book may seem
narrow, but it is deeply connected to fundamental learning and optimization princi-
ples including discriminative learning and robust optimization, and has broad appli-
cability across ML and modern AI, which will be shown in this book. In particular,
this book introduces a new family of risk functions termed X-risks, in which the loss
function of each data involves comparison with many others.We formulate empirical
X-risk minimization as finite-sum coupled compositional optimization (FCCO) - a
new family of compositional optimization. After five years of intensive research on
this subject, we have explored different aspects of FCCO, from upper bounds to lower
bounds, from smooth objectives to non-smooth objectives, from convex problems to
non-convex problems, and from theoretical complexity analysis to applications in
training large foundation models. While significant progress has been made, many
open questions remain. Nevertheless, we believe it is time to share this advanced
body of knowledge with the broader community in the form of a comprehensive
book.

Structure of the book

This book is crafted to engage both theory-oriented and practice-driven audiences. It
presents rigorous theoretical analysis with deep insights, complemented by practical
implementation tips, Github code repositories, and empirical evidence—effectively
bridging the gap between theory and application. It is intended for graduate students,
applied researchers, and anyone interested in the intersection of optimization and
machine learning. The readers are assumed to have some basic knowledge in ML.
The materials in this book have been used in my graduate-level course on stochastic
optimization for ML.
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Fig. 0.1: Structure of the Book Chapters. Dashed lines indicate motivation. The red
solid lines indicate application. Other solid lines indicate dependency.

The book is organized as follows. Chapter 1 reviews the fundamentals of convex
optimization essential for the material presented in this book. Chapter 2 introduces
advanced learning methods that go beyond traditional ERM framework so as to mo-
tivate compositional optimization. Chapter 3 presents classical stochastic optimiza-
tion algorithms and their complexity analysis in both convex and non-convex set-
tings. Chapter 4 delves into stochastic compositional optimization (SCO) problems
with algorithms and complexity analysis. Chapter 5 explores algorithms and analy-
sis for solving FCCO problems. Chapter 6 presents applications of SCO and FCCO
in supervised and self-supervised learning for training predictive models, genera-
tive models, and representation models. Chapter 5 and 6 are largely devoted to the
original research conducted by the author and his team. The dependencies and flow
among the chapters are illustrated in Figure 0.1. Practitioners may focus on Chapter 2
and Chapter 6. For theory-oriented audiences who are interested in ML applications,
I strongly recommend reading Chapter 2 and Chapter 6 as well.
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Chapter 1
Basics: Convex Optimization

Abstract This chapter provides a concise introduction to foundational concepts in
convex optimization, including convex sets and functions, Fenchel conjugates, La-
grangian duality, and the Karush-Kuhn-Tucker (KKT) conditions. Definitions are
accompanied by illustrative examples to build intuition and support practical under-
standing. While convex optimization is a rich and expansive subject that merits its
own dedicated volume, our focus is intentionally selective. We present only the es-
sential tools and results that the author considers most relevant for understanding and
analyzing optimization problems encountered in later chapters. The goal is to equip
readers with a practical yet rigorous foundation, enabling them to appreciate the the-
oretical underpinnings of algorithm design and analysis in subsequent chapters.

Convex Optimization is the foundation of foundations!
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1.1. NOTATIONS AND DEFINITIONS

1.1 Notations and Definitions

This book uses the following notations.

• Let us denote by ‖ · ‖2 the Euclidean norm, and by ‖ · ‖ a general norm.
• For a differentiable function 𝑓 , let ∇ 𝑓 (x) denote its gradient at x, and 𝜕 𝑓 (x)

denote its subdifferential set at x.
• Let 𝜕1 𝑓 (w, u) and 𝜕2 𝑓 (w, u) denote the partial subgradients of 𝑓 with respect to

the first variable w and the second variable u, respectively.
• Define the 𝑑-dimensional probability simplex as

Δ𝑑 =

{
x ∈ R𝑑 : 𝑥𝑖 ≥ 0 ∀𝑖,

𝑑∑
𝑖=1

𝑥𝑖 = 1

}
.

• Let I(·) denote the standard indicator function, which returns 1 if the input con-
dition is true and 0 otherwise. Let I0−∞ (·) denote the zero-infinity indicator func-
tion, which returns 0 if the input condition is true and ∞ otherwise.

• Denote by 1 a vector of all ones. Let e𝑖 denote the standard basis vector with a 1
in the 𝑖-th coordinate and 0 in all other entries.

• Let x ∼ P denote a random variable that follows a distribution P.
• [𝑛] denotes the set of all integers from 1 to 𝑛, i.e., [𝑛] = {1, . . . , 𝑛}.
• We use 〈x, y〉 interchangeable with x>y to denote the inner product of two vectors.
• log(𝑥) is in the base of natural constant 𝑒.
• w.r.t is short for with respect to.
• s.t. is short for subject to.

Definition 1.1 (Dual Norm) Let ‖ · ‖ be a norm on R𝑑 , then its dual norm ‖ · ‖∗ :
R𝑑 → R is defined as

‖y‖∗ := sup{x>y : ‖x‖ ≤ 1}.

Examples

Example 1.1. ‖ · ‖2 is the dual norm of itself as x>y ≤ ‖x‖2‖y‖2.

Example 1.2. ‖ · ‖∞ and ‖ · ‖1 are dual norms of each other as x>y ≤
‖x‖1‖y‖∞.

Example 1.3. Let ‖x‖𝐴 =
√

x>𝐴x, where 𝐴 � 0 is a positive definite ma-
trix. Then ‖y‖∗ =

√
y>𝐴−1y. This is because that x>y = x>𝐴1/2𝐴−1/2y ≤

‖𝐴1/2x‖2‖𝐴−1/2y‖2 ≤ ‖𝐴−1/2y‖2.

Definition 1.2 (Convex set) A set C is convex if the line segment between any two
points in C lies in C, i.e. ∀x1, x2 ∈ C,∀𝜃 ∈ [0, 1],

𝜃x1 + (1 − 𝜃)x2 ∈ C.
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Definition 1.3 (Convex function)A function 𝑓 (·) : R𝑑 ↦→ R is convex if its domain
dom( 𝑓 ) is convex and

𝑓 (𝜃x + (1 − 𝜃)y) ≤ 𝜃 𝑓 (x) + (1 − 𝜃) 𝑓 (y),∀x, y ∈ dom( 𝑓 ), 𝜃 ∈ [0, 1] .

It is strictly convex if strict inequality holds whenever x ≠ y and 𝜃 ∈ (0, 1).
This inequality implies that the graph of a convex function lies below the straight

line connecting any two points on the graph—like a bowl: if you place a chopstick
across its edges, it will stay above the surface of the bowl.
Lemma 1.1 (First-order condition) Suppose 𝑓 is differentiable (i.e., its gradient
∇ 𝑓 exists at each point in dom 𝑓 ). Then 𝑓 is convex if and only if dom 𝑓 is convex
and

𝑓 (y) ≥ 𝑓 (x) + ∇ 𝑓 (x)> (y − x) (1.1)

holds for all x, y ∈ dom 𝑓 .
Proof. We first prove for one-dimensional convex function 𝜙(·) : R → R, we have

𝜙(𝑡) ≥ 𝜙(𝑠) + 𝜙′ (𝑠) (𝑡 − 𝑠). (1.2)

According to the definition of convexity, we have

𝜙(𝑡) ≥ 𝜙(𝑠) + 𝜙(𝑠 + 𝛼(𝑡 − 𝑠)) − 𝜙(𝑠)
𝛼

.

Taking the limit 𝛼 → 0 yields (1.2).
(⇒) Assume 𝑓 is convex and differentiable on the open convex set dom 𝑓 . Fix

x ∈ dom 𝑓 and any y ∈ dom 𝑓 . Define 𝜙 : [0, 1] → R by

𝜙(𝑡) = 𝑓
(
x + 𝑡 (y − x)

)
.

Since 𝑓 is convex and the map 𝑡 ↦→ x + 𝑡 (y − x) is affine, 𝜙 is a convex function on
[0, 1]. For a convex (one-dimensional) differentiable function, we have proved that

𝜙(1) ≥ 𝜙(0) + 𝜙′ (0) (1 − 0).

By the chain rule,
𝜙′ (0) = ∇ 𝑓 (x)> (y − x).

Thus

𝑓 (y) = 𝜙(1) ≥ 𝜙(0) + ∇ 𝑓 (x)> (y − x) = 𝑓 (x) + ∇ 𝑓 (x)> (y − x).

(⇐) Assume dom 𝑓 is convex and for all x, y ∈ dom 𝑓 ,

𝑓 (y) ≥ 𝑓 (x) + ∇ 𝑓 (x)> (y − x).

Take any x, y ∈ dom 𝑓 and 𝜃 ∈ [0, 1], and set z = 𝜃x + (1 − 𝜃)y ∈ dom 𝑓 . Apply the
assumption with (x, z) and (y, z):
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1.1. NOTATIONS AND DEFINITIONS

𝑓 (x) ≥ 𝑓 (z) + ∇ 𝑓 (z)> (x − z), 𝑓 (y) ≥ 𝑓 (z) + ∇ 𝑓 (z)> (y − z).

Multiply the first by 𝜃 and the second by (1 − 𝜃) and add:

𝜃 𝑓 (x) + (1 − 𝜃) 𝑓 (y) ≥ 𝑓 (z) + ∇ 𝑓 (z)>
(
𝜃 (x − z) + (1 − 𝜃) (y − z)

)
.

Since 𝜃 (x − z) + (1 − 𝜃)(y − z) = 0, we get

𝑓 (z) ≤ 𝜃 𝑓 (x) + (1 − 𝜃) 𝑓 (y),

i.e., 𝑓 (𝜃x + (1 − 𝜃)y) ≤ 𝜃 𝑓 (x) + (1 − 𝜃) 𝑓 (y). Hence 𝑓 is convex. ut

Definition 1.4 (Subgradient) For a non-differentiable convex function 𝑓 , let the
subgradient of 𝑓 at x be denoted by 𝜕 𝑓 (x), which consists of all vectors v satisfying:

𝑓 (y) ≥ 𝑓 (x) + v> (y − x),∀x, y ∈ dom( 𝑓 ).

Without causing any confusion, we often write

𝑓 (y) ≥ 𝑓 (x) + 𝜕 𝑓 (x)> (y − x),∀x, y ∈ dom( 𝑓 ),

where 𝜕 𝑓 (x) refers to some specific element of the subgradient set.

Examples

Example 1.4. 𝑓 (𝑥) = [𝑥]+ = max(0, 𝑥). At 𝑥 = 0 it has a subgradient
𝜕 𝑓 (0) = {𝜉 ∈ [0, 1]}, 𝜕 𝑓 (𝑥) = 1,∀𝑥 > 0, and 𝜕 𝑓 (𝑥) = 0,∀𝑥 < 0.

Definition 1.5 (Strongly Convex Function) A function 𝑓 (·) : R𝑑 ↦→ R is called
𝜇-strongly convex with respect to a norm ‖ · ‖ if there exists a constant 𝜇 > 0 such
that for any x, y and v ∈ 𝜕 𝑓 (x) we have

𝑓 (y) ≥ 𝑓 (x) + v> (y − x) + 𝜇
2
‖x − y‖2.

Examples

Example 1.5. The function 𝑓 (x) = 1
2 ‖x‖2

2 is 1-strongly convex with respect
to the Euclidean norm ‖ · ‖2. This follows directly from the identity:

1
2
‖y‖2

2 =
1
2
‖x‖2

2 + x> (y − x) + 1
2
‖x − y‖2

2,

which satisfies the definition of strong convexity with parameter 1.

Definition 1.6 (Smooth function) A function 𝑓 : R𝑑 ↦→ R is called 𝐿-smooth with
respect to a norm ‖ · ‖ if it is differentiable and its gradient is 𝐿-Lipchitz continuous,
i.e., there exists a positive real constant 𝐿 such that, for any x, y ∈ R𝑑 , we have
‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖∗ ≤ 𝐿‖x − y‖, or equivalently,
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| 𝑓 (x) − 𝑓 (y) − ∇ 𝑓 (y)> (x − y) | ≤ 𝐿

2
‖x − y‖2. (1.3)

Definition 1.7 (Bregman Divergence) Let 𝜑 : Ω → R be be a continuously-
differentiable, strictly convex function defined on a convex set Ω, the Bregman di-
vergence induced by 𝜑(·) is defined as

𝐷𝜑 (x, y) := 𝜑(x) − 𝜑(y) − ∇𝜑(y)> (x − y).

Examples:

Example 1.6 (Euclidean distance). 𝜑(x) = 1
2 ‖x‖2 induces the Euclidean

distance:

𝐷𝜑 (x, y) =
1
2
‖x‖2

2 −
1
2
‖y‖2

2 − y> (x − y) = 1
2
‖x − y‖2

2. (1.4)

Example 1.7 (Kullback–Leibler (KL) divergence). 𝜑(x) = ∑𝑑
𝑖=1 𝑥𝑖 log 𝑥𝑖

for x ∈ Δ𝑑 induces the Kullback–Leibler (KL) divergence:

𝐷𝜑 (x, y) =
𝑑∑
𝑖=1

𝑥𝑖 log 𝑥𝑖−
𝑑∑
𝑖=1

𝑦𝑖 log 𝑦𝑖−
𝑑∑
𝑖=1

(log 𝑦𝑖+1) (𝑥𝑖−𝑦𝑖) =
𝑑∑
𝑖=1

𝑥𝑖 log
𝑥𝑖
𝑦𝑖
.

(1.5)

Example 1.8 (Itakura–Saito distance). 𝜑(x) = −∑𝑑
𝑖=1 log 𝑥𝑖 for x > 0

induces the Itakura–Saito distance:

𝐷𝜑 (x, y) = −
𝑑∑
𝑖=1

log 𝑥𝑖+
𝑑∑
𝑖=1

log 𝑦𝑖+
𝑑∑
𝑖=1

1
𝑦𝑖
(𝑥𝑖−𝑦𝑖) =

𝑑∑
𝑖=1

𝑥𝑖
𝑦𝑖
−

𝑑∑
𝑖=1

log
𝑥𝑖
𝑦𝑖
−1.

(1.6)

1.2 Verification of Convexity

In practice, directly applying the definition of convexity or verifying the first-order
condition of convexity can be challenging when proving that a function is convex.
The following rules offer practical tools to simplify the verification process.

Second-order Condition for Twice Differentiable Functions

If a function 𝑓 (x) is twice differentiable, then it is convex if and only if

∇2 𝑓 (x) � 0, ∀x,
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1.2. VERIFICATION OF CONVEXITY

i.e., its Hessian is positive semidefinite everywhere.

Examples

We can use the above rule to verify the convexity of the following functions.

Example 1.9 (Log-Sum-Exp Function).

ℓ(y) = log

(
𝐾∑
𝑖=1

exp(𝑦𝑖)
)
, y ∈ R𝐾 .

Its Hessian matrix is given by

𝐻 = diag(p) − pp𝑇 ,

where p is the vector of softmax probabilities with components 𝑝𝑖 =
exp(𝑦𝑖 )∑𝐾
𝑘=1 exp(𝑦𝑘 )

. It is positive semidefinite as v>𝐻v =
∑𝐾
𝑖=1 𝑝𝑖𝑣

2
𝑖 − (∑𝐾

𝑖=1 𝑝𝑖𝑣𝑖)2 ≥
0 due to Cauchy-Schwarz inequality.

Example 1.10 (Negative entropy).

𝜑(p) =
𝑛∑
𝑖=1

𝑝𝑖 log 𝑝𝑖

where p ∈ Δ𝑛 = {q :
∑𝑛
𝑖=1 𝑞𝑖 = 1, 𝑞𝑖 ≥ 0,∀𝑖} is a probability vector. Its

Hessian matrix is
𝐻 = diag(1/p)

is positive definite.

Operations that Preserve Convexity

The following operations preserve convexity:

• Affine Composition: If 𝑓 is convex, then 𝑓 (𝐴x + b) is convex for any matrix 𝐴
and vector b.

• Non-Negative Weighted Sums: If 𝑓𝑖 is convex for all 𝑖, and 𝛼𝑖 ≥ 0, then

𝑓 (x) =
∑
𝑖

𝛼𝑖 𝑓𝑖 (x)

is convex.
• Pointwise Maximum: If 𝑔(x, y) is convex in x for all y, then

𝑓 (x) = max
y
𝑔(x, y)
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is convex.
• Function Composition: The composition ℎ(x) = 𝑓 (𝑔(x)) is convex if one of the

following holds:

– 𝑓 is convex and non-decreasing, and 𝑔(x) is convex.
– 𝑓 is convex and non-increasing, and 𝑔(x) is concave.
To quickly verify this, we compute the Hessian matrix assuming that both 𝑓 and
𝑔 are twice-differentiable:

∇2ℎ(x) = 𝑓 ′ (𝑔(x))∇2𝑔(x) + 𝑓 ′′ (𝑔(x))∇𝑔(x)∇𝑔(x)>,

which is positive semi-definite under either of the above two conditions.

1.3 Fenchel Conjugate

Let 𝑓 : R𝑑 → R ∪ {+∞} be a proper convex function. Its Fenchel conjugate (also
called the convex conjugate) is defined as:

𝑓 ∗ (y) = sup
x∈dom( 𝑓 )

{
x>y − 𝑓 (x)

}
,

where the domain of the conjugate function consists of y ∈ R𝑑 for which the supre-
mum is finite. From the definition of conjugate function, we immediately obtain the
inequality

𝑓 (x) + 𝑓 ∗ (y) ≥ x>y,∀x, y.

This is called Fenchel’s inequality. If 𝑓 is proper, convex, and lower semicontinuous,
then the conjugate of the conjugate of a convex function is the original function, i.e.,
( 𝑓 ∗)∗ = 𝑓 .

Definition 1.8 (Legendre function) Let 𝑓 : R𝑑 → R ∪ {+∞} be a proper, lower
semicontinuous, convex function with int(dom 𝑓 ) ≠ ∅. The function 𝑓 is called a
Legendre function if it satisfies:

(i) 𝑓 is differentiable on int(dom 𝑓 ), and for any sequence {x𝑘} ⊂ int(dom 𝑓 ) with
x𝑘 converging to a boundary point of dom 𝑓 , we have ‖∇ 𝑓 (x𝑘)‖ → ∞.

(ii) 𝑓 is strictly convex on every convex subset of dom(𝜕 𝑓 ).

If 𝑓 is Legendre function, its Fenchel conjugate reduces to the Legendre trans-
form, defined by

𝑓 ∗ (y) = x(y)>y − 𝑓 (x(y)),
where x(y) = arg minx (x>y − 𝑓 (x)) is the unique solution to the first-order opti-
mality condition ∇ 𝑓 (x) = y.

8



1.4. CONVEX OPTIMIZATION

Examples

Example 1.11 (Conjugate of the Quadratic Function.). Let 𝑓 (x) = 1
2 ‖x‖2.

Then:

𝑓 ∗ (y) = sup
x

{
x>y − 1

2
‖x‖2

2

}
=

1
2
‖y‖2

2.

Example 1.12 (Conjugate of the Squared Hinge.). Let 𝑓 (𝑥) = max(𝑥, 0)2.
Then:

𝑓 ∗ (𝑦) = sup
𝑥
𝑥𝑦 − max(𝑥, 0)2 =

{
𝑦2

4 , 𝑦 ≥ 0
∞, 𝑦 < 0

.

The Legendre transform is not defined in this case since 𝑓 is not strictly con-
vex.

Example 1.13. Log-sum-exp and negative entropy are conjugates of each
other. Please refer to the Example 1.16.

1.4 Convex Optimization

A standard optimization problem is defined by:

min
x∈R𝑑

𝑓0 (x)

𝑠.𝑡. 𝑓𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚
ℎ 𝑗 (x) = 0, 𝑗 = 1, . . . , 𝑛.

(1.7)

Definition 1.9 A standard optimization problem (1.7) is a convex optimization prob-
lem if 𝑓𝑖 (x) is convex for 𝑖 = 0, . . . , 𝑚 and ℎ 𝑗 (x) = a>𝑗 x+ 𝑏 𝑗 is an affine function for
𝑗 = 1, . . . , 𝑛.

The problem (1.7) is feasible if there exists at least one point such that all con-
straints are satisfied, and infeasible otherwise. The set of all feasible points is called
the feasible set, denoted by

X = {x : 𝑓𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚, ℎ𝑖 (x) = 0, 𝑗 = 1, . . . , 𝑛}.

The Optimal value and optimal solutions

The optimal value of (1.7) is defined as

𝑓∗ = inf{ 𝑓0 (x) |x ∈ X}.

9



where inf returns the greatest value that is less than or equal to all possible objective
values at feasible points if such a value exists. For example inf 𝑒−𝑥 = 0. If the problem
is infeasible, we let 𝑓∗ = ∞.

A solution x∗ is an optimal solution if it is feasible, i.e., satisfying all constraints,
and 𝑓0 (x∗) = 𝑓∗. Hence, we may have a set of optimal solutions:

X∗ = arg min{ 𝑓0 (x) |x ∈ X} = {x : x ∈ X, 𝑓0 (x) = 𝑓∗}.

The optimal solution is unique if the objective is strongly convex.

1.4.1 Local Minima and Global Minima

A solution x is called a local minima if there is an 𝑅 > 0 such that

𝑓0 (x) = inf{ 𝑓0 (y) |y ∈ X, ‖y − x‖2 ≤ 𝑅}. (1.8)

Theorem 1.1 For a convex optimization problem, a local minima x is also a global
minima.

Proof. Suppose x is not a global minima. It means that there exists a feasible z such
that 𝑓0 (z) < 𝑓0 (x). Then ‖z − x‖2 > 𝑅 because x is an optimal solution in the local
region Ω = {y : ‖y − x‖2 ≤ 𝑅}.

Let us derive a contradiction. Let y = x + 𝜃 (z − x), where 𝜃 = 𝑅
‖x−z‖2

such that
‖y − x‖2 ≤ 𝜃‖z − x‖2 ≤ 𝑅. Then 𝑓0 (y) ≤ 𝜃 𝑓0 (z) + (1 − 𝜃) 𝑓0 (x) < 𝑓0 (x), which
contradicts to the fact that x is an optimal solution in the region Ω = {y : ‖y− x‖2 ≤
𝑅}. Hence such an z does not exist. ut

1.4.2 Optimality Conditions

Let us consider a differential objective function 𝑓0.

Theorem 1.2 For a convex optimization problem (1.7) with non-empty X∗, x is op-
timal if and only if x ∈ X and

∇ 𝑓0 (x)> (y − x) ≥ 0,∀y ∈ X. (1.9)

For non-differential function, the above condition is replaced by ∃v ∈ 𝜕 𝑓0 (x)
such that v> (y − x) ≥ 0,∀y ∈ X.

Proof. To prove the sufficient condition, we use the convexity of 𝑓0. For any y ∈ X,
we have

10



1.4. CONVEX OPTIMIZATION

𝑓0 (y) ≥ 𝑓0 (x) + ∇ 𝑓0 (x)> (y − x) ≥ 𝑓0 (x).

Hence x is an optimal solution. Let us prove the necessary condition. If (1.9) does
not hold for an y, i.e., ∇ 𝑓0 (x)> (y − x) < 0, let us consider z(𝑡)) = 𝑡y + (1 − 𝑡)x,
which is feasible. Thence ∇𝑡 𝑓0 (z(𝑡)) |𝑡=0 = ∇ 𝑓0 (x)> (y − x) < 0, which means there
exists a small 𝑡 > 0 such that 𝑓0 (z(𝑡)) ≤ 𝑓0 (z(0)) = 𝑓0 (x), which is impossible as x
is an optimal solution. ut

When the problem is unconstrained such that X = R𝑑 , then the optimality condi-
tion (1.9) implies that x is optimal if and only if ∇ 𝑓0 (x) = 0.

Lemma 1.2 For a convex optimization problem (1.7), if 𝑓0 is strongly convex, then
X∗ contains only a single element if it is not empty.

Proof. Assume X∗ contains two different solutions x1 ≠ x2 such that 𝑓0 (x1) =
𝑓0 (x2). We will derive a contradiction. Since 𝑓0 is strongly convex, we have

𝑓0 (x1) ≥ 𝑓0 (x2) + 𝜕 𝑓0 (x2)> (x1 − x2) +
1
2
‖x1 − x2‖2

2.

Due to the optimality condition, 𝜕 𝑓0 (x2)> (x1 − x2) ≥ 0, hence 𝑓0 (x1) ≥ 𝑓0 (x2) +
1
2 ‖x1 − x2‖2

2 > 𝑓0 (x2), which contradicts to the fact 𝑓0 (x1) = 𝑓0 (x2).
ut

1.4.3 Karush–Kuhn–Tucker (KKT) Conditions

Constrained optimization problems such as (1.7) are often challenging to analyze and
solve directly. The Karush-Kuhn-Tucker (KKT) conditions, derived fromLagrangian
duality theory, offer first-order necessary conditions for optimality. These conditions
can simplify the original problem, sometimes enabling a transformation into a more
tractable form or even leading to a closed-form solution.

The Lagrangian function and the Lagrangian dual function

For the constrained optimization (1.7), the Lagrangian function is defined as:

𝐿 (x, 𝜆, 𝜇) = 𝑓0 (x) +
𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖 (x) +
𝑛∑
𝑗=1
𝜈 𝑗ℎ 𝑗 (x),

where 𝜆1, . . . , 𝜆𝑚, 𝜈1, . . . , 𝜈𝑛 are called the Lagrangian multipliers.
The Lagrangian dual function is defined as:

𝑔(𝜆, 𝜈) = inf
x
𝐿 (x, 𝜆, 𝜇).
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Based on this, we define the Lagrangian dual problem:

𝑔∗ = sup
𝜆≥0

𝑔(𝜆, 𝜈).

Regarding the original optimal value 𝑓∗ and the dual optimal value 𝑔∗, we have the
following weak duality.

Lemma 1.3 We always have 𝑔∗ ≤ 𝑓∗.

Proof. Let x∗ be an optimal solution to (1.7). For any 𝜆 ≥ 0, 𝜈, we have

𝑔(𝜆, 𝜈) = inf
x
𝐿 (x, 𝜆, 𝜇) ≤ 𝐿 (x∗, 𝜆, 𝜇)

= 𝑓0 (x∗) +
𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖 (x∗) +
𝑛∑
𝑗=1
𝜈 𝑗ℎ 𝑗 (x∗) ≤ 𝑓0 (x∗),

where the last inequality uses the fact ℎ 𝑗 (x∗) = 0, 𝑓𝑖 (x∗) ≤ 0, and 𝜆 ≥ 0. The
conclusion follows. ut

KKT conditions

An interesting scenario is the strong duality where 𝑔∗ = 𝑓∗. In such case, we can
derive two conditions.

Lemma 1.4 Suppose that the primal and dual optimal values are attained and equal.
Let x∗ be an optimal primal solution and 𝜆∗, 𝜈∗ be optimal dual solutions. Assume
that 𝑓 , 𝑔𝑖 , ℎ 𝑗 are continuously differentiable, then the following conditions hold:

∇ 𝑓0 (x∗) +
𝑚∑
𝑖=1

𝜆∗,𝑖∇ 𝑓𝑖 (x∗) +
𝑛∑
𝑗=1
𝜈∗, 𝑗∇ℎ 𝑗 (x∗) = 0, (1.10)

𝜆∗,𝑖 𝑓𝑖 (x∗) = 0, 𝑖 = 1, . . . , 𝑚, (1.11)

where the second condition is called the complementary slackness.

Proof. First, we have

𝑔∗ = sup
𝜆≥0

𝑔(𝜆, 𝜈) = 𝑔(𝜆∗, 𝜈∗) = inf
x
𝐿 (x, 𝜆∗, 𝜈∗)

= inf
x
𝑓0 (x) +

𝑚∑
𝑖=1

𝜆∗,𝑖 𝑓𝑖 (x) +
𝑛∑
𝑗=1
𝜈∗, 𝑗ℎ 𝑗 (x)

≤ 𝑓0 (x∗) +
𝑚∑
𝑖=1

𝜆∗,𝑖 𝑓𝑖 (x∗) +
𝑛∑
𝑗=1
𝜈∗, 𝑗ℎ 𝑗 (x∗)

≤ 𝑓0 (x∗) = 𝑓∗.
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1.4. CONVEX OPTIMIZATION

Since 𝑔∗ = 𝑓∗, the inequalities will become equalities. The first equality is

inf
x
𝑓0 (x) +

𝑚∑
𝑖=1

𝜆∗,𝑖 𝑓𝑖 (x) +
𝑛∑
𝑗=1
𝜈∗, 𝑗ℎ 𝑗 (x) = 𝑓0 (x∗) +

𝑚∑
𝑖=1

𝜆∗,𝑖 𝑓𝑖 (x∗) +
𝑛∑
𝑗=1
𝜈∗, 𝑗ℎ 𝑗 (x∗),

which implies that x∗ optimizes 𝐿 (x, 𝜆∗, 𝜈∗). Hence, by the first-order optimality
condition, we have ∇x𝐿 (x, 𝜆∗, 𝜈∗) = 0, which is (1.10). The second equality is

𝑓0 (x∗) +
𝑚∑
𝑖=1

𝜆∗,𝑖 𝑓𝑖 (x∗) +
𝑛∑
𝑗=1
𝜈∗, 𝑗ℎ 𝑗 (x∗) = 𝑓0 (x∗),

which implies 𝜆∗,𝑖 𝑓𝑖 (x∗) = 0,∀, 𝑖 because 𝜆∗,𝑖 𝑓𝑖 (x∗) ≤ 0,∀, 𝑖 and they cannot be
larger than zero; otherwise the equality will not hold. ut

 KKT conditions

Assume that 𝑓 , 𝑔𝑖 , ℎ 𝑗 are continuously differentiable. Let x∗ be an optimal primal
solution and 𝜆∗, 𝜈∗ be optimal dual solutions. The KKT conditions are:

(Stationarity) ∇ 𝑓0 (x∗) +
𝑚∑
𝑖=1

𝜆∗,𝑖∇ 𝑓𝑖 (x∗) +
𝑛∑
𝑗=1
𝜈∗, 𝑗∇ℎ 𝑗 (x∗) = 0,

(Primal feasibility) 𝑓𝑖 (x∗) ≤ 0, ℎ 𝑗 (x∗) = 0,∀𝑖, 𝑗 ,
(Dual feasibility) 𝜆∗,𝑖 ≥ 0,∀𝑖,
(Complementary slackness) 𝜆∗,𝑖 𝑓𝑖 (x∗) = 0,∀𝑖.

Slater’s condition

How to ensure the strong duality holds? Constraint qualifications have been devel-
oped as sufficient conditions of strong duality. One simple constraint qualification is
Slater’s condition for a convex optimization problem: There exists an x ∈ relint(𝐷)
(where relint denotes the relative interior of the convex set 𝐷 := ∩𝑚𝑖=0 dom( 𝑓𝑖) such
that

𝑓𝑖 (x) < 0,∀𝑖, and a>𝑗 x + 𝑏 𝑗 = 0,∀ 𝑗 .
An important theorem of Lagrangian duality is that the strong duality holds when
the primal problem is convex and Slater’s condition holds. This suggests a tangible
approach to compute x∗ or transform the original problem into a simplified one. First,
we solve the dual problem to obtain an optimal dual solution (𝜆∗, 𝜈∗):

(𝜆∗, 𝜈∗) = arg max
𝜆≥0,𝜈

𝑔(𝜆, 𝜈). (1.12)

Then we use the stationarity condition of KKT conditions to derive a close form of
x∗. In addition, we have
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min
x
{ 𝑓0 (x), 𝑠.𝑡. x ∈ X} = max

𝜆≥0,𝜈
𝑔(𝜆, 𝜈).

Examples

Example 1.14 (Dual of Distributionally Robust optimization (DRO)).
The following problem often arises in robust machine learning:

𝑓 (ℓ1, . . . , ℓ𝑛) = max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ𝑖 − 𝜏
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖),

where 𝜏 ≥ 0, q ∈ Δ𝑛 and 𝜙(𝑡) : R+ → R is a proper closed convex function
and has a minimum value zero that is attained at 𝑡 = 1. Let us derive its
dual problem. We write the above problem as a standard convex optimization
problem:

min
p

−
𝑛∑
𝑖=1

𝑝𝑖ℓ𝑖 + 𝜏
∑
𝑖

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖)

𝑠.𝑡.
𝑛∑
𝑖=1

𝑝𝑖 = 1.

where the constraint 𝑝𝑖 ≥ 0 is enforced by the domain of 𝜙(𝑡).
We define the Lagrangian function:

𝐿 (p, 𝜈) = −
𝑛∑
𝑖=1

𝑝𝑖ℓ𝑖 + 𝜏
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖) + 𝜈
(
𝑛∑
𝑖=1

𝑝𝑖 − 1

)
.

Let us define

𝜙∗ (𝑠) = max
𝑡≥0

𝑡𝑠 − 𝜙(𝑡). (1.13)

By minimizing over p ≥ 0, we have

𝑔(𝜈) = min
p≥0

−
𝑛∑
𝑖=1

𝑝𝑖 (ℓ𝑖 − 𝜈) + 𝜏
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖) − 𝜈

= −{max
p≥0

𝑛∑
𝑖=1

𝑝𝑖 (ℓ𝑖 − 𝜈) − 𝜏
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖)} − 𝜈.

With a variable change 𝑝 = 𝑝/𝑞, we have
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𝑔(𝜈) = −max
𝑝̃≥0

𝑛∑
𝑖=1

𝑞𝑖{𝑝𝑖 (ℓ𝑖 − 𝜈) − 𝜏𝜙(𝑝𝑖)} − 𝜈

= −
𝑛∑
𝑖=1

𝑞𝑖{max
𝑝̃𝑖≥0

𝑝𝑖 (ℓ𝑖 − 𝜈) − 𝜏𝜙(𝑝𝑖)} − 𝜈 = −
𝑛∑
𝑖=1

𝜏𝑞𝑖𝜙
∗
(
ℓ𝑖 − 𝜈
𝜏

)
− 𝜈.

Since the Slater’s condition holds (𝑝𝑖 = 1/𝑛 satisfies), we have

min
p∈Δ

−
𝑛∑
𝑖=1

𝑝𝑖ℓ𝑖 + 𝜏
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖)

= max
𝜈
𝑔(𝜈) = −

{
min
𝜈

𝑛∑
𝑖=1

𝜏𝑞𝑖𝜙
∗
(
ℓ𝑖 − 𝜈
𝜏

)
+ 𝜈

}
.

Hence,

max
p∈Δ

𝑛∑
𝑖=1

𝑝𝑖ℓ𝑖 − 𝜏
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖) = min
𝜈

𝑛∑
𝑖=1

𝜏𝑞𝑖𝜙
∗
(
ℓ𝑖 − 𝜈
𝜏

)
+ 𝜈. (1.14)

Example 1.15 (Conjugate of 𝜙 functions.). We can derive 𝜙∗ for three cases
below (exercise):

• 𝜙(𝑡) = (𝑡 − 1)2:

𝜙∗ (𝑦) = max
𝑡≥0

𝑦𝑡 − (𝑡 − 1)2 =

{ 1
4 𝑦

2 + 𝑦 if 𝑦 ≥ −2
−1 o.w.

• 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1 and

𝜙∗ (𝑦) = max
𝑡≥0

𝑦𝑡 − (𝑡 log 𝑡 − 𝑡 + 1) = exp(𝑦) − 1.

• 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼) for 𝛼 ∈ (0, 1]:

𝜙∗ (𝑦) = max
𝑡≥0

𝑦𝑡 − I0−∞ (𝑡 ≤ 1/𝛼) = [𝑦]+
𝛼

.

Example 1.16 (KKT conditions of DRO with a KL divergence). Let us
consider a special case of Example 1.14 with 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1:

𝑓 (ℓ1, . . . , ℓ𝑛) = max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ𝑖 − 𝜏
𝑛∑
𝑖=1

𝑝𝑖 log
𝑝𝑖
𝑞𝑖
. (1.15)

We can derive the following KKT conditions:
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(ℓ𝑖 − 𝜈∗) − 𝜏(log
𝑝∗𝑖
𝑞𝑖

+ 1) = 0,∀𝑖 ⇒ 𝑝∗𝑖 = 𝑞𝑖 exp
(
ℓ𝑖 − 𝜈∗ − 𝜏

𝜏

)
,

𝑛∑
𝑖=1

𝑝∗𝑖 = 1.

As a result, we can derive

𝑝∗𝑖 =
𝑞𝑖 exp( ℓ𝑖𝜏 )∑𝑛
𝑖=1 𝑞𝑖 exp( ℓ𝑖𝜏 )

(1.16)

𝑓 (ℓ1, . . . , ℓ𝑛) = 𝜏 log

(
𝑛∑
𝑖=1

𝑞𝑖 exp
(
ℓ𝑖
𝜏

))
. (1.17)

1.5 Basic Lemmas

Below,we present some basic lemmas that are useful for the presentation and analysis
in later chapters.

Lemma 1.5 For a 𝐿-smooth convex function w.r.t. ‖ · ‖2, the following conditions
are equivalent:

(a) 0 ≤ 𝑓 (y) − 𝑓 (x) − ∇ 𝑓 (x)> (y − x) ≤ 𝐿
2 ‖x − y‖2

2;
(b) 1

2𝐿 ‖∇ 𝑓 (y) − ∇ 𝑓 (x)‖2
2 ≤ 𝑓 (y) − 𝑓 (x) − ∇ 𝑓 (x)> (y − x);

(c) 1
𝐿 ‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖2

2 ≤ (∇ 𝑓 (x) − ∇ 𝑓 (y))> (x − y) ≤ 𝐿‖x − y‖2
2;

(d) 𝛼(1−𝛼)
2𝐿 ‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖2

2 ≤ 𝛼 𝑓 (x) + (1 − 𝛼) 𝑓 (y) − 𝑓 (𝛼x + (1 − 𝛼)y) ≤
𝛼(1 − 𝛼) 𝐿2 ‖x − y‖2

2.

Proof. Let us prove (a). Since 𝑑 𝑓 (x+𝛾p)
𝑑𝛾 = ∇ 𝑓 (x+𝛾p)>p, according to Taylor Theory

𝑓 (x + p) = 𝑓 (x) +
∫ 1

0
∇ 𝑓 (x + 𝛾p)>p𝑑𝛾

Let y = x + p:
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𝑓 (y) − 𝑓 (x) − ∇ 𝑓 (x)> (y − x)

=
∫ 1

0
∇ 𝑓 (x + 𝛾(y − x))> (y − x)𝑑𝛾 − ∇ 𝑓 (x)> (y − x)

=
∫ 1

0
∇ 𝑓 (x + 𝛾(y − x))> (y − x) − ∇ 𝑓 (x)> (y − x)𝑑𝛾

≤
∫ 1

0
‖∇ 𝑓 (x + 𝛾(y − x)) − ∇ 𝑓 (x)‖2‖p‖2𝑑𝛾

≤
∫ 1

0
𝐿‖𝛾p‖2‖p‖2𝑑𝛾 =

𝐿

2
‖y − x‖2

2.

Let us prove (b). Define 𝜙(z) = 𝑓 (z) −∇ 𝑓 (x)>z. We can conclude that z∗ = x (by
the first-order optimality) and that 𝜙(z) is also convex & 𝐿-smooth if 𝑓 is convex &
𝐿-smooth.

𝜙(x) = min
z
𝜙(z)≤ min

z

{
𝜙(y) + ∇𝜙(y)> (z − y) + 𝐿

2
‖z − y‖2

2

}
𝑟=z−y
= min

𝑟

{
𝜙(y) + ∇𝜙(y)>𝑟 + 𝐿

2
‖𝑟 ‖2

2

}
solve 𝑟
= 𝜙(y) −

‖𝜙(y)‖2
2

𝐿
+
‖∇𝜙(y)‖2

2
2𝐿

= 𝜙(y) −
‖∇𝜙(y)‖2

2
2𝐿

.

Then, we have 2𝐿 (𝜙(y) − 𝜙(x)) ≥ ‖∇𝜙(y)‖2
2, which prove the result by plugging in

𝜙(z) = 𝑓 (z) − ∇ 𝑓 (x)>z and ∇𝜙(z) = ∇ 𝑓 (z) − ∇ 𝑓 (x).
Let us prove (c). According to part (b) we have

1
2𝐿

‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖2
2 ≤ 𝑓 (y) − 𝑓 (x) − ∇ 𝑓 (x)> (y − x).

Similarly,

1
2𝐿

‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖2
2 ≤ 𝑓 (x) − 𝑓 (y) − ∇ 𝑓 (y)> (x − y).

Summing up the above two inequalities leads to

1
𝐿
‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖2

2 ≤ (∇ 𝑓 (x) − ∇ 𝑓 (y))> (x − y).

Let us prove (d). Let x𝛼 = 𝛼x + (1 − 𝛼)y. From (a) and (b), we have
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1
2𝐿

‖∇ 𝑓 (x) − ∇ 𝑓 (x𝛼)‖2
2 ≤ 𝑓 (x) − ( 𝑓 (x𝛼) + ∇ 𝑓 (x𝛼)> (1 − 𝛼) (x − y))

≤ 𝐿

2
‖(1 − 𝛼) (x − y)‖2

2,

1
2𝐿

‖∇ 𝑓 (y) − ∇ 𝑓 (x𝛼)‖2
2 ≤ 𝑓 (y) − ( 𝑓 (x𝛼) + ∇ 𝑓 (x𝛼)>𝛼(y − x))

≤ 𝐿

2
‖𝛼(y − x)‖2

2.

Multiplying the first by 𝛼 and the second by 1 − 𝛼, we can prove part (d), where the
lower bound is as

𝛼

2𝐿
‖∇ 𝑓 (x)−∇ 𝑓 (x𝛼)‖2

2+
1 − 𝛼
2𝐿

‖∇ 𝑓 (y)−∇ 𝑓 (x𝛼)‖2
2 ≥ 𝛼(1 − 𝛼)

2𝐿
‖∇ 𝑓 (x)−∇ 𝑓 (y)‖2

2

by applying the Young’s inequality ‖a − b‖2
2 ≤ (1 + 𝛽)‖a − c‖2

2 + (1 + 1
𝛽 )‖b − c‖2

2
with 𝛽 = 𝛼/(1 − 𝛼). ut

Lemma 1.6 If 𝑓 is differentiable and 𝜇-strongly convex w.r.t ‖ · ‖2, the following
conditions are equivalent:

(a) 𝑓 (y) − 𝑓 (x) − ∇ 𝑓 (x)> (y − x) ≥ 𝜇
2 ‖x − y‖2

2;
(b) 𝑓 (y) − 𝑓 (x) − ∇ 𝑓 (x)> (y − x) ≤ 1

2𝜇 ‖∇ 𝑓 (y) − ∇ 𝑓 (x)‖2
2;

(c)𝜇‖x − y‖2
2 ≤ (∇ 𝑓 (x) − ∇ 𝑓 (y))> (x − y) ≤ 1

𝜇 ‖∇ 𝑓 (x) − ∇ 𝑓 (y)‖2
2;

(d) 𝛼(1−𝛼)𝜇2 ‖x−y‖2 ≤ 𝛼 𝑓 (x)+(1−𝛼) 𝑓 (y)− 𝑓 (𝛼x+(1−𝛼)y) ≤ 𝛼(1−𝛼) 1
2𝜇 ‖∇ 𝑓 (x)−

∇ 𝑓 (y)‖2
2.

From (a) we can derive an useful inequality for strongly convex optimization x∗ =
arg minx 𝑓 (x), i.e., for any x, we have

𝑓 (x) ≥ 𝑓 (x∗) + ∇ 𝑓 (x∗)> (x − x∗) +
𝜇

2
‖x − x∗‖2

2 ≥ 𝑓 (x∗) +
𝜇

2
‖x − x∗‖2

2. (1.18)

Proof of (b). Define 𝜙(z) = 𝑓 (z) − ∇ 𝑓 (x)>z. We can conclude that z∗ = x (by the
first-order optimality) and that 𝜙(z) is also convex & 𝜇-strongly convex since 𝑓 is
convex & 𝜇-strongly convex.

𝜙(x) = min
z
𝜙(z)≥ min

z

{
𝜙(y) + ∇𝜙(y)> (z − y) + 𝜇

2
‖z − y‖2

2

}
𝑟=z−y
= min

𝑟

{
𝜙(y) + ∇𝜙(y)>𝑟 + 𝜇

2
‖𝑟 ‖2

2

}
solve 𝑟
= 𝜙(y) −

‖𝜙(y)‖2
2

2𝜇
.

Then, we have 2𝜇(𝜙(y) − 𝜙(x)) ≤ ‖𝜙(y)‖2
2, which prove the result by plugging in

𝜙(z) = 𝑓 (z) − ∇ 𝑓 (x)>z and ∇𝜙(z) = ∇ 𝑓 (z) − ∇ 𝑓 (x).
part (b), (c), (d) can be proved similarly as the previous lemma. ut
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Lemma 1.7 If 𝑟 (·) is 𝜇-strongly convex w.r.t ‖ · ‖2 and

prox𝜂𝑟 (z1) := arg min
w
𝑟 (w) + 1

2𝜂
‖w − z1‖2

2, (1.19)

prox𝜂𝑟 (z2) := arg min
w
𝑟 (w) + 1

2𝜂
‖w − z2‖2

2 , (1.20)

then we have ‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2 ≤ 1
1+𝜇𝜂 ‖z1 − z2‖2.

Proof. First, we can see that when 𝑟 = 0, the conclusion trivially holds. Next, we
prove it when 𝑟 is present.

By the optimality of prox𝜂𝑟 (z1) and prox𝜂𝑟 (z1) we have

u :=
z1 − prox𝜂𝑟 (z1)

𝜂
∈ 𝜕𝑟 (prox𝜂𝑟 (z1))

v :=
z2 − prox𝜂𝑟 (z2)

𝜂
∈ 𝜕𝑟 (prox𝜂𝑟 (z2)).

Since 𝑟 (x) is 𝜇-strongly convex, we have

𝑟 (prox𝜂𝑟 (z1)) ≥ 𝑟 (prox𝜂𝑟 (z2)) + v> (prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2))

+ 𝜇
2
‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2

2

𝑟 (prox𝜂𝑟 (z2)) ≥ 𝑟 (prox𝜂𝑟 (z1)) + u> (prox𝜂𝑟 (z2) − prox𝜂𝑟 (z1))

+ 𝜇
2
‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2

2.

Adding them together, we have

𝜇‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2
2 ≤ (u − v)> (prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2))

=
1
𝜂
(z1 − z2 + prox𝜂𝑟 (z2) − prox𝜂𝑟 (z1))> (prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)),

which implies

(𝜇 + 1
𝜂
)‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2

2 ≤ 1
𝜂
(z1 − z2)> (prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2))

≤ 1
𝜂
‖z1 − z2)‖2‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2.

Thus ‖ prox𝜂𝑟 (z1) − prox𝜂𝑟 (z2)‖2 ≤ 1
𝜇𝜂+1 ‖z1 − z2‖2. ut

Lemma 1.8 For a proper closed convex function 𝑓 , the following holds:

(i) if 𝑓 is 𝐺-Lipchitz continuous w.r.t ‖ · ‖2, then dom( 𝑓 ∗) is bounded and for any
y ∈ dom( 𝑓 ∗), we have ‖y‖2 ≤ 𝐺;
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(ii) if x∗ ∈ arg maxx{x>y∗− 𝑓 (x)}, then y∗ ∈ arg maxy{y>x∗− 𝑓 ∗ (y)}. Equivalently,
y∗ ∈ 𝜕 𝑓 (x∗) (or x∗ ∈ 𝜕 𝑓 ∗ (y∗));

(iii) if 𝑓 is further a Legendre function, then 𝑓 (x∗) + 𝑓 ∗ (y∗) = x>∗ y∗ if and only if
y∗ = ∇ 𝑓 (x∗), and ∇ 𝑓 ∗ = (∇ 𝑓 )−1.

Proof. Let us prove (i). For any y with ‖y‖2 > 𝐺, let u = y/‖y‖2 and take x = 𝑡u.
By Lipschitz continuity, 𝑓 (𝑡u) ≤ 𝑓 (0) + 𝐺𝑡, hence

y>𝑡u − 𝑓 (𝑡u) ≥ 𝑡 (‖y‖2 − 𝐺) − 𝑓 (0) → +∞,

so 𝑓 ∗ (y) = +∞ and thus y ∉ dom( 𝑓 ∗).
Next, we prove (ii). Since x∗ attains the supremum in the definition of 𝑓 ∗ (y∗), we

have y∗ ∈ 𝜕 𝑓 (x∗) according to the optimality condition and 𝑓 ∗ (y∗) = x>∗ y∗ − 𝑓 (x∗).
Using 𝑓 ∗∗ = 𝑓 , we obtain

𝑓 (x∗) = sup
y
{y>x∗ − 𝑓 ∗ (y)} = x>∗ y∗ − 𝑓 ∗ (y∗),

and the above equality shows that y∗ attains the supremum.Hence, y∗ ∈ arg maxy{y>x∗−
𝑓 ∗ (y)}, and x∗ ∈ 𝜕 𝑓 ∗ (y∗).

Lastly, we prove (iii). By definition, 𝑓 ∗ (y∗) is the supremum of the concave func-
tion 𝐹 (x) = y>∗ x − 𝑓 (x). If this supremum is attained at x∗ ∈ R𝑑 , then ∇𝐹 (x∗) = 0,
which is to say y∗ = ∇ 𝑓 (x∗). On the other hand, if y∗ = ∇ 𝑓 (x∗), then x∗ is a maxi-
mizer of 𝐹 (x), and therefore 𝑓 ∗ (y∗) = y>∗ x∗ − 𝑓 (x∗). Using the this result twice,

y = ∇ 𝑓 (x) if and only if 𝑓 (x) + 𝑓 ∗ (y) = x>y
x = ∇ 𝑓 ∗ (y) if and only if 𝑓 ∗ (y) + 𝑓 ∗∗ (x) = x>y.

Since 𝑓 ∗∗ = 𝑓 , then x = ∇ 𝑓 −1 (y) = ∇ 𝑓 ∗ (y). Hence (∇ 𝑓 )−1 = ∇ 𝑓 ∗. ut

Lemma 1.9 If 𝑓 is 𝜇-strongly convex w.r.t ‖ · ‖2, then its Fenchel conjugate is 1/𝜇-
smooth. Similarly if 𝑓 is 𝐿-smooth and convex w.r.t ‖ · ‖2, then its Fenchel conjugate
is 1/𝐿-strongly convex.

Proof. Let 𝑓 ∗ (y) = maxx x>y − 𝑓 (x) be the Fenchel conjugate of 𝑓 .
Suppose 𝑓 is 𝜇-strongly convex. let x(y) = arg maxx x>y− 𝑓 (x). Then ∇ 𝑓 ∗ (y) =

x(y) due to the Danskin Theorem. Similar to the previous lemma, we can prove that

‖x(y1) − x(y2)‖2 ≤ 1
𝜇
‖y1 − y2‖2,

which proves the Lipchitz continuity of ∇ 𝑓 ∗ (y) and hence the smoothness of 𝑓 ∗.
Suppose 𝑓 is 𝐿-smooth and convex. Let us prove 𝑓 ∗ is 1/𝐿-strongly convex. Let

us consider y1, y2. Let x1 ∈ arg maxx x>y1 − 𝑓 (x) and X2 = arg maxx x>y2 − 𝑓 (x).
Then ∇ 𝑓 (x1) = y1. For any x2 ∈ X2, we have ∇ 𝑓 (x2) = y2. Given that

𝑓 ∗ (y1) = x>1 y1 − 𝑓 (x1), 𝑓 ∗ (y2) = x>2 y2 − 𝑓 (x2),
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then

𝑓 ∗ (y1) − 𝑓 ∗ (y2) − x>2 (y1 − y2)
= x>1 y1 − 𝑓 (x1) − (x>2 y2 − 𝑓 (x2)) − x>2 (∇ 𝑓 (x1) − ∇ 𝑓 (x2))
= 𝑓 (x2) − 𝑓 (x1) + x>1 ∇ 𝑓 (x1) − x>2 ∇ 𝑓 (x2) − x>2 (∇ 𝑓 (x1) − ∇ 𝑓 (x2))

= 𝑓 (x2) − 𝑓 (x1) + (x1 − x2)>∇ 𝑓 (x1) ≥
1

2𝐿
‖∇ 𝑓 (x1) − ∇ 𝑓 (x2)‖2

2 =
1

2𝐿
‖y1 − y2‖2

2,

where the last inequality is due to part (b) of Lemma 1.5. Hence, we can conclude the
proof by noting that 𝜕 𝑓 ∗ (y2) = conv(X2) due to the generalized Danskin theorem.

ut

Lemma 1.10 For p ∈ Δ𝑛, the negative entropy function 𝑅(p) =
∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖 is

1-strongly convex w.r.t to the ℓ1 norm ‖ · ‖1.

Proof. For any x, y ∈ Δ𝑛, let 𝑓 (𝑡) = 𝑅(y + 𝑡 (x − y). By the second-order Taylor
expansion, for some 𝑡 ∈ (0, 1), we have

𝑅(x) = 𝑓 (1) = 𝑓 (0) + 𝑓 ′ (0) + 1
2
𝑓 ′′ (𝑡)

= 𝑅(y) + ∇𝑅(y)> (x − y) + 1
2
(x − y)>∇2𝑅(y + 𝑡 (x − y)) (x − y).

Hence it suffices to prove that v>∇2𝑅(p)v ≥ ‖v‖2
1 for any p ∈ Δ𝑛. This can be seen

from the following:

v>∇2𝑅(p)v =
𝑑∑
𝑖=1

𝑣2𝑖 𝑝
−1
𝑖 =

[∑
𝑖

𝑣2𝑖 𝑝
−1
𝑖

] [∑
𝑖

𝑝𝑖

]
≥

[∑
𝑖

(𝑝−1/2
𝑖 |𝑣𝑖 |)𝑝1/2

𝑖

]2

=

[∑
𝑖

|𝑣𝑖 |
]2

,

where the inequality follows by Cauchy inequality.
ut

1.6 History and Notes

This chapter has selectively introduced core concepts from convex optimization that
are most pertinent to the algorithms and applications discussed in later chapters.
While the treatment here is necessarily concise, readers seeking a more comprehen-
sive foundation are encouraged to consult several classic references.

The text by Rockafellar (1970a) provides one of the most comprehensive and
authoritative treatments of convex analysis. The textbook by Boyd andVandenberghe
(2004) is an excellent introduction to convex optimization well suited for engineers.
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It covers convex sets, convex functions, duality, and optimality conditions in detail,
and emphasizes geometric intuition and practical modeling. Many of the definitions
and examples in this chapter are inspired by this text. Bertsekas (2009) offers deep
insights into convex analysis, duality theory, and constrained optimization from a
classical perspective.

The KKT condition is named after three mathematicians,WilliamKarush, Harold
W. Kuhn and Albert W. Tucker. It was known due to Kuhn and Tucker, who first pub-
lished the conditions in 1951 (Kuhn and Tucker, 2014). Later scholars discovered
that the necessary conditions for this problem had been stated by Karush in his mas-
ter’s thesis in 1939 (Karush, 1939). The Danskin Theorem originates from the work
of Danskin (1967), while its generalized form for subdifferentiable is attributed to
Bertsekas (2005).

Nesterov’s Introductory Lectures on Convex Programming (Nesterov, 2004) pro-
vides a more mathematically rigorous treatment, including several key lemmas on
smooth and strongly convex functions (Lemma 1.5 and Lemma 1.6) that are pre-
sented in this chapter. It is particularly useful for readers interested in complex-
ity analysis and the theoretical underpinnings of first-order methods. The proof of
Lemma 1.10 is due to Nemirovski et al. (2009).
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Chapter 2
Introduction: Advanced Machine Learning

Abstract This chapter begins with an introduction to the traditional empirical risk
minimization (ERM) framework, using standard label prediction tasks to illustrate its
three core components: loss functions, optimization algorithms, and generalization
analysis. We then explore advanced learning techniques including distributionally
robust optimization (DRO) and group DRO that aim to enhance model robustness
under distribution shifts. Building on this foundation, we introduce the empirical
X-risk minimization (EXM) paradigm and discuss its applications in modern ma-
chine learning. Finally, we present the concept of data prediction for discriminative
learning in foundation models. The goals of this chapter are threefold: (i) to provide
a cohesive view of how discriminative principles inform objective function design;
(ii) to highlight the role of optimization tools for objective design andmodel training;
and (iii) to motivate the need for compositional optimization frameworks.

models fade, but principles endure!
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2.1. EMPIRICAL RISK MINIMIZATION

2.1 Empirical Risk Minimization

What is Machine Learning (ML)?

In 1959, Arthur Samuel, a pioneer in the field ofML, definedMachine Learn-
ing as the “field of study that gives computers the ability to learn without
being explicitly programmed”.

Nowadays, machine learning has become the foundation of AI. The essence of
machine learning is to learn a model by optimizing an objective function on training
data, with the goal of achieving strong generalization to unseen data. This relation-
ship is captured by the formula:

Machine Learning = Objective + Algorithm + Generalization.

Optimization plays a fundamental role in machine learning, as it underpins (1) the
formulation of objective functions, (2) the development of optimization algorithms,
and (3) the analysis of generalization error of learned models. Below, we will use the
traditional label prediction problem to illustrate the three components.

2.1.1 Discriminative Label Prediction

In supervised learning, the primary objective is often to learn a predictive model
from a given set of supervised training data. Let us consider a classical label predic-
tion problem. Denote by (x, 𝑦) a data-label pair, where x ∈ X ⊂ R𝑑0 denotes the
input feature vector, and 𝑦 ∈ Y = {1, . . . , 𝐾} is the corresponding label. The goal
is to learn a predictive model parameterized by w ∈ W ⊆ R𝑑 (e.g., a deep neural
network), which induces a scoring function ℎ(w; ·) : X → R𝐾 . Conceptually, the
model can be expressed as ℎ(w; x) = 𝑊ℎ0 (w; x), where ℎ0 (w; ·) : X → R𝑑1 is the
feature extraction component, and𝑊 ∈ R𝐾×𝑑1 is the classification head correspond-
ing to the 𝐾 classes.

A classical framework for learning such a model is the well-known empirical risk
minimization (ERM), which minimizes the empirical risk over the training dataset.
To this end, a pointwise loss function ℓ(ℎ(w; x), 𝑦) is defined to measure the discrep-
ancy between the model’s prediction ℎ(w; x) and the true label 𝑦. Given a training
dataset S = {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)}, the ERM problem is formulated as:

min
w∈W

RS (w) :=
1
𝑛

𝑛∑
𝑖=1

ℓ(ℎ(w; x𝑖), 𝑦𝑖). (2.1)
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2.1.2 Discriminative Loss Functions

A major element of ERM is the design of the loss function. A common strategy of
designing a loss function for label prediction is through a discriminative approach.
Below, we introduce several discriminative loss functions.

Logistic Loss

A parameterized probabilistic model is defined to represent the probability of a class
label for a given data point as

Pr(𝑦 |x; w) =
exp([ℎ(w; x)]𝑦)∑𝐾
𝑙=1 exp( [ℎ(w; x)]𝑙)

, (2.2)

where [·]𝑘 denotes the 𝑘-th element of a vector. The associated loss is derived from
the negative log-likelihood, resulting in the multi-class logistic loss, also known as
the cross-entropy (CE) loss:

ℓ(ℎ(w; x), 𝑦) = − log
exp([ℎ(w; x)]𝑦)∑𝐾
𝑙=1 exp([ℎ(w; x)]𝑙)

. (2.3)

The resulting method by ERM is commonly referred to as multi-class logistic regres-
sion. For binary classification, this loss becomes the binary logistic loss ℓ(ℎ(w; x), 𝑦) =
log(1 + exp(−𝑦ℎ(w; x))), where ℎ(w; ·) ∈ R and 𝑦 ∈ {1,−1}.

Max-Margin Loss

The max-margin loss, introduced by Crammer and Singer and commonly referred to
as the Crammer-Singer (CS) loss (Crammer and Singer, 2002), is defined as:

ℓ(ℎ(w; x), 𝑦) = max
(
0,max

𝑘≠𝑦

(
𝑐𝑘,𝑦 + [ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦

) )
, (2.4)

where 𝑐𝑘,𝑦 > 0 is a margin parameter. This loss seeks to ensure that the prediction
score for the ground-truth label, [ℎ(w; x)]𝑦 , exceeds the scores of other class labels,
[ℎ(w; x)]𝑘 for 𝑘 ≠ 𝑦, by at least the margin 𝑐𝑘,𝑦 . This method is also known as
the multi-class support vector machine. For binary classification, it reduces to the
standard hinge loss ℓ(ℎ(w; x), y) = max(0, 1 − 𝑦ℎ(w; x)) for ℎ(w; ·) ∈ R and 𝑦 ∈
{1,−1} with a margin 1.
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Label Distributionally Robust (LDR) Loss

Both the CS loss and the CE loss have their strengths and limitations. For example,
the CS loss with the margin parameters is more flexible in controlling the discrim-
ination between classes, while it is not consistent and non-smooth in terms of the
prediction scores. The CE loss is smooth and consistent but lacks robustness to noise
in class labels.

Consistency of a surrogate loss function

The consistency measures whether minimizing a surrogate loss with an in-
finite number of data also minimizes the Bayes error. More formally, a sur-
rogate loss ℓ(ℎ(x), 𝑦) is said to be consistent if any sequence of measurable
functions ℎ (𝑛) it holds

R(ℎ (𝑛) ) → inf
ℎ∈H

R(ℎ) ⇒ R0−1 (ℎ (𝑛) ) → inf
ℎ∈H

R0−1 (ℎ),

where R(ℎ) = Ex,𝑦 [ℓ(ℎ(x), 𝑦)] is the expected risk, R0−1 (ℎ) =
Ex,𝑦 [I(𝑦 ≠ ℎ(x))] is the Bayes error, and H is the set of any measurable
functions.

In fact, the strengths and limitations of both the CE and CS losses can be better
understood within a broader family known as the label-distributionally robust (LDR)
loss:

ℓ𝜏 (ℎ(w; x), 𝑦) = max
p∈Δ𝐾

𝐾∑
𝑘=1

𝑝𝑘
(
[ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦 + 𝑐𝑘,𝑦

)
− 𝜏

𝐾∑
𝑘=1

𝑝𝑘 log(𝑝𝑘𝐾),

(2.5)

where 𝜏 > 0 is a hyperparameter, 𝑐𝑦,𝑦 = 0, p ∈ R𝐾 is referred to as the label
distributional weight vector, and Δ𝐾 = {p ∈ R𝐾 : 𝑝𝑘 ≥ 0,

∑𝐾
𝑘=1 𝑝𝑘 = 1} is a

simplex.
It is clear that the LDR loss is defined by solving an optimization problem. In-

deed, the above optimization problem follows the distributionally robust optimiza-
tion (DRO) principle, which is widely used at the level of data as discussed in sec-
tion 2.2. By treating ‘label’ as a kind of data, we can unify the LDR loss with other
losses discussed later in Section 2.4.

A closed-form solution for p can be derived using the KKT conditions (cf. Ex-
ample 1.16), making the LDR loss equivalent to:

ℓ𝜏 (ℎ(w; x), 𝑦) = 𝜏 log
(

1
𝐾

𝐾∑
𝑘=1

exp
( [ℎ(w; x)]𝑘 + 𝑐𝑘,𝑦 − [ℎ(w; x)]𝑦

𝜏

) )
. (2.6)
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From the perspective of DRO, we can define a more general family of LDR losses
using different regularization functions on p and constrained domains Ω:

ℓ̄𝜏 (ℎ(w; x), 𝑦) = max
p∈Ω

𝐾∑
𝑘=1

𝑝𝑘
(
[ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦 + 𝑐𝑘,𝑦

)
− 𝜏𝑅(p). (2.7)

where Ω ⊆ Δ𝐾 and 𝑅(p) is a strongly convex regularizer.

 Why it matters:

• The LDR loss (2.6) unifies both the CS and CE losses as special cases. Specif-
ically, the CE loss corresponds to the LDR loss when 𝜏 = 1 and 𝑐𝑘,𝑦 = 0 for
all 𝑘 , while the CS loss corresponds to the case 𝜏 = 0.
Moreover, the LDR loss encompasses the Label-Distribution-Aware Margin
(LDAM) loss (Cao et al., 2019) when 𝜏 = 1 and 𝑐𝑘,𝑦 = 𝑐𝑦 ∝ 1/𝑛1/4

𝑦 for
𝑘 ≠ 𝑦, where 𝑛𝑦 denotes the number of samples in class 𝑦:

ℓLDAM (ℎ(w; x), 𝑦)

= − log
©­­­­«

exp
(
[ℎ(w; x)]𝑦 − 𝐶

𝑛
1/4
𝑦

)
exp

(
[ℎ(w; x)]𝑦 − 𝐶

𝑛
1/4
𝑦

)
+ ∑

𝑙≠𝑦 exp( [ℎ(w; x)]𝑙)

ª®®®®¬
,

where 𝐶 is a constant. For imbalanced datasets, this assigns larger margins
𝑐𝑦 to minority classes, making it more suitable for handling class imbalance.

• The LDR loss provides insights into the strengths and limitations of CE and
CS losses. The regularizer 𝑅(p) = ∑𝐾

𝑘=1 𝑝𝑘 log(𝑝𝑘𝐾) is strongly convex in p,
which implies smoothness of the loss in terms of prediction scores due to the
duality between smoothness and strong convexity (Lemma 1.9). This strong
convexity also contributes to the statistical consistency of the loss (Zhu et al.,
2023b). In contrast, the CS loss with 𝜏 = 0 lacks this property, and hence
suffer from non-smoothness and inconsistency.

• The LDR loss framework enables the design of new losses that are robust to
label noise. For instance, when 𝜏 → ∞, the LDR loss reduces to:

ℓ∞ (w; x, 𝑦) = 1
𝐾

𝐾∑
𝑘=1

(
[ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦 + 𝑐𝑘,𝑦

)
.

A remarkable property of this loss is its symmetry:
∑𝐾
𝑦=1 ℓ∞ (w; x, 𝑦) is con-

stant. This symmetry serves as a sufficient condition for robustness to uni-
form label noise (Ghosh et al., 2017). However, by treating all negative labels
equally, it may limit the model’s ability to focus on hard negative labels and
potentially slow down the learning process. In practice, it is better to tune 𝜏
if there is label noise.
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CS loss CE loss, LDAM loss Noise tolerantConsistent & Smooth

Fig. 2.1: The LDR loss and its special cases by varying 𝜏.

In conclusion, the LDR loss offers flexibility in achieving three desirable properties:
max-margin, consistency, and symmetry. In practice, when tuning 𝜏 ∈ (0,∞), it may
be beneficial to normalize the prediction scores ℎ(w; x).

Critical: It is worth noting that all the discussed losses are discriminative in
nature, aiming to increase the score [ℎ(w; x)]𝑦 of the true label while decreas-
ing the scores [ℎ(w; x)]𝑘 of the negative labels (𝑘 ≠ 𝑦).

2.1.3 Need of Optimization Algorithms

To address the ERM problem in the context of large-scale data (i.e., a substan-
tial number of training examples), first-order stochastic algorithms are commonly
employed. These include stochastic gradient descent (SGD), stochastic momentum
methods, and adaptive gradient methods. For instance, the update rule of classical
SGD for solving (2.1) with W = R𝑑 is given by:

w𝑡+1 = w𝑡 − 𝜂𝑡
1

|B𝑡 |
∑

(x𝑖 ,𝑦𝑖 ) ∈B𝑡
∇ℓ(ℎ(w𝑡 ; x𝑖), 𝑦𝑖), 𝑡 = 1, . . . , 𝑇, (2.8)

where 𝜂𝑡 ≥ 0 is the learning rate (or step size), and B𝑡 denotes a random mini-
batch data sampled from the full dataset. The concern of designing an optimization
algorithm is how fast the algorithm can converge to a (near) optimal solution. We
will discuss the design and analysis of classical stochastic optimization algorithms
in Chapter 3.

Critical: A critical assumption in conventional stochastic optimization algo-
rithms such as SGD is that the gradient ∇ℓ(ℎ(w; x𝑖), 𝑦𝑖) of each individual
loss, can be easily computed. This assumption will fail for the logistic loss
when the number of classes 𝐾 is gigantic, e.g. millions or even billions. This
challenge will be addressed in this book.
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2.1.4 Generalization Analysis

To study the generalization of a model learned by solving ERM, we usually consider
the expected risk defined as

R(w) = Ex,𝑦∼P [ℓ(ℎ(w; x), 𝑦)] . (2.9)

Let w = A(S; 𝜁) denote a learned model by a randomized algorithm A for solving
ERM that depend on random variables 𝜁 . A standard measure of generalization is
given by the excess risk defined as R(w) − R(w∗), where w∗ ∈ arg minu∈W R(u).
The following lemma decomposes the excess risk into the optimization error and the
generalization error.

Lemma 2.1 For a learned model w = A(S; 𝜁) ∈ W, we have

R(w) − R(w∗) ≤ 2 sup
w∈W

|R(w) − RS (w) |︸                       ︷︷                       ︸
generalization error

+RS (w) − min
u∈W

RS (u)︸                      ︷︷                      ︸
optimization error

,

and

ES,𝜁 [R(w) − R(w∗)] = ES,𝜁 [R(w) − RS (w)] + ES,𝜁 [RS (w) − min
u∈W

RS (u)] .

Proof.

R(w) − R(w∗) = R(w) − RS (w) + RS (w) − min
u∈W

RS (u) + min
u∈W

RS (u) − R(w∗)

≤ R(w) − RS (w) + RS (w) − min
u∈W

RS (u) + RS (w∗) − R(w∗).

This proves the first inequality. By taking expectation over S, 𝜁 and noting that
ES [RS (w∗) − R(w∗)] = 0 , we finish the second inequality. ut

 Why it matters:

The excess risk can be decomposed into two components: the optimization error,
given by RS (w) − minu∈W RS (u), and the generalization error which captures
the difference between the expected risk and the empirical risk. The general-
ization error supw∈W |R(w) − RS (w) | decreases as the training data size |S|
increases. Bounding the (expected) optimization error is a central focus of this
book, approached through the analysis of stochastic optimization algorithms. A
brief discussion of the literature on generalization error analysis will be provided
at the end of this chapter.
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2.2. ROBUST OPTIMIZATION

2.2 Robust Optimization

In this section, we introduce advanced machine learning methods based on the prin-
ciple of robust optimization. Robust optimization is a framework designed to address
uncertainty in data. It ensures that the solutions perform well even under worst-case
scenarios of data within a specified set of uncertainties.

2.2.1 Distributionally Robust Optimization

Minimizing the average empirical risk often fails to yield a robust model in practice.
For instance, the resulting model may perform poorly on minority data (e.g., patients
with rare diseases) because the optimization predominantly focuses onmajority class
data.

Critical: Empirical data may not fully represent the underlying data distribu-
tion, leading to generalization issues.

To address these challenges, distributionally robust optimization (DRO) has been
extensively studied in machine learning as a means to improve robustness and gen-
eralization.

The core idea of DRO is to minimize a robust objective defined over the worst-
case distribution of data, perturbed from the empirical distribution. Let us define a set
of distributional weights, p = (𝑝1, . . . , 𝑝𝑛) ∈ Δ𝑛, where Δ𝑛 = {p ∈ R𝑛 :

∑𝑛
𝑖=1 𝑝𝑖 =

1, 𝑝𝑖 ≥ 0}, with each element 𝑝𝑖 associated with a training sample x𝑖 .

Definition 2.1 (𝜙-divergence) Let 𝜙(𝑡) : R+ → R is a proper closed convex function
and has a minimum value zero that is attained at 𝑡 = 1. The 𝜙-divergence is defined
as:

𝐷𝜙 (p ‖ q) =
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖). (2.10)

𝜙-divergence measures the discrepancy between two distributions p and q us-
ing the function 𝜙. We present two common formulations of DRO based on the 𝜙-
divergence: regularized DRO and constrained DRO. They differ in how to define the
uncertainty set of p.

Below, we use the generic notation ℓ(w; z) to denote the loss of a model w on a
random data point z following a distribution denoted by P. For supervised learning,
this specializes to ℓ(w; z) = ℓ(ℎ(w; x), 𝑦), where z = (x, 𝑦).

Definition 2.2 (Regularized DRO)

min
w

R̂S (w) := max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) − 𝜏𝐷𝜙
(
p ‖ 1

𝑛

)
. (2.11)
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Divergence 𝜙 (𝑡 ) 𝜙∗ (𝑠) 𝐷𝜙 (p ‖ q)
KL 𝑡 log(𝑡 ) − 𝑡 + 1 exp(𝑠) − 1

∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖

𝑞𝑖
Burg entropy − log 𝑡 + 𝑡 − 1 − log(1 − 𝑠) , 𝑠 < 1

∑𝑛
𝑖=1 𝑞𝑖 log 𝑞𝑖

𝑝𝑖

𝜒2 (𝑡 − 1)2
{ 1

4 𝑠
2 + 𝑠 if 𝑠 ≥ −2

−1 o.w.
∑𝑛
𝑖=1 𝑞𝑖 (𝑝𝑖/𝑞𝑖 − 1)2

Hellinger distance (
√
𝑡 − 1)2 𝑠

1−𝑠 , 𝑠 < 1
∑
𝑖 (
√
𝑝𝑖 −

√
𝑞𝑖 )2

Variation distance |𝑡 − 1 |
{
𝑠 if 𝑠 ∈ [−1, 1]
−1 if𝑠 < −1

∑
𝑖 | 𝑝𝑖 − 𝑞𝑖 |

CVaR I0−∞ (𝑡 ≤ 1/𝛼) [𝑠]+
𝛼

{
0 if 𝑝𝑖 ≤ 𝑞𝑖/𝛼, ∀𝑖
∞ o.w

Table 2.1: Examples of 𝜙-divergence

Definition 2.3 (Constrained DRO)

min
w

R̂S (w) :=max
p∈Ω

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) (2.12)

where Ω =

{
p|p ∈ Δ𝑛, 𝐷𝜙

(
p ‖ 1

𝑛

)
≤ 𝜌

}
.

The regularized DRO uses a regularization on the p to implicitly define the un-
certainty set, and the constrained DRO uses a constraint on p to explicitly define the
uncertainty set.

The maximization over p in the DRO formulations simulates a worst-case sce-
nario, thereby enhancing the model’s robustness. The DRO objective interpolates
between the maximal loss and the average loss:

• Without the 𝜙-divergence regularization or constraint (i.e., 𝜏 = 0 or 𝜌 = ∞), the
objective simplifies to the maximal loss among all samples, which is particularly
beneficial for handling imbalanced data but is sensitive to outliers.

• Conversely, when 𝜌 = 0 or 𝜏 = ∞, the DRO objective reduces to the standard
empirical risk, which is not sensitive to outliers but no suitable for imbalanced
data.

In practice, adding a tunable 𝜙-divergence regularization or constraint (via tuning 𝜏
or 𝜌) increases the model’s robustness.

A list of 𝜙-divergence is presented in Table 2.1. Two commonly used ones in
machine learning are presented below:

• KL-Divergence: With 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the 𝜙-divergence becomes the KL
divergence:

KL(p, q) = 𝐷𝜙 (p ‖ q) =
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖/𝑞𝑖).

• Conditional Value-at-Risk (CVaR):With 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), where 𝛼 ∈ (0, 1]
and I0−∞ is 0 − ∞ indicator function, the divergence becomes 𝐷𝜙 (p ‖ q) = 0 if
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2.2. ROBUST OPTIMIZATION

𝑝𝑖 ≤ 𝑞𝑖/𝛼∀𝑖, otherwise 𝐷𝜙 (p ‖ q) = ∞. The resulting DRO formulation is also
known as the empirical CVaR-𝛼.

The Dual form of Regularized DRO

Solving the above DRO formulations requires dealing with a high-dimensional vari-
able p from a simplex, which will incur additional overhead compared with solving
ERM when the number of training data is large. The reason is that it requires per-
forming a projection onto the simplex Δ𝑛 or the constrained simplex Ω = {p ∈
Δ𝑛, 𝐷𝜙

(
p ‖ 1

𝑛

)
≤ 𝜌}. To reduce this overhead, one approach is to convert the prob-

lem into unconstrained one using the Langrangian dual theory based on the convex
conjugate of 𝜙 function.

Proposition 2.1 (Dual form of Regularized DRO). Let 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡).
Then we have

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) − 𝜏𝐷𝜙
(
p ‖ 1

𝑛

)
= min

𝜈

𝜏

𝑛

𝑛∑
𝑖=1

𝜙∗
(
ℓ(w; z𝑖) − 𝜈

𝜏

)
+ 𝜈. (2.13)

The proof can be found in Example 1.14 in Chapter 1.

Examples of Regularized DRO

Example 2.1. (KL-divergence Regularized DRO) For the special case of
using KL-divergence, we can further simplify the above objective function.
Since 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, then 𝜙∗ (𝑠) = exp(𝑠) − 1 (see Example 1.15) and
solving 𝜈 yields

𝜈 = 𝜏 log
(
1
𝑛

𝑛∑
𝑖=1

exp(ℓ(w; z𝑖)/𝜏)
)
.

Plugging it back into the objective, we can obtain a simplified form

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) − 𝜏KL
(
p,

1
𝑛

)
= 𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp(ℓ(w; z𝑖)/𝜏)
)
.

As a result, with 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the KL-divergence regularized
DRO (2.11) is equivalent to

min
w
𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; z𝑖)

𝜏

))
. (2.14)

Example 2.2. (Empirical CVaR) As another example, we derive the dual
form of the empirical CVaR. With simple algebra, we can derive that 𝜙∗ (𝑠) =
[𝑠]+
𝛼 (see Example 1.15) for 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼).
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As a result, with 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), the regularized DRO (2.11) corre-
sponding to the empirical CVaR−𝛼 is equivalent to

min
w,𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ(w; z𝑖) − 𝜈]+ + 𝜈. (2.15)

When 𝑘 = 𝑛𝛼 ∈ [1, 𝑛] is an integer, the above objective reduces to the average
of top-𝑘 loss values when sorting them in descending order, as shown in the
following lemma.

Lemma 2.2 Let ℓ[𝑖 ] denote the 𝑖-th largest loss among {ℓ(w; z𝑖), 𝑖 = 1, . . . , 𝑛}
ranked in descending order. If 𝛼 = 𝑘/𝑛, we have

min
𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ(w; z𝑖) − 𝜈]+ + 𝜈 =
1
𝑘

𝑘∑
𝑖=1

ℓ[𝑖 ] . (2.16)

Proof. First, we have

min
𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ(w; z𝑖) − 𝜈]+ + 𝜈 = min
𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ[𝑖 ] − 𝜈]+ + 𝜈.

Let 𝜈∗ be an optimal solution given w. Due to the first-order optimality condition,
we have

0 ∈ 1
𝑘

𝑛∑
𝑖=1

𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ + 1.

Hence,

−𝑘 ∈
𝑛∑
𝑖=1

𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+. (2.17)

Let us first assume ℓ[𝑘+1] < ℓ[𝑘 ] . We will show hat 𝜈∗ ∈ (ℓ[𝑘+1] , ℓ[𝑘 ]] satisfy
this condition. Since −1 ∈ 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ for 𝑖 = 1, . . . , 𝑘 due to ℓ[𝑖 ] ≥ 𝜈∗ and
𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ = 0 for 𝑖 = 𝑘 + 1, . . . , 𝑛 due to ℓ[𝑖 ] < 𝜈∗. Hence, it verifies that the
condition (2.17) holds at such 𝜈∗.

If ℓ[𝑘+1] = ℓ[𝑘 ] , we argue that 𝜈∗ = ℓ[𝑘 ] can still satisfy (2.17). This is because
−1 ∈ 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ for 𝑖 = 1, . . . , 𝑘 and 0 ∈ 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ for ℓ[𝑖 ] = ℓ[𝑘+1] , 𝑖 ≥ 𝑘 +1
and 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ = 0 for ℓ[𝑖 ] < ℓ[𝑘+1] , 𝑖 ≥ 𝑘 + 1. Then the conclusion follows. ut

The Dual form of Constrained DRO

For transforming the constrained DRO, we can use the following proposition based
on the Lagrangian duality theory.
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2.2. ROBUST OPTIMIZATION

Proposition 2.2 (Dual form of Constrained DRO). Let 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡).
Then we have

max
p∈Δ𝑛 ,𝐷𝜙 (p ‖ 1

𝑛 )≤𝜌

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) = min
𝜏≥0,𝜈

𝜏

𝑛

𝑛∑
𝑖=1

𝜙∗
(
ℓ(w; z𝑖) − 𝜈

𝜏

)
+ 𝜈 + 𝜏𝜌. (2.18)

The proof is similar to that of Proposition 2.1.

Examples of Constrained DRO

Example 2.3. (KL Constrained DRO) With 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the KL-
divergence constrained DRO (2.12) is equivalent to:

min
w,𝜏≥0

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; z𝑖)

𝜏

))
+ 𝜏𝜌. (2.19)

KL-regularized DRO and KL-constrained DRO play important roles in many
modern artificial intelligence applications. The LDR loss (2.5) can be interpreted
as a form of KL-regularized DRO, except that the uncertainty is placed on the dis-
tribution of class labels for each individual data point. We will present additional
applications in Section 2.4.

The Optimization Challenge

Although the transformed optimization problems do not involve dealing with a high-
dimensional variable p ∈ Δ𝑛, the new optimization problems (2.14), (2.19) are not
of the same form as ERM. The critical assumption that an unbiased gradient can
be easily computed fails. We will cast them as instances of stochastic compositional
optimization (SCO), which is topic of Chapter 4 of the book.

2.2.2 Optimized Certainty Equivalent

How to understand the generalization of DRO? One way is to still consider bounding
the expected risk R(w) of the learned model. However, the expected risk may not be
a good measure when the data distribution is skewed.

For simplicity, let us consider a binary classification problem with Pr(x, 𝑦 = 1) =
𝜋+ Pr(x|𝑦 = 1) and Pr(x, 𝑦 = −1) = 𝜋− Pr(x|𝑦 = −1), where 𝜋+ = Pr(𝑦 = 1), 𝜋− =
Pr(𝑦 = −1). Let P+ and P− be the distributions of x conditioned on 𝑦 = 1 and 𝑦 = −1,
respectively. By the law of total expectation we have

R(w) = Ex,𝑦ℓ(ℎ(w; x), 𝑦) = 𝜋+Ex∼P+ [ℓ(ℎ(w; x), 1)] + 𝜋−Ex∼P− [ℓ(ℎ(w; x),−1)] .
(2.20)
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If 𝜋− � 𝜋+, the expected risk would be dominated by the expected loss of data from
the negative class. As a result, a small R(w) does not necessarily indicate a small
Ex∼P+ [ℓ(w; x, 1)].

Instead, we consider the population risk of DRO as the target measure. A formal
definition of the population risk for the regularized DRO (2.11) is given below.
Definition 2.4 (Population risk of DRO)Given a data distribution P, for any 𝜏 > 0,
we define the population risk of regularized DRO (2.11) as:

Roce (w) : = max
Q∈Q

Ez′∼Qℓ(w; z′) − 𝜏EP𝜙

(
𝑑Q
𝑑P

)
(2.21)

= min
𝜈
𝜏Ez∼P𝜙

∗
(
ℓ(w; z) − 𝜈

𝜏

)
+ 𝜈, (2.22)

where 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡).
In the definition above, Q = {Q | Q � P} denotes the set of probability measures

that are absolutely continuous with respect to P. A probability measure Q is said to
be absolutely continuous with respect to P, denoted Q � P, if every event that has
probability 0 under P also has probability 0 underQ. If P andQ admit densities 𝑝(𝑧)
and 𝑞(𝑧) with respect to a common dominating measure on Z, and Q � P, then

EP

[
𝜙

(
𝑑Q
𝑑P

)]
=

∫
Z
𝑝(𝑧) 𝜙

(
𝑞(𝑧)
𝑝(𝑧)

)
𝑑𝑧.

The equivalent counterpart in (2.22) is a risk measure originates from the op-
timized certainty equivalent (OCE), a concept popularized in mathematical eco-
nomics (Ben-Tal and Teboulle, 1986a). Minimizing OCE has an effect of so-called
risk-aversion, which discourages models from having rare but catastrophic errors.
Two special cases are discussed below:
• When 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), the OCE becomes the CVaR-𝛼, i.e.,

Rcvar (w) = Ez [ℓ(w; z) |ℓ(w; z) ≥ VAR𝛼 (ℓ(w; z))],

where VAR𝛼 (ℓ(w; z)) = sup𝑠 [Pr(ℓ(w; z) ≥ 𝑠) ≥ 𝛼] is the 𝛼-quantile or“value-
at-risk”of the random loss values.

• When 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, OCE becomes the entropic risk:

Rent (w) = 𝜏 log
(
Ez exp

(
ℓ(w; z)
𝜏

))
.

What is risk-aversion?

Risk aversion refers to the preference for a certain and predictable cost over
an uncertain outcome with the same average cost, especially when the un-
certainty involves rare but severe losses. This behavior cannot be captured by
the expectation alone, which treats all outcomes linearly and ignores tail risk.
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2.2. ROBUST OPTIMIZATION

TheOCE provides a principled risk-sensitive alternative by assigning a single
certainty-equivalent value to a random loss that accounts for both its mean
and its variability. A classic illustration is insurance: consider paying a fixed
premium of $1,000 versus facing a $100,000 medical bill with probability
0.01 and zero cost otherwise. Although both options have the same expected
cost, the OCE risk (logE[exp(𝑋)] assigns a much larger value to the unin-
sured option, as it heavily penalizes the rare catastrophic loss. Consequently,
OCE correctly reflects the economic rationale behind insurance decisions by
favoring stable outcomes over risky alternatives with heavy tails.

We present two properties of OCE below.

Lemma 2.3 Let 𝜕𝜙∗ (𝑡) = {𝑠 : 𝜙′∗− (𝑡) ≤ 𝑠 ≤ 𝜙′∗+ (𝑡)}. If 𝑎 < 𝑏, then 0 ≤ 𝜙′∗+ (𝑎) ≤
𝜙′∗− (𝑏).

Proof. Due to the definition 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡), we have 𝜕𝜙∗ (𝑠) ≥ 0, which
indicates that 𝜙∗ is non-decreasing. Since 𝜙∗ is also convex, the conclusion follows
from the convex analysis (Rockafellar, 1970b)[Section 24]. ut

Lemma 2.4 For any 𝜏 > 0,w ∈ R𝑑 , it holds that Roce (w) ≥ R(w).

Proof. Since 𝜙(1) = 0, then 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡) ≥ 𝑠 − 𝜙(1) = 𝑠. Hence,

Roce (w) = min
𝜈
𝜏Ez𝜙

∗
(
ℓ(w; z) − 𝜈

𝜏

)
+ 𝜈

≥ min
𝜈
𝜏Ez

(
ℓ(w; z) − 𝜈

𝜏

)
+ 𝜈 = R(w).

ut

 Why it matters:

Lemma 2.3 implies that a data with a larger loss ℓ(ℎ(w; x), 𝑦) will have a higher
weight in the gradient calculation in terms of w.
Lemma 2.4 indicates that OCE is a stronger measure than the expected risk. A
small OCE will imply a small expected risk, while the reverse is not necessarily
true.

Based on OCE, we can define the excess risk Roce (w) −minu∈W Roce (u) and de-
compose it into an optimization error and a generalization error similar to Lemma 2.1.

Lemma 2.5 For a learned model w = A(S; 𝜁) for solving empirical DRO (2.11),
we have

Roce (w) − min
u∈W

Roce (u) ≤ 2 sup
w∈W

|Roce (w) − R̂S (w) |︸                          ︷︷                          ︸
generalization error

+ R̂S (w) − min
u∈W

R̂S (w)︸                      ︷︷                      ︸
optimization error

.
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Fig. 2.2: Illustrative of spurious correlation between the class label and some feature:
waterbird images mostly have water background and landbird images mostly have
land background.

2.2.3 Group Distributionally Robust Optimization

Group DRO is an extension of DRO by aggregating data into groups and using DRO
on the group level to formulate a robust risk function. It is helpful to promote equity
of the learned model and mitigating the impact of spurious correlations that exist
between the label and some features, by using prior knowledge to group the data.

Let us consider an illustrative example of classifying waterbird images from land-
bird images (see Figure 2.2). The training data may have the same number of water-
bird images and landbird images. However, most waterbird images may have water
in the background and most landbird images may have land in the background. Stan-
dard empirical risk minimization may learn spurious correlation between the class
labels (e.g., waterbird) and the specific value of some attribute (e.g., the water back-
ground). As a consequence, the model may perform poorly on waterbird images with
land background.

Critical: Data may exhibit imbalance not in the marginal distribution of class
label but some joint distribution of the class label and some attributes, which
causes the spurious correlation.

GDRO can be used to mitigate this issue by leveraging prior knowledge of spu-
rious correlations to define groups over the training data. Let the training data be
divided into multiple groups G1, . . . ,G𝐾 , where G 𝑗 = {(x 𝑗1, 𝑦

𝑗
1), . . . (x

𝑗
𝑛 𝑗 , 𝑦

𝑗
𝑛 𝑗 )} in-

cludes a set of examples from the 𝑗-th group. We define an averaged loss over exam-
ples from each group 𝐿 𝑗 (w) = 1

𝑛 𝑗

∑𝑛 𝑗
𝑖=1 ℓ(ℎ(w; x 𝑗𝑖 ), 𝑦

𝑗
𝑖 ). Then, a regularized group

DRO can be defined as

min
w

max
p∈Δ𝐾

𝐾∑
𝑗=1

𝑝 𝑗𝐿 𝑗 (w) − 𝜏𝐷𝜙
(
p ‖ 1

𝐾

)
, (2.23)

and a constrained group DRO is given by:

min
w

max
p∈Δ𝐾 ,𝐷𝜙 (p ‖ 1

𝐾 )≤𝜌

𝐾∑
𝑗=1

𝑝 𝑗𝐿 𝑗 (w). (2.24)
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2.3. EMPIRICAL X-RISK MINIMIZATION

By doing so, the learning process is less likely to be dominated by the majority group
associated with the spurious correlation between the label and a particular feature
(e.g., waterbird images with water background). If the model only captures the spu-
rious correlation, the loss for the minority group will be large, which in turn drives
the learning process to reduce this loss and thereby mitigate the spurious correlation.

Examples and Reformulations

Similar to before, we can convert the min-max problem into a minimization problem
to reduce additional overhead of dealing with a large number of groups. We give two
examples of using the KL-divergence constraint of p and CVaR-𝛼.

With 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the KL-divergence constrained group DRO (2.24) is
equivalent to

min
w,𝜏≥0

𝜏 log ©­« 1
𝐾

𝐾∑
𝑗=1

exp
(
𝐿 𝑗 (w)
𝜏

)ª®¬ + 𝜏𝜌. (2.25)

With 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), CVaR-𝛼 group DRO (2.24) is equivalent to

min
w,𝜈

1
𝐾𝛼

𝐾∑
𝑗=1

[𝐿 𝑗 (w) − 𝜈]+ + 𝜈. (2.26)

The Optimization Challenge

Again, these new optimization problems (2.25), (2.26) cannot be solved by simply
using existing stochastic algorithms for ERM since 𝐿 𝑗 (w) depends onmany data and
they are inside non-linear functions. In particular, the problem (2.26) is an instance
of finite-sum coupled compositional optimization (FCCO), which will be explored
in Chapter 5 in depth.

2.3 Empirical X-risk Minimization

So far, we have revisited classical ideas of machine learning based on empirical risk
minimization and its distributionally robust variants. In these risk functions, we as-
sume each data defines a loss based on itself. These losses are typically surrogate
functions of a prediction error measuring the inconsistency between the prediction
and the label.

However, such loss functions are insufficient to capture many objectives, which
involve comparison between different data points. Examples include areas under
ROC curves (AUROC) and areas under precision-recall curves (AUPRC) for imbal-
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anced data classification, ranking measures such as normalized discounted cumula-
tive gain (NDCG), mean average precision (MAP) and listwise losses for learning to
rank, and contrastive losses for representation learning.

The standard ERM framework is inadequate for optimizing such metrics and
losses, as they involve interactions across multiple data points.We need a newmathe-
matical framework to understand the challenge and to design provable and practical
algorithms. To this end, we introduce a new risk minimization framework, named
empirical X-risk minimization (EXM), as defined below:

Empirical X-risk Minimization (EXM)

X-risk refers to a family of risks such that the loss of each data is defined
in a way that contrasts the data with many others. Mathematically, empirical
X-risk minimization is formulated as:

min
w

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔(w, x𝑖 ,S𝑖)), (2.27)

where {x1, . . . , x𝑛} is a set of data points, eachS𝑖 contains a number of items,
𝑓𝑖 is a simple but non-linear function, and 𝑔(w, x𝑖 ,S𝑖) involves the coupling
between x𝑖 and all data in S𝑖 . A simple instance of 𝑔(w, x𝑖 ,S𝑖) is the follow-
ing averaged form:

𝑔(w, x𝑖 ,S𝑖) =
1
|S𝑖 |

∑
z∈S𝑖

ℓ(w; x𝑖 , z). (2.28)

With 𝑔 given in (2.28), EXM is an instance of finite-sum coupled compositional
optimization (FCCO), a framework explored in detail in Chapter 5.

Below, we present several important instances of X-risks.

2.3.1 AUC Losses

AUC, short for Area under receiver operating characteristic (ROC) curve, is com-
monly used to measure performance for the imbalanced data classification.

What is Imbalanced Data Classification?

Imbalanced data classification refers to classification problems, where the
number of examples from some classes is significantly larger than that of
other classes.
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2.3. EMPIRICAL X-RISK MINIMIZATION

Fig. 2.3: Areas under ROC Curves

Definition and an Empirical Estimator of AUC

The ROC curve is the plot of the true positive rate (TPR) against the false posi-
tive rate (FPR) at each threshold setting. Let P+, P− denote the distribution of ran-
dom positive and negative data, respectively. Let ℎ(·) : X → R denote a pre-
dictive scoring function. For a given threshold 𝑡, the TPR of ℎ can be written as
TPR(𝑡) = Pr(ℎ(x) > 𝑡 |𝑦 = 1) = Ex∼P+ [I(ℎ(x) > 𝑡)], and the FPR can be written as
FPR(𝑡) = Pr(ℎ(x) > 𝑡 |𝑦 = −1) = Ex∼P− [I(ℎ(x) > 𝑡)]. Let 𝐹− (𝑡) = 1 − FPR(𝑡) de-
note the cumulative density function of the random variable ℎ(x−) for x− ∼ P− . Let
𝑝− (𝑡) denote its corresponding probability density function. Similarly, let 𝐹+ (𝑡) =
1 − TPR(𝑡) and 𝑝+ (𝑡) denote the cumulative density function and the probability
density function of ℎ(x+) for x+ ∼ P+, respectively.

For a given 𝑢 ∈ [0, 1], let FPR−1 (𝑢) = inf{𝑡 ∈ R : FPR(𝑡) ≤ 𝑢}. The ROC curve
is defined as {𝑢,ROC(𝑢)}, where 𝑢 ∈ [0, 1] and ROC(𝑢) = TPR(FPR−1 (𝑢)).

Hence, we have the following theorem.

Theorem 2.1 The AUC for a predictive scoring function ℎ is equal to

AUC(ℎ) = Pr(ℎ(x+) > ℎ(x−)) = Ex+∼P+ ,x−∼P− [I(ℎ(x+) > ℎ(x−))] . (2.29)

Proof. The AUC score of ℎ is given by

AUC(ℎ) =
∫ 1

0
ROC(𝑢)𝑑𝑢 =

∫ ∞

−∞
TPR(𝑡)𝑑𝐹− (𝑡) =

∫ ∞

−∞
TPR(𝑡)𝑝− (𝑡)𝑑𝑡

=
∫ ∞

−∞

∫ ∞

𝑡
𝑝+ (𝑠)𝑑𝑠𝑝− (𝑡)𝑑𝑡 =

∫ ∞

−∞

∫ ∞

−∞
𝑝+ (𝑠)𝑝− (𝑡)I(𝑠 > 𝑡)𝑑𝑠𝑑𝑡.

Since ℎ(x+) follows 𝑝+ (𝑠) and ℎ(x−) follows 𝑝− (𝑡), we can conclude the proof. ut

This indicates that AUC is a pairwise ranking metric. An ideal scoring function
that ranks all positive examples above negative examples has a perfect AUC score 1.
It also implies the following empirical non-parametric estimator of AUC based on a
set of data S with 𝑛+ positive samples in S+ and 𝑛− negative samples in S−:

AUC(ℎ;S) = 1
𝑛+𝑛−

∑
x+∈S+ ,x−∈S−

I(ℎ(x+) > ℎ(x−)), (2.30)

which is also known as the Mann-Whitney U-statistic (Hanley and McNeil, 1982).
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Necessity of Maximizing AUC

AUC is more appropriate than accuracy for assessing the performance of imbalanced
data classification. Let us consider an example with 2 positive data and 100 negative
data. If one positive data has a prediction score 0.5 and another one has a prediction
score −0.2, and all negative data has prediction scores less than 0 but larger than
−0.2. In this case, if we choose a classification threshold as 0, then the accuracy is
101/102 = 0.99. However, the (emprical) AUC score according to (2.30) is given
by 100/200 = 0.5. “Can a model that optimizes the accuracy also optimize the AUC
score?” Unfortunately, this is not the case as different classifiers that have the same
accuracy could have dramatic different AUC (Cortes and Mohri, 2003). An example
is illustrated in Table 2.2. Hence, it makes sense to directly optimize AUC.

Critical: A model that optimizes accuracy does not necessarily optimize
AUC.

Example 1 2cExample 2 2cExample 3
Prediction Ground Truth Prediction Ground Truth Prediction Ground Truth

0.9 1 0.9 1 0.9 1
0.8 1 0.41(↓) 1 0.41(↓) 1
0.7 1 0.7 1 0.40(↓) 1
0.6 0 0.6 0 0.49(↓) 0
0.6 0 0.49(↓) 0 0.48(↓) 0
0.47 0 0.47 0 0.47 0
0.47 0 0.47 0 0.47 0
0.45 0 0.45 0 0.45 0
0.43 0 0.43 0 0.43 0
0.42 0 0.42 0 0.42 0
...

...
...

...
...

...
0.1 0 0.1 0 0.1 0

Acc=0.92
AUC=1.00

Acc=0.92 (—)
AUC=0.89 (↓)

Acc=0.92 (—)
AUC=0.78 (↓)

Table 2.2: Illustrations of variance of AUC for different classifiers with the same
Accuracy on an imbalanced dataset of 25 samples with a positive ratio of 3/25. The
accuracy threshold is 0.5. Example 1 shows that all positive instances rank higher
than negative instances and two negative instances are misclassified to positive class.
Example 2 shows that 1 positive instance ranks lower than 7 negative instances and
1 positive and 1 negative instances are missclassifed. Example 3 shows that 2 posi-
tive instances rank lower than 7 negative instances, and 2 positive instances are also
missclassifed as negative class. Overall, we can observe that AUC drops dramatically
as the ranks of positive instances drop but meanwhile Accuracy remains unchanged.
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2.3. EMPIRICAL X-RISK MINIMIZATION

Pairwise Loss ℓ (𝑡 ) Monotone
Squared Hinge (𝑐 + 𝑡 )2

+ Yes
Hinge (𝑐 + 𝑡 )+ Yes
Logistic log(1 + exp(𝑠𝑡 ) ) Yes
Sigmoid (1 + exp(−𝑠𝑡 ) )−1 Yes
Square (𝑐 + 𝑡 )2 No
Barrier Hinge max(−𝑠 (𝑐 − 𝑡 ) + 𝑐,max(𝑠 (−𝑡 − 𝑐) , 𝑐 + 𝑡 ) ) No

Table 2.3: Surrogate loss functions for pairwise modeling with the input argument
𝑡 = ℎ(w; x−) − ℎ(w; x+). For the sake of simplicity, denote max(0, 𝑡) by 𝑡+, denote
the scaling hyper-parameter by 𝑠 > 0 and margin hyper-parameter by 𝑐 > 0.

Pairwise Surrogate Losses

Using a pairwise surrogate loss ℓ(·) of the indicator function I(𝑡 ≥ 0) (see exam-
ples in Table 2.3), we have the following empirical AUC optimization problem for
learning a parameterized function ℎ(w; ·):

min
w∈R𝑑

1
𝑛+

1
𝑛−

∑
x𝑖∈S+

∑
x 𝑗 ∈S−

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)). (2.31)

This can be regarded as a special case of (2.27) by setting

𝑔(w; x𝑖 ,S−) =
1
𝑛−

∑
x 𝑗 ∈S−

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

𝑓𝑖 (𝑔) = 𝑔.

This is the simplest form of EXMas 𝑓 is just a linear function. An unbiased stochastic
gradient can be easily computed based on a pair of data points consisting of a random
positive and a random negative data point.

Compositional Objectives

An alternative approach to formulate AUCmaximization is to decouple the pairwise
comparison between positive and negative examples. A generic formulation is given
by:

min
w∈R𝑑 , (𝑎,𝑏) ∈R2

1
|S+ |

∑
x𝑖∈S+

(ℎ(w; x𝑖) − 𝑎)2 + 1
|S− |

∑
x 𝑗 ∈S−

(ℎ(w; x 𝑗 ) − 𝑏)2

+ 𝑓
©­« 1
|S− |

∑
x 𝑗 ∈S−

ℎ(w; x 𝑗 ) −
1

|S+ |
∑

x𝑖∈S+

ℎ(w; x𝑖)ª®¬ ,
(2.32)
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where 𝑓 is a non-linear function. The last component is a compositional function.
The above formulation also has a clear physical meaning. In particular, minimiz-

ing the first two terms aim to push the prediction scores of positive and negative
examples to center around their means, respectively, and minimizing the third term
aims to push the mean score of positive examples to be larger than the mean score
of negative examples.

The above formulation is motivated by the pairwise formulation with a square
surrogate function ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)) = (𝑐 + ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))2. Indeed, in
this case, (2.31) is equivalent to (2.32) with 𝑓 (𝑠) = (𝑠 + 𝑐)2. We leave this as an
exercise for interested readers. Nevertheless, using 𝑓 (𝑠) = [𝑠 + 𝑐]2

+ in (2.32) is more
robust than 𝑓 (𝑠) = (𝑠 + 𝑐)2 with 𝑐 > 0.

Solving the above problem requires compositional optimization techniques, which
will be discussed in Section 6.4.1.

2.3.2 Average Precision Loss

Area under precision-recall curve (AUPRC) is another commonly used measure for
highly imbalanced data. The precision and recall of a scoring function ℎ at threshold
𝑡 are defined as

Rec(𝑡) := Pr(ℎ(x) > 𝑡 | 𝑦 = 1) = TPR(𝑡),
Prec(𝑡) := Pr(𝑦 = 1 | ℎ(x) > 𝑡).

For a given 𝑢 ∈ [0, 1], let TPR−1 (𝑢) = inf{𝑡 ∈ R : TPR(𝑡) ≤ 𝑢}. The precision–
recall (PR) curve is defined as {(𝑢, PR(𝑢))}, where 𝑢 ∈ [0, 1] and PR(𝑢) =
Prec

(
TPR−1 (𝑢)

)
. Hence, AUPRC for ℎ can be computed by

AUPRC(ℎ) =
∫ 1

0
PR(𝑢) 𝑑𝑢.

Theorem 2.2 The AUPRC for a predictive scoring function ℎ is equal to

AUPRC(ℎ) =
∫ ∞

−∞
Prec(𝑡) 𝑝+ (𝑡) 𝑑𝑡 = Ex+∼P+

[
Prec(ℎ(x+))

]
. (2.33)

Proof. By definition,

AUPRC(ℎ) =
∫ 1

0
PR(𝑢) 𝑑𝑢 =

∫ 1

0
Prec

(
TPR−1 (𝑢)

)
𝑑𝑢.

Let 𝑢 = TPR(𝑡) = 1 − 𝐹+ (𝑡). Then 𝑑𝑢 = −𝑝+ (𝑡) 𝑑𝑡. Therefore,

AUPRC(ℎ) =
∫ −∞

∞
Prec(𝑡) (−𝑝+ (𝑡) 𝑑𝑡) =

∫ ∞

−∞
Prec(𝑡) 𝑝+ (𝑡) 𝑑𝑡,
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2.3. EMPIRICAL X-RISK MINIMIZATION

which proves (2.33). ut

The above theorem yields the following empirical estimator of AUPRC. For a set
of training examples S = S+∪S− , a non-parametric estimator of AUPRC is average
precision (AP) (Boyd et al., 2013):

AP(ℎ) = 1
𝑛+

∑
x𝑖∈S+

∑
x 𝑗 ∈S+

I(ℎ(x 𝑗 ) ≥ ℎ(x𝑖))∑
x 𝑗 ∈S

I(ℎ(x 𝑗 ) ≥ ℎ(x𝑖))
. (2.34)

AP is an unbiased estimator of AUPRC in the limit 𝑛→ ∞.

Necessity of Maximizing AUPRC

While AUC is generally more suitable than accuracy for imbalanced classification
tasks, it may fail to adequately capture misorderings among top-ranked examples.
Consider a scenario with 2 positive and 100 negative samples. If the two positive
samples are ranked below just two of the negative ones, followed by the remaining
98 negatives, the resulting AUC is 196/200 = 0.98, which appears high. However,
this model would be inadequate if our focus is on the top two predicted positive in-
stances. In drug discovery, for example, models are expected to identify the most
promising candidate molecules for experimental validation. If these top-ranked pre-
dictions turn out to lack the desired properties, the resulting experimental efforts may
lead to significant wasted resources and costly failures.

To avoid this issue, AUPRC or its empirical estimator AP is typically used as a
performance metric. According to its definition (2.34), the AP score for the above
example is 1

2 (
1
3 +

2
4 ) = 0.42. In contrast, a perfect ranking that ranks the two positive

examples at the top gives an AP score of 1. Unfortunately, optimizing AUC does not
necessarily lead to optimal AP, as two models with identical AUC scores can exhibit
significantly different AP values. This highlights the need for efficient optimization
algorithms that directly maximize AP.

Critical: AUPRC/AP penalizes more on the error at the top of the ranked list.

Surrogate Loss of AP

To construct a differentiable objective for minimization, a differentiable surrogate
loss ℓ(ℎ(x 𝑗 ) − ℎ(x𝑖)) is used in place of I(ℎ(x 𝑗 ) ≥ ℎ(x𝑖)). Then AP can be approx-
imated by :
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AP ≈ 1
𝑛+

∑
x𝑖∈S+

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(x 𝑗 ) − ℎ(x𝑖))∑
x 𝑗 ∈S

ℓ(ℎ(x 𝑗 ) − ℎ(x𝑖))
. (2.35)

Let us define

𝑓 (g) = − [g]1

[g]2
,

g(w; x𝑖 ,S) = [𝑔1 (w; x𝑖 ,S), 𝑔2 (w; x𝑖 ,S)]

𝑔1 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

𝑔2 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)).

Then, we formulate AP maximization as the following problem:

min
w

1
𝑛+

∑
x𝑖∈S+

𝑓 (g(w; x𝑖 ,S)), (2.36)

which is a special case of EXM. We will explore efficient algorithms for optimizing
AP in Section 6.4.2 using FCCO techniques.

2.3.3 Partial AUC Losses

There are two commonly used versions of partial AUC (pAUC), namely one-way
pAUC (OPAUC) and two-way pAUC (TPAUC). OPAUC puts a restriction on the
range of FPR, i.e., FPR ∈ [𝛼, 𝛽] (the second figure from the left in Figure 2.3) and
TPAUC puts a restriction on the lower bound of TPR and the upper bound of FPR,
i.e., TPR ≥ 𝛼, FPR ≤ 𝛽 (the second figure from the right in Figure 2.3).

By the definition, we have the following probabilistic interpretations.

Theorem 2.3 OPAUC with FPR restricted in the range [𝛼, 𝛽] for a predictive scor-
ing function ℎ is equal to

OPAUC(ℎ|FPR ∈ (𝛼, 𝛽)) = Pr(ℎ(x+) > ℎ(x−), ℎ(x−) ∈ [FPR−1 (𝛽),FPR−1 (𝛼)]).
(2.37)

Similarly, TPAUC with FPR restricted in a range of [0, 𝛽] and TPR restricted in a
range of [𝛼, 1] is equal to

TPAUC(ℎ|TPR ≥ 𝛼,FPR ≤ 𝛽) (2.38)
= Pr(ℎ(x+) > ℎ(x−), ℎ(x−) ≥ FPR−1 (𝛽), ℎ(x+) ≤ TPR−1 (𝛼)}).
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2.3. EMPIRICAL X-RISK MINIMIZATION

Proof. The first part about OPAUC is similar to AUC except for the range of integral:

OPAUC(ℎ|FPR ∈ (𝛼, 𝛽)) =
∫ FPR−1 (𝛼)

FPR−1 (𝛽)
TPR(𝑡)𝑑𝐹− (𝑡)

=
∫ FPR−1 (𝛼)

FPR−1 (𝛽)

∫ ∞

−∞
𝑝+ (𝑠)𝑝− (𝑡)I(𝑠 > 𝑡)𝑑𝑠𝑑𝑡.

This concludes the proof of the first part.
For TPAUC with FPR restricted in [0, 𝛽] and TPR restricted in [𝛼, 1], it is equal

to OPAUCwith FPR restricted in [𝛾, 𝛽] minus the square area with FPR ∈ [𝛾, 𝛽] and
TPR < 𝛼, where 𝛾 is the FPR that corresponds to TPR equals to 𝛼, i.e., FPR−1 (𝛾) =
TPR−1 (𝛼). Since TPR(𝑡) =

∫ ∞
𝑡
𝑝+ (𝑠)𝑑𝑠 and FPR(𝑡) =

∫ ∞
𝑡
𝑝− (𝑠)𝑑𝑠, we have

𝛼 =
∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑑𝑠, 𝛽 =

∫ ∞

FPR−1 (𝛽)
𝑝− (𝑡)𝑑𝑡.

Then, we have

(𝛽 − 𝛾)𝛼

=
∫ ∞

FPR−1 (𝛽)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡 −

∫ ∞

FPR−1 (𝛾)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡

=
∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡.

As a result,

TPAUC(ℎ|TPR ≥ 𝛼, FPR ≤ 𝛽) = OPAUC(ℎ|FPR ∈ (𝛾, 𝛽)) − (𝛽 − 𝛾)𝛼

=
∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ ∞

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡 −

∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡

=
∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡 =

∫ ∞

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡,

where the last equality follows from FPR−1 (𝛾) = TPR−1 (𝛼). Thus,

TPAUC(ℎ|TPR ≥ 𝛼, FPR ≤ 𝛽) =
∫ ∞

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡

=
∫ ∞

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

−∞
𝑝+ (𝑠)𝑝− (𝑡)I(𝑠 > 𝑡)𝑑𝑠𝑑𝑡.

This concludes the proof of the second part. ut

Hence, an empirical estimator of OPAUC with FPR restricted in the range [𝛼, 𝛽]
can be computed by
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1
𝑛+𝑘1

∑
x𝑖∈S+

∑
x 𝑗 ∈S↓

− [𝑘1+1,𝑘2 ]

I(ℎ(x+) > ℎ(x−)), (2.39)

where 𝑘1 = d𝑛−𝛼e, 𝑘2 = b𝑛−𝛽c, and S↓ [𝑘1, 𝑘2] ⊆ S denotes the subset of examples
whose rank in terms of their prediction scores in the descending order are in the
range of [𝑘1, 𝑘2].

An empirical estimator of TPUC with with FPR restricted in a range of [0, 𝛽] and
TPR restricted in a range of [𝛼, 1] is computed by:

1
𝑘1

1
𝑘2

∑
x𝑖∈S↑

+ [1,𝑘1 ]

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

I(ℎ(w; x𝑖) > ℎ(w; x𝑖)), (2.40)

where 𝑘1 = d𝑛+ (1 − 𝛼)e, 𝑘2 = b𝑛−𝛽c, and S↑ [𝑘1, 𝑘2] ⊆ S denotes the subset of
examples whose rank in terms of their prediction scores in the ascending order are
in the range of [𝑘1, 𝑘2].

Necessity of Maximizing partial AUC

In many applications, there are large monetary costs due to high false positive rates
(FPR) and low true positive rates (TPR), e.g., in medical diagnosis. Hence, a mea-
sure of interest would be the pAUC- the region of the ROC curve corresponding to
low FPR and/or high TPR.With a similar argument as last section, a model that max-
imizes AUC does not necessarily optimizes pAUC. Let us compare two models on a
dataset with 2 positive and 100 negative molecules (Figure 2.4). The model 1 ranks
two negatives above the two positives followed by the remaining 98 negatives. The
model 2 ranks one positive at the top, and then four negatives above the other positive
followed by the remaining 96 negatives. The twomodels have the same AUC score of
196/200 = 0.98 but have different pAUC scores. When restricting FPR ∈ [0, 0.02],
model 1 has an empirical pAUC score of 0

4 = 0 and model 2 has an empirical pAUC
score of 2

4 = 0.5 according to (2.39).

Critical: Partial AUC emphasize the correct order between the top ranked
negative data and/or the bottom ranked positive data.

A Direct Formulation

Using a surrogate loss of zero-one loss, OPAUCmaximization for learning a param-
eterized model ℎ(w; ·) can be formulated as:
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…

…

Model 1

Model 2

Low High

Fig. 2.4: Two models that have the same AUC score but differ dramatically in pAUC.
The arrows indicate the prediction scores from low to high.

min
w

1
𝑛+

1
𝑘2

∑
x𝑖∈S+

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)). (2.41)

Similarly, TPAUC maximization can be formulated as:

min
w

1
𝑘1

1
𝑘2

∑
x𝑖∈S↑

+ [1,𝑘1 ]

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), (2.42)

where 𝑘1 = b𝑛+ (1 − 𝛼)c, 𝑘2 = b𝑛−𝛽c.
Both problems are not standard ERM. The challenge for solving the above prob-

lems is that the selection of examples in a range, e.g., S↓
− [1, 𝑘2] and S↑

+ [1, 𝑘1], is
not only expensive but also non-differentiable. We will explore different approaches
for optimizing OPAUC and TPUC in Section 6.4.3 using advanced compositional
optimization techniques.

An Indirect Formulation

When the surrogate loss ℓ(𝑡) is non-decreasing, the top-𝑘 selector of negative exam-
ples S↓

− [1, 𝑘2] can be transferred into the top-𝑘 average of pairwise losses, which
becomes an CVaR. By drawing the connection between CVaR and KL-regularized
DRO, an indirect objective for OPAUC maximization is formulated by:

min
w

1
𝑛+

∑
x𝑖∈S+

𝜏 log ©­«
∑

x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝜏

)ª®¬ . (2.43)

This problem is an instance of EXM, which will be solved by FCCO techniques.
TPAUC maximization can be handled similarly. We will present detailed exposition
in Chapter 6.4.3.

49



2.3.4 Ranking Losses

Ranking losses are commonly employed in learning to rank.

What is Learning to Rank?

Learning to rank (LTR) is a machine learning problem that aims to learn a
ranking model, which can be used to predict the relevance order of a set of
items given a query.

Let Q denote the query set of size 𝑁 , and let 𝑞 ∈ Q represent an individual
query. For each query 𝑞, let S𝑞 be a set of 𝑁𝑞 items (e.g., documents, movies) to
be ranked. For each item x𝑞,𝑖 ∈ S𝑞 , let 𝑦𝑞,𝑖 ∈ R+ denote its relevance score, which
quantifies the relevance between the query 𝑞 and the item x𝑞,𝑖 . Define S+

𝑞 ⊆ S𝑞 as
the subset of 𝑁+

𝑞 items relevant to 𝑞, i.e., those with non-zero relevance scores. Let
S = {(𝑞, x𝑞,𝑖) | 𝑞 ∈ Q, x𝑞,𝑖 ∈ S+

𝑞 } represent the collection of all relevant query-item
(Q-I) pairs.

Let 𝑠(w; x, 𝑞) denote the predicted relevance score for item xwith respect to query
𝑞, parameterized by w ∈ R𝑑 (e.g., a deep neural network). Define the rank of item x
within S𝑞 as:

𝑟 (w; x,S𝑞) =
∑

x′∈S𝑞
I(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞) ≥ 0),

where ties are ignored.

NDCG and NDCG Loss

Normalized Discounted Cumulative Gain (NDCG) is a metric commonly used to
evaluate the quality of ranking algorithms, especially in information retrieval and
recommender systems.

NDCG evaluates how well a model ranks relevant items near the top of a list for
a query 𝑞. The DCG of a ranked list according to {𝑠(w; x, 𝑞), x ∈ S𝑞} is given by:

DCG𝑞 :=
∑

x∈S𝑞

2𝑦𝑖 − 1
log2 (1 + 𝑟 (w; x,S𝑞))

=
∑

x∈S+
𝑞

2𝑦𝑖 − 1
log2 (1 + 𝑟 (w; x,S𝑞))

.

Note that the summation is over S+
𝑞 rather than S𝑞 , as only relevant items contribute

to the DCG score due to their non-zero relevance.
NDCG normalizes DCG by the ideal DCG denoted by 𝑍𝑞 of the best possible

ranking:

NDCG𝑞 =
DCG𝑞
𝑍𝑞

.

The average NDCG over all queries is given by:
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NDCG:
1
𝑁

𝑁∑
𝑞=1

1
𝑍𝑞

∑
x𝑞,𝑖∈S+

𝑞

2𝑦𝑞,𝑖 − 1
log2 (𝑟 (w; x𝑞,𝑖 ,S𝑞) + 1) , (2.44)

where 𝑍𝑞 can be precomputed.
By replacing the indicator function with a surrogate function in Table 2.3, we

approximate 𝑟 (w; x,S𝑞)/𝑁𝑞 by

𝑔(w; x,S𝑞) =
1
𝑁𝑞

∑
x′∈S𝑞

ℓ(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞)).

Then the NDCG loss minimization is defined by

min
w

1
𝑁

𝑁∑
𝑞=1

1
𝑍𝑞

∑
x𝑞,𝑖∈S+

𝑞

1 − 2𝑦𝑞,𝑖
log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1) , (2.45)

which is an instance of EXM. We will explore FCCO techniques for solving this
problem in Section 6.4.4.

Listwise Cross-Entropy Loss

Analogous to multi-class classification, we can define a listwise cross-entropy loss
for ranking. This is based on modeling the probability that a specific item is ranked
at the top:

𝑃top (x | 𝑞) = exp(𝑠(w; x, 𝑞))∑
x 𝑗 ∈S𝑞 exp(𝑠(w; x 𝑗 , 𝑞))

. (2.46)

Accordingly, the listwise cross-entropy loss for query 𝑞 is defined as:

𝐿 (w; 𝑞) =
∑

x𝑞,𝑖∈S+
𝑞

−𝑝𝑞,𝑖 log

(
exp(𝑠(w; x𝑞,𝑖 , 𝑞))∑

x 𝑗 ∈S𝑞 exp(𝑠(w; x 𝑗 , 𝑞))

)
,

where 𝑝𝑞,𝑖 denotes the top-one prior probability for item x𝑞,𝑖 , such as

𝑝𝑞,𝑖 =
exp(𝑦𝑞,𝑖)∑

x𝑞,𝑖∈S𝑞 exp(𝑦𝑞,𝑖)
or 𝑝𝑞,𝑖 =

1
𝑁𝑞
.

An optimization objective based on the average of listwise cross-entropy losses
over all queries leads to the following formulation known as ListNet:

min
w

1
𝑁

𝑁∑
𝑞=1

∑
x𝑞,𝑖∈S+

𝑞

𝑝𝑞,𝑖 log ©­«
∑

x 𝑗 ∈S𝑞
exp(𝑠(w; x 𝑗 , 𝑞) − 𝑠(w; x𝑞,𝑖 , 𝑞))ª®¬ . (2.47)
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This formulation closely resembles equation (2.43) and constitutes a special case
of the EXM framework.

2.3.5 Contrastive Losses

Contrastive losses are commonly used in representation learning, which is a funda-
mental problem in the era of deep learning and modern AI.

What is Representation Learning?

Representation Learning is a process in machine learning where algorithms
extract meaningful patterns from raw data (e.g., images) to create represen-
tations that are useful for many downstream tasks, e.g., learning a classifier
or a retrieval model.

A deep neural network is usually used to extract representation from unstructured
raw data. Let ℎ(w; ·) : X → R𝑑1 denote the representation network that outputs
an embedding vector, which is sometimes called the encoder. A meaningful encoder
should capture the semantics such that ‘similar’ data points (positive pairs) are closer
to each other and dissimilar data points (negative pairs) are far away from each other
in the embedding space.

To conduct the representation learning, the following data is usually constructed.
Let x𝑖 be an anchor data, and let x+𝑖 denote a positive data of x𝑖 . Denote by S−

𝑖 the
set of negative data of x𝑖 . Let 𝑠(w; x, y) denote a similarity score between the two
encoded representations. For example, if ℎ(w; x) is a normalized vector such that
‖ℎ(w; x)‖2 = 1, we can use 𝑠(w; x, y) = ℎ(w; x)>ℎ(w; y).

A contrastive loss for each positive pair (x𝑖 , x+𝑖 ) is defined by:

𝐿 (w; x𝑖 , x+𝑖 ) = 𝜏 log ©­« 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ , (2.48)

where 𝜏 > 0 is called the temperature parameter. Given a set of data {(x𝑖 , x+𝑖 ,S−
𝑖 )}𝑛𝑖=1,

minimizing a contrastive objective for representation learning is formulated as:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­« 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ . (2.49)

Traditional supervised representation learning methods construct the positive and
negative data using the annotated class labels, such that data in the same class are
deemed as positive and data from different classes are considered as negative. How-
ever, this requires a large amount of labeled data to learn the encoder, which requires
significant human effort in labeling. To address this issue, self-supervised represen-
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tation learning (SSRL) techniques are employed to fully exploit the vast data readily
available on the internet via self-supervision to learn representations that are useful
for many downstream tasks. In SSRL, a positive pair (x𝑖 , x+𝑖 ) may consist of different
augmented views of the same sample or represent different modalities of the same
underlying object (e.g., an image and its corresponding text). The negative samples
for each anchor x𝑖 are typically drawn from all other data points in the dataset ex-
cluding x𝑖 . In this setting, a variant of the contrastive objective is useful by adding a
small constant 𝜀 > 0 inside the logarithm:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­«𝜀 + 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ . (2.50)

This can mitigate the impact of false negative data in S−
𝑖 . We will explore SSRL in

Section 6.5.

Optimization Challenge

Optimizing the above contrastive objectives is challenging due to the presence of
summations both inside and outside the logarithmic function. These losses can be
reformulated as special cases of the X-risk, where the outer function is 𝑓 (𝑔𝑖) =
𝜏 log(𝑔𝑖), and 𝑔𝑖 represents the inner average computed over negative samples asso-
ciated with each x𝑖 .

2.4 Discriminative Data Prediction

The aforementioned X-risks can be unified under a principled discriminative learn-
ing framework for data prediction, providing a statistical foundation for developing
advanced methods to train foundation models in modern AI.

What is a Foundation Model?

A foundation model (FM) is a type of machine learning model trained on
large, diverse datasets (generally using self-supervision at scale) that can be
adapted to a wide range of downstream tasks.

The widely used foundation models include Contrastive Language-image Pre-
trained (CLIP) model (see Section 6.5), Dense Passage Retrieval (DPR) model, large
language models (LLMs) such as the Generative Pretrained Transformer (GPT) se-
ries (see Section 6.6), and vision-language models (VLMs). These models fall into
two main categories: representation models, such as CLIP and DPR, and genera-
tive models, including LLMs and VLMs.

53



We present a discriminative data prediction framework to facilitate the learn-
ing of these foundation models. Suppose there exists a set of observed paired data,
{(x𝑖 , y𝑖)}𝑛𝑖=1, where x𝑖 ∈ X and y𝑖 ∈ Y. These pairs typically represent real-world
positive correspondences. While this setup resembles traditional supervised learn-
ing where x𝑖 represents input data and y𝑖 denotes a class label, there is a crucial
difference: here, y𝑖 refers to data from a continuous space (e.g., images) or an un-
countable space (e.g., text). For instance:

• In training the CLIP model, x𝑖 represents an image and y𝑖 is the corresponding
text caption (or vice versa).

• In training the DPR model, x𝑖 is an input question, and y𝑖 is the corresponding
textual answer.

• In fine-tuning LLMs or VLMs, x𝑖 represents input data (e.g., prompts or images),
and y𝑖 represents the text to be generated.

Discriminative Data Prediction

The problem of learning a representation model or fine-tuning a generative
model can be framed as discriminative learning, which we term as data pre-
diction, such that given any anchor data x, the parameterized scoring function
𝑠(w; ·, ·) is able to discriminate a positive data y from any other negative data
y′, i.e., 𝑠(w; x, y) ≥ 𝑠(w; x, y′).

Since the risk function usually involves coupling each positive data with many other
possibly negative data points in a compositional structure, the resulting risk is called
discriminative X-risk. The following subsections detail two specific approaches to
formulating discriminative X-risks.

2.4.1 A Discriminative Probabilistic Modeling Approach

Without loss of generality, we assume that X and Y are continuous spaces. Let P𝐽
denote the joint distribution of a pair (x, y), and let P1 and P2 denote the marginal
distributions of x and y, respectively. We write their corresponding density functions
as 𝑝(·, ·), 𝑝1 (·), and 𝑝2 (·).We denote the conditional density functions by 𝑝(y|x) and
𝑝(x|y), corresponding to the conditional distributions P(y|x) and P(x | y). Below,
we present two approaches based on discriminative probabilistic modeling (DPM)

Symmetric DPM

For symmetric DPM, we use 𝑠(w; x, y) to model both conditional distributions
P(y|x) and P(x|y). A discriminative probabilistic approach models the conditional
probability 𝑝(y|x) using a scoring function 𝑠(w; x, y) by:
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𝑝w (y|x) =
𝑝2 (y) exp(𝑠(w; x, y)/𝜏)∫

y∈Y 𝑝2 (y) exp(𝑠(w; x, y′)/𝜏)𝑑y′
, (2.51)

where 𝜏 > 0 is a temperature hyperparameter. The above parameterized distribution
is the solution to the following problem for a fixed x:

𝑝w (·|x) = arg max
Q∈Q

Ey′∼Q𝑠(w; x, y′) − 𝜏KL(Q, P2),

where Q = {Q|Q � P2} is a set of probability distributions over y ∈ Y.
Similarly, we model 𝑝(x|y) as

𝑝w (x|y) =
𝑝1 (x) exp(𝑠(w; x, y)/𝜏)∫

x∈X 𝑝1 (x) exp(𝑠(w; x′, y)/𝜏)𝑑x′
. (2.52)

Given a set of observed positive pairs {(x𝑖 , y𝑖)}𝑛𝑖=1, the model parameters w are
learned by minimizing the empirical risk of the negative log-likelihood:

min
w

−1
𝑛

𝑛∑
𝑖=1

{
𝜏 log

exp(𝑠(w; x𝑖 , y𝑖)/𝜏)
Ey′∼P2 exp(𝑠(w; x𝑖 , y′)/𝜏)

+ 𝜏 log
exp(𝑠(w; x𝑖 , y𝑖)/𝜏)

Ex′∼P1 exp(𝑠(w; x′, y𝑖)/𝜏)

}
.

A significant challenge in solving this problem lies in handling the partition func-
tions,

𝑍 (x𝑖) = Ey′∼P2 exp(𝑠(w; x𝑖 , y′)/𝜏)𝑑y′, 𝑍 (y𝑖) = Ex′∼P1 exp(𝑠(w; x′, y𝑖)/𝜏),

which are often computationally intractable. To overcome this, an approximation can
be constructed using a set of samples Ŷ𝑖 ⊆ Y, X̂𝑖 ⊆ X. The partition functions are
then estimated by:

𝑍̂ (x𝑖) =
1
|Ŷ𝑖 |

∑
ŷ 𝑗 ∈Ŷ𝑖

exp(𝑠(w; x𝑖 , ŷ 𝑗 )/𝜏), 𝑍̂ (y𝑖) =
1
|X̂𝑖 |

∑
x̂ 𝑗 ∈X̂𝑖

exp(𝑠(w; x̂ 𝑗 , y𝑖)/𝜏).

Consequently, the resulting optimization problem is an empirical X-risk minimiza-
tion problem:

min
w

1
𝑛

𝑛∑
𝑖=1
𝜏 log

©­­«
∑
𝑦̂ 𝑗 ∈Ŷ𝑖

exp
(
𝑠(w; x𝑖 , ŷ 𝑗 ) − 𝑠(w; x𝑖 , y𝑖)

𝜏

)ª®®¬
+ 𝜏 log ©­«

∑
𝑥̂ 𝑗 ∈X̂𝑖

exp
(
𝑠(w; x̂ 𝑗 , y𝑖) − 𝑠(w; x𝑖 , y𝑖)

𝜏

)ª®¬ .
(2.53)

The above approach can be justified that if 𝑠(w, ·, ·) is optimized over all possible
scoring functions, then the learned 𝑝𝑠 (y|x) and 𝑝𝑠 (x|y) approaches the true density
functions of P(y|x) and P(x|y) when 𝑛 approaches ∞, respectively.
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Theorem 2.4 Let us consider the following problem over all possible scoring func-
tions 𝑠(·, ·):

min
𝑠

−Ex,y

[
𝜏 log

𝑝2 (y) exp(𝑠(x, y)/𝜏)
Ey′∼P2 exp(𝑠(x, y′)/𝜏) + 𝜏 log

𝑝1 (x) exp(𝑠(x, y)/𝜏)
Ex′∼P1 exp(𝑠(x′, y)/𝜏)

]
. (2.54)

Then the set of global minimizers is given by

S∗ =

{
𝑠 :

𝑠(x, y)
𝜏

= log
𝑝(x, y)

𝑝1 (x)𝑝2 (y)
+ const

}
,

where const is a constant, and we have

𝑝𝑠 (y|x) =
𝑝2 (y) exp(𝑠(x, y)/𝜏)∫

y′∈Y 𝑝2 (y′) exp(𝑠(x, y′)/𝜏)𝑑y′
= 𝑝(y|x),

𝑝𝑠 (x|y) =
P1 (y) exp(𝑠(x, y)/𝜏)∫

x′∈X P1 (x) exp(𝑠(x′, y)/𝜏)𝑑y′
= 𝑝(x|y).

Proof. LetF1 be a class of functions 𝑓1 (x, y) : X×Y → R such that 𝑓1 (x, y) ≥ 0 and∫
y∈Y 𝑓1 (x, y) = 1, which induces a probability distribution Q1,𝑥 (·) over Y for any

x. Similarly, we define 𝑓2 (x, y) ∈ F2 that induces a probability distribution Q2,𝑦 (·)
over X for any y.

Let us define a problem:

min
𝑓1∈F1 , 𝑓2∈F2

Ex,y [− log 𝑓1 (x, y) − log 𝑓2 (x, y)] .

Since

Ex,y [− log 𝑓1 (x, y) − log 𝑓2 (x, y)]

= ExEy∼P( · |x)

[
− log

𝑓1 (x, y)
𝑝(y|x) − log 𝑝(y|x)

]
+ EyEx∼P( · |y)

[
− log

𝑓2 (x, y)
𝑝(x|y) − log 𝑝(y|x)

]
= Ex [KL(P(·|x),Q1,𝑥 (·))] + Ey [KL(P(·|y),Q2,𝑦 (·))] + const,

where const is independent of 𝑓 . Hence the minimizer 𝑓 ∗1 (x, y) is equal to 𝑝(y|x)
and the minimizer 𝑓 ∗2 (x, y) is equal to 𝑝(x|y). As a result, for optimal 𝑠∗ (·, ·) we
require

𝑝2 (y) exp(𝑠∗ (x, y)/𝜏)∫
Y 𝑝2 (y) exp(𝑠∗ (x, y′)/𝜏)𝑑y′

= 𝑓 ∗1 (x, y) = 𝑝(y|x), (2.55)

𝑝1 (x) exp(𝑠∗ (x, y)/𝜏)∫
Y 𝑝1 (x) exp(𝑠∗ (x′, y)/𝜏)𝑑x′

= 𝑓 ∗2 (x, y) = 𝑝(x|y). (2.56)
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From the first equation, we can derive that 𝑠∗ (x, y) = log 𝑝 (y |x)
𝑝2 (y) + ℎ1 (x), where

ℎ1 (x) is any arbitrary function of x. From the second equation, we can derive that
𝑠∗ (x, y) = log 𝑝 (x |y)

𝑝1 (x) + ℎ2 (x), where ℎ2 (y) is any arbitrary function of y. As a result,
the global minimizer 𝑠∗ (x, y) will be in the form of log 𝑝 (x,y)

𝑝1 (x) 𝑝2 (y) + const. ut

One-sided DPM

If we are only interested in modeling P(y|x), then we can consider one-sided DPM.
We define the following parametric probability function to model P(y|x):

𝑝w (y|x) =
exp(𝑠(w; x, y)/𝜏)∫

Y exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)
, (2.57)

where 𝜏 > 0 is a temperature hyperparameter, and 𝜇 is the Lebesgue measure asso-
ciated with the space Y.

Given a set of observed positive pairs {(x𝑖 , y𝑖)}𝑛𝑖=1, the model parameters w are
learned by minimizing the empirical risk of the negative log-likelihood:

min
w

−1
𝑛

𝑛∑
𝑖=1

𝜏 log
exp(𝑠(w; x𝑖 , y𝑖)/𝜏)∫

Y exp(𝑠(w; x𝑖 , y′)/𝜏)𝑑𝜇(y′)
.

A significant challenge in solving this problem lies in handling the partition function,

𝑍𝑖 =
∫
Y

exp(𝑠(w; x𝑖 , y′)/𝜏)𝑑𝜇(y′),

which is often computationally intractable. To overcome this, an approximation can
be constructed using a set of samples Ŷ𝑖 ⊆ Y. The partition function is then esti-
mated as:

𝑍̂𝑖 =
∑

ŷ 𝑗 ∈Ŷ𝑖

1
𝑞 𝑗

exp(𝑠(w; x𝑖 , ŷ 𝑗 )/𝜏),

where 𝑞 𝑗 is an importance weight that accounts for the sample probability of ŷ 𝑗 .
Consequently, the empirical X-risk minimization problem is reformulated as:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log
©­­«

∑
ŷ 𝑗 ∈Ŷ𝑖

exp((𝑠(w; x𝑖 , ŷ 𝑗 ) + 𝜁 𝑗 − 𝑠(w; x𝑖 , y𝑖))/𝜏)
ª®®¬ ,

where 𝜁 𝑗 = 𝜏 ln 1
𝑞 𝑗
.

We can similarly justify the above approach by the following theorem.

Theorem 2.5 Let us consider the following problem over all possible scoring func-
tions 𝑠(·, ·):
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Fig. 2.5: DPM for supervised learning and self-supervised representation learning.

min
𝑠

−Ex,y𝜏 log
exp(𝑠(x, y)/𝜏)∫

y′∈Y exp(𝑠(x, y′)/𝜏)𝑑𝜇(y′)
. (2.58)

Then the set of global minimizers is given by

S∗ =

{
𝑠 :

𝑠(x, y)
𝜏

= log 𝑝(y|x) + ℎ(x)
}
,

where ℎ(·) is an arbitrary function of x, and we have 𝑝𝑠 (y|x) = exp(𝑠 (x,y)/𝜏 )∫
Y exp(𝑠 (x,y′ )/𝜏 )𝑑y′ =

𝑝(y|x).

The proof is similar to the previous one and thus is omitted.

Instantiation

The fundamental difference between symmetric DPM and one-sided DPM lies in
what their scoring functions 𝑠(w; x, y) are designed to capture. We can use sym-
metric DPM for learning representation models and one-sided DPM for learning
generative models and supervised prediction models.

The standard cross-entropy loss for classification and the listwise cross-entropy
loss for learning to rank can both be viewed as special cases of the one-sided DPM
framework, where Y represents either a finite set of class labels or a list of items
to be ranked for each query. In these cases, the integral naturally simplifies to a
finite summation, eliminating the need to approximate the normalization term 𝑍𝑖 .
However, whenY is large, computing 𝑍𝑖 remains computationally demanding. This
challenge, in turn, motivates the development of more advanced compositional op-
timization techniques.

For representation learning, the goal is to learn a symmetric scoring function
𝑠(w; x, y) = ℎ1 (w; x)>ℎ2 (w; y) that approximates the global optimum
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𝑠∗ (x, y) = 𝜏 log
𝑝(x, y)

𝑝1 (x)𝑝2 (y)
+ const,

which measures how much the joint distribution P(x, y) deviates from independence
between x and y. Wewill consider contrastive losses of CLIP in Section 6.5 for multi-
modal representation learning, which can be interpreted by the symmetric DPMwith
x, y denoting an image-text pair.

For generative modeling, we can use underlying models to induce a scoring func-
tion 𝑠(w; x, y) for approximating the global optimum 𝑠∗ (x, y) = 𝜏 log 𝑝(y|x) + ℎ(x).
We will also consider discriminative fine-tuning of LLMs Section 6.6, which can be
interpreted by the one-sided DPM with x, y denoting an input-output pair.

An illustration of the connection between the probabilistic model for multi-modal
representation learning and traditional supervised learning tasks including multi-
class classification and learning to rank is shown in Figure 2.5.

Critical: Discriminative probabilistic model over a data space is a framework
that unifies traditional label prediction and data ranking of supervised learn-
ing and modern self-supervised representation learning, and induces new ap-
proaches for fine-tuning LLMs.

2.4.2 A Robust Optimization Approach

The goal of discriminative learning is to increase the score 𝑠(w; x, y+) for a “positive”
pair (x, y+) while decreasing the score 𝑠(w; x, y−) for any “negative” pair (x, y−).

Full Supervised setting

Let us first consider the supervised learning setting, where positive and negative
samples are labeled, i.e., there is a function 𝑟 (x, y) ∈ (0, 1) that indicates whether
they form a positive pair or a negative pair. We let (x, y+) ∼ P+ (x, y+) denote a
positive pair and (x, y−) ∼ P− (x, y−) denote a negative pair, where P+ (x, y+) =
P(x)P+ (y+ |x),P− (x, y−) = P(x)P− (y− |x), and P(x, y+, y−) = P+ (y+ |x)P− (y− |x)P(x).
Let us denote a pairwise loss by ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+)).

A naive goal is to minimize the expected risk:

min
w

Ex,y+ ,y−∼P(x,y+ ,y− )
[
ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+))

]
.

However, a fundamental challenge for data prediction is that the number of negative
data is usually much larger than the number of positive data. Hence, the expected
risk is not a strong measure. To address this challenge, we can leverage OCE. In
particular, we replace the expected risk Ey−∼P(y− |x)

[
ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+))

]
by

its OCE counterpart, resulting the following population risk:
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min
w

Ex,y+

[
min
𝜈
𝜏Ey− |x𝜙

∗
(
ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+)) − 𝜈

𝜏

)
+ 𝜈

]
. (2.59)

If the training dataset is S = {x𝑖 , y+𝑖 , y−
𝑖 𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]}, where y+𝑖 ∼ P+ (·|x𝑖) and

y−
𝑖 𝑗 ∼ P− (·|x𝑖), then the empirical version becomes:

min
w

1
𝑛

𝑛∑
𝑖=1

min
𝜈𝑖
𝜏

1
𝑚

𝑚∑
𝑗=1

𝜙∗
(
ℓ(𝑠(w; x𝑖 , y−

𝑖 𝑗 ) − 𝑠(w; x𝑖 , y+𝑖 )) − 𝜈𝑖
𝜏

)
+ 𝜈𝑖 . (2.60)

Semi-supervised setting

We can extend the above framework to the semi-supervised learning setting, where
we only have samples from the positive distribution P+ (·|x) and samples from the
distribution 𝑃(·|x).

Let us assume that P(·|x) = 𝜋+ (x)P+ (·|x) + 𝜋− (x)P− (·|x) and 𝜋+ (x) � 𝜋− (x).
This means that for a fixed data x, the sampled data y ∼ 𝑃(·|x) is mostly likely
from the negative distribution P− (·|x). Hence, we can approximate Ey−∼P− ( · |x) by
Ey∼P( · |x) . Hence, a population risk in the semi-supervised learning setting becomes

min
w

Ex,y+

[
min
𝜈
𝜏Ey |x𝜙

∗
(
ℓ(𝑠(w; x, y) − 𝑠(w; x, y+)) − 𝜈

𝜏

)
+ 𝜈

]
, (2.61)

and its empirical version becomes

min
w

1
𝑛

𝑛∑
𝑖=1

min
𝜈𝑖
𝜏

1
𝑚

𝑚∑
𝑗=1

𝜙∗
(
ℓ(𝑠(w; x𝑖 , y𝑖 𝑗 ) − 𝑠(w; x𝑖 , y+𝑖 )) − 𝜈𝑖

𝜏

)
+ 𝜈𝑖 , (2.62)

where {y𝑖 𝑗 , 𝑗 = 1, . . . , 𝑚} are samples from P(·|x).

Self-supervised setting

For self-supervised learning, we let (x, y+) ∼ P(x, y+) denote a “positive” pair, and
(x, y−) ∼ P(x)P(y−) denote a “negative” pair. For empirical learning, we only have
a training set of S = {x𝑖 , y+𝑖 , 𝑖 ∈ [𝑛]}. We use S−

𝑖 = {y+𝑗 } 𝑗≠𝑖 to define the empirical
risk:

min
w

1
𝑛

𝑛∑
𝑖=1

min
𝜈𝑖
𝜏

1
|S−
𝑖 |

∑
y′∈S−

𝑖

𝜙∗
(
ℓ(𝑠(w; x𝑖 , y′) − 𝑠(w; x𝑖 , y+𝑖 )) − 𝜈𝑖

𝜏

)
+ 𝜈𝑖 . (2.63)

We refer to the problems in (2.60), (2.62) and (2.63) as the Compositional OCE
(COCE) optimization. We will present and analyze stochastic algorithms for solving
COCE optimization in Chapter 5[Section 5.5].
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Discriminative 
Learning
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Data Prediction Loss: 
Contrastive losses,
Partial AUC losses, 

Listwise CE

Empirical X-risk Minimization

Compositional Optimization: FCCO & SCO

Fig. 2.6: Overview of different losses and two fundamental learning principles

Instantiation

When 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the inner optimization over 𝜈𝑖 in (2.62) admits a closed-
form solution, which can be substituted back into the objective, yielding:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­« 1
𝑚

𝑚∑
𝑗=1

exp
(
ℓ(𝑠(w; x𝑖 , y𝑖 𝑗 ) − 𝑠(w; x𝑖 , y+𝑖 ))

𝜏

)ª®¬ . (2.64)

This formulation unifies several well-known losses as special cases:

• Cross-Entropy Loss for Classification: Let x𝑖 denote an input data point, let
𝑦+𝑖 represent its true class label and {𝑦𝑖 𝑗 , 𝑗 = 1, . . . , 𝑚} = {1, . . . , 𝐾} forms the
full label space. Define the prediction score for the 𝑦-th class of x as 𝑠(w; x, 𝑦) =
ℎ0 (w0; x)>w𝑦 .When the loss function is ℓ(𝑠) = 𝑠 and 𝜏 = 1, the objective reduces
to the empirical risk with the standard cross-entropy loss.

• Listwise Cross-Entropy Loss for Ranking: Let x𝑖 denote a query, {y+𝑖 } denote
a relevant (positive) document, and {y𝑖 𝑗 }𝑚𝑗=1 denote the complete candidate list
to be ranked. Let 𝑠(w; x, y) be the predicted relevance score between a query x
and a document y. When the loss function is ℓ(𝑠) = 𝑠 and 𝜏 = 1, the objective
simplifies to the listwise cross-entropy loss.

• Self-supervised Contrastive Loss for Representation Learning: If x𝑖 is an an-
chor (e.g., an image), y+𝑖 denotes its positive pair (e.g., the corresponding text)
and {y𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑚} = S−

𝑖 , the the objective in (2.64) recovers the contrastive
loss (2.48) used in self-supervised contrastive representation learning.
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• Partial AUCLoss for Imbalanced Binary Classification: Let x𝑖 be a fixed class
label (𝑖 = 1), with {y+𝑖 } denoting its positive data set and {y𝑖 𝑗 }𝑚𝑗=1 being its nega-
tive data set. Define the scoring function as 𝑠(w; x, y) = ℎ(w; y) ∈ R. Under this
setting, the objective in (2.64) reduces to the partial AUC loss in (2.43).

This framework offers a flexible foundation for designing alternative contrastive
objectives by varying the loss function ℓ(·), the temperature 𝜏, the divergence func-
tion 𝜙(·), and the distributionally robust optimization (DRO) formulation, including
its constrained variants.

Finally, Figure 2.6 illustrates the losses, objectives, and learning frameworks dis-
cussed in this chapter, along with their connections to the principles of discrimina-
tive learning and robust optimization. This perspective highlights the necessity of
stochastic compositional optimization and finite-sum coupled compositional opti-
mization, which will be presented in subsequent chapters.

2.5 History and Notes

Loss functions

A pioneering work analyzing the infinite-sample consistency of various multi-class
surrogate loss functions is provided by Zhang (2004b). This work proves the con-
sistency of several losses, including the cross-entropy loss. It also shows that the
consistency of the Crammer-Singer and hinge losses can fail unless the maximum
conditional probability of a class label given the input exceeds 0.5.

The Label-Distribution-Aware Margin (LDAM) Loss was proposed and studied
by Cao et al. (2019), inspired by margin-based generalization error bounds tailored
for each class. The label distributionally robust (LDR) losses and their consistency
was proposed and studied by Zhu et al. (2023b).

Variants of standard loss functions have been developed to minimize the top-𝑘
error for 𝑘 > 1, such as the top-𝑘 SVM loss and the top-𝑘 cross-entropy loss (Lapin
et al., 2018; Yang and Koyejo, 2020). The top-𝑘 SVM loss can be recovered as a
special case of the general LDR loss by setting 𝑅(p) = 0 and Ω = {p ∈ Δ𝐾 : 𝑝𝑘 ≤
1/𝑘}. Although this formulation is generally inconsistent, adding a small strongly
convex regularizer 𝑅(p) to the LDR loss can restore consistency.

A sufficient condition for a loss function to be noise-tolerant is the symmetry
property, as introduced by Ghosh et al. (2017). A loss function is considered noise-
tolerant if the minimizer of the expected risk under the true label distribution remains
the same under the noisy label distribution, provided the noise level is not excessively
high.
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Robust optimization

Robust optimization dates back to Scarf (1958), who studied an inventory problem
in which the goal is to determine the purchase quantity that maximizes profit when
future demand is a random variable whose underlying probability distribution is as-
sumed to belong to a set of plausible distributions. The problem is reformulated as a
worst-case analysis over all distributions in this set with known mean and variance.
Later, Dupačová (1966) investigated the min–max robust formulation of stochastic
linear programming. Since then, robust optimization has been extensively studied
in management science, operations research, and mathematical programming (Kou-
velis and Yu, 1997; Shapiro and Kleywegt, 2002; Rustem and Howe, 2002; Ben-Tal
et al., 2009b). The term distributionally robust optimization was introduced by De-
lage and Ye (2010).

The 𝜙-divergence (sometimes called 𝑓 -divergence, where both 𝑓 and 𝜙 denote
a function) was introduced by Csiszár (1967). The use of 𝜙-divergence to define
the uncertainty set in robust optimization was first studied by Ben-Tal et al. (2013),
while earlier works had considered using the KL divergence to define an uncertainty
set of probabilities (Calafiore, 2007). A special case of DRO, namely the maximal
loss, was shown to be beneficial for imbalanced classification by Shalev-Shwartz and
Wexler (2016). The popularity of DRO in machine learning is largely attributed to
Namkoong and Duchi (2017), who established a variance-based generalization error
bound for DRO with the 𝜒2 divergence, building on their preceding work (Duchi
et al., 2022). The optimized certainty equivalent (OCE) was proposed by Ben-Tal
and Teboulle (1986b), and its connection to DRO was later established in (Ben-Tal
and Teboulle, 2007). Group DRO was first proposed by Hu et al. (2018) and became
widely recognized due to Sagawa et al. (2019).

AUC and NDCG

The receiver operating characteristic (ROC) curve was originally developed in the
1940s by electrical and radar engineers during World War II to detect enemy ob-
jects on the battlefield, which gave rise to its name (”receiver operating character-
istic”) (Marcum, 1947). It was subsequently formalized within the framework of
signal detection theory (Green and Swets, 1966). The probabilistic interpretation of
AUC and its equivalence to the Mann–Whitney U-statistic (or Wilcoxon statistic)
were later established by Hanley and McNeil (1982). The concept was subsequently
introduced into machine learning as a standard metric for evaluating learning algo-
rithms (Spackman, 1989). The first study of the one-way partial AUC (pAUC) was
presented by Dodd and Pepe (2003), and the notion of two-way partial AUC was
later introduced by Yang et al. (2019).

The study of AUCmaximization dates back to Verrelst et al. (1998) and has since
been extensively explored in machine learning. Yan et al. (2003) were the first to
apply the gradient descent method to optimize a hinge-based pairwise surrogate loss
for AUC, while Cortes andMohri (2003) employed the Rankboost algorithm (Freund
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et al., 2003) to optimize AUC. The compositional objective for AUC maximization
was first proposed byYing et al. (2016a) in amin–max form andwas later generalized
in (Yuan et al., 2021; Zhu et al., 2022c). For a comprehensive overview of related
work, see the survey by Yang and Ying (2022). The first work onmaximizing average
precision was conducted by Morgan et al. (2004). The use of DRO for formulating
partial AUC losses was proposed by Zhu et al. (2022a).

NDCG was introduced by Järvelin and Kekäläinen (2000), and the listwise cross-
entropy loss for learning to rank was proposed by Cao et al. (2007). The concept of
empirical X-riskminimization for unifying a family of non-decomposable losses was
developed by the author of this book in (Yang, 2022), which also presents additional
examples of X-risks.

Foundation Models

Representation learning in traditional machine learning is related to principal com-
ponent analysis and distance metric learning (Yang and Jin, 2006). Conventional
contrastive losses are defined on pairs (x, y) using it binary label indicating positive
or negative pair (Hadsell et al., 2006) or triplets (x, y+, y−) (Weinberger and Saul,
2009). The Contrastive loss defined on a list of negative data for a positive pair was
first introduced by Sohn (2016).

The term foundation model was introduced by Bommasani et al. (2021). The use
of DRO to formulate the contrastive loss was first proposed by Qiu et al. (2023), pro-
viding a principled approach for optimizing individualized temperature parameters.
The discriminative probabilistic modeling approach for self-supervised representa-
tion learning was first explored by Wang et al. (2025).

Generalization Error

Generalization error analysis is a central topic in several classical machine learning
texts (Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018) and in the statisti-
cal learning theory literature (Koltchinskii, 2011). Typically, uniform convergence
bounds of the form supw∈W |R(w) − RS (w) | are derived using concentration in-
equalities, with dependencies on both the number of training samples 𝑛 and the
complexity of the hypothesis class. More recently, there has been growing interest in
directly analyzing the generalization performance of models returned by stochastic
optimization algorithms using stability-based techniques (Hardt et al., 2016; Lei and
Ying, 2019).

Generalization error analyses for DRO and OCE objectives have been extensively
developed in the literature: Brown (2007) established theoretical bounds for CVaR,
Namkoong and Duchi (2017) developed bounds for 𝜒2-constrained DRO, and Lee
et al. (2020) explored generalization for general OCE risk. However, the generaliza-
tion error for compositional OCE is under-development.
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Machine Learning texts

There are excellent textbooks on machine learning (Shalev-Shwartz and Ben-David,
2014; Mohri et al., 2018; Bishop, 2006) and on robust optimization (Ben-Tal et al.,
2009a). However, to the best of our knowledge, this book is the first to provide a com-
prehensive and unified treatment of diverse loss functions and objectives, ranging
from the traditional cross-entropy loss to the contrastive loss used in self-supervised
representation learning, through the lens of robust optimization and discriminative
learning.
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Chapter 3
Classic: Stochastic Optimization

Abstract In this chapter, we introduce standard stochastic optimization problems
and present key stochastic optimization algorithms along with their complexity anal-
ysis. While many important stochastic algorithms have been proposed for solving
stochastic optimization and empirical riskminimization problems, we focus on seven
foundational methods that gained prominence before the deep learning era. These
algorithms have had a profound impact on machine learning and provide essential
insights for understanding more advanced methods presented in later chapters. The
selected algorithms include stochastic gradient descent (SGD), stochastic proximal
gradient descent, stochasticmirror descent, adaptive gradient methods, stochastic co-
ordinate descent, stochastic gradient descent ascent, and stochastic optimistic mirror
prox. We concentrate on the complexity analysis in the convex setting.

Stochastic optimization is classical wisdom in motion!
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3.1. STOCHASTIC GRADIENT DESCENT

Algorithm 1 SGD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
5: end for

3.1 Stochastic Gradient Descent

Let us consider the following standard stochastic optimization problem:

min
w
𝑔(w) := E𝜁 [𝑔(w; 𝜁)] . (3.1)

If 𝑔 is differentiable, the stochastic gradient descent (SGD) method takes the follow-
ing update:

w𝑡+1 = w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ), (3.2)

where 𝜁𝑡 is a random sample. If 𝑔 is non-differentiable, we use a stochastic subgra-
dient G(w; 𝜁) to update the model parameter:

w𝑡+1 = w𝑡 − 𝜂𝑡G(w𝑡 ; 𝜁𝑡 ). (3.3)

The key assumption regarding the stochastic gradient or subgradient is the following.

Assumption 3.1. For any w, we have E𝜁 [∇𝑔(w; 𝜁)] = ∇𝑔(w) or E𝜁 [G(w; 𝜁)] ∈
𝜕𝑔(w).

Explanation of SGD update

The update (3.2) is equivalent to:

w𝑡+1 = arg min
w
𝑔(w𝑡 ; 𝜁𝑡 ) + ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +

1
2𝜂𝑡

‖w − w𝑡 ‖2
2. (3.4)

The stochastic linear approximation 𝑔̃(w; 𝜁𝑡 ) = 𝑔(w𝑡 ; 𝜁𝑡 ) + ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w−
w𝑡 ) serves as a stochastic surrogate for 𝑔(w). Since it is only an approxima-
tion, we avoid optimizing it directly; instead, we seek a solution close to w𝑡
that minimizes this surrogate.

When SGD is applied to solving ERM (2.1), 𝜁𝑡 could represent one randomly
sampled data with an index from {1, . . . , 𝑛} or a mini-batch of random data.

Below, we present the convergence analysis for smooth and non-smooth, convex
and non-convex objective functions.
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3.1.1 Smooth Convex Functions

For a point w, convergence is typically measured by the objective gap:

𝑔(w) − min
w
𝑔(w) = 𝑔(w) − 𝑔(w∗),

where w∗ denotes a global optimal solution. A convergence analysis aims to show
that after 𝑇 iterations of updates, we can obtain a solution ŵ𝑇 such that the expected
objective gap is bounded by

E [𝑔(ŵ𝑇 ) − 𝑔(w∗)] ≤ 𝑂
(

1
𝑇 𝛼

)
, (3.5)

for some 𝛼 > 0. The term 1/𝑇 𝛼 is referred to as the convergence rate. Accordingly,
to guarantee a small objective gap E[𝑔(ŵ𝑇 )−𝑔(w∗)] ≤ 𝜖 for some 𝜖 � 1, the bound
implies that 𝑇 = 𝑂

(
1
𝜖 1/𝛼

)
, which is known as the iteration complexity.

Let us first assume that 𝑔 is smooth and its stochastic gradient ∇𝑔(w; 𝜁) satisfies
the following assumption.

Assumption 3.2. (i) 𝑔(w) is 𝐿-smooth and convex; (ii) For any w, we have

E[‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2
2] ≤ 𝜎2

for some 𝜎 ≥ 0.

The following lemma is useful for convergence analysis.

Lemma 3.1 Consider the update (3.2). For any w we have

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

Proof. Since the problem (3.4) is 1/𝜂𝑡 strongly convex and has an optimal solution
w𝑡+1, following (1.18) for any w we have

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1

2𝜂𝑡
‖w − w𝑡 ‖2

2

≥ ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w𝑡 ) +
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 +
1

2𝜂𝑡
‖w − w𝑡+1‖2

2.

Re-arranging the inequality, we have

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

ut

The following lemma shows one-step objective gap bound.
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3.1. STOCHASTIC GRADIENT DESCENT

Lemma 3.2 Suppose Assumption 3.1 and 3.2 hold. For one step SGD updatew𝑡+1 =
w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜉𝑡 ), we have

E[𝑔(w𝑡+1) − 𝑔(w∗)] ≤E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2

]
+ 𝜂𝑡𝜎2.

Proof. From Lemma 3.1, we have

∇𝑔(w𝑡 )> (w𝑡+1 − w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

+ (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − w).
(3.6)

By the smoothness and convexity of 𝑔, we have

𝑔(w𝑡+1) ≤ 𝑔(w𝑡 ) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡 − w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w) + 𝐿
2
‖w𝑡+1 − w𝑡 ‖2

2.

(3.7)
Combining this with (3.6), we have

𝑔(w𝑡+1) − 𝑔(w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

+ 𝐿
2
‖w𝑡+1 − w𝑡 ‖2

2 + (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − w).
(3.8)

Then if 𝜂𝑡 ≤ 1/𝐿 and plugging w = w∗, we have

𝑔(w𝑡+1) − 𝑔(w∗) ≤
1

2𝜂𝑡
‖w∗ − w𝑡 ‖2

2 −
1

2𝜂𝑡
‖w∗ − w𝑡+1‖2

2

+ (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − w∗).

The challenge lies at handling the last term where w𝑡+1 depends on 𝜁𝑡 , hence its
expectation is not equal to zero. To bound the last term, we introduce

ŵ𝑡+1 = arg min
w

∇𝑔(w𝑡 )> (w − w𝑡 ) +
1

2𝜂𝑡
‖w − w𝑡 ‖2

2.

Note that ŵ𝑡+1 is independent of 𝜁𝑡 . ThenE𝜁𝑡 [(∇𝑔(w𝑡 )−∇𝑔(w𝑡 ; 𝜁𝑡 ))> (ŵ𝑡+1−w∗)] =
0. Thus, we have

E[𝑔(w𝑡+1) − 𝑔(w∗)] ≤E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2

]
+ E[(∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1)] .
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Due to Lemma 1.7, we have ‖w𝑡+1 − ŵ𝑡+1‖2 ≤ 𝜂𝑡 ‖∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 )‖2, thus

E[𝑔(w𝑡+1) − 𝑔(w∗)] ≤E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2

]
+ 𝜂𝑡𝜎2.

ut

Theorem 3.1 Suppose Assumption 3.1 and 3.2 hold. Let the learning rate {𝜂𝑡 } be
𝜂𝑡 = 𝜂 ≤ 1/𝐿 and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡+1. Then after 𝑇 iterations of SGD update we

have

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝜎2. (3.9)

If 𝜂 = min( 1
𝐿 ,

‖w1−w∗ ‖2√
2𝑇𝜎

), then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
√

2𝜎‖w1 − w∗‖2√
𝑇

+
𝐿‖w1 − w∗‖2

2
𝑇

.

 Why it matters

In the convergence upper bound (3.9), the first term captures the optimization
error due to the finite time horizon, while the second term represents the error
induced by stochastic gradient noise.
If 𝜎 = 0 (no noise), SGD reduces to gradient descent, then a constant step size
𝜂 = 1/𝐿 can be used and the convergence rate becomes𝑂

(
𝐿 ‖w1−w∗ ‖2

2
𝑇

)
. If𝜎2 > 0

(there is noise in stochastic gradient), in order to guarantee convergence, we have
to set 𝜂𝑡 → 0 or a small value to guarantee certain level of accuracy.
For a fixed number of iterations 𝑇 , a smaller variance 𝜎 allows for faster con-
vergence with a larger learning rate 𝜂 (up to a certain limit).
The iteration complexity required to achieve E[𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤ 𝜖 is

𝑇 = 𝑂
(
max

(
𝜎2 ‖w1−w∗ ‖2

2
𝜖 2 ,

𝐿 ‖w1−w∗ ‖2
2

𝜖

))
.

If a mini-batch of size 𝐵 is used to compute the stochastic gradient at each it-
eration, the variance of the stochastic gradient decreases by a factor of 𝐵. This
implies that increasing the batch size, up to a certain point, can reduce the num-
ber of iterations needed.
Finally, the result also highlights that the initial learning rate 𝜂 cannot be too
large; in practice, an excessively large initial learning rate may cause the algo-
rithm to diverge.

Proof. If 𝜂𝑡 = 𝜂, summing the inequalities in Lemma 3.2 over 𝑡 = 1, . . . , 𝑇 , we have
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3.1. STOCHASTIC GRADIENT DESCENT

E
[ 𝑇∑
𝑡=1

(𝑔(w𝑡+1) − 𝑔(w∗))
]
≤E

[
𝑇∑
𝑡=1

1
2𝜂

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂

‖w∗ − w𝑡+1‖2
2

]
+ 𝑇𝜂𝜎2.

The first term in [·] is a telescoping series,

𝑇∑
𝑡=1

1
2𝜂

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂

‖w∗ − w𝑡+1‖2
2 ≤ 1

2𝜂
‖w∗ − w1‖2

2 −
1
2𝜂

‖w∗ − w𝑇+1‖2
2

≤ 1
2𝜂

‖w∗ − w1‖2
2.

As a result,

E
[
1
𝑇

𝑇∑
𝑡=1

(𝑔(w𝑡+1) − 𝑔(w∗))
]
≤ 1

2𝜂𝑇
‖w∗ − w1‖2

2 + 𝜂𝜎2,

which concludes the proof of the first part of the theorem.
For the second part, optimizing the upper bound over 𝜂 gives 𝜂∗ = ‖w1−w∗ ‖√

2𝑇𝜎
. If

𝜂∗ ≤ 1/𝐿, i.e., 𝑇 ≥ ‖w1−w∗ ‖2
2𝐿

2

2𝜎2 , we set 𝜂 = 𝜂∗, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
2𝜎‖w1 − w∗‖2√

2𝑇
.

If 𝜂∗ > 1/𝐿, i.e., 𝜎2 ≤ ‖w1−w∗ ‖2
2𝐿

2

2𝑇 , we set 𝜂 = 1/𝐿, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐿‖w1 − w∗‖2

2
2𝑇

+
𝐿‖w1 − w∗‖2

2
2𝑇

=
𝐿‖w1 − w∗‖2

2
𝑇

.

ut

3.1.2 Non-smooth Convex Functions

Now, let us consider the SGD update (3.3) for non-smooth convex functions under
the following assumption.

Assumption 3.3. (i) 𝑔(w) is convex; (ii) For any w, we have E[‖G(w; 𝜁)‖2
2] ≤ 𝐺2.

Lemma 3.3 Suppose Assumption 3.1 and 3.3 hold. For one step SGD updatew𝑡+1 =
w𝑡 − 𝜂𝑡G(w𝑡 ; 𝜉𝑡 ), we have

E[𝑔(w𝑡 ) − 𝑔(w∗)] ≤ E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2

]
+ 𝜂𝑡

2
𝐺2.
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Proof. From Lemma 3.1, we have

G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗) ≤
1

2𝜂𝑡
‖w∗ − w𝑡 ‖2

2 −
1

2𝜂𝑡
‖w∗ − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2

+ G(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w𝑡 )

≤ 1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

+ 𝜂𝑡
2
‖G(w𝑡 ; 𝜁𝑡 )‖2

2 +
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2,

(3.10)
where the last inequality uses the Young’s inequality. Taking expectation on both
sides, we have

E[G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗)] ≤ E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2

]
+ 𝜂𝑡

2
𝐺2.

(3.11)
Since w𝑡 is independent of 𝜁𝑡 , we have E[G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗)] = E[v>𝑡 (w𝑡 − w∗)]
for some v𝑡 ∈ 𝜕𝑔(w𝑡 ). By the convexity of 𝑔, we have

E[𝑔(w𝑡 ) − 𝑔(w∗)] ≤ E[v>𝑡 (w𝑡 − w∗)] = E[G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗)]

≤ E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2

]
+ 𝜂𝑡

2
𝐺2.

(3.12)

ut

The theorem below establishes the convergence of SGD for non-smooth convex
functions as measured by the objective gap.

Theorem 3.2 Suppose Assumption 3.1 and 3.3 hold. Let the learning rate {𝜂𝑡 } be
𝜂𝑡 = 𝜂 and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡 . Then after for 𝑇 iterations of SGD update (3.3) we have

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝐺
2

2
.

If 𝜂 = ‖w1−w∗ ‖2√
𝑇𝐺

, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐺‖w1 − w∗‖2√

𝑇
.

 Why it matters

The above theorem exhibits the key difference in the convergence of SGD for
smooth convex functions and non-smooth convex functions. Even with a zero
variance for the stochastic subgradient , the convergence rate is still 𝑂 (1/

√
𝑇).

The reason is that for smooth convex functions when 𝑔(w) → 𝑔(w∗), we have
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3.1. STOCHASTIC GRADIENT DESCENT

∇𝑔(w) → 0 (cf. Lemma 1.5(b)), which is not true for non-smooth convex func-
tions.

Proof. The proof is similar to that in the smooth case.
ut

3.1.3 Smooth Non-Convex Functions

For a non-convex function, it is generally NP-hard to find a global optimal solution.
Hence, our goal here is to establish the complexity of SGD for finding an 𝜖-stationary
solution with 𝜖 � 1, as defined below.

Definition 3.1 (𝜖-stationary solution) w is an 𝜖-stationary solution to minw 𝑔(w),
if ‖∇𝑔(w)‖2 ≤ 𝜖 .

Assumption 3.4. (i) 𝑔(w) is 𝐿-smooth and non-convex; (ii) For any w, we have

E[‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2
2] ≤ 𝜎2

for some 𝜎 ≥ 0.

Based on the above assumptions, we establish the following convergence guaran-
tee.

Theorem 3.3 Suppose Assumption 3.1 and 3.4 hold. Let the learning rate {𝜂𝑡 } be
𝜂𝑡 = min{ 1

𝐿 ,
𝐷
𝜎
√
𝑇
} for some constant 𝐷 > 0. Let 𝜏 ∈ {1, . . . , 𝑇} be a random sample

following a distribution Pr(𝜏 = 𝑡) = 1
𝑇 . Then we have

E[‖∇𝑔(w𝜏)‖2
2] ≤

2𝐿 (𝑔(w1) − 𝑔(w∗)
𝑇

+
(
2(𝑔(w1) − 𝑔(w∗))

𝐷
+ 𝐷𝐿

)
𝜎
√
𝑇
.

Proof. For brevity of notation, we let∇𝑔𝑡 (w𝑡 ) = ∇𝑔(w𝑡 ; 𝜁𝑡 ). Due to the 𝐿-smoothness
of 𝑔, we have

75



𝑔(w𝑡+1) ≤ 𝑔(w𝑡 ) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

= 𝑔(w𝑡 ) − 𝜂𝑡∇𝑔(w𝑡 )>∇𝑔𝑡 (w𝑡 ) +
𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 )‖2

2

= 𝑔(w𝑡 ) − 𝜂𝑡 ‖∇𝑔(w𝑡 )‖2
2 + 𝜂𝑡∇𝑔(w𝑡 )> (∇𝑔(w𝑡 ) − ∇𝑔𝑡 (w𝑡 )) +

𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 )‖2

2

= 𝑔(w𝑡 ) − 𝜂𝑡 ‖∇𝑔(w𝑡 )‖2
2 + 𝜂𝑡∇𝑔(w𝑡 )> (∇𝑔(w𝑡 ) − ∇𝑔𝑡 (w𝑡 ))

+
𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 ) − ∇𝑔(w𝑡 ) + ∇𝑔(w𝑡 )‖2

2

= 𝑔(w𝑡 ) − (𝜂𝑡 −
𝜂2
𝑡 𝐿

2
) ‖∇𝑔(w𝑡 )‖2

2 + (𝜂𝑡 − 𝜂2
𝑡 𝐿)∇𝑔(w𝑡 )> (∇𝑔(w𝑡 ) − ∇𝑔𝑡 (w𝑡 ))

+
𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 ) − ∇𝑔(w𝑡 )‖2

2 .

Taking expectation over 𝜁𝑡 given w𝑡 on both sides, we have

E𝜁𝑡 [𝑔(w𝑡+1)] ≤ 𝑔(w𝑡 ) − (𝜂𝑡 −
𝜂2
𝑡 𝐿

2
) ‖∇𝑔(w𝑡 )‖2

2 +
𝜂2
𝑡 𝐿

2
𝜎2. (3.13)

Telescoping this from 𝑡 = 1 to 𝑇 gives

E

[
𝑇∑
𝑡=1

(𝜂𝑡 −
𝜂2
𝑡 𝐿

2
) ‖∇𝑔(w𝑡 )‖2

2

]
≤ (𝑔(w1) − 𝑔(w∗) +

𝑇∑
𝑡=1

𝜂2
𝑡 𝐿

2
𝜎2.

As a result,

E
[
‖∇𝑔(w𝜏)‖2

2
]
≤ (𝑔(w1) − 𝑔(w∗))∑𝑇

𝑡=1 (𝜂𝑡 −
𝜂2
𝑡 𝐿
2 )

+
∑𝑇
𝑡=1 𝜂

2
𝑡 𝐿

2
∑𝑇
𝑡=1 (𝜂𝑡 −

𝜂2
𝑡 𝐿
2 )

𝜎2.

Plugging the value of 𝜂𝑡 = min( 1
𝐿 ,

𝐷
𝜎
√
𝑇
), we have

E
[
‖∇𝑔(w𝜏)‖2

2
]
≤ 𝑔(w1) − 𝑔(w∗)

𝑇 (𝜂1 −
𝜂2

1𝐿

2 )
+

𝑇𝜂2
1𝐿

2𝑇 (𝜂1 −
𝜂2

1𝐿

2 )
𝜎2

≤ 2(𝑔(w1) − 𝑔(w∗))
𝑇𝜂1

+ 𝜂1𝐿𝜎
2

≤ max
(
2𝐿 (𝑔(w1) − 𝑔(w∗))

𝑇
,
2(𝑔(w1) − 𝑔(w∗))𝜎

𝐷
√
𝑇

)
+ 𝐷𝜎𝐿√

𝑇

≤ 2𝐿 (𝑔(w1) − 𝑔(w∗))
𝑇

+
(
2(𝑔(w1) − 𝑔(w∗))

𝐷
+ 𝐷𝐿

)
𝜎
√
𝑇
.

If we set 𝜂𝑡 = min( 1
𝐿 ,

𝐷
𝜎
√
𝑡
), then ∑𝑇

𝑡=1 𝜂𝑡 ≥ Ω(
√
𝑇) and ∑𝑇

𝑡=1 𝜂
2
𝑡 ≤ 𝑂 (log(𝑇)), then

E
[
‖∇𝑔(w𝜏)‖2

2
]
≤ 𝑂 (log𝑇/𝑇). ut
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3.1. STOCHASTIC GRADIENT DESCENT

3.1.4 Non-smooth Weakly Convex Functions

Next, let us extend the analysis to non-smooth non-convex functions. Consider a
function 𝑔 : R𝑑 ↦→ R and a point w ∈ R𝑑 with 𝑔(w) finite. The Fréchet subdifferen-
tial of 𝑔 at w, denoted 𝜕𝑔(w), consists of all vectors v satisfying

𝑔(w) ≥ 𝑔(w′) + v> (w − w′) + 𝑜(‖w − w′‖2) as w′ → w.

We consider a family of non-convex functions, namely weakly convex functions. A
lower semi-continuous function 𝑔 is called 𝜌-weakly, if there exists 𝜌 > 0 such that:

𝑔(w) ≥ 𝑔(w′) + v> (w − w′) − 𝜌

2
‖w − w′‖2

2, ∀w,w′, v ∈ 𝜕𝑔(w′).

It is easy to show that if 𝑔 is 𝜌-weakly convex, then 𝑔(w)+ 𝜌2 ‖w‖2
2 is a convex function

of w. A smooth function is weakly convex, but the reverse is not necessarily true.

Example

Example 3.1 (Compositional functions). Let 𝐹 (x) = 𝑓 (𝑔(x)). If 𝑓 convex
and𝐺1-Lipschitz continuous and 𝑔(x) is 𝐿2-smooth, then 𝐹 is 𝜌-weakly con-
vex for some 𝜌 > 0. We will prove this in Section 5.3. The OCE risk (2.22) is
a special case when 𝜙∗ is non-smooth and the loss function ℓ(w; z) is smooth
non-convex.

Example 3.2 (Compositional functions). Let 𝐹 (x) = 𝑓 (𝑔(x)). If 𝑓 𝐿1-
smooth and monotonically non-decreasing and 𝑔(x) is non-smooth convex
and 𝐺2-Lipschitz continuous, then 𝐹 is 𝜌-weakly convex for some 𝜌 > 0.
Let us prove it. Since 𝑓 (𝑔) is 𝐿1 smooth, i.e., for any w, v ∈ R𝑑 , we have
𝑓 (𝑔(v)) + 𝑓 ′ (𝑔(v)) (𝑔(w) − 𝑔(v)) − 𝐿1

2 |𝑔(w) − 𝑔(v) |2 ≤ 𝑓 (𝑔(w)). Since 𝑔
is convex, i.e. for any w, v ∈ R𝑑 , 𝑔(w) ≥ 𝑔(v) + 𝜕𝑔(v)> (w − v), then

𝑓 (𝑔(w)) − 𝑓 (𝑔(v)) ≥ 𝑓 ′ (𝑔(v))𝜕𝑔(v)> (w − v) − 𝐿1

2
|𝑔(w) − 𝑔(v) |2

≥ 𝑓 ′ (𝑔(v))𝜕𝑔(v)> (w − v) −
𝐺2

2𝐿1

2
‖w − v‖2

2,

where the first inequality uses 𝑓 ′ (𝑔(v)) ≥ 0; the second inequality uses the
fact that ‖𝜕𝑔(w)‖2 ≤ 𝐺2. That is, 𝑓 (𝑔(w)) is 𝐺2𝐿-weakly convex.
An important application of this function in machine learning is optimizing
the truncation of a convex loss 𝑔(w) = ℓ(w; z) ≥ 0 with a smooth truncation
function 𝑓 (ℓ(w; z)) = 𝛼 log(1 + ℓ (w;z)

𝛼 ) for some 𝛼 > 0, which is useful for
tackling heavy-tailed data distribution.
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Fig. 3.1: Moreau envelope of 𝑔(𝑥) = |𝑥2 − 1| with 𝜆 = 0.2.

Nearly 𝜖-stationary solution

When 𝑔(·) is non-smooth, finding an 𝜖-stationary solution such that ‖∇𝑔(w)‖2 ≤ 𝜖
is difficult even for a convex function. Let us consider a simple example min𝑤 |𝑤 |.
The only stationary point is the optimal solution 𝑤∗ = 0, and any 𝑤 ≠ 0 is not an
𝜖-stationary solution (𝜖 < 1) no matter how close 𝑤 to 0. To address this issue, we
introduce a weak notion of 𝜖-stationary solution, termed nearly 𝜖-stationary solution.

Definition 3.2 (Nearly 𝜖-stationary solution) w is a nearly 𝜖-stationary solution to
minw 𝑔(w), if there exists ŵ such that ‖w − ŵ‖ ≤ 𝑂 (𝜖) and dist(0, 𝜕𝑔(ŵ)) ≤ 𝜖 .

A useful tool for deriving a nearly 𝜖-stationary solution is the Moreau envelope of 𝑔:

𝑔𝜆 (w) := min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2. (3.14)

Define

prox𝜆𝑔 (w) := arg min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2. (3.15)

An example of a weakly convex function and its Moreau envelope is illustrated in
Figure 3.1.

The proposition below shows that when 𝜆 is sufficiently small, 𝑔𝜆 (·) is a smooth
function.

Proposition 3.1. Consider a 𝜌-weakly convex function 𝑔(·). Then for any 𝜆 ∈
(0, 𝜌−1), the Moreau envelope 𝑔𝜆 (·) is 2−𝜆𝜌

𝜆(1−𝜆𝜌) -smooth, with gradient given by
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3.1. STOCHASTIC GRADIENT DESCENT

∇𝑔𝜆 (w) = 1
𝜆
(w − prox𝜆𝑔 (w)).

Proof. First, when 𝜆 < 𝜌−1 we have 𝑔(u) + 1
2𝜆 ‖u − w‖2

2 become ( 1
𝜆 − 𝜌) -strongly

convex. Hence the solution prox𝜆𝑔 (w) is unique for a given w. We can also write
prox𝜆𝑔 (w) as

prox𝜆𝑔 (w) := arg min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2

= arg min
u
𝑔(u) + 𝜌

2
‖u‖2

2︸           ︷︷           ︸
𝑟 (u)

+1
2

(
1
𝜆
− 𝜌

)



u − 1
1 − 𝜆𝜌w





2

2
.

Due to Lemma 1.7, we have ‖prox𝜆𝑔 (w) − prox𝜆𝑔 (w′)‖2 ≤ 1
1−𝜆𝜌 ‖w − w′‖2. Then

‖∇𝑔𝜆 (w) − ∇𝑔𝜆 (w′)‖2 =
1
𝜆
‖(w − prox𝜆𝑔 (w)) − (w′ − prox𝜆𝑔 (w′))‖2

≤ 1
𝜆

(
‖w − w′‖2 +

1
1 − 𝜆𝜌 ‖w − w′‖2

)
=

2 − 𝜆𝜌
𝜆(1 − 𝜆𝜌) ‖w − w′‖2.

ut

With the Moreau envelope, we can use the norm of its gradient to measure the
convergence for optimizing the original function.

Proposition 3.2. If 𝜆 < 𝜌−1, we have

𝑔𝜆 (w) ≤ 𝑔(w), min
w
𝑔𝜆 (w) = min

w
𝑔(w). (3.16)

If ‖∇𝑔𝜆 (w)‖2 ≤ 𝜖 , then ŵ = prox𝜆𝑔 (w) is a nearly 𝜖-stationary solution. In partic-
ular,

‖ŵ − w‖2 = 𝜆‖∇𝑔𝜆 (w)‖2 ≤ 𝜆𝜖,
dist(0, 𝜕𝑔(ŵ)) ≤ ‖∇𝑔𝜆 (w)‖2 ≤ 𝜖 .

(3.17)

Proof. 𝑔𝜆 (w) ≤ 𝑔(w) follows the definition of 𝑔𝜆 (w). Then 𝑔𝜆 (w∗) ≤ 𝑔(w∗). To
prove they are equal, we have

𝑔𝜆 (w) = min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2 ≥ min
u
𝑔(u) = 𝑔(w∗).

Since ∇𝑔𝜆 (w) = 1
𝜆 (w− ŵ), which implies the second inequality. The first inequality

is due to the first-order optimality condition of minu 𝑔(u) + 1
2𝜆 ‖u − w‖2

2. ut
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 Why it matters

Proposition 3.2 shows that if we can make ‖∇𝑔𝜆 (w)‖2 small, then w is close to
an 𝜖-stationary solution ŵ of the original function 𝑔(w). The smaller the 𝜆, the
closer between w and ŵ.

Convergence Analysis

Assumption 3.5. (i) 𝑔(w) is 𝜌-weakly convex; (ii) For anyw,E𝜁 [‖G(w, 𝜁)‖2
2] ≤ 𝐺2

for some 𝐺 ≥ 0.

Lemma 3.4 Let us consider an update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 . If E𝑡 [z𝑡 ] = M𝑡 and
E𝑡 [‖z𝑡 ‖2

2] ≤ 𝐺2, then we have

E𝑡 [𝑔𝜆 (w𝑡+1)] ≤ 𝑔𝜆 (w𝑡 ) +
𝜂𝑡
𝜆
(ŵ𝑡 − w𝑡 )>M𝑡 +

𝜂2
𝑡𝐺

2

2𝜆
,

where ŵ𝑡 = prox𝜆𝑔 (w𝑡 ).

Proof. We have

𝑔𝜆 (w𝑡+1) = 𝑔(ŵ𝑡+1) +
1
2𝜆

‖ŵ𝑡+1 − w𝑡+1‖2
2 ≤ 𝑔(ŵ𝑡 ) +

1
2𝜆

‖ŵ𝑡 − w𝑡+1‖2
2

= 𝑔(ŵ𝑡 ) +
1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2 −

1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2 +

1
2𝜆

‖ŵ𝑡 − w𝑡+1‖2
2.

Merging the first two terms we get 𝑔𝜆 (w𝑡 ), and using the three-point equality 2(𝑎 −
𝑏)(𝑏 − 𝑐) = ‖𝑎 − 𝑐‖2

2 − ‖𝑎 − 𝑏‖2
2 − ‖𝑏 − 𝑐‖2

2 to merge the last two terms we get

𝑔𝜆 (w𝑡+1) = 𝑔𝜆 (w𝑡 ) +
1
𝜆
(ŵ𝑡 − w𝑡 )> (w𝑡 − w𝑡+1) +

1
2𝜆

‖w𝑡 − w𝑡+1‖2
2

= 𝑔𝜆 (w𝑡 ) +
1
𝜆
(ŵ𝑡 − w𝑡 )>𝜂𝑡z𝑡 +

𝜂2
𝑡

2𝜆
‖z𝑡 ‖2

2.

Taking expectation over 𝜁𝑡 given w𝑡 on both sides, we have

E𝑡 [𝑔𝜆 (w𝑡+1)] ≤ 𝑔𝜆 (w𝑡 ) +
1
𝜆
(ŵ𝑡 − w𝑡 )>𝜂𝑡M𝑡 +

𝜂2
𝑡𝐺

2

2𝜆
.

ut

Lemma 3.5 Under the same setting of Lemma 3.4 we have

𝜂𝑡 (1 − 𝜆𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2 ≤ 𝑔𝜆 (w𝑡 ) − E𝑡 [𝑔𝜆 (w𝑡+1)] +

𝜂2
𝑡𝐺

2

2𝜆
.

Proof. Due to the weak convexity of 𝑔, for any M𝑡 ∈ 𝜕𝑔(w𝑡 ), we have
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M>
𝑡 (w𝑡 − ŵ𝑡 ) ≥ 𝑔(w𝑡 ) − 𝑔(ŵ𝑡 ) −

𝜌

2
‖ŵ𝑡 − w𝑡 ‖2

2

= (𝑔(w𝑡 ) +
1
2𝜆

‖w𝑡 − w𝑡 ‖2
2) − (𝑔(ŵ𝑡 ) +

1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2) + ( 1

2𝜆
− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2.

Since ℎ(w) = 𝑔(w) + 1
2𝜆 ‖w − w𝑡 ‖2

2 is (1/𝜆 − 𝜌)-strongly convex and ŵ𝑡 =
arg min ℎ(w), then applying Lemma 1.6(a), we get

(𝑔(w𝑡 ) +
1
2𝜆

‖w𝑡 − w𝑡 ‖2
2) − (𝑔(ŵ𝑡 ) +

1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2) ≥ ( 1

2𝜆
− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2.

Combining the above two inequalities we have

M>
𝑡 (w𝑡 − ŵ𝑡 ) ≥ 𝑔(w𝑡 ) − 𝑔(ŵ𝑡 ) −

𝜌

2
‖ŵ𝑡 − w𝑡 ‖2

2

≥ ( 1
2𝜆

− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2 + ( 1
2𝜆

− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2 = (𝜆 − 𝜆2𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2.

Plugging this into the inequality in Lemma 3.4, we have

𝜂𝑡 (1 − 𝜆𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2 ≤ 𝑔𝜆 (w𝑡 ) − E𝑡 [𝑔𝜆 (w𝑡+1)] +

𝜂2
𝑡𝐺

2

2𝜆
.

ut

Theorem 3.4 Suppose the learning rate {𝜂𝑡 } is set to 𝜂𝑡 = 𝐶√
𝑇
. Let 𝜏 ∈ {1, . . . , 𝑇} be

a random sample following a distribution Pr(𝜏 = 𝑡) = 1
𝑇 . Then for any 𝜆 ∈ (0, 𝜌−1),

we have

E[‖∇𝑔𝜆 (w𝜏)‖2
2] ≤

𝑔(w1) − 𝑔(w∗)
(1 − 𝜆𝜌)𝐶

√
𝑇

+ 𝐶𝐺2

2𝜆(1 − 𝜆𝜌)
√
𝑇
.

Proof. Summing up the inequalities in Lemma 3.5 over 𝑡 = 1, . . . , 𝑇 and taking
expectation over all randomness, we have

E

[
𝑇∑
𝑡=1

𝜂𝑡 (1 − 𝜆𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2

]
≤ 𝑔(w1) − 𝑔(w∗) +

𝑇∑
𝑡=1

𝜂2
𝑡𝐺

2

2𝜆
.

where we have used 𝑔𝜆 (w) ≤ 𝑔(w) and min 𝑔𝜆 (w) = 𝑔(w∗). Then

E[‖∇𝑔𝜆 (w𝜏)‖2
2] ≤

𝑔(w1) − 𝑔(w∗)
(1 − 𝜆𝜌)𝐶

√
𝑇

+ 𝐶𝐺2

2𝜆(1 − 𝜆𝜌)
√
𝑇
.

ut
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Algorithm 2 SPGD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update the model w by w𝑡+1 = arg minw∈R𝑑 z>𝑡 (w − w𝑡 ) + 1

2𝜂𝑡 ‖w − w𝑡 ‖2
2 + 𝑟 (w) .

5: end for

3.2 Stochastic Proximal Gradient Descent

Let us consider the following stochastic composite optimization problem:

min
w∈R𝑑

𝐹 (w) := E𝜁 [𝑔(w; 𝜁)] + 𝑟 (w), (3.18)

where 𝑔(w) = E𝜁 [𝑔(w; 𝜁)] is a smooth function and 𝑟 (w) is a possibly non-smooth
function. In machine learning, 𝑟 usually corresponds to some regularizer on the
model parameter. We make the following assumption.

Assumption 3.6. Suppose the following conditions hold:

(i) 𝑔(w) is 𝐿-smooth and convex, and 𝑟 (w) is convex.
(ii) There exists 𝜎 > 0 such that E𝜁 [‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2

2] ≤ 𝜎2 for all w.

If the regularizer 𝑟 is non-smooth, the overall objective function is also non-
smooth. Consequently, applying SGD directly cannot exploit the smoothness of 𝑔,
which would otherwise enable faster convergence and enjoy the variance scaling in
the convergence bound.

To address this challenge, we can employ the stochastic proximal gradient descent
(SPGD) method:

w𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) + 𝑟 (w) + 1
2𝜂𝑡

‖w − w𝑡 ‖2
2

= arg min
w∈R𝑑

𝑟 (w) + 1
2𝜂𝑡

‖w − (w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ))‖2
2.

(3.19)

This is also known as forward-backward splitting, where w̃𝑡+1 = w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 )
is the forward step and the proximal mapping of 𝑟 is the backward step:

w𝑡+1 = prox𝜂𝑡𝑟 (w̃𝑡+1) = arg min
w
𝑟 (w) + 1

2𝜂𝑡
‖w − w̃𝑡+1‖2

2.

When 𝑟 is absent, the above update is equivalent to the SGD update. If 𝑟 (w) corre-
sponds to a domain constraint w ∈ W, i.e., 𝑟 (w) = I0−∞ (w ∈ W), the above update
becomes

w𝑡+1 = ΠW [w̃𝑡+1] = min
w∈W

‖w − w̃𝑡+1‖2
2, (3.20)
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Regularization 𝑟 ( ·) prox𝜂𝑟 (w̄) or prox𝜂𝑟 (𝑊̄ )

Euclidean norm square 𝜆
2 ‖w‖2

2
w̄

1+𝜆𝜂
Euclidean norm 𝜆‖w‖2

(
1 − 𝜆𝜂

‖w̄‖2

)
+w̄

Lasso 𝜆‖w‖1 sign(w̄) � max{ |w̄ | − 𝜆𝜂, 0}
Group Lasso 𝜆

∑
𝑔 ‖w𝑔 ‖2

(
1 − 𝜆𝜂

‖w̄𝑔 ‖2

)
+w̄𝑔 (for each group 𝑔)

Elastic Net 𝛼‖w‖1 + 𝛽
2 ‖w‖2

2
1

1+𝜂𝛽

(
sign(w̄) � max{ |w̄ | − 𝜂𝛼, 0}

)
Trace norm (nuclear) 𝜆‖𝑊 ‖∗ = 𝜆

∑
𝑖 𝜎𝑖 (𝑊 ) 𝑈 diag

(
(𝜎𝑖 − 𝜆𝜂)+

)
𝑉> (𝑊̄ =𝑈 diag(𝜎𝑖 )𝑉>)

Table 3.1: Examples of regularization functions 𝑟 (·) and their proximal mappings,
where 𝜎𝑖 denote the 𝑖-th singular value of a matrix.

which is the projection of w̃𝑡+1 = w𝑡 − 𝜂𝑡∇𝑔(w𝑡 , 𝜁𝑡 ) onto the constrained domain
W. This is known as projected SGD method.

Explanation of SPGD update

The update (3.19) is equivalent to:

w𝑡+1 = arg min
w
𝑔(w𝑡 ; 𝜁𝑡 ) + ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) + 𝑟 (w) + 1

2𝜂𝑡
‖w − w𝑡 ‖2

2.

Unlike SGD, SPGD uses a stochastic linear approximation 𝑔(w𝑡 ; 𝜁𝑡 ) +
∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) + 𝑟 (w) as a stochastic surrogate for 𝑔(w) + 𝑟 (w).
Using the first-order optimality condition of (3.19), w𝑡+1 satisfies

w𝑡+1 = w𝑡 − 𝜂(∇𝑔(w𝑡 ; 𝜁𝑡 ) + 𝜕𝑟 (w𝑡+1)). (3.21)

It resembles SGD but differs in that it uses a stochastic gradient of 𝑔 evaluated
at w𝑡 and a subgradient of 𝑟 evaluated at w𝑡+1.

In order to make the update efficient, the proximal mapping of 𝑟 should be easily
computable. Table 3.1 presents several examples of regularizers 𝑟 and the corre-
sponding solutions of their proximal mappings, followed by explanations below. We
leave the detailed derivations of these proximal mappings to the reader as exercises.

Examples

Example 3.3 (Euclidean norm square). This is the most commonly used reg-
ularizer. Its proximal mapping shrinks the magnitude of the input vector w̄,
effectively performing weight decay.

Example 3.4 (ℓ1 norm). The ℓ1 norm regularizer 𝜆‖w‖1 is used in the well-
known Lasso method for linear regression. Its proximal mapping promotes
sparsity in the solution by setting some entries to zero if the corresponding
component of w̄ is smaller than 𝜂𝜆 in magnitude.
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Example 3.5 (Group Lasso). This is an extension of Lasso that groups fea-
tures together and enforces group-wise sparsity. Specifically, if one weight
within a group is set to zero, then all weights in that group are simultane-
ously set to zero.

Example 3.6 (Trace norm). The trace norm regularizer for a matrix is anal-
ogous to the ℓ1 norm for a vector, as it promotes low-rank structure. Its prox-
imal mapping induces a low-rank solution by setting the singular values of
the input matrix to zero whenever they are smaller than 𝜂𝜆.

3.2.1 Convex Functions

Lemma 3.6 Consider the update

w𝑡+1 = arg min
w∈R𝑑

z>𝑡 (w − w𝑡 ) +
1

2𝜂𝑡
‖w − w𝑡 ‖2

2 + 𝑟 (w). (3.22)

If 𝑟 is 𝜇𝑟 -strongly convex, for any w we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
2𝜂𝑡

‖w𝑡 − w‖2
2 − ( 1

2𝜂𝑡
+ 𝜇𝑟

2
)‖w𝑡+1 − w‖2

2

− 1
2𝜂𝑡

‖w𝑡 − w𝑡+1‖2
2.

Proof. By the first-order optimality condition of (3.22), for any w we have

(z𝑡 + 𝜕𝑟 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 ))> (w − w𝑡+1) ≥ 0. (3.23)

By the strong convexity of 𝑟, we have

𝑟 (w𝑡+1) ≤ 𝑟 (w) + 𝜕𝑟 (w𝑡+1)> (w𝑡+1 − w) − 𝜇𝑟
2
‖w − w𝑡+1‖2

2.

Adding the above two inequalities, we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
𝜂𝑡

(w𝑡 − w𝑡+1)> (w𝑡+1 − w) − 𝜇𝑟
2
‖w − w𝑡+1‖2

2

=
1

2𝜂𝑡
(‖w𝑡 − w‖2

2 − ‖w𝑡+1 − w‖2
2 − ‖w𝑡 − w𝑡+1‖2

2) −
𝜇𝑟
2
‖w − w𝑡+1‖2

2.

where the last equality uses the fact that 2(𝑎 − 𝑏)> (𝑏 − 𝑐) = ‖𝑎 − 𝑐‖2
2 − ‖𝑎 − 𝑏‖2

2 −
‖𝑏 − 𝑐‖2

2. ut
Theorem 3.5 Suppose Assumption 3.6 holds. Let 𝜂𝑡 = 𝜂 ≤ 1/𝐿 and w̄𝑇 =
1
𝑇

∑𝑇
𝑡=1 w𝑡+1. Then after 𝑇 iterations of SPGD update (3.19), we have
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E[𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝜎2.

If 𝜂 = min( 1
𝐿 ,

‖w1−w∗ ‖2√
2𝑇𝜎

), then

E [𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
√

2𝜎‖w1 − w∗‖2√
𝑇

+
𝐿‖w1 − w∗‖2

2
𝑇

.

 Why it matters

Insight 1: The theorem indicates that even if the objective has a non-smooth
regularizer 𝑟 , the convergence rate of SPGD still depends on the variance bound
𝜎2 instead of the Lipschitz constant of the objective function as in the analysis
of SGD for non-smooth convex functions.
Insight 2: Employing the proximal mapping of 𝑟 renders the convergence in-
dependent of the smoothness of 𝑟 . Consequently, this approach is advantageous
even when 𝑟 is smooth, particularly if it possesses a large smoothness constant.

Proof. Without loss of generality, we assume 𝑔 is 𝜇-strongly convex with 𝜇 ≥ 0
and 𝑟 is 𝜇𝑟 -strongly convex with 𝜇𝑟 ≥ 0 so that it covers both convex and strongly
convex cases.

By Lemma 3.6, we have

∇𝑔(w𝑡 , 𝜁𝑡 )> (w𝑡+1 − w) + 𝑟 (w𝑡+1) ≤ 𝑟 (w) + 1
2𝜂𝑡

(‖w𝑡 − w‖2
2 − ‖w𝑡+1 − w‖2

2)

− 𝜇𝑟
2
‖w − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡 − w𝑡+1‖2

2.

By the smoothness of 𝑔, we have

𝑔(w𝑡+1) ≤ 𝑔(w𝑡 ) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2.

By the strong convexity of 𝑔, we have

𝑔(w𝑡 ) ≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡 − w) − 𝜇

2
‖w𝑡 − w‖2

2.

Adding the above two inequalities, we have

𝑔(w𝑡+1) ≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w) − 𝜇

2
‖w𝑡 − w‖2

2 +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2.

Combining this with the first inequality for w = w∗, we have
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𝐹 (w𝑡+1) − 𝐹 (w∗) ≤
1

2𝜂𝑡
(‖w𝑡 − w∗‖2

2 − ‖w𝑡+1 − w∗‖2
2 − ‖w𝑡 − w𝑡+1‖2

2)

− 𝜇

2
‖w𝑡 − w∗‖2

2 −
𝜇𝑟
2
‖w𝑡+1 − w∗‖2

2 +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

+ (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − w∗).

(3.24)

This is similar to (3.8) except for the two negative terms − 𝜇2 ‖w𝑡 −w∗‖2
2 −

𝜇𝑟
2 ‖w𝑡+1 −

w∗‖2
2, which are due to the 𝜇𝑟 -strong convexity of 𝑟 and 𝜇-strong convexity of 𝑔. If

𝜇𝑟 = 𝜇 = 0, the remaining proof is similar to that of Theorem 3.1 with the following
definition of ŵ𝑡+1:

ŵ𝑡+1 = arg min
w∈R𝑑

1
2𝜂𝑡

‖w − (w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ))‖2
2 + 𝑟 (w).

It used to bound the expectation of last term in the RHS of (3.24):

E[(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1 + ŵ𝑡+1 − w∗)] (3.25)
= E[(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1)] ≤ 𝜂𝑡E[‖(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖2

2] = 𝜂𝑡𝜎2,

where the inequality is due to Lemma 1.7.
ut

3.2.2 Strongly Convex Functions

We can prove a faster convergence when the loss function or the regularizer is
strongly convex.

Theorem 3.6 Suppose Assumption 3.6 holds and 𝑔 is 𝜇-strongly convex and 𝑟 is
𝜇𝑟 -strongly convex. Let 𝜂𝑡 = 1/((𝜇 + 𝜇𝑟 )𝑡 + 𝐿) and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡+1. Then after 𝑇

iterations of SPGD update (3.19), we have

E

[
1
𝑇

𝑇∑
𝑡=1

(𝐹 (w𝑡+1) − 𝐹 (w∗))
]
≤

(𝐿 + 𝜇𝑟 ) ‖w1 − w∗‖2
2

𝑇
+ (1 + log𝑇)𝜎2

𝑇 (𝜇 + 𝜇𝑟 )
.

Proof. Similar to the proof of Theorem 3.5, if 𝜂𝑡 ≤ 1
𝐿 we have

E[(𝐹 (w𝑡+1) − 𝐹 (w∗))]

≤ E
[
( 1
2𝜂𝑡

‖w𝑡 − w∗‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w∗‖2
2 −

𝜇

2
‖w𝑡 − w∗‖2

2 −
𝜇𝑟
2
‖w𝑡+1 − w∗‖2

2

]
+ 𝜂𝑡𝜎2.

Taking summation over 𝑡 = 1, . . . , 𝑇 we have

86



3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Algorithm 3 Restarted SPGD
1: Input: a learning schedule {𝜂𝑘 , 𝑇𝐾 }𝑇𝑘=1, starting point w1
2: for 𝑘 = 1, . . . , 𝐾 do
3: run SPGD with a learning rate 𝜂𝑘 for 𝑇𝑘 iterations starting from w𝑘
4: return an averaged solution w𝑘+1
5: end for

E

[
𝑇∑
𝑡=1

(𝐹 (w𝑡+1) − 𝐹 (w∗))
]

≤ E

[
𝑇∑
𝑡=1

( 1
2𝜂𝑡

− 1
2𝜂𝑡−1

− 𝜇 + 𝜇𝑟
2

) ‖w𝑡 − w∗‖2
2 +

1
2𝜂0

‖w1 − w∗‖2
2 +

𝜇𝑟
2
‖w1 − w∗‖2

2

]
+

𝑇∑
𝑡=1

𝜂𝑡𝜎
2.

Let 𝜂𝑡 = 1
(𝜇+𝜇𝑟 )𝑡+𝐿 . Then

1
2𝜂𝑡 −

1
2𝜂𝑡−1

− 𝜇+𝜇𝑟
2 = 0 and we have

E

[
1
𝑇

𝑇∑
𝑡=1

(𝐹 (w𝑡+1) − 𝐹 (w∗))
]

≤ 𝐿 + 𝜇𝑟
2𝑇

‖w1 − w∗‖2
2 +

1
𝑇

𝑇∑
𝑡=1

𝜎2

(𝜇 + 𝜇𝑟 )𝑡
≤ 𝐿 + 𝜇𝑟

2𝑇
‖w1 − w∗‖2

2 +
(1 + log𝑇)𝜎2

𝑇 (𝜇 + 𝜇𝑟 )
.

ut

A Restarted Approach

The log𝑇 factor in the convergence bound can be removed using a restarting scheme.
It runs in multiple stages. At stage 𝑘 , it start with a step size 𝜂𝑘 and ran SGD with
a number of iterations 𝑇𝑘 and returns an averaged solution w𝑘 . By choosing 𝜂𝑘 , 𝑇𝑘
appropriately, after a logarithmic number of 𝐾 stages, we will get a solution w𝐾
satisfying E[𝐹 (w𝐾 ) − 𝐹 (w∗)] ≤ 𝜖 . The key motivation is coming from the one-
stage convergence bound in Theorem 3.5:

E[𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝜎2. (3.26)

Since the 𝜇-strong convexity of 𝐹 implies that ‖w1 − w∗‖2
2 ≤ 2

𝜇 (𝐹 (w1) − 𝐹 (w∗)),
then we can establish a recursion of the objective gap in a stage-wise manner. From
which, we can show the objective gap will decrease geometrically if 𝜂𝑘 decreases
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geometrically and 𝑇𝑘 increases accordingly. This is formally stated in the following
theorem.

Theorem 3.7 Suppose Assumption 3.6 holds, 𝐹 is 𝜇-strongly convex and there exists
𝜖1 such that 𝐹 (w1) − 𝐹 (w∗) ≤ 𝜖1. Let 𝜂𝑘 = min( 1

𝐿 ,
𝜖1

2𝑘+1𝜎2 ) and 𝑇𝑘 = 4
𝜇𝜂𝑘

. Then
after 𝐾 = blog2 (𝜖1/𝜖)c stages of Restarted SPGD updates (Alg. 3), we have

E [𝐹 (w𝐾+1) − 𝐹 (w∗))] ≤ 𝜖 .

The iteration complexity is
∑𝐾
𝑘=1 𝑇𝑘 = 𝑂 ( 𝜎2

𝜇𝜖 + 𝐿
𝜇 log( 𝜖1𝜖 )).

Proof. Let 𝜖𝑘 = 𝜖1/2𝑘 . Then 𝜖𝐾+1 = 𝜖1/2𝐾+1 ≤ 𝜖 and 𝜖𝐾 ≥ 𝜖 .
Applying the one-stage analysis of SPGD, we have

E[𝐹 (w̄𝑘+1) − 𝐹 (w∗)] ≤
E[‖w𝑘 − w∗‖2

2]
2𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2 ≤ E[𝐹 (w𝑘) − 𝐹 (w∗)]
𝜇𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2.

Thenwe prove by induction. AssumeE[𝐹 (w𝑘)−𝐹 (w∗)] ≤ 𝜖𝑘 , we proveE[𝐹 (w𝑘+1)−
𝐹 (w∗)] ≤ 𝜖𝑘+1.

E[𝐹 (w̄𝑘+1) − 𝐹 (w∗)] ≤
E[‖w𝑘 − w∗‖2

2]
2𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2.

≤ 𝜖𝑘
𝜇𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2 ≤ 𝜖𝑘
𝜇𝜂𝑘𝑇𝑘

+ 𝜖𝑘+1

2
≤ 𝜖𝑘

4
+ 𝜖𝑘+1

2
= 𝜖𝑘+1.

Thus, E[𝐹 (w𝐾+1) − 𝐹 (w∗)] ≤ 𝜖𝐾+1 ≤ 𝜖 . The total number of iterations is

𝐾∑
𝑘=1

𝑇𝑘 =
𝐾∑
𝑘=1

4
𝜇𝜂𝑘

=
𝐾∑
𝑘=1

max
(
4 · 2𝑘+1𝜎2

𝜇𝜖1
,
4𝐿
𝜇

)
≤

𝐾∑
𝑘=1

max
(

8𝜎2

𝜇𝜖2𝐾−𝑘 ,
4𝐿
𝜇

)
= 𝑂

(
𝜎2

𝜇𝜖
+ 𝐿
𝜇

log
( 𝜖1
𝜖

) )
.

ut

Last-iterate Convergence

Furthermore, if 𝑔(·) and/or 𝑟 is strongly convex, we can also prove ‖w𝑡+1 − w∗‖2
converges to zero.

Lemma 3.7 If 𝑔 is 𝐿-smooth and 𝜇-strongly convex and 𝑟 is 𝜇𝑟 -strongly convex, for
the update (3.19) with 𝜂𝑡 ≤ 2/𝐿 we have

E𝜁𝑡 [‖w𝑡+1 − w∗‖2
2] ≤

(1 − (2𝜂𝑡 − 𝜂2
𝑡 𝐿)𝜇)‖w𝑡 − w∗‖2

2 + 𝜂2
𝑡𝜎

2

1 + 𝜂𝜇𝑟
. (3.27)
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If 𝑔 𝜇-strongly convex and ‖𝜕𝑔(w)‖2 ≤ 𝐺 for w ∈ dom(𝑟), for the update (3.19) we
have

E𝜁𝑡 [‖w𝑡+1 − w∗‖2
2] ≤

(1 − 2𝜂𝑡𝜇)‖w𝑡 − w∗‖2
2 + 𝜂2

𝑡 (𝜎2 + 4𝐺2)
1 + 𝜂𝜇𝑟

. (3.28)

Proof. Let E𝑡 = E𝜁𝑡 . Let us consider smooth case first. Due to the optimality condi-
tion of w∗, we have

w∗ = arg min
w∈R𝑑

∇𝑔(w∗)> (w − w∗) +
1

2𝜂𝑡
‖w − w∗‖2

2 + 𝑟 (w)

= prox𝜂𝑡𝑟 (w∗ − 𝜂𝑡∇𝑔(w∗)).

Due to the Lipschitz continuity of the prox operator (see Lemma 1.7), we have

E𝑡 ‖w𝑡+1 − w∗‖2
2 ≤ 1

1 + 𝜂𝜇𝑟
E𝑡 ‖w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ) − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2

2. (3.29)

Next, we bound

E𝑡 ‖w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ) − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2
2

= E𝑡 ‖ [w𝑡 − 𝜂𝑡∇𝑔(w𝑡 )] − [w∗ − 𝜂𝑡∇𝑔(w∗)] + 𝜂𝑡∇𝑔(w𝑡 ) − 𝜂𝑡∇𝑔(w𝑡 , 𝜁𝑡 )‖2
2

= E𝑡 ‖ [w𝑡 − 𝜂𝑡∇𝑔(w𝑡 )] − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2
2 + 𝜂2

𝑡𝜎
2,

where the last inequality uses E𝑡 [∇𝑔(w𝑡 , 𝜁𝑡 ) − ∇𝑔(w𝑡 )] = 0 by expanding the RHS.
Let us bound the first term below.

E𝑡 ‖[w𝑡 − 𝜂𝑡∇𝑔(w𝑡 )] − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2
2

= E𝑡 ‖w𝑡 − w∗‖2
2 + 𝜂2

𝑡 E𝑡 ‖∇𝑔(w𝑡 ) − ∇𝑔(w∗)‖2
2 − 2𝜂𝑡E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))

≤ E𝑡 ‖w𝑡 − w∗‖2
2 + 𝜂2

𝑡 𝐿E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))
− 2𝜂𝑡E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))
= E𝑡 ‖w𝑡 − w∗‖2

2 − (2𝜂𝑡 − 𝜂2
𝑡 𝐿)E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))

≤ E𝑡 ‖w𝑡 − w∗‖2
2 − (2𝜂𝑡 − 𝜂2

𝑡 𝐿)𝜇E𝑡 ‖w𝑡 − w∗‖2
2

≤ (1 − (2𝜂𝑡 − 𝜂2
𝑡 𝐿)𝜇)E𝑡 ‖w𝑡 − w∗‖2

2,

where the first inequality uses Lemma 1.5(c) and the second inequality follows from
Lemma 1.6(c).

If 𝑔 is non-smooth, we bound E‖∇𝑔(w𝑡 ) − ∇𝑔(w∗)‖2
2 ≤ 4𝐺2. Combining this

with (3.29) concludes the proof.
ut

Theorem 3.8 Suppose Assumption 3.6 holds and 𝑔 is 𝜇-strongly convex and 𝑟 is
𝜇𝑟 -strongly convex. Let 𝜂𝑡 = 𝜂 ≤ min(1/𝐿, 1/𝜇𝑟 ). Then after 𝑇 iterations of
SPGD (3.19) update, we have
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E[‖w𝑇+1 − w∗‖2
2] ≤ 𝑒−

𝜂 (𝜇+𝜇𝑟 )𝑇
2 E[‖w1 − w∗‖2

2] +
𝜂𝜎2

𝜇 + 𝜇𝑟
. (3.30)

 Why it matters

This theorem indicates that if we set 𝜂 ≤ 𝑂 ((𝜇 + 𝜇𝑟 )𝜖/𝜎2), then with 𝑇 =

𝑂̃
(

𝜎2

(𝜇+𝜇𝑟 )2 𝜖

)
iterations, the algorithm finds an solution w𝑇+1 that is 𝜖-close to

the optimal solution w∗ measured by E[‖w𝑇+1 −w∗‖2
2], where 𝑂̃ (·) hides a log-

arithmic factor of log(1/𝜖).

Proof. If 𝜂 ≤ 1/𝐿, Lemma 3.7 implies that

E[‖w𝑡+1 − w∗‖2
2] ≤

(1 − 𝜂𝜇)E[‖w𝑡 − w∗‖2
2] + 𝜂2𝜎2

1 + 𝜂𝜇𝑟

≤
(
1 − 𝜂𝜇𝑟

2

)
{(1 − 𝜂𝜇)E[‖w𝑡 − w∗‖2

2] + 𝜂2𝜎2}

≤
(
1 − 𝜂𝜇𝑟

2
− 𝜂𝜇 + 𝜂

2𝜇𝜇𝑟
2

)
E[‖w𝑡 − w∗‖2

2] + 𝜂2𝜎2,

where the first inequality is due to 1 ≤ (1 + 𝜂𝜇𝑟 ) (1 − 𝜂𝜇𝑟
2 ) = 1 + 𝜂𝜇𝑟

2 − 𝜂2𝜇2
𝑟

2 as
𝜂𝜇𝑟 ≤ 1. Then

E[‖w𝑡+1 − w∗‖2
2] ≤ (1 − 𝜂𝜇𝑟

2
− 𝜂𝜇

2
)E[‖w𝑡 − w∗‖2

2] + 𝜂2𝜎2.

Unroll this inequality for 𝑡 = 1, . . . , 𝑇 , we have

E[‖w𝑇+1 − w∗‖2
2] ≤

(
1 − 𝜂(𝜇 + 𝜇𝑟 )

2

)
E‖w𝑇 − w∗‖2

2 + 𝜂2𝜎2.

Applying this inequality 𝑇 times gives

E[‖w𝑇+1 − w∗‖2
2]

≤
(
1 − 𝜂(𝜇 + 𝜇𝑟 )

2

)𝑇
E‖w1 − w∗‖2

2 +
𝑇−1∑
𝑡=0

(
1 − 𝜂(𝜇 + 𝜇𝑟 )

2

) 𝑡
𝜂2𝜎2.

Since (1 − 𝛼)𝑇 ≤ 𝑒−𝛼𝑇 for 𝛼 ∈ (0, 1) and ∑𝑇−1
𝑡=0 𝛼

𝑡 < 1
1−𝛼 , we have

E[‖w𝑇+1 − w∗‖2
2] ≤ 𝑒−

𝜂 (𝜇+𝜇𝑟 )𝑇
2 E[‖w1 − w∗‖2

2] + 𝜂2𝜎2 2
𝜂(𝜇 + 𝜇𝑟 )

= 𝑒−
𝜂 (𝜇+𝜇𝑟 )𝑇

2 E[‖w1 − w∗‖2
2] +

2𝜂𝜎2

𝜇 + 𝜇𝑟
.

ut

90



3.3. STOCHASTIC COORDINATE DESCENT

Corollary 3.1. Under the setting of Theorem 3.8, if 1
𝜂𝑡

= 𝜇̄
2 +

√
( 𝜇̄2 )2 + 1

𝜂2
𝑡−1

with

𝜂0 ≤ min(1/𝐿, 1/𝜇𝑟 ) and 𝜇̄ = (𝜇 + 𝜇𝑟 )/2, then we have

E[‖w𝑇+1 − w∗‖2
2] ≤

4‖w1 − w∗‖2
2

𝜂2
0 𝜇̄

2𝑇2
+ 2𝜎2

𝜇̄2𝑇
.

Proof. Let 𝛿𝑡 = ‖w𝑡 −w∗‖2
2. Due to the update of 𝜂𝑡 , we have 1− 𝜇̄𝜂𝑡 = 𝜂2

𝑡

𝜂2
𝑡−1

. Hence,
we have:

E[ 𝛿𝑇+1] ≤ E[(1 − 𝜇̄𝜂𝑇 )𝛿𝑇 ] + 𝜎2𝜂2
𝑇 ≤ E

[
𝜂2
𝑇

𝜂2
𝑇−1

𝛿𝑇

]
+ 𝜎2𝜂2

𝑇 .

Unrolling this inequality for 𝑡 = 1, . . . , 𝑇 , we have

E[ 𝛿𝑇+1] ≤ E
[
𝜂2
𝑇

𝜂2
𝑇−2

𝛿𝑇−1

]
+ 𝜎2𝜂2

𝑇 ∗ 2 ≤
𝜂2
𝑇

𝜂2
0
𝛿1 + 𝜎2𝜂2

𝑇 ∗ 𝑇.

Since 1
𝜂𝑡

= 𝜇̄
2 +

√
( 𝜇̄2 )2 + 1

𝜂2
𝑡−1

. Then, we have 1
𝜂𝑡

≥ 𝜇̄
2 + 1

𝜂𝑡−1
. As a result, 1

𝜂𝑇
≥

𝜇̄𝑇
2 + 1

𝜂0
≥ max(𝐿, 𝜇𝑟 ), where 𝜂0 ≤ min( 1

𝐿 ,
1
𝜇𝑟
). Hence, 𝜂𝑇 ≤ 2

𝜇̄𝑇 , and

E[𝛿𝑇+1] ≤
4𝛿1

𝜂2
0 𝜇̄

2𝑇2
+ 2𝜎2

𝜇̄2𝑇
.

ut

 Why it matters

This corollary shows that a decreasing learning rate schedule can be usedwithout
requiring prior knowledge of 𝜖 , in order to obtain a solution w𝑇+1 that is 𝜖-close
to the optimum w∗, measured by E[‖w𝑇+1 − w∗‖2

2]. The iteration complexity is

𝑇 = O
(
max

{
1

𝜇̄𝜂0
√
𝜖
,
𝜎2

𝜇̄2𝜖

})
.

3.3 Stochastic Coordinate Descent

In this section, we present stochastic coordinate descent (SCD) for solving the
stochastic optimization:

min
𝛼∈Ω⊆R𝑛

𝑓 (𝛼) = E[ 𝑓 (𝛼, 𝜉)] . (3.31)
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where Ω = Ω1 ×Ω2 · · · ×Ω𝑛.
The key motivation is that if the dimensionality 𝑛 of 𝛼 is very large, then comput-

ing ∇ 𝑓 (𝛼, 𝜉) could be expensive at each iteration. However, if the function exhibits
decomposable structure over dimensions of 𝛼, then we can sample a random coordi-
nate of 𝛼 and update it. To this end, we assume that [∇ 𝑓 (𝛼, 𝜉)]𝑖 ,∀𝑖 ∈ [𝑛] is easy to
compute. In machine learning applications, this is possible if 𝑓 (𝛼, 𝜉) = 𝛼>𝒈(𝜉) and
computing each coordinate of 𝒈(𝜉) is much more cheaper than computing itself. An
example is the COCE problem (2.62), which will be discussed in Section 5.5.

Let us consider a simple version of SCD. At each iteration 𝑡, a coordinate de-
noted by 𝑖𝑡 is randomly sampled from {1, . . . , 𝑛} with uniform probabilities. Then
we compute ∇𝑖𝑡 𝑓 (𝛼𝑡 , 𝜉𝑡 ) = [∇ 𝑓 (𝛼𝑡 , 𝜉𝑡 )]𝑖𝑡 and update 𝛼 by

𝛼𝑡+1,𝑖 =

{
ΠΩ𝑖 [𝛼𝑡 ,𝑖 − 𝜂∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 )] if 𝑖 = 𝑖𝑡
𝛼𝑡 ,𝑖 o.w.

Convergence Analysis

We make the following assumption.

Assumption 3.7. The following conditions hold:

(i) 𝑓 (𝛼) is convex;
(ii) For any 𝛼, we have E[‖∇𝑖 𝑓 (𝛼; 𝜁) − ∇𝑖 𝑓 (𝛼)‖2

2] ≤ 𝜎2
𝑖 for some 𝜎𝑖 ≥ 0;

(iii) ∇ 𝑓 is 𝐿𝑖-Lipschitz continuous w.r.t to the 𝑖-th coordinate, i.e.,

‖∇ 𝑓 (𝛼) − ∇ 𝑓 (𝛼 + e𝑖𝛿)‖2 ≤ 𝐿𝑖 |𝛿 |.

Theorem 3.9 Let 𝛼̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 𝛼𝑡+1, 𝐿̄ = max𝑖 𝐿𝑖 . If 𝜂𝑡 = 𝜂 ≤ 1

𝐿̄
, after 𝑇 iterations

of SCD update we have

E
[
𝑓 (𝛼̄𝑡 ) − 𝑓 (𝛼∗)

]
≤ (𝑛 − 1) ( 𝑓 (𝛼1) − 𝑓 (𝛼∗))

𝑇
+ 𝑛

2𝜂𝑇
‖𝛼1 − 𝛼∗‖2

2 +
𝑛∑
𝑖=1

𝜂𝜎2
𝑖 .

If ‖𝛼1 − 𝛼∗‖2
2 ≤ 𝐷2,

∑𝑛
𝑖=1 𝜎

2
𝑖 ≤ 𝜎2, with 𝜂 = 𝑂 (min(

√
𝑛√

2𝑇𝜎
, 1/𝐿̄)), we have

E
[
𝑓 (𝛼̄𝑡 ) − 𝑓 (𝛼∗)

]
≤ (𝑛 − 1)( 𝑓 (𝛼1) − 𝑓 (𝛼∗))

𝑇
+
√

2𝑛𝐷𝜎
√
𝑇

+ 𝐿̄𝑛𝐷
2

𝑇
.

 Why it matters

According to the theorem, SCD’s iteration complexity is 𝑂 ( 𝑛𝐷2𝜎2

𝜖 2 ). Although
this is 𝑛 times higher than that of SGD, it is offset by the fact that each individual
iteration of SCD can be 𝑛 times cheaper to compute.
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Algorithm 4 SCD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point 𝛼1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Sample a coordinate 𝑖𝑡 uniformly
4: Compute an unbiased coordinate gradient estimator ∇𝑖𝑡 𝑓 (𝛼𝑡 , 𝜉𝑡 )
5: Update

𝛼𝑡+1,𝑖 =

{
ΠΩ𝑖 [𝛼𝑡,𝑖 − 𝜂𝑡∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ) ] if 𝑖 = 𝑖𝑡
𝛼𝑡,𝑖 o.w.

6: end for

Proof. To facilitate the analysis, we consider a virtual sequence {𝛼̃𝑡 } defined by

𝛼̃𝑡+1 = ΠΩ [𝛼𝑡 − 𝜂𝑡∇ 𝑓 (𝛼𝑡 , 𝜉𝑡 )] .

Due to the decomposability of Ω = Ω1 × · · ·Ω𝑛, it implies that

𝛼̃𝑡+1,𝑖 = ΠΩ𝑖 [𝛼𝑡 ,𝑖 − 𝜂𝑡∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 )],∀𝑖.

Applying Lemma 3.6 to each coordinate of 𝛼̃𝑡+1 with 𝑟 (𝛼𝑖) = I0−∞ (𝛼𝑖 ∈ Ω𝑖), we
have

E[∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤
1

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2 −
1

2𝜂𝑡
‖𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2

2]

− 1
2𝜂𝑡

E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2
2] .

Then,

E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤
1

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2 −
1

2𝜂𝑡
‖𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2

2]

− 1
2𝜂𝑡

E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2
2] + E[(∇𝑖 𝑓 (𝛼𝑡 ) − ∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ))> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] .

Similar to (3.25), the last term in the RHS can be bounded by E[(∇𝑖 𝑓 (𝛼𝑡 ) −
∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ))> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤ E(∇𝑖 𝑓 (𝛼𝑡 ) − ∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ))2 ≤ 𝜂𝑡𝜎

2
𝑖 . Then adding

the above inequality over 𝑖 = 1, . . . , 𝑛, we have

E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤
1

2𝜂𝑡
E

[
‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2 −
1

2𝜂𝑡
‖𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2

2

]
− 1

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2

2] + 𝜂𝑡𝜎2
𝑖 .

Due to the randomness of 𝑖𝑡 , we have
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E[(𝛼𝑡+1,𝑖 − 𝛼∗,𝑖)2] = 1
𝑛
E[(𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)2] + (1 − 1

𝑛
)E[(𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)2]

E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖)] =
1
𝑛
E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)]

+ (1 − 1
𝑛
)E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)]

E[‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2] =

1
𝑛
E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2

2] .

Combining the above, we have

E[𝑛∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) − (𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)]

≤ 1
2𝜂𝑡

E[‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2] −

1
2𝜂𝑡

E[(𝑛‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2 − (𝑛 − 1)‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2)]

− 𝑛

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2

2] + 𝜂𝑡𝜎2
𝑖 .

Adding this over 𝑖 = 1, . . . , 𝑛, we have

E
[
𝑛

𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) −
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)
]

≤ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖 .

For the LHS, we have

𝑛
𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) −
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

= 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼∗,𝑖𝑡 ) + 𝑛
𝑛∑
𝑖≠𝑖𝑡

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

−
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

= 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼∗,𝑖𝑡 ) − 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖𝑡 − 𝛼∗,𝑖𝑡 )

+
𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

= 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ) + ∇ 𝑓 (𝛼𝑡 )> (𝛼𝑡 − 𝛼∗).

By the assumption, we have
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∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ) = ∇ 𝑓 (𝛼𝑡 )>e𝑖𝑡 (𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 )

≥ 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼𝑡 ) −
𝐿𝑖𝑡
2

‖(𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 )‖2
2

∇ 𝑓 (𝛼𝑡 )> (𝛼𝑡 − 𝛼∗) ≥ 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗).

Combining the above, we have

𝑛
𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) −
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

≥ 𝑛( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼𝑡 ) −
𝐿𝑖𝑡
2

‖𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ‖2
2) + 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗).

Thus, we have

E[𝑛( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼𝑡 ) −
𝐿𝑖𝑡
2

‖𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ‖2
2) + 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗)]

≤ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖 .

Re-arranging this, we have

E[𝑛( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗) − (𝑛 − 1)( 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗))]

≤ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖

+ E
[
𝑛𝐿𝑖𝑡

2
‖𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ‖2

2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
=

𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖

+ E
[ 𝑛∑
𝑖=1

𝑛𝐿𝑖
2

‖𝛼𝑡+1,𝑖 − 𝛼𝑡 ,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
.

If 𝜂𝑡 ≤ 1
𝐿̄
, the sum of the last two terms is less than 0, then we have

E[ 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗)]
≤ E[(𝑛 − 1) ( 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗)) − (𝑛 − 1)( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗))]

+ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖 .
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Algorithm 5 SMD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update the model w by w𝑡+1 = arg minw∈R𝑑 z>𝑡 (w − w𝑡 ) + 1

𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w) .

5: end for

Averaging over 𝑡 = 1, . . . , 𝑇 , we have

E
[
1
𝑇

𝑇∑
𝑡=1

𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗)
]
≤ (𝑛 − 1) ( 𝑓 (𝛼1) − 𝑓 (𝛼∗))

𝑇
+ 𝑛

2𝜂𝑇
‖𝛼1 − 𝛼∗‖2

2

+
𝑛∑
𝑖=1

𝜂𝜎2
𝑖 ,

which concludes the proof.
ut

3.4 Stochastic Mirror Descent

The SGD update (3.2) and the SPGD update (3.19) can be generalized using the
Bregman divergence instead of the Euclidean distance. Let 𝜑 be an 𝛼-strongly con-
vex function with respect to a general norm ‖ · ‖. Recall the definition of Bregman
divergence 𝐷𝜑 (w,w′) in Definition 1.7 induced by 𝜑. Due to the strong convexity
of 𝜑, we have,

𝐷𝜑 (w,w′) ≥ 𝛼

2
‖w − w′‖2. (3.32)

The stochastic mirror descent (SMD) update applied to non-smooth convex opti-
mization problem (3.1) is given by

w𝑡+1 = arg min
w∈R𝑑

G(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ). (3.33)

The SMD update applied to composite optimization problem (3.18) is given by

w𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w). (3.34)
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Examples

Example 3.7 (Euclidean distance). By choosing 𝜑(·) = 1
2 ‖ · ‖2

2, which is 1-
strongly convex with respect to ‖ · ‖2, the Bregman divergence reduces to the
Euclidean distance, and the above updates simplify to SGD or SPGD.

Example 3.8 (KL Divergence). Let us consider another example, where
𝑟 (w) = I0−∞ (w ∈ Δ) and Δ𝑑 = {w ∈ R𝑑 : w ≥ 0,

∑𝑑
𝑖=1 [w]𝑖 = 1}.

By choosing 𝜑(w) = ∑𝑑
𝑖=1 [w]𝑖 log[w]𝑖 , which is 1-strongly convex w.r.t ‖ · ‖1

(cf. Lemma 1.10), the Bregman divergence reduces to the KL-divergence:

𝐷𝜑 (w, u) =
𝑑∑
𝑖=1

[w]𝑖 log
[w]𝑖
[u]𝑖

,

and the SMD update (3.34) simplifies to

[w𝑡+1]𝑖 =
[w𝑡 ]𝑖 exp(−𝜂𝑡 [∇𝑔(w𝑡 ; 𝜉𝑡 )]𝑖)∑𝑑
𝑗=1 [w𝑡 ] 𝑗 exp(−𝜂𝑡 [∇𝑔(w𝑡 ; 𝜉𝑡 )] 𝑗 )

,

which is also known as stochastic exponential gradient descent.

Convergence Analysis

The following lemma is similar to Lemma 1.7.

Lemma 3.8 If 𝑟 (·) is convex and 𝜑 is 𝛼-strongly convex w.r.t a norm ‖ · ‖, with

z1 = arg min
w

w>a + 𝑟 (w) + 1
𝜂
𝐷𝜑 (w, z),

z2 = arg min
w

w>b + 𝑟 (w) + 1
𝜂
𝐷𝜑 (w, z),

we have ‖z1 − z2‖ ≤ 𝜂
𝛼 ‖a − b‖∗.

Proof. By the optimality of z1 and z2 we have

u :=
∇𝜑(z) − ∇𝜑(z1)

𝜂
− a ∈ 𝜕𝑟 (z1)

v :=
∇𝜑(z) − ∇𝜑(z2)

𝜂
− b ∈ 𝜕𝑟 (z2).

Since 𝑟 (x) is convex, we have

𝑟 (z1) ≥ 𝑟 (z2) + v> (z1 − z2)
𝑟 (z2) ≥ 𝑟 (z1) + u> (z2 − z1).
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Adding them together, we have

0 ≤ (u − v)> (z1 − z2) =
1
𝜂
(𝜂b − 𝜂a + ∇𝜑(z2) − ∇𝜑(z1))> (z1 − z2),

which implies

1
𝜂
(∇𝜑(z1) − ∇𝜑(z2))> (z1 − z2) ≤ (b − a)> (z1 − z2) ≤ ‖b − a‖∗‖z1 − z2‖.

Since 𝜑 is 𝛼-strongly convex, similar to Lemma 1.6 (c) we have

(∇𝜑(z1) − ∇𝜑(z2))> (z1 − z2) ≥ 𝛼‖z1 − z2‖2.

Combining the above two inequalities, we have ‖z1 − z2‖ ≤ 𝜂
𝛼 ‖a − b‖∗. ut

Lemma 3.9 (Generalized Three-point Equality) For any w,w𝑡 ,w𝑡+1, we have

(∇𝜑(w𝑡 ) − ∇𝜑(w𝑡+1))> (w𝑡+1 − w) = 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w𝑡+1,w𝑡 ).

Proof.

𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w,w𝑡 )
= −𝜑(w𝑡+1) − ∇𝜑(w𝑡+1)> (w − w𝑡+1) + 𝜑(w𝑡 ) + ∇𝜑(w𝑡 )> (w − w𝑡 )
= (∇𝜑(w𝑡+1) − ∇𝜑(w𝑡 ))> (w𝑡+1 − w) − 𝜑(w𝑡+1) + 𝜑(w𝑡 ) + ∇𝜑(w𝑡 )> (w𝑡+1 − w𝑡 )
= (∇𝜑(w𝑡+1) − ∇𝜑(w𝑡 ))> (w𝑡+1 − w) − 𝐷𝜑 (w𝑡+1,w𝑡 ).

Rearranging this equality finishes the proof. ut

The following lemma is similar to Lemma 3.6.

Lemma 3.10 Consider the update

w𝑡+1 = arg min
w∈R𝑑

z>𝑡 (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w). (3.35)

If 𝐷𝑟 (w,w′) ≥ 𝜇𝐷𝜑 (w,w′), then for any w we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) − ( 1

𝜂𝑡
+ 𝜇)𝐷𝜑 (w,w𝑡+1)

− 1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

Proof. By the first-order optimality condition of (3.35), we have

(z𝑡 + 𝜕𝑟 (w𝑡+1) +
1
𝜂𝑡

(∇𝜑(w𝑡+1) − ∇𝜑(w𝑡 )))> (w − w𝑡+1) ≥ 0. (3.36)

By the assumption of 𝑟 , we have
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𝜇𝐷𝜑 (w,w𝑡+1) ≤ 𝑟 (w) − 𝑟 (w𝑡+1) − 𝜕𝑟 (w𝑡+1)> (w − w𝑡+1).

Adding the above two inequalities, we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w)

≤ 1
𝜂𝑡

(∇𝜑(w𝑡 ) − ∇𝜑(w𝑡+1))> (w𝑡+1 − w) − 𝜇𝐷𝜑 (w,w𝑡+1)

=
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) − ( 1

𝜂𝑡
+ 𝜇)𝐷𝜑 (w,w𝑡+1) −

1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

where the last equality uses Lemma 3.9. ut

3.4.1 Non-smooth Composite Problems

Let us first analyze SMD (3.34) for the composite problem (3.18) under a modified
Assumption.

Assumption 3.8. Suppose the following conditions hold:

(i) 𝑔 is convex and 𝐿-smooth with respect to the norm ‖ · ‖, and 𝑟 is convex.
(ii) There exists 𝜎 > 0 such that E𝜁 [∇𝑔(w; 𝜁)] = ∇𝑔(w) and E𝜁 [‖∇𝑔(w; 𝜁) −

∇𝑔(w)‖2
∗] ≤ 𝜎2 for all w.

Theorem 3.10 Suppose Assumption 3.8 holds. Let 𝜂𝑡 = 𝜂 ≤ 𝛼/𝐿 and w̄𝑇 =
1
𝑇

∑𝑇
𝑡=1 w𝑡+1. After𝑇 iterations of SMDupdate (3.34) for the composite problem (3.18),

we have

E[𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
𝐷𝜑 (w1,w∗)

𝜂𝑇
+ 𝜂𝜎

2

𝛼
.

If 𝜂 = min
(
𝛼
𝐿 ,

√
𝛼𝐷𝜑 (w1 ,w∗ )√

𝑇𝜎

)
, then

E [𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
2𝜎

√
𝐷𝜑 (w1,w∗)√
𝑇𝛼

+
2𝐿𝐷𝜑 (w1,w∗)

𝑇𝛼
.

 Why it matters

The key difference of the above result of SMD from that of SPGD in Theo-
rem 3.5 lies in the divergence measure and the variance bound that is measured
in the dual norm. Let us consider 𝑟 (w) = I0−∞ (w ∈ Δ𝑑). With the Euclidean
setup, the convergence upper bound is dominated by 𝑂 ( 𝜎2 ‖w1−w∗ ‖2√

𝑇
), where

𝜎2
2 ≥ E‖∇𝑔(w, 𝜁) − ∇𝑔(w)‖2

2 for all w, 𝜁 .
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In contrast, with the stochastic exponential gradient descent update, the con-

vergence upper bound is dominated by 𝑂 ( 𝜎∞
√
𝐷𝜑 (w1 ,w∗ )√
𝑇

), where 𝜎2
∞ ≥

E‖∇𝑔(w, 𝜁) − ∇𝑔(w)‖2
∞ for all w, 𝜁 . If we set [w1]𝑖 = 1

𝑛 for all 𝑖, then we
get 𝐷𝜑 (w1,w∗) ≤ log 𝑑 for all w∗ ∈ Δ𝑑 . In addition, ‖w1 − w∗‖2 could be
𝑂 (1). However, the constant 𝜎2

∞ can be smaller than 𝜎2
2 by a factor of 𝑑. Hence

𝜎∞
√
𝐷𝜑 (w1 ,w∗ )

𝜎2 ‖w1−w∗ ‖2
= 𝑂 ( log 𝑑√

𝑑
), which indicates that stochastic exponential gradient

descent may converge faster than SGD.

Proof. From Lemma 3.10, we have

∇𝑔(w𝑡 , 𝜁𝑡 )> (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1))

− 1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

Same as (3.7) we have

𝑔(w𝑡+1) ≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡 − w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2.

Adding the above two inequalities for w = w∗, we have

𝐹 (w𝑡+1) − 𝐹 (w∗) ≤
1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −
1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 )

+ 𝐿
2
‖w𝑡+1 − w𝑡 ‖2 + (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − w∗). (3.37)

Similar to the analysis of SPGD, we define:

ŵ𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 )> (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w),

which uses the full gradient ∇𝑔(w𝑡 ), making it independent of 𝜁𝑡 . Then we have

(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − w∗) (3.38)
≤ (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1) + (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (ŵ𝑡+1 − w∗).

In addition,

(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1) ≤ ‖∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖∗‖w𝑡+1 − ŵ𝑡+1‖

≤ 𝜂𝑡
𝛼
‖∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖2

∗, (3.39)

where the last inequality follows Lemma 3.8. Adding (3.37), (3.38) and (3.39) and
using (3.32), we have
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𝐹 (w𝑡+1) − 𝐹 (w∗) ≤
1

2𝜂𝑡
(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −

(
𝛼

2𝜂𝑡
− 𝐿

2

)
‖w𝑡 − w𝑡+1‖2

+ (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1) +
𝜂𝑡
𝛼
‖∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖2

∗ .

Taking expectation over 𝜁𝑡 on both sides, we have

E𝜁𝑡 [𝐹 (w𝑡+1) − 𝐹 (w∗)]

≤ E𝜁𝑡

[
1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −
(
𝛼

2𝜂𝑡
− 𝐿

2

)
‖w𝑡 − w𝑡+1‖2

]
+ 𝜂𝑡
𝛼
𝜎2.

If 𝜂𝑡 ≤ 𝛼
𝐿 , we have

E𝜁𝑡 [𝐹 (w𝑡+1) − 𝐹 (w∗)] ≤ E𝜁𝑡

[
1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1))
]
+ 𝜂𝑡
𝛼
𝜎2.

Summing over 𝑡 = 1, . . . , 𝑇 , we have

E

[
1∑𝑇
𝑡=1 𝜂𝑡

𝑇∑
𝑡=1

𝜂𝑡 (𝐹 (w𝑡+1) − 𝐹 (w∗))
]
≤
𝐷𝜑 (w1,w∗)∑𝑇

𝑡=1 𝜂𝑡
+

∑𝑇
𝑡=1 𝜂𝑡𝜎

2

𝛼
∑𝑇
𝑡=1 𝜂𝑡

.

Let 𝜂𝑡 = 𝜂 and optimizing the upper bound over 𝜂 finishes the proof. ut

3.4.2 Non-smooth Problems

Next, we present the convergence analysis of SMD (3.33) for non-smooth convex
objectives under the following assumption.

Assumption 3.9. For any w, we have E𝜁 [G(w; 𝜁)] ∈ 𝜕𝑔(w) and E[‖G(w; 𝜁)‖2
∗] ≤

𝐺2.

Theorem 3.11 Suppose Assumption 3.9 holds. Let the learning rate {𝜂𝑡 } be 𝜂𝑡 = 𝜂
and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡 . After 𝑇 iterations of SMD update (3.34), we have

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐷𝜑 (w∗,w1)

𝜂𝑇
+ 𝜂𝐺

2

2𝛼
.

If 𝜂 =
√

2𝛼𝐷𝜑 (w∗ ,w1 )√
𝑇𝐺

, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐺

√
2𝐷𝜑 (w∗,w1)√

𝛼𝑇
.

Proof. From Lemma 3.10, we have
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G(w𝑡 , 𝜁𝑡 )> (w𝑡+1 − w) ≤ 1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −
1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

Rearranging it, we get

𝜂𝑡G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w)
≤ 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w𝑡+1,w𝑡 ) + 𝜂𝑡G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w𝑡+1)
≤ 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w𝑡+1,w𝑡 )

+
𝜂2
𝑡

2𝛼
‖G(w𝑡 ; 𝜁𝑡 )‖2

∗ +
𝛼

2
‖w𝑡 − w𝑡+1‖2,

where the last inequality uses the Cauchy-Schwarz inequality. Using (3.32), we have

𝜂𝑡G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w) ≤ 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) +
𝜂2
𝑡

2𝛼
‖G(w𝑡 ; 𝜁𝑡 )‖2

∗ . (3.40)

The remaining proof is similar to that of Theorem 3.2. ut

3.5 Adaptive Gradient Method (AdaGrad)

The stochastic algorithms discussed so far are fairly general and were originally de-
veloped to address a wide range of problems, extending beyond those encountered
specifically in machine learning. Nevertheless, the ERM problem of machine learn-
ing may exhibit some unique properties dependent on data. How to leverage them to
develop a stochastic algorithm that could be potentially faster in practice?

Below, we introduce Adaptive Gradient Method (AdaGrad), which employs an
adaptive step size, which incorporates knowledge of the geometry of the data ob-
served in earlier iterations to perform more informative gradient-based learning.

While AdaGrad was considered an important breakthrough in machine learning,
it indeed evolves from SMD.We use the same language as SMD to present AdaGrad
and its analysis. Let us consider the smooth problem (3.1) and recall the update of
SMD:

w𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 ; 𝜁𝑡 )>w + 1
𝜂
𝐷𝜑 (w,w𝑡 ).

The key design toAdaGrad is to use a time-varying proximal function 𝜑𝑡 that changes
across iterations. A specific way to construction 𝜑𝑡 is the following.

Let 𝐻𝑡 = diag(𝑠𝑡 ,1, . . . , 𝑠𝑡 ,𝑑) be a diagonal positive matrix. Define 𝜑𝑡 (w) =
1
2w>𝐻𝑡w and a general norm ‖w‖𝐻 =

√
w>𝐻w. Then the Bregman divergence in-

duced by 𝜑𝑡 becomes:

𝐷𝜑𝑡 (w,w′) = 1
2
(w − w′)>𝐻𝑡 (w − w′) = 1

2

𝑑∑
𝑖=1

𝑠𝑡 ,𝑖 (𝑤𝑖 − 𝑤′
𝑖)2,
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3.5. ADAPTIVE GRADIENT METHOD (ADAGRAD)

Algorithm 6 AdaGrad
1: Input: learning rate parameter 𝜂, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update 𝑠𝑡,𝑖 =

√∑𝑡
𝜏=1 ‖ [∇𝑔 (w𝜏 ; 𝜁𝑡 ) ]𝑖 ‖2

2 , ∀𝑖.
5: Update the model w by w𝑡+1 = w𝑡 − 𝜂

s𝑡 ◦ z𝑡
6: end for

which is 1-strongly convex w.r.t ‖ · ‖𝐻 . The weights s𝑡 = (𝑠𝑡 ,1, . . . , 𝑠𝑡 ,𝑑) are updated
according to the following:

𝑠𝑡 ,𝑖 =

√√√ 𝑡∑
𝜏=1

[∇𝑔(w𝜏 ; 𝜁𝜏)]2
𝑖 ,∀𝑖, (3.41)

which essentially measures the growth of stochastic gradients across all iterations
before 𝑡.

Let z𝑡 = ∇𝑔(w𝑡 , 𝜁𝑡 ), and m1:𝑡 = [z1, . . . , z𝑡 ], and m1:𝑡 ,𝑖 denotes its 𝑖-th row
vector. Then 𝑠𝑡 ,𝑖 = ‖m1:𝑡 ,𝑖 ‖2. As a result, the updating step becomes

w𝑡+1 = w𝑡 − 𝜂𝐻−1
𝑡 ∇𝑔(w𝑡 ; 𝜁𝑡 ) = w𝑡 −

𝜂

s𝑡
◦ ∇𝑔(w𝑡 ; 𝜁𝑡 ), (3.42)

where ◦ denotes element-wise product. The full steps of AdaGrad are summarized
in Algorithm 6.

Compared with SGD, there are two differences: (i) the effective step size 𝜂
s𝑡 is

adaptive that depends on the history of updates, hence depends on data sampled
𝜁1, . . . , 𝜁𝑡 . This is the reason it is called adaptive step size; (ii) each coordinate of w
will receive a different step size. This feature makes it useful to tackle deep neural
networks as the parameters at each layer usually have different orders of gradient.

Convergence Analysis

Let the dual norm of ‖ · ‖𝐻 is given by ‖u‖𝐻−1 =
√

u>𝐻−1u. Then, 𝜑𝑡 is 1-strongly
convex in terms of ‖ · ‖𝐻𝑡 .

Lemma 3.11 We have
𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)} ≤
1
2

max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

𝑠𝑇,𝑖 .

Proof.
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𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)}

=
𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡−1 (w∗,w𝑡 ) + 𝐷𝜑𝑡−1 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)}

≤
𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡−1 (w∗,w𝑡 )} + 𝐷𝜑0 (w∗,w1)

= 𝐷𝜑0 (w∗,w1) +
1
2

𝑇∑
𝑡=1

(w∗ − w𝑡 )> (𝐻𝑡 − 𝐻𝑡−1) (w∗ − w𝑡 ).

Since s𝑡 � s𝑡−1, we have

𝑇∑
𝑡=1

(w∗ − w𝑡 )> (𝐻𝑡 − 𝐻𝑡−1) (w∗ − w𝑡 ) =
𝑇∑
𝑡=1

𝑑∑
𝑖=1

(𝑠𝑡 ,𝑖 − 𝑠𝑡−1,𝑖)( [w∗]𝑖 − [w𝑡 ]𝑖)2

≤ max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑇∑
𝑡=1

𝑑∑
𝑖=1

(𝑠𝑡 ,𝑖 − 𝑠𝑡−1,𝑖) = max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

(𝑠𝑇,𝑖 − 𝑠0,𝑖).

Combining the above two inequalities, we have

𝑇∑
𝑡=1

𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)

≤ 𝐷𝜑0 (w∗,w1) +
1
2

max
𝑡≤𝑇

‖w∗ − w𝑡+1‖2
∞

𝑑∑
𝑖=1

(𝑠𝑇+1,𝑖 − 𝑠1,𝑖)

≤ 1
2
‖w1 − w∗‖2

∞

𝑑∑
𝑖=1

𝑠0,𝑖 +
1
2

max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

(𝑠𝑇,𝑖 − 𝑠0,𝑖)

≤ 1
2

max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

𝑠𝑇,𝑖 .

ut

Lemma 3.12 We have
𝑇∑
𝑡=1

‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
𝐻−1
𝑡

≤ 2
𝑑∑
𝑖=1

𝑠𝑇,𝑖 .

Proof. Let us first prove a general result in the following: for a general real-value
sequence {𝑎𝑡 }, we have
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3.5. ADAPTIVE GRADIENT METHOD (ADAGRAD)

𝑇∑
𝑡=1

𝑎2
𝑡

‖𝑎1:𝑡 ‖2
≤ 2

𝑇∑
𝑡=1

‖𝑎1:𝑇 ‖2, (3.43)

where 𝑎1:𝑡 = (𝑎1, . . . , 𝑎𝑡 ). We prove this by induction. First, it holds trivially for
𝑡 = 1. Now, assume it holds for 𝑇 − 1, we prove it holds for 𝑇 .

𝑇∑
𝑡=1

𝑎2
𝑡√∑𝑡
𝜏=1 𝑎

2
𝑡

=
𝑇−1∑
𝑡=1

𝑎2
𝑡√∑𝑡
𝜏=1 𝑎

2
𝑡

+
𝑎2
𝑇

‖𝑎1:𝑇 ‖2
≤ 2

𝑇∑
𝑡=1

‖𝑎1:𝑇−1‖2 +
𝑎2
𝑇

‖𝑎1:𝑇 ‖2
.

Let 𝑏𝑇 =
√∑𝑇

𝑡=1 𝑎
2
𝑡 , then we have

2
𝑇∑
𝑡=1

‖𝑎1:𝑇−1‖2 +
𝑎2
𝑇

‖𝑎1:𝑇 ‖2
= 2

√
𝑏2
𝑇 − 𝑎2

𝑇 +
𝑎2
𝑇√
𝑏2
𝑇

.

Since √· is a concave function, applying
√
𝑥 + 𝛿 ≤ √

𝑥 + 𝛿 1
2
√
𝑥
we have√

𝑏2
𝑇 − 𝑎2

𝑇 ≤
√
𝑏2
𝑇 − (𝑎2

𝑇 )
1

2
√
𝑏2
𝑇

.

Hence, 2
√
𝑏2
𝑇 − 𝑎2

𝑇 + 𝑎2
𝑇√
𝑏2
𝑇

≤ 2
√
𝑏2
𝑇 . Thus, we prove (3.43) for 𝑇 .

Next, we apply this result to the following:

𝑇∑
𝑡=1

‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
𝐻−1
𝑡

=
𝑇∑
𝑡=1

∇𝑔(w𝑡 ; 𝜁𝑡 )>diag(s𝑡 )−1∇𝑔(w𝑡 ; 𝜁𝑡 )

=
𝑑∑
𝑖=1

[∇𝑔(w𝑡 ; 𝜁𝑡 )]2
𝑖√∑𝑡

𝜏=1 [∇𝑔(w𝜏 ; 𝜁𝜏)]2
𝑖

≤
𝑑∑
𝑖=1

2

√√√ 𝑡∑
𝜏=1

[∇𝑔(w𝜏 ; 𝜁𝜏)]2
𝑖 .

ut

Theorem 3.12 Let w̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 w𝑡 , then AdaGrad guarantees that

E[𝑔(w̄𝑡 ) − 𝑔(w∗)] ≤
E

[
max𝑡≤𝑇 ‖w∗ − w𝑡 ‖2

∞
∑𝑑
𝑖=1 ‖m1:𝑇,𝑖 ‖2

]
2𝜂𝑇

+
𝜂E

[∑𝑑
𝑖=1 ‖m1:𝑇,𝑖 ‖2

]
𝑇

.

If max𝑡 ‖w∗ − w𝑡 ‖∞ ≤ 𝐷∞ and 𝜂 = 𝐷∞/
√

2, we have

E[𝑔(w̄𝑡 ) − 𝑔(w∗)] ≤
√

2𝐷∞E
[∑𝑑

𝑖=1 ‖m1:𝑇,𝑖 ‖2
]

𝑇
.
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 Why it matters

The above result shows the convergence rate depends on the growth rate of the
cumulative stochastic gradient

∑𝑑
𝑖=1 ‖m1:𝑇,𝑖 ‖2. In the worst case, it grows at a

rate of 𝑂 (
√
𝑇), inducing a convergence rate of 𝑂 (1/

√
𝑇), similar to SGD. How-

ever, when the cumulative stochastic gradient grows slower than 𝑂 (
√
𝑇), Ada-

Grad will enjoy a convergence rate of 𝑜(1/
√
𝑇).

Let us consider the following linear model with sparse random data scenario,
where 𝑔(w𝑡 , 𝜁𝑡 ) = [1 − w>

𝑡 𝜁𝑡 ]+ and the data vectors 𝜁𝑡 ∈ {−1, 0, 1}𝑑 . Assume
that at in each round 𝑡, feature 𝑖 appears with probability 𝑝𝑖 = min{1, 𝑐𝑖−𝛼} for
some 𝛼 ∈ (1,∞) and a dimension-independent constant 𝑐. Then we have

E

[
𝑑∑
𝑖=1

‖m1:𝑇,𝑖 ‖2

]
= E

[
𝑑∑
𝑖=1

√��𝑡 : z𝑡 ,𝑖 = 1
��] ≤

𝑑∑
𝑖=1

√
E

[��𝑡 : z𝑡 ,𝑖 = 1
��]

=
𝑑∑
𝑖=1

√
𝑝𝑖𝑇.

by Jensen’s inequality. In the rightmost sum, we have 𝑐
∑𝑑
𝑖=1 𝑖

−𝛼/2 = 𝑂 (log 𝑑)
for 𝛼 ≥ 2, and

∑𝑑
𝑖=1 𝑖

−𝛼/2 = 𝑂 (𝑑1−𝛼/2) for 𝛼 ∈ (1, 2). If w𝑡 is restricted in a
domain W = {w : ‖w‖∞ ≤ 1}, then 𝐷∞ = 2, and the convergence rate of Ada-
Grad becomes 𝑂 (max{log 𝑑, 𝑑1−𝛼/2}/

√
𝑇). For contrast, the convergence rate

of SGD in Theorem 3.2 is𝑂 (
√
𝑑/𝑇). Sowe see that in this sparse yet heavy tailed

feature setting, AdaGrad’s convergence bound can be exponentially smaller in
the dimension 𝑑 than the non-adaptive bound of SGD.

Proof. Similar to (3.40) in the proof of Theorem 3.11, we have

𝜂〈∇𝑔(w𝑡 ; 𝜁𝑡 ),w𝑡−w〉 ≤ 𝐷𝜑𝑡 (w,w𝑡 )−𝐷𝜑𝑡 (w,w𝑡+1)+
𝜂2
𝑡

2
‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2

𝐻−1
𝑡
. (3.44)

Taking expectation and summation over 𝑡 = 1, . . . , 𝑇 , we have

𝑇∑
𝑡=1

𝜂E[𝑔(w𝑡 ) − 𝑔(w∗)] ≤E
[
𝑇∑
𝑡=1

𝐷𝜑𝑡 (w,w𝑡 ) − 𝐷𝜑𝑡 (w,w𝑡+1)
]

+ E

[
𝑇∑
𝑡=1

𝜂2

2
‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2

𝐻−1
𝑡

]
.

Using the results from the two lemmas above, we conclude the proof.
ut
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3.6. STOCHASTIC GRADIENT DESCENT ASCENT

3.6 Stochastic Gradient Descent Ascent

In this section, we consider stochastic convex–concave min–max optimization prob-
lems:

min
w∈W

max
u∈U

𝑓 (w, u) := E𝜁
[
𝑓 (w, u; 𝜁)

]
.

This class of problems has two important applications in machine learning: (1) it
serves as a foundation for directly formulating learning tasks (e.g., the DRO prob-
lem (2.11)); (2) it provides a tool for reformulating standard minimization problems
to enable more efficient optimization.

A solution of interest is the so-called saddle point (w∗, u∗) ∈ W ×U satisfying:

𝑓 (w∗, u) ≤ 𝑓 (w∗, u∗) ≤ 𝑓 (w, u∗),∀w ∈ W, u ∈ U .

In many machine learning applications, we may be only interested in finding a global
optimal solution to the objective 𝐹 (w) = maxu∈U 𝑓 (w, u). It is easy to see that if
(w∗, u∗) is a saddle point, then w∗ is a global optimal solution to 𝐹 (w). This can be
seen from

max
u∈U

𝑓 (w∗, u) ≤ 𝑓 (w∗, u∗) ≤ 𝑓 (w, u∗) ≤ max
u∈U

𝑓 (w, u).

For a point (w, u) ∈ W ×U, a convergence measure is defined by the duality gap:

Δ(w, u) = max
u′∈U

𝑓 (w, u′) − min
w′∈W

𝑓 (w′, u).

A simple method for solving the convex-concavemin-max problem is the stochas-
tic gradient descent ascent (SGDA) algorithm, which is an extension of SGD. It em-
ploys two key updates:

w𝑡+1 = arg min
w∈W

𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1

2𝜂1
‖w − w𝑡 ‖2

2

u𝑡+1 = arg min
u∈U

−𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (u − u𝑡 ) +
1

2𝜂2
‖u − u𝑡 ‖2

2,

(3.45)

where 𝜕1 𝑓 (w, u; 𝜁) and 𝜕2 𝑓 (w, u; 𝜁) denote the stochastic partial subgradients such
that E𝜁 [𝜕1 𝑓 (w, u; 𝜁)] ∈ 𝜕1 𝑓 (w, u) and E𝜁 [𝜕2 𝑓 (w, u; 𝜁)] ∈ 𝜕2 𝑓 (w, u).

Convergence Analysis

Below, we analyze the convergence rate of SGDA under the following assumptions.

Assumption 3.10. Suppose the following conditions hold:

(i) 𝑓 (w, u) is convex w.r.t w and concave w.r.t u.
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Algorithm 7 SGDA
1: Input: learning rates {𝜂1, 𝜂2}, starting points w1, u1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute unbiased gradient estimators z1,𝑡 = 𝜕1 𝑓 (w𝑡 ; 𝜁𝑡 ) and z2,𝑡 = 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )
4: Update the primal variable w by w𝑡+1 = arg minw∈W z>1,𝑡 (w − w𝑡 ) + 1

2𝜂1
‖w − w𝑡 ‖2

2 .

5: Update the dual variable u by u𝑡+1 = arg minu∈U −z>2,𝑡 (u − u𝑡 ) + 1
2𝜂2

‖u − u𝑡 ‖2
2 .

6: end for

(ii) There exist 𝐺1, 𝐺2 > 0 such that

E𝜁 [‖𝜕1 𝑓 (w, u; 𝜁)‖2
2] ≤ 𝐺2

1,∀w ∈ W, u ∈ U, (3.46)
E𝜁 [‖𝜕2 𝑓 (w, u; 𝜁)‖2

2] ≤ 𝐺2
2,∀w ∈ W, u ∈ U . (3.47)

(iii) maxw∈W,w′∈W ‖w − w′‖ ≤ 𝐷1 and maxu∈U,u′∈U ‖u − u′‖ ≤ 𝐷2.

Lemma 3.13 Let us consider a martingale difference sequence {𝛿𝑡 }𝑡≥1 and a se-
quence {𝑦𝑡 }𝑡≥1:

𝑦𝑡+1 = arg min
𝑣∈V

{−𝛿>𝑡 𝑣 + 𝛼𝐷𝜓 (𝑣, 𝑦𝑡 )}.

If 𝜓 is 𝜇𝜓-strongly convex w.r.t. ‖ · ‖ (𝜇𝜓 > 0). For any 𝑣 (that possibly depends on
{𝛿𝑡 }) we have

E
[
𝛿>𝑡 𝑣

]
≤ E

[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1) +

1
2𝛼𝜇𝜓

‖𝛿𝑡 ‖2
∗

]
.

 Why it matters

In standard minimization problems, the convergence measure is usually defined
with respect to the optimal solution w∗, which is fixed and independent of the
randomness introduced by the algorithm. In contrast, in stochastic min–max op-
timization we are concerned with the duality gap Δ(w, u) = maxu′∈U 𝑓 (w, u′)−
minw′∈W 𝑓 (w′, u), where the optimal w′ and u′ depend on the current random
iterates (w, u). This dependency introduces additional subtleties into the analy-
sis.
The preceding lemma applies to any random variable 𝑣 that may depend on the
entire randomness of the algorithm, and will be useful for our analysis. Recall
that a sequence {𝑋𝑡 } is a martingale difference sequence if the conditional ex-
pectation of each variable given the past is zero, i.e., E[𝑋𝑡 | 𝑋1, . . . , 𝑋𝑡−1] = 0.

Proof. Applying Lemma 3.10 to the update of 𝑦𝑡+1, we have

E
[
−𝛿>𝑡 (𝑦𝑡+1 − 𝑣)

]
≤ E

[
𝛼𝐷𝜓 (𝑦, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑦, 𝑦𝑡+1) − 𝛼𝐷𝜓 (𝑦𝑡+1, 𝑦𝑡 )

]
.

Hence,
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E
[
𝛿>𝑡 (𝑣 − 𝑦𝑡 )

]
≤ E

[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1) − 𝛼𝐷𝜓 (𝑦𝑡+1, 𝑦𝑡 )

]
+ E[𝛿>𝑡 (𝑦𝑡+1 − 𝑦𝑡 )]

≤ E
[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1)

]
− E

[
𝛼𝜇𝜓

2
‖𝑦𝑡+1 − 𝑦𝑡 ‖2 +

𝜇𝜓𝛼

2
‖𝑦𝑡+1 − 𝑦𝑡 ‖2 + 1

2𝜇𝜓𝛼
‖𝛿𝑡 ‖2

∗

]
.

Since E[𝛿𝑡 ] = 0 and 𝑦𝑡 is independent of 𝛿𝑡 , we have E[𝛿>𝑡 𝑦𝑡 ] = 0. As a result,

E[𝛿>𝑡 𝑣] ≤ E
[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1)

]
+ 1

2𝜇𝜓𝛼
E

[
‖𝛿𝑡 ‖2

∗
]
.

ut

Theorem 3.13 Let w̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 w𝑡 , ū𝑇 = 1

𝑇

∑𝑇
𝑡=1 u𝑡 . After𝑇 iterations, SGDA (3.45)

guarantees that

E[Δ(w̄𝑇 , ū𝑇 )] ≤
𝐷2

1
𝜂1𝑇

+
𝐷2

2
𝜂2𝑇

+
5𝜂1𝐺

2
1

2
+

5𝜂2𝐺
2
2

2
.

If we set 𝜂1 = 𝑂 ( 𝐷1
𝐺1

√
𝑇
) and 𝜂2 = 𝑂 ( 𝐷2

𝐺2
√
𝑇
), we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤ 𝑂
(
𝐷1𝐺1√
𝑇

+ 𝐷2𝐺2√
𝑇

)
.

Proof. Similar to (3.10), for the primal update and dual update for any w ∈ W, u ∈
U we have

𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (w𝑡 − w) ≤
1

2𝜂1
‖w𝑡 − w‖2

2 −
1

2𝜂1
‖w𝑡+1 − w‖2

2 +
1
2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2

−𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (u𝑡 − u) ≤
1

2𝜂2
‖u𝑡 − u‖2

2 −
1

2𝜂2
‖u𝑡+1 − u‖2

2 +
1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2.

The difference from the SGD analysis is that we cannot fix w as w∗ and fix u as u∗,
which will not yield the duality gap measure. Indeed, at the end we need to take max
over w ∈ W and min over u ∈ U to obtain the duality gap, making them dependent
on the randomness.

To proceed, we have
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𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) ≤ 1
2𝜂1

‖w𝑡 − w‖2
2 −

1
2𝜂1

‖w𝑡+1 − w‖2
2

+ 1
2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 + (𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)

− 𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u) ≤ 1
2𝜂2

‖u𝑡 − u‖2
2 −

1
2𝜂2

‖u𝑡+1 − u‖2
2

+ 1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 + (𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Adding these inequalities we have

𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) − 𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u)

≤ 1
2𝜂1

(
‖w𝑡 − w‖2

2 − ‖w𝑡+1 − w‖2
2

)
+ 1

2𝜂2

(
‖u𝑡 − u‖2

2 − ‖u𝑡+1 − u‖2
2

)
+ 1

2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 +
1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2

+ (𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)
+ (𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Due to the convexity and concavity of 𝑓 (w, u) in terms of w, u, respectively, we have

𝑓 (w𝑡 , u𝑡 ) − 𝑓 (w, u𝑡 ) ≤ 𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w),
𝑓 (w𝑡 , u) − 𝑓 (w𝑡 , u𝑡 ) ≤ −𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u).

Adding these two equalities, we have

𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 ) ≤ 𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) − 𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u).

As a result, we have

𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 )

≤ 1
2𝜂1

(
‖w𝑡 − w‖2

2 − ‖w𝑡+1 − w‖2
2

)
+ 1

2𝜂2

(
‖u𝑡 − u‖2

2 − ‖u𝑡+1 − u‖2
2

)
+ 1

2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 +
1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2

+ (𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)
+ (𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Taking average over 𝑡 = 1, . . . , 𝑇 , we have
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𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ) ≤
1
𝑇

𝑇∑
𝑡=1

( 𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 ))

≤ 1
2𝜂1𝑇

‖w1 − w‖2
2 +

1
2𝜂2𝑇

‖u1 − u‖2
2

+ 𝜂1

2𝑇

𝑇∑
𝑡=1

‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2
2 +

𝜂2

2𝑇

𝑇∑
𝑡=1

‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2
2

+ 1
𝑇

𝑇∑
𝑡=1

(𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)

+ 1
𝑇

𝑇∑
𝑡=1

(𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Let w, u be the solution to maxw∈W,u∈U 𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ), which are random
variables. Taking expectation over both sides, we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤
1

2𝜂1𝑇
‖w1 − w‖2

2 +
1

2𝜂2𝑇
‖u1 − u‖2

2 +
𝜂1𝐺

2
1

2
+
𝜂2𝐺

2
2

2

+ 1
𝑇
E

[
𝑇∑
𝑡=1

(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w

]
+ 1
𝑇
E

[
𝑇∑
𝑡=1

(𝜕2 𝑓 (w𝑡 , u𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))>u

]
.

(3.48)

Next, we apply Lemma 3.13 to bound the last two terms. To this end, we introduce
two virtual sequences with ŵ1 = w1, û1 = u1:

ŵ𝑡+1 = arg min
w∈W

−(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w + 1
2𝜂1

‖w − ŵ𝑡 ‖2
2

û𝑡+1 = arg min
u∈U

(𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))>u + 1
2𝜂2

‖u − û𝑡 ‖2
2.

Applying Lemma 3.13, we have

E
[
(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w

]
≤ 1

2𝜂1

(
‖ŵ𝑡 − w‖2

2 − ‖ŵ𝑡+1 − w‖2
2

)
+ 𝜂1

2
E[‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 )‖2

2]

E
[
(𝜕2 𝑓 (w𝑡 , u𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))>u

]
≤ 1

2𝜂2

(
‖û𝑡 − u‖2

2 − ‖û𝑡+1 − u‖2
2

)
+ 𝜂2

2
E[‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 )‖2

2] .

Hence,
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E

[
𝑇∑
𝑡=1

(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w

]
+ E

[
𝑇∑
𝑡=1

(𝜕2 𝑓 (w𝑡 , u𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))>u

]
≤ 1

2𝜂1
‖ŵ1 − w‖2

2 +
1

2𝜂2
‖û𝑡 − u‖2

2 +
4𝜂1𝐺

2
1𝑇

2
+

4𝜂2𝐺
2
2𝑇

2
.

(3.49)

Combining (3.48) and (3.49), we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤
1
𝜂1𝑇

E[‖w1 − w‖2
2] +

1
𝜂2𝑇

E[‖u1 − u‖2
2] +

5𝜂1𝐺
2
1

2
+

5𝜂2𝐺
2
2

2
.

Hence, we conclude the proof. ut

3.7 Stochastic Optimistic Mirror Prox

While simple in design, SGDA cannot enjoy a faster convergence when the function
is smooth and the stochastic gradients have zero variance. A classical method to
address this limitation is to use an extra-gradient. Let

v =

[
w
u

]
, M(v) =

[
∇1 𝑓 (w, u)
−∇2 𝑓 (w, u)

]
, V = W ×U .

The extra-gradient method takes the following update with an initialization of x1 ∈
V:

y𝑡 = arg min
v∈V

M(x𝑡 )>v + 1
2𝜂

‖v − x𝑡 ‖2
2

x𝑡+1 = arg min
v∈V

M(y𝑡 )>v + 1
2𝜂

‖v − x𝑡 ‖2
2.

(3.50)

The name “extragradient” comes from the fact that it uses two gradients M(x𝑡 ) and
M(y𝑡 ) at each iteration.

The extragradient method can be generalized using the mirror descent steps with
a Bregmand divergence 𝐷𝜑 (·, ·) defined by a strongly-convex function 𝜑 : V → R:

y𝑡 = arg min
v∈V

M(x𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 )

x𝑡+1 = arg min
v∈V

M(y𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 ).

(3.51)

This method is called mirror prox.
Both methods can be extended to their stochastic versions. For example, the

stochastic mirror prox method (SMP) uses the following update:
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Algorithm 8 Stochastic Optimistic Mirror Prox (SOMP)
1: Input: learning rates 𝜂, starting points x1 = y0 = (w1, u1 )
2: Compute y1 = arg minv∈V M(y0; 𝜁0 )>v + 1

𝜂𝐷𝜑 (v, x1 ) .
3: for 𝑡 = 1, . . . , 𝑇 do
4: Compute unbiased gradient mapping M(y𝑡 ; 𝜁𝑡 )
5: Update x𝑡+1 = arg minv∈V M(y𝑡 ; 𝜁𝑡 )>v + 1

𝜂𝐷𝜑 (v, x𝑡 ) .
6: Update y𝑡+1 = arg minv∈V M(y𝑡 ; 𝜁𝑡 )>v + 1

𝜂𝐷𝜑 (v, x𝑡+1 ) .
7: end for

y𝑡 = arg min
v∈V

M(x𝑡 ; 𝜁 ′𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 )

x𝑡+1 = arg min
v∈V

M(y𝑡 ; 𝜁𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 ),

(3.52)

where E𝜁 [M(x; 𝜁)] = M(x).

Stochastic Optimistic Mirror Prox: a variant with a Single Gradient Sequence

The updates of SMP (3.52) need to compute two stochastic gradient sequences
{M(x𝑡 , 𝜁 ′𝑡 )} and {M(y𝑡 ; 𝜁𝑡 )}, which double the costs of SGDA. A simple remedy
is to use M(y𝑡−1; 𝜁𝑡−1) in the first update of y𝑡 , yielding

y𝑡 = arg min
v∈V

M(y𝑡−1; 𝜁𝑡−1)>v + 1
𝜂
𝐷𝜑 (v, x𝑡 )

x𝑡+1 = arg min
v∈V

M(y𝑡 ; 𝜁𝑡 )>v + 1
2𝜂
𝐷𝜑 (v, x𝑡 ).

(3.53)

As a result, we only need to compute one sequence of stochastic gradients {M(y𝑡 ; 𝜁𝑡 )}.
This method is known as stochastic optimistic mirror prox (SOMP).

Let us consider a special case when V = R𝑑 × R𝑑
′ and 𝐷𝜑 (x, y) = 1

2 ‖x − y‖2
2.

The above update reduces to

y𝑡 = x𝑡 − 𝜂M(y𝑡−1; 𝜁𝑡−1)
x𝑡+1 = x𝑡 − 𝜂M(y𝑡 ; 𝜁𝑡 ).

(3.54)

This update can be re-written using one sequence of {y𝑡 }. By subtracting the second
equation from the first one, we have

y𝑡 − x𝑡+1 = 𝜂M(y𝑡 ; 𝜁𝑡 ) − 𝜂M(y𝑡−1; 𝜁𝑡−1). (3.55)

As a result,

y𝑡 = x𝑡+1 + 𝜂M(y𝑡 ; 𝜁𝑡 ) − 𝜂M(y𝑡−1; 𝜁𝑡−1)
= y𝑡+1 + 𝜂M(y𝑡 ; 𝜁𝑡 ) + 𝜂M(y𝑡 ; 𝜁𝑡 ) − 𝜂M(y𝑡−1; 𝜁𝑡−1).
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From this, we derive that

y𝑡+1 = y𝑡 − 𝜂(M(y𝑡 ; 𝜁𝑡 ) +M(y𝑡 ; 𝜁𝑡 ) −M(y𝑡−1; 𝜁𝑡−1)). (3.56)

This method applied to the min-max problem is known as stochastic optimistic gra-
dient descent ascent (SOGDA), yielding the following primal and dual updates:

w𝑡+1 = w𝑡 − 𝜂(2∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − ∇1 𝑓 (w𝑡−1, u𝑡−1; 𝜁𝑡−1)) (3.57)
u𝑡+1 = u𝑡 + 𝜂(2∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜂∇2 𝑓 (w𝑡−1, u𝑡−1; 𝜁𝑡−1))). (3.58)

Convergence Analysis

We analyze the stochastic optimistic mirror prox method in Algorithm 8. We make
the following assumption.

Assumption 3.11. Suppose the following conditions hold:

(i) 𝑓 (w, u) is convex w.r.t w and concave w.r.t u.
(ii) Let 𝜑(z) be a 𝛼-strongly convex function with respect to the norm ‖ · ‖, whose

dual norm is denoted by ‖ · ‖∗,
(ii) M(v) is 𝐿-Lipschitz continuous such that

‖M(v) −M(v′)‖2
∗ ≤ 𝐿2‖v − v′‖2.

(ii) There exist 𝜎1, 𝜎2 > 0 such that

E𝜁 [‖M(x; 𝜁) −M(x)‖2
∗] ≤ 𝜎2,∀x ∈ V .

(iii) maxx∈V ,x′∈V 𝐷𝜑 (x, x′) ≤ 𝐷2.

Lemma 3.14 Given x, consider the updates:

y = arg min
v∈V

𝛾M(𝜉)>v + 𝐷𝜑 (v, x),

x+ = arg min
v∈V

𝛾M(𝜁)>v + 𝐷𝜑 (v, x).
(3.59)

For any v ∈ V, we have

𝛾M(𝜁)> (y − v) ≤𝐷𝜑 (v, x) − 𝐷𝜑 (v, x+) +
𝛾2

𝛼
‖M(𝜉) −M(𝜁)‖2

∗

− 𝛼

2
[‖y − x‖2 + ‖y − x+‖2] .

(3.60)

Proof. First, by Lemma 3.8, we have

‖y − x+‖ ≤ 𝛾

𝛼
‖M(𝜁) −M(𝜉)‖∗. (3.61)
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Let 𝜙(v) = 𝛾M(𝜁)> (y−v)−𝐷𝜑 (v, x)+𝐷𝜑 (v, x+). Given the optimality condition of
x+, it is easy to verify that it also satisfies the optimality condition of maxv∈V 𝜙(v).
As a result, 𝜙(v) ≤ 𝜙(x+),∀v ∈ V, i.e.,

𝛾M(𝜁)> (y − v) − 𝐷𝜑 (v, x) + 𝐷𝜑 (v, x+)
≤ 𝛾M(𝜁)> (y − x+) − 𝐷𝜑 (x+, x)
= 𝛾M(𝜁)> (y − x+) + 𝜑(x) + ∇𝜑(x)> (x+ − x) − 𝜑(x+)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+) + 𝛾M(𝜉)> (y − x+)
+ 𝜑(x) + ∇𝜑(x)> (x+ − x) − 𝜑(x+).

(3.62)

By the optimality condition of y, for any v ∈ V we have

(𝛾M(𝜉) + ∇𝜑(y) − ∇𝜑(x))> (y − v) ≤ 0

Plugging v = x+ into the above inequality, we have

(𝛾M(𝜉) + ∇𝜑(y) − ∇𝜑(x))> (y − x+) ≤ 0,

which implies that

𝛾M(𝜉)> (y − x+) ≤ (∇𝜑(y) − ∇𝜑(x))> (x+ − y).

Combining this with (3.62), we have

𝛾M(𝜁)> (y − v) − 𝐷𝜑 (v, x) + 𝐷𝜑 (v, x+) ≤ 𝛾(M(𝜁) −M(𝜉))> (y − x+)
+ (∇𝜑(y) − ∇𝜑(x))> (x+ − y) + 𝜑(x) + ∇𝜑(x)> (x+ − x) − 𝜑(x+)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+)
+ 𝜑(x) + ∇𝜑(x)> (y − x) − 𝜑(x+) + (∇𝜑(y))> (x+ − y)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+)
+ 𝜑(x) + ∇𝜑(x)> (y − x) − 𝜑(y) + 𝜑(y) + (∇𝜑(y))> (x+ − y) − 𝜑(x+)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+) − 𝐷𝜑 (y, x) − 𝐷𝜑 (x+, y)

≤ 𝛾2

𝛼
‖M(𝜁) −M(𝜉)‖2

∗ −
𝛼

2
‖y − x‖2 − 𝛼

2
‖x+ − y‖2,

where the last inequality uses (3.61) and the 𝛼-strong convexity of 𝜑.
ut

Theorem 3.14 Let w̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 w𝑡 , ū𝑇 = 1

𝑇

∑𝑇
𝑡=1 u𝑡 . After 𝑇 iterations, SOMP

guarantees that

E[Δ(w̄𝑇 , ū𝑇 )] ≤
2𝐷2

𝑇𝜂
+ 8𝜎2𝜂

𝛼
.

If we set 𝜂 = min( 𝐷
2
√
𝑇𝜎
, 𝛼√

12𝐿
), we have
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E[Δ(w̄𝑇 , ū𝑇 )] ≤ 𝑂
(
𝐿𝐷2

𝑇𝛼
+ 𝜎𝐷
√
𝑇𝛼

)
.

 Why it matters

This result is consistent with the convergence of SGD for smooth convex mini-
mization in Theorem 3.1. In particular, when 𝜎 = 0 (i.e., using the deterministic
gradient), the convergence rate simplifies to O(1/𝑇).

Proof. Since the updates of y𝑡 , x𝑡+1 follow that in (3.59), by applying Lemma 3.14,
we have

𝜂M(y𝑡 , 𝜁𝑡 )> (y𝑡 − v) ≤ 𝐷𝜑 (v, x𝑡 ) − 𝐷𝜑 (v, x𝑡+1)

+ 𝜂
2

𝛼
‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡−1, 𝜁𝑡−1)‖2

∗ −
𝛼

2
[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2]

≤ 𝐷𝜑 (v, x𝑡 ) − 𝐷𝜑 (v, x𝑡+1)

+ 𝜂
2

𝛼
‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡−1, 𝜁𝑡−1) −M(y𝑡 ) +M(y𝑡−1) + (M(y𝑡 ) −M(y𝑡−1))‖2

∗

− 𝛼

2
[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2] .

Let 𝜎2
𝑡 = ‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡 )‖2

∗, then we have

‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡−1, 𝜁𝑡−1) −M(y𝑡 ) +M(y𝑡−1) + (M(y𝑡 ) −M(y𝑡−1)‖2
∗

≤ 3‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡 )‖2
∗ + 3‖M(y𝑡−1, 𝜁𝑡−1) −M(y𝑡−1)‖2

∗

+ 3‖M(y𝑡 ) −M(y𝑡−1)‖2
∗

≤ 3𝜎2 + 3𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2.

Combining the above two inequalities, we have

𝜂M(y𝑡 , 𝜁𝑡 )> (y𝑡 − v) ≤ 𝐷𝜑 (v, x𝑡 ) − 𝐷𝜑 (v, x𝑡+1)

+ 𝜂
2

𝛼
(6𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2) − 𝛼

2
[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2] .

Taking average over 𝑡 = 1, . . . , 𝑇 , we have

1
𝑇

𝑇∑
𝑡=1

M(y𝑡 )> (y𝑡 − v) ≤ 1
𝑇𝜂
𝐷𝜑 (v, x1)

+ 𝜂

𝛼𝑇

𝑇∑
𝑡=1

(6𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2) − 𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2]

+ 1
𝑇

𝑇∑
𝑡=1

(M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 ))> (y𝑡 − v).
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Let y𝑡 = (w𝑡 , u𝑡 ) and v = (w, u) = arg maxw∈W,u∈U 𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ). We have

1
𝑇

𝑇∑
𝑡=1

M(y𝑡 )> (y𝑡 − v) = 1
𝑇

𝑇∑
𝑡=1

(∇1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) − ∇2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u))

≥ 1
𝑇

𝑇∑
𝑡=1

( 𝑓 (w𝑡 , u𝑡 ) − 𝑓 (w, u𝑡 ) + 𝑓 (w𝑡 , u) − 𝑓 (w𝑡 , u𝑡 ))

=
1
𝑇

𝑇∑
𝑡=1

( 𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 )) ≥ 𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ).

As a result,

Δ(w̄𝑇 , ū𝑇 ) ≤
1
𝑇

𝑇∑
𝑡=1

M(y𝑡 )> (y𝑡 − v) ≤ 1
𝑇𝜂
𝐷𝜑 (v, x1)

+ 𝜂

𝛼𝑇

𝑇∑
𝑡=1

(6𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2) − 𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2]

+ 1
𝑇

𝑇∑
𝑡=1

(M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 ))> (y𝑡 − v).

The last term can be bounded by using Lemma 3.13. Define the virtual sequence
with ŷ1 = x1:

ŷ𝑡+1 = arg min
v∈V

(M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 ))>v + 1
𝜂
𝐷𝜑 (v, ŷ𝑡 ).

Then Lemma 3.13 implies that

E

[
1
𝑇

𝑇∑
𝑡=1

(M(y𝑡 , 𝜁𝑡 ) −M(y𝑡 ))>v

]
≤ E

[
1
𝜂𝑇
𝐷𝜑 (v, ŷ1)

]
+ E

[
𝜂

2𝛼𝑇

𝑇∑
𝑡=1

‖M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 )‖2
∗

]
.

Combining the above results, we have
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E[Δ(w̄𝑇 , ū𝑇 )] ≤
2
𝑇𝜂
𝐷𝜑 (v, x1) +

8𝜎2𝜂

𝛼

+ E

[
3𝐿2𝜂

𝛼𝑇

𝑇∑
𝑡=1

‖y𝑡 − y𝑡−1‖2 − 𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2

]
≤ 2
𝑇𝜂
𝐷𝜑 (v, x1) +

8𝜎2𝜂

𝛼
+ E

[
3𝐿2𝜂

𝛼𝑇

𝑇∑
𝑡=1

[2‖y𝑡 − x𝑡 ‖2 + 2‖x𝑡 − y𝑡−1‖2]
]

− E

[
𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2

]
.

If 6𝐿2 𝜂
𝛼 ≤ 𝛼

2𝜂 , i.e., 𝜂 ≤ 𝛼√
12𝐿

, the sum of the last two terms will be less than zero
due to x1 = y0. Then, we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤
2
𝑇𝜂
𝐷𝜑 (v, x1) +

8𝜎2𝜂

𝛼
≤ 2𝐷2

𝑇𝜂
+ 8𝜎2𝜂

𝛼
.

For the second part, optimizing the upper bound over 𝜂 gives 𝜂∗ = 𝐷
√
𝛼

2
√
𝑇𝜎

. If

𝜂∗ ≤ 𝛼√
12𝐿

, i.e., 𝑇 ≥ 3𝐷2𝐿2

𝜎2𝛼
, we set 𝜂 = 𝜂∗, then

E [𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
8𝜎𝐷
√
𝑇𝛼

.

If 𝜂∗ > 𝛼√
12𝐿

, i.e., 𝜎2 ≤ 3𝐷2𝐿2

𝛼𝑇 , we set 𝜂 = 𝛼√
12𝐿

, then

E [Δ(w̄𝑇 , ū𝑇 )] ≤
2
√

12𝐿𝐷2

𝑇𝛼
+ 12𝐿𝐷2

√
3𝑇𝛼

.

ut

3.8 History and Notes

Stochastic Approximation and Mathematical Optimization

Stochastic approximation has a long history dating back to Robbins and Monro
(1951) for solving a root finding problem 𝑓 (𝑥) = 𝛼 using an iterative method
𝑥𝑡+1 = 𝑥𝑡−𝑎𝑡 (𝑦𝑡−𝛼), where 𝑦𝑡 is a stochastic variable such that E[𝑦𝑡 ] = 𝑓 (𝑥𝑡 ). They
studied the asymptotic convergence of lim𝑡→∞ E[(𝑥𝑡 − 𝜃)2] = 0 under some condi-
tions, where 𝜃 is the solution to the root finding problem. It is notable that Herbert
Robbins was regarded as one of the most influential mathematicians of the latter half
of the 20th century, renowned for his seminal contributions to probability, algebra,
and graph theory.
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Inspired by Robbins and Monro (1951), Kiefer and Wolfowitz (1952) considered
stochastic maximization of a regression function using a stochastic finite difference
estimator of the gradient. Later, Chung (1954) established the convergence bound
of Robbins-Monro’s method under some conditions. Since then, the convergence of
SGD has been extensively studied. Polyak and Juditsky (1992) analyzed the conver-
gence of SGD with a simple averaging for stochastic optimization, which is some-
times referred to as Polyak-Juditsky averaging or Polyak averaging. This work as-
sumes smoothness and strong convexity of the objective function and established a
convergence rate of 𝑂 (1/𝑇).

Nemirovski and Yudin (1978) is probably the first work that analyzes the non-
asymptotic convergence of SGDA for general convex-concave min-max optimiza-
tion without smoothness and strong convexity assumption. Their paper introduces
the weighted averaging (weighted by the step size at each iteration) and establishes
the convergence rate of 𝑂 (1/

√
𝑇). The optimal rate 𝑂 (1/𝑇) for strongly-convex

strongly-concave min-max problem was recently proved in Yan et al. (2020a).
The mirror descent method originates fromNemirovsky and Yudin (1983), which

is also the work that is often cited for the lower bound of 𝑂 (1/
√
𝑇) for general con-

vex problems. A more general form of SMD and its extension for convex-concave
min-max problems using a Bregman divergence was later considered in (Nemirovski
et al., 2009).

The non-asymptotic analysis of SGD for non-convex optimization was initiated
by (Ghadimi and Lan, 2013). The non-asymptotic analysis of SGD for weakly convex
optimization was developed by (Davis and Drusvyatskiy, 2019).

The proximal method dates back to the proximal point method proposed by Mar-
tinet (1972) and further developed in (Rockafellar, 1976). Lions and Mercier (1979)
proposed a splittingmethod for finding a zero point of the sum of twomaximalmono-
tone operators. The forward backward splitting was first proposed by Pazy (1979) in
the same context of finding a zero of sum of monotone operators. Its special instance
for minimization problems known as projected gradient method was first studied
by Goldstein (1964).

Coordinate descent has a long history in optimization, with its earliest roots trace-
able to the Gauss–Seidel iterations for solving linear systems in the 19th century.
The method was later formalized and discussed in early optimization literature, in-
cluding (Warga, 1963; Ortega and Rheinboldt, 1970; Luenberger, 1973). Rigorous
analysis of convergence properties was developed in a sequence of influential works
by Paul Tseng and others, including (Luo and Tseng, 1992; Tseng, 1990; Tseng and
Bertsekas, 1987; Tseng, 2001). Recent developments of block coordinate descent
including accelerated coordinate descent (Nesterov, 2012) and stochastic block co-
ordinate descent (Dang and Lan, 2015).

The extragradient method was first proposed by Korpelevich (1976). The mirror
prox method and its convergence rate 𝑂 (1/𝑇) was proposed and established by Ne-
mirovski (2004). The stochastic mirror prox method was analyzed in (Juditsky et al.,
2011).
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Optimization in machine learning

Frank Rosenblatt’s pioneering work in the late 1950s introduced a learning rule for
updating the Perceptron model (a single-layer neural network for binary classifica-
tion) (Rosenblatt, 1962), a method that shares a conceptual foundation with modern
stochastic gradient descent (SGD). The earliest instance of SGD for machine learn-
ing is perhaps the Widrow-Hoff algorithm (Widrow and Hoff, 1960) (also known as
the least mean square’ algorithm), which was used to train ADALINE - a single-layer
neural network that produces a continuous output. Amari (1967) is the first work that
applies SGD to optimize a neural network for binary and multi-class classification.

Starting in late 1980s, online prediction problem has attracted increasing atten-
tion in machine learning, whose developments have many parallels to stochastic op-
timization. Littlestone (1988) proposed the Winnow algorithm for learning Boolean
functions. It was shown to be better than the earlier Perceptron learning algorithm
in the sense that the number of mistakes grows only logarithmically with the num-
ber of irrelevant attributes in the examples. Later, it was generalized to weighted
majority for learning with expert advice (Littlestone and Warmuth, 1994), and the
exponentiated gradient method (Kivinen and Warmuth, 1997) for online learning
with a decision variable from a simplex, which is a special case of SMD using the
KL-divergence. It has impact on the development of Adaboost (Freund and Schapire,
1997).

During the first decade of the 21st century, online convex optimization emerged
as a central topic in machine learning. A key focus was on regret bound analysis,
which can be transferred into convergence guarantees for stochastic optimization via
the online-to-batch conversion technique (Dekel and Singer, 2005). Regret bounds
for online gradient descent were established for both convex loss functions (Zinke-
vich, 2003) and strongly convex loss functions (Hazan et al., 2007). The multi-epoch
scheme for achieving an optimal rate of 𝑂 (1/𝑇) for stochastic strongly convex opti-
mization was established independently and concurrently in (Iouditski and Nesterov,
2010; Hazan and Kale, 2011; Ghadimi and Lan, 2012). Later, SGD has shown to be
able to achieve the optimal rate for stochastic non-smooth strongly convex optimiza-
tion using tail averaging (Rakhlin et al., 2012) or increased weighted averaging (La-
coste-Julien et al., 2012). The last iterate convergence of SGD for non-smooth convex
optimization was established in (Shamir and Zhang, 2013).

The use of the ℓ1 norm as a regularizer in the Lasso method was pioneered by Tib-
shirani (1996). The elastic net regularizer was later proposed in (Zou and Hastie,
2003), while the group lasso regularizer was introduced by (Yuan and Lin, 2006).
More recently, the Piecewise Affine Regularizer (PAR) was proposed in (Jin et al.,
2025). The nuclear norm minimization for promoting a low-rank matrix was first
considered in (Fazel et al., 2001).

Pioneering works on the application of SGD to regularized empirical risk mini-
mization in machine learning, including support vector machines, include (Zhang,
2004a; Shalev-Shwartz et al., 2007). The application of the proximal gradientmethod
to ℓ1 norm regularized problem was initiated by Daubechies et al. (2004), yielding
an algorithm known as iterative thresholding. The application of SPGD to machine

120



3.8. HISTORY AND NOTES

learning with various regularization terms was studied in (Duchi and Singer, 2009).
The application of SGD for optimizing truncated loss and its theory was studied
in (Xu et al., 2019b).

The most famous application of coordinate descent methods in machine learning
is the solver for support vector machine (Chang et al., 2008; Hsieh et al., 2008).

AdaGrad, proposed by Duchi et al. (2011), was a breakthrough in stochastic opti-
mization for machine learning. It later inspired several popular stochastic algorithms
for deep learning, including RMSprop (Hinton, 2018) and Adam (Kingma and Ba,
2015), which will be discussed in Chapter 6.

The first variant of stochastic optimistic mirror prox method appeared in the au-
thor’s award-winning work (Chiang et al., 2012), inspired by Nemirovski’s mirror
prox method. It was introduced to address a long-standing challenge in online con-
vex optimization for achieving variational regret bounds. This line of research later
inspired the work of (Rakhlin and Sridharan, 2013), which formally coined the term
optimistic mirror descent. More recently, stochastic optimistic mirror prox has been
adopted for solving min–max problems in machine learning, including applications
such as training generative adversarial networks (Daskalakis et al., 2018).

Discussion. The most important factor that affects the practical performance of
SGD and other stochastic algorithms is the learning rate scheme 𝜂𝑡 . In this chapter,
we focus on a fixed learning rate 𝜂𝑡 = 𝜂. However, it is usually not the best choice
in practice. We can also develop theoretical analysis of these algorithms using de-
creasing learning rates, e.g., 𝜂𝑡 ∝ 1/

√
𝑡, 1/𝑡. However, these theoretical learning rate

schemes are usually also not the best in practice. A practical approach is the step
decay strategy as in Theorem 3.7, which gives a convergence that has only loga-
rithmic dependence on the initial distance ‖w1 − w∗‖2. This strategy also works for
general stochastic convex optimization under generic error bound conditions in the
form ‖w − w∗‖2 ≤ 𝑐(𝑔(w) − 𝑔(w∗)) 𝜃 with 𝜃 ∈ (0, 1] (Xu et al., 2017). Another
issue of theoretical learning rates is that their best values that optimize the conver-
gence bound may depend on some unknown parameters of the problem, e.g., w∗, the
smoothness constant, strong convexity modulus. This issue has triggered a line of
research known as parameter-free algorithms (Orabona, 2019; Lan et al., 2023).

While this chapter focuses on classical stochastic methods that not only have
important applications in machine learning but also significantly influence the ap-
proaches presented in later chapters, it does not cover several important algorithms,
most notably accelerated gradient methods and their stochastic variants. These meth-
ods achieve optimal convergence rates for smooth convex objectives when the vari-
ance of stochastic gradients vanishes (Lan, 2012). For a comprehensive treatment
of accelerated gradient methods, we refer to the textbook by Nesterov (2004), and
for stochastic accelerated algorithms, we recommend Lan (2020). Variants of these
methods will be introduced in Chapter 6.

Finally, I recommend the textbook (Recht and Wright, 2025), which provides a
comprehensive treatment of convex optimization algorithms tailored for data analy-
sis.
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Chapter 4
Foundations: Stochastic Compositional
Optimization

Abstract In this chapter, we introduce stochastic compositional optimization prob-
lems and their optimization algorithms, including stochastic compositional gradient
descent and stochastic compositional momentum metholds. We also consider exten-
sions of these techniques to structured optimization with compositional gradients
including non-convex regularized problems, min-max optimization, min-min opti-
mization and bilevel optimization. We focus on the complexity of these metholds for
non-convex optimization.

Moving average is the core ingredient!
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4.1. STOCHASTIC COMPOSITIONAL OPTIMIZATION

4.1 Stochastic Compositional Optimization

We have seen several advanced machine learning frameworks in the Chapter 2, in-
cluding DRO, GDRO, EXM, and COCE. Unfortunately, existing stochastic gradient
metholds such as SGD are not directly applicable to these new problems. The rea-
son will become clear shortly. To address this challenge, we need new optimization
tools.

In this chapter, we will consider a family of stochastic optimization problems
called stochastic compositional optimization (SCO), whose objective is given by

min
w∈R𝑑

𝐹 (w) := E𝜉 𝑓 (E𝜁 𝑔(w; 𝜁); 𝜉), (4.1)

where 𝜉 and 𝜁 are random variables, 𝑔(·; 𝜁) : R𝑑 → R𝑑
′ is the inner random func-

tion, and 𝑓 (·; 𝜉) : R𝑑′ → R is the outer random function. Let 𝑓 (·) = E𝜉 𝑓 (·; 𝜉) and
𝑔(·) = E𝜁 𝑔(·; 𝜁). Then the objective function 𝐹 (w) = 𝑓 (𝑔(w)) is a composition of
two functions.

Examples

Example 4.1. The KL-regularized DRO (2.14) is a special case of SCO by
setting 𝑓 (·) = 𝜆 log(·) and 𝑔(w) = 1

𝑛

∑𝑛
𝑖=1 exp(ℓ(w; x𝑖 , 𝑦𝑖)/𝜆).

Example 4.2. The KL-constrained DRO (2.19) is a special case of SCO by
setting 𝑔̄ = (𝑔1, 𝑔2) 𝑓 (𝑔̄) = 𝑔1 log(𝑔2) + 𝑔1𝜌 and 𝑔1 (w, 𝜆) = 𝜆, 𝑔2 (w, 𝜆) =
1
𝑛

∑𝑛
𝑖=1 exp(ℓ(w; x𝑖 , 𝑦𝑖)/𝜆).

Example 4.3. The compositional objective for AUCmaximization (2.32) has
a compositional term of 𝑓 (𝑔(w)), where 𝑔(w) is a stochastic function and 𝑓
is a deterministic function.

Optimization Challenge

The challenge of solving SCO lies in how to estimate the gradient ∇𝐹 (w) =
∇𝑔(w)∇ 𝑓 (𝑔(w)), where ∇𝑔(w) ∈ R𝑑×𝑑

′ denotes the transpose of the Jacobian ma-
trix of 𝑔 at w and ∇ 𝑓 (𝑔) ∈ R𝑑

′ is a gradient of 𝑓 at 𝑔.
A simple way of estimating the gradient is by using stochastic samples, i.e.,

𝐺 (w; 𝜉, 𝜁 , 𝜁 ′) = ∇𝑔(w; 𝜁)∇ 𝑓 (𝑔(w; 𝜁 ′); 𝜉), where 𝜉, 𝜁 , 𝜁 ′ are random samples. One
can also use mini-batch of random samples to compute the estimator. However,
the problem is that 𝐺 (w; 𝜉, 𝜁 , 𝜁 ′) is a biased estimator when 𝑓 is non-linear, i.e.,
E𝜉 ,𝜁 ,𝜁 ′𝐺 (w; 𝜉, 𝜁 , 𝜁 ′) ≠ ∇𝐹 (w). This will break all assumptions made in the con-
vergence analysis in Chapter 3. Directly using this estimator in SGD could result in
non-convergence or it requires a large batch size for estimating 𝑔(w).
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Algorithm 9 SCGD
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Sample 𝜁𝑡 , 𝜁 ′

𝑡 and 𝜉𝑡
4: Compute the inner function value estimator u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔 (w𝑡 ; 𝜁𝑡 )
5: Compute the vanilla gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁 ′

𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )
6: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
7: end for

4.2 Stochastic Compositional Gradient Descent

We assume both 𝑓 and 𝑔 are differentiable. Next, we introduce stochastic composi-
tional gradient descent (SCGD) as a solution method for SCO. The key to the de-
sign is to track the sequence of {𝑔(w𝑡 ), 𝑡 = 1, . . . , 𝑇} by a sequence of estimators
{u𝑡 , 𝑡 = 1, . . . , 𝑇}. Let us consider the following problem:

min
𝑢

1
2
‖u − 𝑔(w𝑡 )‖2

2. (4.2)

We compute u𝑡 by using the SGD update:

u𝑡 = u𝑡−1 − 𝛾𝑡 (u𝑡−1 − 𝑔(w𝑡 ; 𝜁𝑡 )) = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ), 𝑡 ∈ [𝑇], (4.3)

where 𝑔(w; 𝜁) is stochastic estimator of 𝑔(w) such that E𝜁 [𝑔(w; 𝜁)] = 𝑔(w). The
update is also known as moving average sequence of {𝑔(w𝑡 )}.

The intuition behind this is that when w𝑡 converges (i.e., w𝑡 − w𝑡−1 → 0), u𝑡 is
a better estimator of 𝑔(w𝑡 ) than 𝑔(w𝑡 ; 𝜁𝑡 ). With u𝑡 , the gradient estimator can be
computed by

z𝑡 = ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ), (4.4)

where 𝜁 ′𝑡 is another independent random variable. Then, we can use it for updating
w𝑡 :

w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 .

The detailed steps are presented in Algorithm 9.

Critical: Using 𝜁 ′𝑡 instead of 𝜁𝑡 in computing ∇𝑔(w𝑡 ; 𝜁 ′𝑡 ) is for simplicity of
analysis, which decouple the dependence between u𝑡 and 𝜁 ′𝑡 as u𝑡 depends on
𝜁𝑡 . However, this will increase the number of random samples per-iteration.
For practical implementation, one may just use 𝜁 ′𝑡 = 𝜁𝑡 .
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

4.2.1 Convergence Analysis

We make the following assumptions regarding the SCO problem (4.1).

Assumption 4.1. There exist 𝐿1, 𝐺1 > 0 such that

(i) 𝑓 is 𝐿1-smooth, i.e., ‖∇ 𝑓 (𝑔) − ∇ 𝑓 (𝑔′)‖2 ≤ 𝐿1‖𝑔 − 𝑔′‖2,∀𝑔, 𝑔′;
(ii) E[‖∇ 𝑓 (𝑔; 𝜉)‖2

2] ≤ 𝐺2
1,∀𝑔.

Assumption 4.2. There exist 𝐺2 > 0 such that E[‖∇𝑔(w; 𝜁)‖2
2] ≤ 𝐺2

2,∀w.

Due to Jensen’s inequality, E[‖∇ 𝑓 (·; 𝜉)‖2
2] ≤ 𝐺2

1, and E[‖∇𝑔(w; 𝜁)‖2
2] ≤ 𝐺2

2
indicate the 𝐺1-Lipschitz condition of 𝑓 and 𝐺2-Lipschitz condition of 𝑔, respec-
tively.

Assumption 4.3. There exist 𝜎0, 𝜎1, 𝜎2 > 0 such that

(i) E[‖𝑔(w; 𝜁) − 𝑔(w)‖2
2] ≤ 𝜎2

0 ,∀w;
(ii) E[‖∇ 𝑓 (𝑔; 𝜉) − ∇ 𝑓 (𝑔)‖2

2] ≤ 𝜎2
1 , E[‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2

2] ≤ 𝜎2
2 ,∀w, 𝑔.

(iii) 𝐹∗ = minw 𝐹 (w) > −∞.

Assumption 4.4. 𝐹 is 𝐿𝐹-smooth, i.e., there exist 𝐿𝐹 > 0 such that ∇𝐹 (·) is 𝐿𝐹-
Lipschitz continuous.

It is notable that the smoothness of 𝐹 does not necessarily imply that 𝑔 is smooth.
One example is that if 𝑔(w) = ‖w‖2 and 𝑓 (𝑔) = 𝑔2, the overall function 𝐹 (w) =
‖w‖2

2 is smooth but the inner function 𝑔 is non-smooth.

Lemma 4.1 Under Assumptions 4.2 and 4.3(i), the {u𝑡 }𝑡≥1 sequence (4.3) satisfies
that

E𝜁𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + 𝛾2
𝑡 𝜎

2
0 +

𝐺2
2
𝛾𝑡

‖w𝑡 − w𝑡−1‖2
2 .

(4.5)

where E𝜁𝑡 denotes the expectation over 𝜁𝑡 given all previous randomness.

 Why it matters

The lemma admits an intuitive interpretation. The first term shows that ‖u𝑡 −
𝑔(w𝑡 )‖2

2 is bounded by a contracting sequence. The second term is due to the
noise in 𝑔(w𝑡 ; 𝜁𝑡 ) and the third term is caused by the drifting from w𝑡−1 to w𝑡 ,
both of which decay to zero under the conditions 𝛾2

𝑡 → 0 and E[ ‖w𝑡−w𝑡−1 ‖2
2 ]

𝛾𝑡
=

𝑂
(
𝜂2
𝑡−1
𝛾𝑡

)
→ 0, respectively.

Proof. In the following proof, we abuse the notation E𝑡 to denote E𝜁𝑡 . According to
the update formula u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ) we have
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E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
= E𝑡

[
‖(1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 )‖2

2
]

= E𝑡
[
‖(1 − 𝛾𝑡 )(u𝑡−1 − 𝑔(w𝑡 )) + 𝛾𝑡 (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 ))‖2

2
]
.

Note that E𝑡 [(u𝑡−1 − 𝑔(w𝑡 ))> (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 ))] = 0. Thus,

E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 )2 ‖u𝑡−1 − 𝑔(w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 . (4.6)

This inequality is same as Lemma 3.7 when we consider u𝑡 as the SGD update
for (4.2).

Due to the Young’s inequality of inner product, we have ‖u𝑡−1 − 𝑔(w𝑡 )‖2
2 ≤ (1 +

𝛼) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + (1 + 1/𝛼) ‖𝑔(w𝑡 ) − 𝑔(w𝑡−1)‖2

2 for any 𝛼 > 0. Whence,

E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤(1 − 𝛾𝑡 )2 (1 + 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+ (1 − 𝛾𝑡 )2 (1 + 1/𝛾𝑡 )𝐺2
2 ‖w𝑡 − w𝑡−1‖2

2 + 𝛾2
𝑡 𝜎

2
0 .

The proof is completed by noticing (1−𝛾𝑡 )2 (1+𝛾𝑡 ) ≤ 1−𝛾𝑡 and (1−𝛾𝑡 )2 (1+1/𝛾𝑡 ) ≤
1
𝛾𝑡
. ut

Lemma 4.2 Under Assumptions 4.1, 4.2, 4.3 and 4.4 , SCGD satisfies

E𝜁𝑡 , 𝜉𝑡 ,𝜁 ′𝑡 [𝐹 (w𝑡+1)] ≤𝐹 (w𝑡 ) −
𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 +

𝜂𝑡𝐺
2
2𝐿

2
1

2
E𝜁𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]

+
𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
. (4.7)

Proof. In the following proof, we abuse the notation E𝑡 to denote E𝜁𝑡 , 𝜉𝑡 ,𝜁 ′𝑡 . Accord-
ing to 𝐿𝐹-smoothness of 𝐹, we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

= 𝐹 (w𝑡 ) − 𝜂𝑡∇𝐹 (w𝑡 )>∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) +
𝜂2
𝑡 𝐿𝐹

2


∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

2

2 .

Then, we have

E𝑡 [𝐹 (w𝑡+1)] ≤𝐹 (w𝑡 ) − 𝜂𝑡 ‖∇𝐹 (w𝑡 )‖2
2

+ 𝜂𝑡 E𝑡
[
∇𝐹 (w𝑡 )> (∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (𝑔(w𝑡 )) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ))

]
+
𝜂2
𝑡 𝐿𝐹

2
E𝑡

[

∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

2
2

]
, (4.8)

where we use the fact

E𝜁 ′𝑡
[
∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (𝑔(w𝑡 ))

]
= ∇𝐹 (w𝑡 )

E𝜁𝑡 ,𝜁 ′𝑡 , 𝜉𝑡
[
∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ))

]
= E𝜁𝑡 ,𝜁 ′𝑡

[
∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ))

]
.
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

Due to the Cauchy-Schwarz inequality and the Young’s inequality of inner product,
we have

E𝑡 [∇𝐹 (w𝑡 )> (∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (𝑔(w𝑡 )) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ))]

≤ E𝑡

[
‖∇𝐹 (w𝑡 )‖2

2


∇𝑔(w𝑡 ; 𝜁 ′𝑡 )

2

2

2𝐺2
2

]
+ E𝜁𝑡

[
𝐺2

2
2

‖∇ 𝑓 (𝑔(w𝑡 )) − ∇ 𝑓 (u𝑡 )‖2
2

]
≤

‖∇𝐹 (w𝑡 )‖2
2

2
+
𝐺2

2𝐿
2
1

2
E𝜁𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖2

2 . (4.9)

For bounding the last term in (4.8), we proceed as follows:

E𝑡
[

∇𝑔(w𝑡 , 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 , 𝜉𝑡 )

2

2

]
≤ E𝜁𝑡 ,𝜁 ′𝑡

[

∇𝑔(w𝑡 ; 𝜁 ′𝑡 )

2
2 E𝜉𝑡 |𝜁𝑡 ,𝜁 ′𝑡 ‖∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖

2
2

]
≤ 𝐺2

1𝐺
2
2. (4.10)

We finish the proof by plugging the last two inequalities into (4.8). ut

Critical: We comment on the modifications required in the analysis when
the same sample 𝜁𝑡 is used to compute ∇𝑔(w𝑡 ; 𝜁𝑡 ). In the original proof,
there are two places highlighted in boxes, where we explicitly rely on the
independence between u𝑡 and 𝜁 ′𝑡 . If instead we use the coupled estimator
∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ), then the first term must be modified and bounded as
follows:

E𝑡
[
∇𝐹 (w𝑡 )>

(
∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (𝑔(w𝑡 ); 𝜉𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

) ]
≤ E𝑡

[
‖∇𝐹 (w𝑡 )‖2 ‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2

2𝐺2
2

]
+ E𝑡

[
𝐺2

2
2

‖∇ 𝑓 (𝑔(w𝑡 ); 𝜉𝑡 ) − ∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2

]
.

To recover the same bound as in (4.9), we must impose a stronger regularity
condition on 𝑓 , namely,

E𝜉
[
‖∇ 𝑓 (𝑔; 𝜉) − ∇ 𝑓 (𝑔′; 𝜉)‖2] ≤ 𝐿1‖𝑔 − 𝑔′‖2

2.

For the second boxed term, the corresponding expression becomes
E𝑡

[
‖∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2] , which in turn requires assuming that this quan-

tity is uniformly bounded by a constant.

Combining Lemma 4.1 and Lemma 4.2, we can prove the following theorem of
convergence for SCGD for a non-convex function.

Theorem 4.1 Suppose Assumptions 4.1, 4.2, 4.3 and 4.4 hold. After 𝑇 iterations of
SCGD updates with parameters 𝜂𝑡 = 𝜂1

𝑇3/5 , 𝛾𝑡 =
𝛾1
𝑇2/5 , we have
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E

[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹 (w𝑡 )‖2
2

]
≤ 2𝐶Υ

𝜂1𝑇2/5 +
𝐿2

1𝐺
2
1𝐺

6
2𝜂

2
1

𝛾2
1𝑇

2/5 +
𝐿2

1𝐺
2
2𝜎

2
0 𝛾1

𝑇2/5 +
𝐿𝐹𝐺

2
1𝐺

2
2𝜂1

2𝑇3/5 ,

where 𝐶Υ = 𝐹 (w1) − 𝐹∗ +
𝐿2

1𝐶
2
2 𝜎

2
0

2
𝜂1
𝛾1
. If 𝜂𝑡 = 𝜂1/𝑡3/5, 𝛾𝑡 = 𝛾1/𝑡2/5, then the conver-

gence rate becomes 𝑂 (log𝑇/𝑇2/5).

Proof. Adding 𝐿2
1𝐺

2
2

2
𝜂𝑡
𝛾𝑡
E𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
on (4.7), we have

E𝑡 [𝐹 (w𝑡+1)] +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡
E𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]

≤ 𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 + (1 + 𝛾𝑡 )
𝜂𝑡𝐿

2
1𝐺

2
2

2𝛾𝑡
E𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖2

2 +
𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
.

Applying Lemma 4.1 to bound the right hand side, we have

E𝑡 [𝐹 (w𝑡+1)] +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡
E𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]

≤ 𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 + (1 − 𝛾𝑡 ) (1 + 𝛾𝑡 )
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2

+
(1 + 𝛾𝑡 )𝐿2

1𝐺
2
2𝐺

2
2𝜂𝑡

2𝛾2
𝑡

‖w𝑡 − w𝑡−1‖2
2 + 𝛾𝑡𝜂𝑡 (1 + 𝛾𝑡 )

𝐿2
1𝐺

2
2𝜎

2
0

2
+
𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
𝛾𝑡≤1
≤ 𝐹 (w𝑡 ) +

𝐿2
1𝐺

2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 +

𝜂𝑡𝐿
2
1𝐺

4
2

𝛾2
𝑡

‖w𝑡 − w𝑡−1‖2
2

+ 𝛾𝑡𝜂𝑡𝐿2
1𝐺

2
2𝜎

2
0 +

𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
− 𝜂𝑡

2
‖∇𝐹 (w𝑡 )‖2

2 .

We define the potential function Υ𝑡 = 𝐹 (w𝑡 ) +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2. By the

setting, we have 𝜂𝑡+1
𝛾𝑡+1

≤ 𝜂𝑡
𝛾𝑡
, then

Υ𝑡+1 = 𝐹 (w𝑡+1) +
𝐿2

1𝐺
2
2

2
𝜂𝑡+1

𝛾𝑡+1
‖u𝑡 − 𝑔(w𝑡 )‖2

2 ≤ 𝐹 (w𝑡+1) +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡 − 𝑔(w𝑡 )‖2
2 .

Then,

E𝑡 [Υ𝑡+1] ≤ Υ𝑡 +
𝜂𝑡𝐿

2
1𝐺

4
2

𝛾2
𝑡

‖w𝑡 − w𝑡−1‖2
2 + 𝛾𝑡𝜂𝑡𝐿2

1𝐺
2
2𝜎

2
0 +

𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2

− 𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 .

Telescoping the above over 𝑡 = 1 to 𝑇 and use the tower property of conditional
expectation.
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E

[
𝑇∑
𝑡=1

𝜂𝑡 ‖∇𝐹 (w𝑡 )‖2
2

]
≤ 2E [Υ1 − Υ𝑇+1] + 2𝐿2

1𝐺
4
2

𝑇∑
𝑡=1

𝛾−2
𝑡 𝜂𝑡𝜂

2
𝑡−1𝐺

2
1𝐺

2
2

+ 𝐿2
1𝐺

2
2𝜎

2
0

𝑇∑
𝑡=1

𝛾𝑡𝜂𝑡 +
𝐿𝐹𝐺

2
1𝐺

2
2

2

𝑇∑
𝑡=1

𝜂2
𝑡 .

where we use the fact E[‖w𝑡 − w𝑡−1‖2
2] = E[𝜂2

𝑡−1‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2
2] ≤

𝜂2
𝑡−1𝐺

2
1𝐺

2
2. Let w0 = w1 and u0 = 𝑔(w0; 𝜁1). Then, we have

E [Υ1 − Υ𝑇+1] ≤ E

[
𝐹 (w1) +

𝐿2
1𝐶

2
2

2
𝜂1

𝛾1
‖u0 − 𝑔(w0)‖2

2

]
− 𝐹∗

≤ 𝐹 (w1) − 𝐹∗ +
𝐿2

1𝐺
2
2𝜎

2
0

2
𝜂1

𝛾1
.

We define 𝐶Υ = 𝐹 (w1) − 𝐹∗ +
𝐿2

1𝐺
2
2𝜎

2
0

2
𝜂1
𝛾1
. Then we have

E
[
‖∇𝐹 (w𝜏)‖2

2
]
≤ 2𝐶Υ∑𝑇

𝑡=1 𝜂𝑡
+ 𝐿2

1𝐺
6
2𝐺

2
1

∑𝑇
𝑡=1 𝛾

−2
𝑡 𝜂𝑡𝜂

2
𝑡−1∑𝑇

𝑡=1 𝜂𝑡

+ 𝐿2
1𝐺

2
2𝜎

2
0

∑𝑇
𝑡=1 𝛾𝑡𝜂𝑡∑𝑇
𝑡=1 𝜂𝑡

+
𝐿𝐹𝐺

2
1𝐺

2
2

2

∑𝑇
𝑡=1 𝜂

2
𝑡∑𝑇

𝑡=1 𝜂𝑡
.

Plugging the constant values of 𝜂𝑡 = 𝜂1
𝑇3/5 and 𝛾𝑡 = 𝛾1

𝑇2/5 , we have

E
[
‖∇𝐹 (w𝜏)‖2

2
]
≤ 2𝐶Υ

𝜂1𝑇2/5 +
𝐿2

1𝐺
2
1𝐺

6
2𝜂

2
1

𝛾2
1𝑇

2/5 +
𝐿2

1𝐺
2
2𝜎

2
0 𝛾1

𝑇2/5 +
𝐿𝐹𝐺

2
1𝐺

2
2𝜂1

2𝑇3/5 .

If 𝜂𝑡 = 𝑂 (1/𝑡3/5), 𝛾𝑡 = 𝑂 (1/𝑡2/5), 𝜂𝑡+1
𝛾𝑡+1

≤ 𝜂𝑡
𝛾𝑡

is satisfied. Besides, we have
∑𝑇
𝑡=1 𝜂𝑡 =

𝑂 (𝑇2/5),∑𝑇
𝑡=1 𝜂

2
𝑡 = 𝑂 (1),∑𝑇

𝑡=1 𝛾𝑡𝜂𝑡 = 𝑂 (log𝑇),∑𝑇
𝑡=1 𝛾

−2
𝑡 𝜂𝑡𝜂

2
𝑡−1 = 𝑂 (log𝑇). Then,

we have E
[
‖∇𝐹 (w𝜏)‖2

2
]
≤ Õ(1/𝑇2/5). ut

4.2.2 An Improved Complexity with Smooth Inner Function

If we replace the smoothness assumption of 𝐹 by the smoothness of 𝑔, we can es-
tablish a better complexity of SCGD.

Assumption 4.5. 𝑔 is 𝐿2-smooth, i.e., there exist 𝐿2 > 0 such that ∇𝑔(·) is 𝐿2-
Lipschitz continuous.

Assumptions 4.1 and 4.5 ensures that 𝐹 is smooth.

Lemma 4.3 Under Assumptions 4.1 and 4.5, we have 𝐹 is 𝐿𝐹-smooth, where 𝐿𝐹 =
𝐺1𝐿2 + 𝐺2

2𝐿1.
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Proof. Since ∇𝐹 (w) = ∇𝑔(w)∇ 𝑓 (𝑔(w)), we have

‖∇𝑔(w1)∇ 𝑓 (𝑔(w1)) − ∇𝑔(w2)∇ 𝑓 (𝑔(w2))‖2

= ‖∇𝑔(w1)∇ 𝑓 (𝑔(w1)) − ∇𝑔(w1)∇ 𝑓 (𝑔(w2))
+ ∇𝑔(w1)∇ 𝑓 (𝑔(w2)) − ∇𝑔(w2)∇ 𝑓 (𝑔(w2))‖2

≤ 𝐺2
2𝐿1‖w1 − w2‖2 + 𝐺1𝐿2‖w1 − w2‖2.

ut

Lemma 4.4 Let z𝑡 = ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ),M𝑡 = E𝑡 [z𝑡 ]. Then

E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤ 𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ,

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] ≤ 𝜂2

𝑡𝐺
2
1𝐺

2
2,

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] ≤ 𝜂2

𝑡 ‖M𝑡 ‖2
2 + 𝜂2

𝑡 (𝐺2
1𝜎

2
2 + 𝐺2

2𝜎
2
1 ).

where E𝑡 denotes E𝜁 ′𝑡 , 𝜉𝑡 conditioned on w𝑡 , u𝑡 .

Proof. First, we have

E𝑡 [‖z𝑡 −M𝑡 ‖2
2] = E𝑡 [



∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 )


2

2]
= E𝑡 [‖∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ) − ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

+ ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )


2

2]
≤ 𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 .

Next, due to Assumption 4.1, 4.2 we have

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] = E𝑡 [𝜂2

𝑡 ‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2
2] ≤ 𝜂2

𝑡𝐺
2
1𝐺

2
2.

Second, we have

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] = E𝑡 [𝜂2

𝑡 ‖z𝑡 −M𝑡 +M𝑡 ‖2
2] = E𝑡 [𝜂2

𝑡 ‖z𝑡 −M𝑡 ‖2
2] + 𝜂2

𝑡 ‖M𝑡 ‖2
2.

Plugging the first result into the above, we finish the proof. ut

Next, we develop two lemmas similar to Lemma 4.1 and Lemma 4.2.

Lemma 4.5 Under Assumptions 4.2, 4.3 and 4.5, if 𝜂2
𝑡−1 ≤ 𝛾𝑡

𝐿2
2𝐺

2
1
then the {u𝑡 }𝑡≥1

sequence (4.3) satisfies that

E
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 )E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] +
4𝜂2
𝑡−1𝐺

2
2

𝛾𝑡
E[‖M𝑡−1‖2

2]

+ 𝛾2
𝑡 𝜎

2
0 +

3𝜂2
𝑡−1𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ). (4.11)

Proof. Similar to the proof of Lemma 4.1, we have
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E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 )2 ‖u𝑡−1 − 𝑔(w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 . (4.12)

Next, we will handle ‖u𝑡−1 − 𝑔(w𝑡 )‖2
2 differently by using the smoothness of 𝑔.

‖u𝑡−1 − 𝑔(w𝑡 )‖2
2 = ‖u𝑡−1 − 𝑔(w𝑡−1) + 𝑔(w𝑡−1) − 𝑔(w𝑡 )‖2

2

= ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + ‖𝑔(w𝑡−1) − 𝑔(w𝑡 )‖2

2

+ (u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))
≤ ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + 𝐺2
2 ‖w𝑡−1 − w𝑡 ‖2

2

+ 2(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 )).

Taking expectation on both sides and applying Lemma 4.4, we have

E[‖u𝑡−1 − 𝑔(w𝑡 )‖2
2] ≤ E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] + 𝜂2
𝑡−1𝐺

2
2E[‖M𝑡−1‖2

2]
+ 𝜂2

𝑡−1𝐺
2
2 (𝐺2

2𝜎
2
1 + 𝐺1𝜎

2
2 ) + E[2(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))] .

Instead of using the Young’s inequality of inner product to bound the last term, we
proceed as follows:

E[(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))]
= E[(u𝑡−1 − 𝑔(w𝑡−1))>∇𝑔(w𝑡−1)> (w𝑡−1 − w𝑡 )]︸                                                        ︷︷                                                        ︸

𝐴

+ E[(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ) + ∇𝑔(w𝑡−1)> (w𝑡 − w𝑡−1))]︸                                                                                     ︷︷                                                                                     ︸
𝐵

.

To bound 𝐴, we have

𝐴 = E[(u𝑡−1 − 𝑔(w𝑡−1))>∇𝑔(w𝑡−1)>𝜂𝑡−1M𝑡−1]

≤ E[𝛼𝑡 ‖(u𝑡−1 − 𝑔(w𝑡−1))>‖2 +
𝜂2
𝑡−1

4𝛼𝑡
‖∇𝑔(w𝑡−1)>M𝑡−1‖2

2]

≤ E[𝛼𝑡 ‖(u𝑡−1 − 𝑔(w𝑡−1))>‖2 +
𝜂2
𝑡−1𝐺

2
2

4𝛼𝑡
‖M𝑡−1‖2

2] .

To bound 𝐵, we have

𝐵 ≤ E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2‖𝑔(w𝑡−1) − 𝑔(w𝑡 ) + ∇𝑔(w𝑡−1)> (w𝑡 − w𝑡−1)‖2]

≤ E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2
𝐿2

2
‖w𝑡 − w𝑡−1‖2

2]

≤
𝐿2

2

4𝐺2
2
E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2‖w𝑡 − w𝑡−1‖2
2] +

𝐺2
2

4
E[‖w𝑡 − w𝑡−1‖2

2],

where the first inequality uses the smoothness of 𝑔 and the last inequality uses the
Young’s inequality. To proceed, we utilize the first bound of E𝑡−1 [‖w𝑡 − w𝑡−1‖2

2]
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in lemma 4.4 to bound the first term, and utilize its second bound in lemma 4.4 to
bound the second E[‖w𝑡 − w𝑡−1‖2

2]. Thus, we have

𝐵 ≤
𝜂2
𝑡−1𝐿

2
2𝐺

2
1

4
E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] +
𝜂2
𝑡−1𝐺

2
2

4
E[‖M𝑡−1‖2

2]

+
𝜂2
𝑡−1𝐺

2
2

4
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 )] .

Combing the bounds for 𝐴 and 𝐵, we have

E[(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))]

=

(
𝛼𝑡 +

𝜂2
𝑡−1𝐿

2
2𝐺

2
1

4

)
E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] +
(
𝜂2
𝑡−1𝐺

2
2

4𝛼𝑡
+
𝜂2
𝑡−1𝐺

2
2

4

)
E[‖M𝑡−1‖2

2]

+
𝜂2
𝑡−1𝐺

2
2

4
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

As a result,

E[‖u𝑡−1 − 𝑔(w𝑡 )‖2
2] ≤

(
1 + 2𝛼𝑡 +

𝜂2
𝑡−1𝐿

2
2𝐺

2
1

2

)
‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+
(
𝜂2
𝑡−1𝐺

2
2 +

𝜂2
𝑡−1𝐺

2
2

2𝛼𝑡
+
𝜂2
𝑡−1𝐺

2
2

2

)
E[‖M𝑡−1‖2

2]

+
(
𝜂2
𝑡−1𝐺

2
2 +

𝜂2
𝑡−1𝐺

2
2

2

)
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

We let 𝛼𝑡 = 𝛾𝑡
4 < 1, 𝜂

2
𝑡−1𝐿

2
2𝐺

2
1

2 ≤ 𝛾𝑡
2 . Combining the above inequality with (4.12), we

can finish the proof.
ut

Lemma 4.6 Under Assumptions 4.1, 4.2, 4.3 and 4.5, if 𝜂𝑡𝐿𝐹 ≤ 1/4 then SCGD
satisfies

E[𝐹 (w𝑡+1)] ≤E
[
𝐹 (w𝑡 ) −

𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
4
‖M𝑡 ‖2

2

]
(4.13)

+
𝜂𝑡𝐺

2
2𝐿

2
1

2
E[‖𝑔(w𝑡 ) − u𝑡 ‖2

2] + 2𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ).

Proof. According to Lemma 4.3 (𝐿𝐹-smoothness of 𝐹), we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

=𝐹 (w𝑡 ) − 𝜂𝑡∇𝐹 (w𝑡 )>∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) +
𝜂2
𝑡 𝐿𝐹

2


∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

2

2 .

Taking expectation on both sides, we have
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E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 )] − 𝜂𝑡E[∇𝐹 (w𝑡 )>M𝑡 ] +
𝜂2
𝑡 𝐿𝐹

2
E[‖z𝑡 −M𝑡 +M𝑡 ‖2

2]

= E[𝐹 (w𝑡 )] − 𝜂𝑡E[∇𝐹 (w𝑡 )>M𝑡 ] + 𝜂2
𝑡 𝐿𝐹E[‖z𝑡 −M𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹E[‖M𝑡 ‖2

2]

Using −2a>b = ‖a − b‖2
2 − ‖a‖2

2 − ‖b‖2
2, we have

E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
2
‖M𝑡 ‖2

2]

+ 𝜂𝑡
2
E[‖∇𝐹 (w𝑡 ) −M𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹E[‖z𝑡 −M𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹E[‖M𝑡 ‖2

2] .

Next, we bound E[‖∇𝐹 (w𝑡 ) −M𝑡 ‖2
2].

E[‖∇𝐹 (w𝑡 ) −M𝑡 ‖2
2] = E[‖∇𝑔(w𝑡 )∇ 𝑓 (𝑔(w𝑡 )) − ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 )‖2

2]
≤ 𝐺2

2𝐿
2
1E[‖𝑔(w𝑡 ) − u𝑡 ‖2

2] .

Combining the above inequalities, we have

E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
2
‖M𝑡 ‖2

2]

+
𝜂𝑡𝐺

2
2𝐿

2
1

2
E[‖𝑔(w𝑡 ) − u𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ) + 𝜂2

𝑡 𝐿𝐹E[‖M𝑡 ‖2
2] .

If 𝜂𝑡𝐿𝐹 ≤ 1/4, we have − 𝜂𝑡
2 ‖M𝑡 ‖2

2 + 𝜂2
𝑡 𝐿𝐹 ‖M𝑡 ‖2

2 ≤ 𝜂𝑡
4 ‖M𝑡 ‖2

2, which concludes
the proof. ut

Finally, we establish the following convergence of SCGD under the smoothness
condition of 𝑔.

Theorem 4.2 Suppose Assumptions 4.1, 4.5 and 4.3 hold. Run SCGD with 𝑇 itera-
tions with parameters 𝜂𝑡 = 𝜂1√

𝑇
, 𝛾𝑡 =

𝛾1√
𝑇
, where 𝜂1 ≤ min( 𝛾1√

8𝐺2
2𝐿1
,

√
2𝛾1

𝐿2𝐺1
, 1

4𝐿𝐹 ). Then
we have

E

[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹 (w𝑡 )‖2
2

]
≤ 𝑂

(
𝐶Υ

𝜂1
√
𝑇
+
𝐿1𝛾

2
1𝜎

2
0

𝜂1
√
𝑇

+
𝜂1 (𝐿𝐹 + 𝐿1𝐺

2
2) (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 )√

𝑇

)
,

where 𝐶Υ = 𝐹 (w1) − 𝐹∗ + 𝐿1√
6
‖u1 − 𝑔(w1)‖2

2.

 Why it matters

From Theorem 4.2, we can derive that in order to find an 𝜖-level stationary so-
lution of a smooth non-convex compositional function (whose gradient norm is
less than 𝜖), SCGD needs a sample complexity of 𝑂 ( 𝐿

4
1
𝜖 4 ). The order in terms of

𝜖 is the same order as that of SGD for solving non-convex ERM.

Proof. By Lemma 4.5, and Lemma 4.6, we have
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E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
4
‖M𝑡 ‖2

2]

+
𝜂𝑡𝐺

2
2𝐿

2
1

2
E[‖u𝑡 − 𝑔(w𝑡 )‖2

2] + 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ),

E
[
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2
]
≤ (1 − 𝛾𝑡+1) ‖u𝑡 − 𝑔(w𝑡 )‖2

2 +
4𝜂2
𝑡𝐺

2
2

𝛾𝑡+1
E[‖M𝑡 ‖2

2]

+ 𝛾2
𝑡+1𝜎

2
0 +

3𝜂2
𝑡𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

Multiplying the second inequality by 𝐺2
2𝐿

2
1𝜂𝑡/(2𝛾𝑡+1) and adding it to the first in-

equality, we have

E
[
𝐹 (w𝑡+1) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2

]
≤ E

[
𝐹 (w𝑡 ) −

𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
4
‖M𝑡 ‖2

2

]
+
𝜂𝑡𝐺

2
2𝐿

2
1

2𝛾𝑡+1
E[‖u𝑡 − 𝑔(w𝑡 )‖2

2] +
𝜂𝑡𝐺

2
2𝐿

2
1

2𝛾𝑡+1

4𝜂2
𝑡𝐺

2
2

𝛾𝑡+1
E[‖M𝑡 ‖2

2]

+ 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
𝛾2
𝑡+1𝜎

2
0 +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1

3𝜂2
𝑡𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

Since 𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1

4𝜂2
𝑡𝐺

2
2

𝛾𝑡+1
≤ 𝜂𝑡

4 due to 𝜂𝑡 ≤ 𝛾𝑡+1√
8𝐺2

2𝐿1
, the term involving ‖M𝑡 ‖2

2 will be less

than zero. If 𝜂𝑡
𝛾𝑡+1

≤ 𝜂𝑡−1
𝛾𝑡

, we obtain

E
[
𝐹 (w𝑡+1) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2

]
≤ E

[
𝐹 (w𝑡 ) +

𝜂𝑡−1𝐺
2
2𝐿

2
1

2𝛾𝑡
E[‖u𝑡 − 𝑔(w𝑡 )‖2

2

]
− 𝜂𝑡

2
E[‖∇𝐹 (w𝑡 )‖2

2] +
𝜂𝑡𝐺

2
2𝐿

2
1

2𝛾𝑡+1
𝛾2
𝑡+1𝜎

2
0

+ 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1

3𝜂2
𝑡𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

Applying 𝜂𝑡 ≤ 𝛾𝑡+1√
8𝐺2

2𝐿1
to the R.H.S, we have

E
[
𝐹 (w𝑡+1) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2

]
≤ E

[
𝐹 (w𝑡 ) +

𝜂𝑡−1𝐺
2
2𝐿

2
1

2𝛾𝑡
‖u𝑡 − 𝑔(w𝑡 )‖2

2

]
− 𝜂𝑡

2
E[‖∇𝐹 (w𝑡 )‖2

2]

+ 𝐿1

2
√

8
𝛾2
𝑡+1𝜎

2
0 + 𝜂2

𝑡 (𝐿𝐹 + 𝐿1𝐺
2
2)(𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ).

Define Υ𝑡 = 𝐹 (w𝑡 ) +
𝜂𝑡−1𝐺

2
2𝐿

2
1

2𝛾𝑡 E[‖u𝑡 − 𝑔(w𝑡 )‖2
2. Then we have

∑𝑇
𝑡=1 (Υ𝑡 − Υ𝑡+1) ≤

𝐶Υ := Υ1 − 𝐹∗ and
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E

[
𝑇∑
𝑡=1

𝜂𝑡∑𝑇
𝑡=1 𝜂𝑡

‖∇𝐹 (w𝑡 )‖2
2

]
≤ 2𝐶Υ∑𝑇

𝑡=1 𝜂𝑡
+

∑𝑇
𝑡=1 𝐿1𝛾

2
𝑡+1𝜎

2
0√

8
∑𝑇
𝑡=1 𝜂𝑡

+
∑𝑇
𝑡=1 2𝜂2

𝑡 (𝐿𝐹 + 𝐿1𝐺
2
2) (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 )∑𝑇

𝑡=1 𝜂𝑡
.

Plugging the values of 𝜂𝑡 , 𝛾𝑡 will finish the proof. ut

4.2.3 A Straightforward Approach with a Large Batch Size

Before ending this section, we compare the complexity of SCGD with a straightfor-
ward approach that uses a large batch size for estimating the gradient. In particular,
we update the model parameter by the following:

ū𝑡 =
1
𝐵

𝐵∑
𝑗=1
𝑔(w𝑡 ; 𝜁 𝑗 ,𝑡 ), v̄𝑡 =

1
𝐵

𝐵∑
𝑖=1

∇𝑔(w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓
(
ū𝑡 ; 𝜉𝑖,𝑡

)
(4.14)

w𝑡+1 = w𝑡 − 𝜂𝑡 v̄𝑡 . (4.15)

Then under Assumptions 4.1, 4.2, we have

E[‖v̄𝑡 − ∇𝐹 (w𝑡 )‖2
2]

≤ E
[



 1
𝐵

𝐵∑
𝑖=1

∇𝑔(w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓
(
ū𝑡 ; 𝜉𝑖,𝑡

)
− ∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 )

+ ∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 ) − ∇𝐹 (w𝑡 )




2

2

]
.

Since

E
[



 1
𝐵

𝐵∑
𝑖=1

∇𝑔(w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓
(
ū𝑡 ; 𝜉𝑖,𝑡

)
− ∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 )






2

]
≤
𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2

𝐵
,

E
[



∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 ) − ∇𝐹 (w𝑡 )





2

2

]
≤ E[𝐺2

2𝐿
2
1‖ū𝑡 − 𝑔(w𝑡 )‖2

2] ≤
𝐺2

2𝐿
2
1𝜎

2
0

𝐵
,

then, E[‖v̄𝑡 −∇𝐹 (w𝑡 )‖2
2] ≤ 𝑂

(
𝐿2

1𝜎
2
0

𝐵 + 𝜎2
1+𝜎

2
2

𝐵

)
. Hence, if Assumption 4.4 holds and

by setting 𝐵 = 𝑂 (max(𝐿2
1𝜎

2
0 /𝜖2, (𝜎2

1 +𝜎2
2 )/𝜖2)), 𝜂 = 𝑂 (1/𝐿𝐹) and 𝑇 = 𝑂 (𝐿𝐹/𝜖2),

Lemma 4.9 will indicate that the naive approach can find an 𝜖-stationary solution.
Overall, it yields a sample complexity of
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Algorithm 10 SCMA
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Sample 𝜁𝑡 , 𝜁 ′

𝑡 and 𝜉𝑡
5: Compute the inner function value estimator u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔 (w𝑡 ; 𝜁𝑡 )
6: Compute the vanilla gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁 ′

𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )
7: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
8: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
9: end for

𝐵𝑇 = 𝑂

(
max

(
𝐿𝐹𝐿

2
1𝜎

2
0

𝜖4 ,
𝐿𝐹 (𝜎2

1 + 𝜎2
2 )

𝜖4

))
.

Critical: Compared with Theorem 4.1, the sample complexity of this naïve
approach is improved by an order of magnitude. In comparison to Theo-
rem 4.2, while the order of 𝜖 remains identical, the dependence on the Lip-
schitz constant 𝐿1 is reduced. Specifically, SCGD exhibits a dependence of
𝑂 (𝐿4

1), whereas the large mini-batch approach achieves 𝑂 (𝐿3
1), assuming

𝐿𝐹 = 𝑂 (𝐿1).

4.3 Stochastic Compositional Momentum Metholds

In this section, we present a method that matches the sample complexity of the large
mini-batch approach without using large mini-batches under the smoothness condi-
tions of 𝑓 and 𝐹. The idea is to design a gradient estimator such that its error can be
reduced gradually. It turns out this technique, related to the momentum metholds for
standard stochastic optimization, is more widely applicable to other problems dis-
cussed later in this chapter. Furthermore, we introduce advanced metholds to further
improve the complexity to 𝑂 (1/𝜖3) under stronger conditions.

It is worth noting that the results in this section apply to the standard stochastic
optimization problem (3.1) under the smoothness assumption of 𝑔(w) by setting
𝑓𝑖 (𝑔) = 𝑔 and 𝐿1 = 0 in the complexity results and removing the u update in the
algorithm.

4.3.1 Moving-Average Gradient Estimator

The first method is to use the following moving-average gradient estimator:
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v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ), (4.16)

where 0 ≤ 𝛽𝑡 < 1. With v𝑡 , the model parameter is updated by:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 . (4.17)

We present the full steps in Algorithm 10 and refer to it as SCMA.
To understand this method, we can view v𝑡 as a better estimator of the gradient,

with its estimation error gradually decreasing over iterations—a property we will
prove shortly. This yields an enhanced stability of momentum-based metholds ob-
served in practice.

Connection with Stochastic Momentum Metholds

This method is analogous to applying the stochastic momentum method to
the ERM problem, using the term ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) as a surrogate for
the true stochastic gradient. This connection is revealed by reformulating the
update into a canonical momentum form:

w𝑡+1 = w𝑡 − 𝜂′𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) + 𝛽′𝑡 (w𝑡 − w𝑡−1), (4.18)

where the effective step size and momentum parameters are 𝜂′𝑡 = 𝜂𝑡 𝛽𝑡 and
𝛽′𝑡 = 𝜂𝑡 (1− 𝛽𝑡 )/𝜂𝑡−1, respectively. The term 𝛽′𝑡 (w𝑡 −w𝑡−1) is the momentum
term.
In the special case where 𝑓 is the identity function, the update is identical to
the classical stochastic momentum method (also known as stochastic heavy-
ball method), renowned for its accelerated performance on quadratic func-
tions relative to plain gradient descent. Hence, the convergence analysis pre-
sented below also applies to the stochastic momentum method for ERM by
setting 𝐿1 = 0.

Convergence Analysis

First, we prove a generic lemma that establishes the error recursion of v𝑡 .

Lemma 4.7 Let v𝑡 = (1− 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 , where E𝑡 [z𝑡 ] = M𝑡 . If E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤

𝜎2, then we have

E𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 + 𝛽2
𝑡𝜎

2 (4.19)

+
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝛽𝑡 ‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 .

Proof. Due to the update formula v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 , we have
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E𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]

= E𝑡
[
‖(1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 − ∇𝐹 (w𝑡 )‖2

2
]

= E𝑡

[
‖ (1 − 𝛽𝑡 )v𝑡−1 − ∇𝐹 (w𝑡 ) + 𝛽𝑡M𝑡︸                                    ︷︷                                    ︸

a𝑡

+ 𝛽𝑡 (z𝑡 −M𝑡 )︸         ︷︷         ︸
b𝑡

‖2
2

]
.

Note that E𝑡 [a>𝑡 b𝑡 ] = 0. Besides, we have E𝑡 [‖b𝑡 ‖2
2] ≤ 𝛽2

𝑡𝜎
2. Due to Young’s

inequality, we have ‖𝑎 + 𝑏‖2
2 ≤ (1 + 𝛼)‖𝑎‖2

2 + (1 + 1/𝛼)‖𝑏‖2
2 for any 𝛼 > 0. Hence,

‖a𝑡 ‖2
2 = ‖(1 − 𝛽𝑡 ) (v𝑡−1 − ∇𝐹 (w𝑡−1)) + (1 − 𝛽𝑡 ) (∇𝐹 (w𝑡−1) − ∇𝐹 (w𝑡 ))

+ 𝛽𝑡 (M𝑡 − ∇𝐹 (w𝑡 ))‖2
2

≤ (1 − 𝛽𝑡 )2 (1 + 𝛽𝑡 )‖(v𝑡−1 − ∇𝐹 (w𝑡−1))‖2
2

+ (1 + 1
𝛽𝑡
)‖(1 − 𝛽𝑡 )(∇𝐹 (w𝑡−1) − ∇𝐹 (w𝑡 )) + 𝛽𝑡 (M𝑡 − ∇𝐹 (w𝑡 ))‖2

2

≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2
2 +

2(1 + 𝛽𝑡 )(1 − 𝛽𝑡 )2

𝛽𝑡
‖∇𝐹 (w𝑡−1) − ∇𝐹 (w𝑡 )‖2

2

+
2(1 + 𝛽𝑡 )𝛽2

𝑡

𝛽𝑡
‖M𝑡 − ∇𝐹 (w𝑡 )‖2

2

≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2
2 +

2𝐿2
𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝛽𝑡 ‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 .

Combining the above results, we finish the proof. ut

With the above lemma, we are able to establish the error recursion of v𝑡 of SCMA.

Lemma 4.8 Under Assumptions 4.1, 4.2, 4.3, and 4.4, for 𝑡 ≥ 1 SCMA satisfies that

E𝜉𝑡 ,𝜁 ′𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 (4.20)

+
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝐺2
2𝐿

2
1𝛽𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖

2
2 + 𝛽2

𝑡𝜎
2,

where 𝜎2 = 𝐺2
1𝜎

2
2 + 𝐺2

2𝜎
2
1 .

 Why it matters

The above lemma establishes the recursion of the error of stochastic gradient
estimator v𝑡 . It is the key to show that the average of the estimator error of v𝑡
will converge to zero.

Proof. We denote by E𝑡 [·] = E𝜉𝑡 ,𝜁 ′𝑡 [·]. Let z𝑡 = ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) and M𝑡 =
E𝑡 [z𝑡 ] = ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ). Lemma 4.4 proves that

E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤ 𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 , (4.21)
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and

‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 = ‖∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ) − ∇𝑔(w𝑡 )∇ 𝑓 (𝑔(w𝑡 ))‖2

2

≤ 𝐺2
2𝐿

2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2.

Plugging these two results into Lemma 4.7, we finish the proof. ut

Critical: If we use the same random sample 𝜁𝑡 to compute

z𝑡 = ∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ),

then M𝑡 = E𝜉𝑡 ,𝜁𝑡 [z𝑡 ] is not equal to ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ). However, we just need
to assume that E𝜁𝑡 , 𝜉𝑡 [‖z𝑡 −M𝑡 ‖2

2] is bounded and ‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
2 ≤ 𝐺2. Then

‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 = ‖E𝜁𝑡∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ) − E𝜁𝑡∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (𝑔(w𝑡 ))‖2

2

≤ E𝜁𝑡 ‖∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (𝑔(w𝑡 ))‖2
2

≤ E𝜁𝑡 [‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
2‖∇ 𝑓 (u𝑡 ) − ∇ 𝑓 (𝑔(w𝑡 ))‖2

2]
≤ E𝜁𝑡

[
𝐺2

2𝐿
2
1 ‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
.

The following analysis will proceed in the same manner.

To enjoy the above recursion of the gradient estimator’s error, we state the fol-
lowing lemma, which is a variant of the standard descent lemma of gradient descent.

Lemma 4.9 For the update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 , 𝑡 ≥ 0, if 𝜂𝑡 ≤ 1/(2𝐿𝐹), we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂𝑡
2

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

(4.22)

 Why it matters

This lemma ensures that if the stochastic gradient error satis-
fies E

[ 1
𝑇

∑𝑇
𝑡=1 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2
]

→ 0, then the convergence of
E

[ 1
𝑇

∑𝑇
𝑡=1 ‖∇𝐹 (w𝑡 )‖2

2
]
to zero is guaranteed.

Proof. Due to the smoothness of 𝐹, we have
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𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

= 𝐹 (w𝑡 ) + (∇𝐹 (w𝑡 ) − v𝑡 )> (w𝑡+1 − w𝑡 ) + v>𝑡 (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

= 𝐹 (w𝑡 ) − 𝜂𝑡 (∇𝐹 (w𝑡 ) − v𝑡 )>v𝑡 −
(

1
𝜂𝑡

− 𝐿𝐹
2

)
‖w𝑡+1 − w𝑡 ‖2

2

= 𝐹 (w𝑡 ) + 𝜂𝑡 ‖(∇𝐹 (w𝑡 ) − v𝑡 )‖2
2 − 𝜂𝑡 (∇𝐹 (w𝑡 ) − v𝑡 )>∇𝐹 (w𝑡 )

−
(

1
𝜂𝑡

− 𝐿𝐹
2

)
‖w𝑡+1 − w𝑡 ‖2

2 .

Since (∇𝐹 (w𝑡 ) − v𝑡 )>∇𝐹 (w𝑡 ) = 1
2

(
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2 − ‖v𝑡 ‖2

2

)
, then

we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝜂𝑡 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

(
1
𝜂𝑡

− 𝐿𝐹
2

)
‖w𝑡+1 − w𝑡 ‖2

2

− 𝜂𝑡
2

(
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2 − ‖v𝑡 ‖2

2

)
= 𝐹 (w𝑡 ) +

𝜂𝑡
2

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

(
1

2𝜂𝑡
− 𝐿𝐹

2

)
‖w𝑡+1 − w𝑡 ‖2

2 .

ut

To prove the final convergence of SCMA, we present a useful lemma.

Lemma 4.10 If 𝜂𝑡 ≤ 1/𝐿, assume that there exist non-negative sequences 𝐴𝑡 , 𝐵𝑡 , Γ𝑡 ,Δ𝑡 , 𝛿𝑡 , 𝑡 ≥
0 satisfying:

(∗)𝐴𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

(♯)Δ𝑡+1 ≤ (1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛽𝑡+1𝛿𝑡+1 +
𝐶2𝜂

2
𝑡

𝛽𝑡+1
Γ𝑡 + 𝛽2

𝑡+1𝜎
2,

(�)𝛿𝑡+1 ≤ (1 − 𝛾𝑡+1)𝛿𝑡 +
𝐶3𝜂

2
𝑡

𝛾𝑡+1
Γ𝑡 + 𝛾2

𝑡+1𝜎
′2.

LetΥ𝑡 = 𝐴𝑡 + 𝜂𝑡−1
𝛽𝑡

Δ𝑡 + 𝐶1𝜂𝑡−1
𝛾𝑡

𝛿𝑡 . If 𝜂𝑡
𝛽𝑡+1

≤ 𝜂𝑡−1
𝛽𝑡

, 𝜂𝑡
𝛾𝑡+1

≤ 𝜂𝑡−1
𝛾𝑡

, 𝜂𝑡 ≤ min( 𝛽𝑡+1√
4𝐶2

, 𝛾𝑡+1√
8𝐶1𝐶3

),
and Υ𝑡 ≥ 𝐴∗, then we have

𝑇−1∑
𝑡=0

1∑𝑇−1
𝑡=0 𝜂𝑡

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤

𝐶Υ∑𝑇−1
𝑡=0 𝜂𝑡

+
∑𝑇−1
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2
)

∑𝑇−1
𝑡=0 𝜂𝑡

,

where 𝐶Υ = Υ0 − 𝐴∗ ≤ 𝐴0 − 𝐴∗ + 1
2
√
𝐶2
Δ0 +

√
𝐶1
8𝐶3

𝛿0.

If 𝛽 = 𝜖 2

3𝜎2 , 𝛾 = 𝜖 2

6𝐶1𝜎′2 , 𝜂 = min( 1
𝐿 ,

𝛽√
4𝐶2

, 𝛾√
8𝐶1𝐶3

), then in order to guarantee
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𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2.

the iteration complexity is the in the order of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿

𝜖2 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
.

Critical: If (∗), (♯), (�) hold in expectation, then the concluding inequalities
also hold in expectation.

Proof. The proof is constructive. The idea is to construct a telescoping series of
𝐴𝑡 + 𝑎𝑡Δ𝑡 + 𝑏𝑡𝛿𝑡 with some appropriate sequences of 𝑎𝑡 , 𝑏𝑡 . First, we have

𝐴𝑡+1 + 𝑎𝑡+1Δ𝑡+1 + 𝑏𝑡+1𝛿𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+ 𝑎𝑡+1 (1 − 𝛽𝑡+1)Δ𝑡 + 𝑎𝑡+1𝐶1𝛽𝑡+1𝛿𝑡+1 + 𝑎𝑡+1
𝐶2𝜂

2
𝑡

𝛽𝑡+1
Γ𝑡 + 𝑎𝑡+1𝛽

2
𝑡+1𝜎

2

+ 𝑏𝑡+1 (1 − 𝛾𝑡+1)𝛿𝑡 + 𝑏𝑡+1
𝐶3𝜂

2
𝑡

𝛾𝑡+1
Γ𝑡 + 𝑏𝑡+1𝛾

2
𝑡+1𝜎

′2.

Let 𝑎𝑡+1 = 𝜂𝑡/𝛽𝑡+1 ≤ 𝜂𝑡−1/𝛽𝑡 and 𝑏𝑡+1 = 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)/𝛾𝑡+1, we have

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + (𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
− 𝐶1𝜂𝑡 )𝛿𝑡+1 ≤ 𝐴𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+
(
𝜂𝑡 +

𝜂𝑡
𝛽𝑡+1

(1 − 𝛽𝑡+1)
)
Δ𝑡 +

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

Γ𝑡 + 𝜂𝑡 𝛽𝑡+1𝜎
2

+ 𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
(1 − 𝛾𝑡+1)𝛿𝑡 +

𝐶3𝐶1𝜂
3
𝑡 (1 + 𝛾𝑡+1)
𝛾2
𝑡+1

Γ𝑡 + 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)𝛾𝑡+1𝜎
′2.

Thus,

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
(
𝜂𝑡 −

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

−
𝐶3𝐶1𝜂

3
𝑡 (1 + 𝛾𝑡+1)
𝛾2
𝑡+1

)
Γ𝑡

+ 𝜂𝑡 𝛽𝑡+1𝜎
2 + 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)𝛾𝑡+1𝜎

′2.

Since 𝜂𝑡/𝛽𝑡+1 ≤ 𝜂𝑡−1/𝛽𝑡 and 𝜂𝑡/𝛾𝑡+1 ≤ 𝜂𝑡−1/𝛾𝑡 and 𝛾𝑡+1 ≤ 1, we have
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𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
(
𝜂𝑡 −

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

−
2𝐶3𝐶1𝜂

3
𝑡

𝛾2
𝑡+1

)
Γ𝑡

+ 𝜂𝑡 𝛽𝑡+1𝜎
2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎

′2.

Since 𝐶2𝜂
3
𝑡 /𝛽2

𝑡+1 ≤ 𝜂𝑡/4 (because 𝜂𝑡 ≤ 𝛽𝑡+1/
√

4𝐶2) and 2𝐶3𝐶1𝜂
3
𝑡 /𝛾2

𝑡+1 ≤ 𝜂𝑡/4
(because 𝜂𝑡 ≤ 𝛾𝑡+1/

√
8𝐶1𝐶3), we have

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
1
2
𝜂𝑡Γ𝑡 + 𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Define Υ𝑡+1 = 𝐴𝑡+1 + 𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + 𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1, we have

𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ≤ Υ𝑡 − Υ𝑡+1 + 𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Hence

𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ Υ0 − 𝐴∗ +

𝑇−1∑
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2
)
.

Next, let us consider 𝜂𝑡 = 𝜂, 𝛽𝑡 = 𝛽, 𝛾𝑡 = 𝛾. Then we have

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤

𝐶Υ

𝑇
+

(
𝛽𝜎2 + 2𝐶1𝛾𝜎

′2
)
.

In order to ensure the RHS is less than 𝜖2, it suffices to have

𝛽 =
𝜖2

3𝜎2 , 𝛾 =
𝜖2

6𝐶1𝜎′2 , 𝑇 =
𝐶Υ

3𝜖2𝜂
.

Since

𝜂 = min
(

1
𝐿
,

𝛽
√

4𝐶2
,

𝛾
√

8𝐶1𝐶3

)
,

thus the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿

𝜖2 ,
𝐶Υ

√
𝐶2

𝜖2𝛽
,
𝐶Υ

√
𝐶1𝐶3

𝛾𝜖2

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
,
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where

𝐶Υ = 𝐴0 − 𝐴∗ +
𝜂

𝛽
Δ0 +

𝐶1𝜂

𝛾
𝛿0 ≤ 𝐴0 − 𝐴∗ +

1
2
√
𝐶2

Δ0 +
√
𝐶1√
8𝐶3

𝛿0.

ut

Finally, let us prove the convergence of SCMA.

Theorem 4.3 Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. For the SCMA algo-
rithm, set the parameters as follows: 𝛽 = 𝜖 2

3𝜎2 , 𝛾 = 𝜖 2

6𝐶1𝜎
2
0
, and 𝜂 = min

(
1

2𝐿𝐹 ,
𝛽√
4𝐶2

, 𝛾√
8𝐶1𝐶3

)
,

where 𝜎2 = 𝐺2
2𝜎

2
1 + 𝐺2

1𝜎
2
2 , 𝐶1 = 4𝐺2

2𝐿
2
1, 𝐶2 = 4𝐿2

𝐹 , 𝐶3 = 2𝐺2
2. Then, the following

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2

}]
≤ 𝜖2

holds, with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2𝐿𝐹
𝜖4 ,

𝐶Υ𝐿
3
1𝜎

2
0

𝜖4

})
.

where 𝐶Υ := 2 (𝐹 (w0) − 𝐹∗) + 1
8𝐿𝐹 ‖∇𝐹 (w0) − v0‖2

2 +
𝐿1
2 ‖u0 − 𝑔(w0)‖2

2.

 Why it matters

Insights 1: Theorem 4.3 indicates that SCMA enjoys the same complexity of
𝑂 (1/𝜖4) for finding an 𝜖-stationary solution as SGD for ERM. In addition,
the averaged estimation error of the moving-average gradient estimator v𝑡 , i.e.,
E[ 1

𝑇

∑𝑇−1
𝑡=0 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2], converges to zero as 𝑇 → ∞.
Insights 2: We can apply the above result to the Momentum method (6.2) for
solving the standard stochastic optimization minw 𝐹 (w) := E𝜁 [𝑔(w; 𝜁)] by set-
ting 𝐿1 = 0. The complexity of the Momentum method is

𝑇 = 𝑂

(
max

{
(𝐹 (w0) − 𝐹∗)𝐿𝐹

𝜖2 ,
(𝐹 (w0) − 𝐹∗)𝜎2𝐿𝐹

𝜖4 ,
‖∇𝐹 (w0) − v0‖2

2 𝜎
2

𝜖4

})
,

which is no worse than that of SGD in Theorem 3.3. The key advantage of the
Momentum method over SGD is that it ensures the averaged estimation error of
the moving-average gradient estimator v𝑡 converge to zero.
The convergence bound also suggests that it is better to initialize v0 in a way such
that ‖∇𝐹 (w0) − v0‖2

2 is small, e.g., using the mini-batch gradient at w0 instead
of initializing it to zero.

Proof. The three inequalities in Lemma 4.8, 4.9 and 4.1 that we have proved so far
are
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(∗)𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂𝑡
2

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

𝜂𝑡
4

‖v𝑡 ‖2
2 , 𝑡 ≥ 0

(♯)E
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ E[(1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2]

+ E

[
4𝐺2

2𝐿
2
1𝛽𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖

2
2 +

2𝐿2
𝐹𝜂

2
𝑡−1

𝛽𝑡
‖v𝑡−1‖2

2 + 𝛽2
𝑡𝜎

2

]
,

(�)E
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ E[(1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2]

+ E

[
𝐺2

2𝜂
2
𝑡−1

𝛾𝑡
‖v𝑡−1‖2

2 + 𝛾2
𝑡 𝜎

2
0

]
.

Define 𝐴𝑡 = 2(𝐹 (w𝑡 ) − 𝐹∗) and 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2, Γ𝑡 = ‖v𝑡 ‖2

2 /2, Δ𝑡 =

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2, 𝛿𝑡 = ‖u𝑡 − 𝑔(w𝑡 )‖2

2, and Υ𝑡 = 𝐴𝑡 + 𝜂𝑡−1
𝛽𝑡

Δ𝑡 + 𝐶1𝜂𝑡−1
𝛾𝑡

𝛿𝑡 .

Then the three inequalities satisfy that in Lemma 4.10 with 𝐶1 = 4𝐺2
2𝐿

2
1, 𝐶2 =

4𝐿2
𝐹 , 𝐶3 = 2𝐺2

2, 𝜎
2 = 𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 , 𝜎

′2 = 𝜎2
0 . Then 𝜂𝑡 , 𝛽𝑡 , 𝛾𝑡 satisfy

𝜂𝑡
𝛽𝑡+1

≤ 𝜂𝑡−1

𝛽𝑡
,
𝜂𝑡
𝛾𝑡+1

≤ 𝜂𝑡−1

𝛾𝑡
, 𝜂𝑡 ≤ min( 𝛽𝑡+1√

4𝐶2
,

𝛾𝑡+1√
8𝐶1𝐶3

).

Then we have

E

[
𝑇−1∑
𝑡=0

1∑𝑇−1
𝑡=0 𝜂𝑡

(𝜂𝑡 ‖∇𝐹 (w𝑡 )‖2
2 +

𝜂𝑡
4

‖v𝑡 ‖2
2)

]
≤ 𝐶Υ∑

𝑡=1 𝜂𝑡
+

∑𝑇−1
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
2
0
)∑𝑇−1

𝑡=0 𝜂𝑡
.

Since the setting of 𝜂, 𝛾, 𝛽 satisfy that in Lemma 4.10, the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

2
0

𝜖4

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2𝐿𝐹
𝜖4 ,

𝐶Υ𝐿
3
1𝜎

2
0

𝜖4

})
,

where

𝐶Υ = 2(𝐹 (w0) − 𝐹∗) +
1

2
√
𝐶2

‖v0 − ∇𝐹 (w0)‖2
2 +

√
𝐶1√
8𝐶3

‖u0 − 𝑔(w0)‖2
2

= 2(𝐹 (w0) − 𝐹∗) +
1

4𝐿𝐹
‖v0 − ∇𝐹 (w0)‖2

2 +
𝐿1

2
‖u0 − 𝑔(w0)‖2

2 .

ut
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4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

4.3.2 STORM Estimators

We can further reduce the error of the gradient estimator by using advanced variance
reduction techniques under stronger assumptions. We make the following assump-
tions.

Assumption 4.6. There exists 𝐿1, 𝐺1 > 0 such that

(i) E[‖∇ 𝑓 (𝑔; 𝜉) − ∇ 𝑓 (𝑔′; 𝜁)‖2
2] ≤ 𝐿2

1‖𝑔 − 𝑔′‖2
2,∀𝑔, 𝑔′;

(ii) E[‖∇ 𝑓 (𝑔; 𝜉)‖2
2] ≤ 𝐺2

1,∀𝑔.
Assumption 4.7. There exists 𝐿2, 𝐺2 > 0 such that

(i) E[‖∇𝑔(w; 𝜁) − ∇𝑔(w′; 𝜁)‖2
2] ≤ 𝐿2

2‖w − w′‖2
2,∀w,w′;

(ii) E[‖∇𝑔(w; 𝜁)‖2
2] ≤ 𝐺2

2,∀w.

Due to Jensen’s inequality, Assumption (4.6)(i) implies the Lipschitz continu-
ity assumption of ∇ 𝑓 in Assumption (4.1)(i). Similarly, Assumption (4.7)(i) implies
that in Assumption 4.2(i), respectively. Hence, Assumption (4.6)(i) and Assump-
tion (4.7)(i) are stronger, which are referred to as mean-square smoothness condition
of 𝑓 and 𝑔.

The STORM estimator

Let us first discuss a generic STORM estimator, an improved variant of the
moving average estimator. Without loss of generality, we consider estimat-
ing a sequence of mappings {M(w𝑡 )}𝑇𝑡=1 through their stochastic values at
each iteration {M(w𝑡 ; 𝜁𝑡 )}𝑇𝑡=1, where E𝜁𝑡 [M(w𝑡 ; 𝜁𝑡 )] = M(w𝑡 ) ∈ R𝑑

′ . We
assume the mapping M satisfies:

E𝜁 [‖M(w; 𝜁) −M(w′; 𝜁)‖2
2] ≤ 𝐺2‖w − w′‖2

2,∀w,w′;

The STORM estimator is give by a sequence of U1, . . . ,U𝑇 , where

U𝑡 = (1 − 𝛾𝑡 )U𝑡−1 + 𝛾𝑡M(w𝑡 ; 𝜁𝑡 ) + (1 − 𝛾𝑡 )(M(w𝑡 ; 𝜁𝑡 ) −M(w𝑡−1; 𝜁𝑡 )),
(4.23)

and 𝛾𝑡 ∈ (0, 1).
It augments the moving-average estimator by adding an extra term (1 −
𝛾𝑡 ) (M(w𝑡 ; 𝜁𝑡 ) −M(w𝑡−1; 𝜁𝑡 )), which can be viewed as an error correction
term.

Applying the STORM estimator to estimating the sequence of {𝑔(w𝑡 )}𝑡≥1, we
have the following sequence:

u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ) + (1 − 𝛾𝑡 ) (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡−1; 𝜁𝑡 )). (4.24)

Given u𝑡 , we can compute a moving-average gradient estimator (4.16) similar to
SCMA. However, this will not yield an improved rate compared with SCMA. To
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Algorithm 11 SCST
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=0, {𝛾𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Sample 𝜁𝑡 , 𝜁 ′

𝑡 and 𝜉𝑡
5: Update the inner function value estimator

u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔 (w𝑡 ; 𝜁𝑡 ) + (1 − 𝛾𝑡 ) (𝑔 (w𝑡 ; 𝜁𝑡 ) − 𝑔 (w𝑡−1; 𝜁𝑡 ) )

6: Compute the vanilla gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁 ′
𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

7: Compute z̃𝑡−1 = ∇𝑔 (w𝑡−1; 𝜁 ′
𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )

8: Update the STORM gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 ) (z𝑡 − z̃𝑡−1 )
9: Update the model by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
10: end for

reduce the estimator error of the gradient, we apply another STORM estimator to
estimate M𝑡 = ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ). This is computed by the following sequence:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) (4.25)
+ (1 − 𝛽𝑡 )(∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )).

With v𝑡 , we update the model parameters by

w𝑡+1 = w𝑡 − 𝜂v𝑡 .

The full steps of this method is presented in Algorithm 11, which is referred to as
SCST.

Connection with Variance-reduced metholds for Non-convex optimiza-
tion

In the special case where 𝑓 is the identity function, the update is identical
to the classical variance-reduced method (also known as STROM) for non-
convex optimization minw E𝜁 [𝑔(w; 𝜁)], i.e.,

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 ) + (1 − 𝛽𝑡 )(∇𝑔(w𝑡 ; 𝜁 ′𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )),
w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 .

(4.26)
It is renowned for its improved complexity of 𝑂 (1/𝜖3) better than the com-
plexity 𝑂 (1/𝜖4) of SGD for finding an 𝜖-stationary solution.

Convergence Analysis

We first prove a general result of the STORM estimator that applies to both u𝑡 and
v𝑡 .

148



4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

Lemma 4.11 Consider v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1), where 𝛽𝑡 ∈
(0, 1). Let E𝑡 denote the expectation over randomness associated with z𝑡 , z̃𝑡−1 condi-
tion on the randomness before 𝑡-the iteration. If E𝑡 [z𝑡 ] = M𝑡 and E𝑡 [z̃𝑡−1] = M𝑡−1.
If E𝑡 [‖z𝑡 −M𝑡 ‖2

2] ≤ 𝜎2, then we have

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 + E𝑡 [2‖z𝑡 − z̃𝑡−1‖2
2] + 2𝛽2

𝑡𝜎
2.

Proof.

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]

= E𝑡
[
‖(1 − 𝛽𝑡 )v𝑡−1 −M𝑡 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 ) (z𝑡 − z̃𝑡−1)‖2

2
]

= E𝑡 [‖(1 − 𝛽𝑡 )(v𝑡−1 −M𝑡−1) + (1 − 𝛽𝑡 )((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1))
+ 𝛽𝑡 (z𝑡 −M𝑡 )‖2

2
]
.

Note that

E𝑡 [〈(1 − 𝛽𝑡 ) (v𝑡−1 −M𝑡−1),
(1 − 𝛽𝑡 ) ((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1)) + 𝛽𝑡 (z𝑡 −M𝑡 )〉] = 0.

Then,

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 )2 ‖v𝑡 −M𝑡−1‖2

2

+ ‖(1 − 𝛽𝑡 )((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1)) + 𝛽𝑡 (z𝑡 −M𝑡 )‖2
2

(�)
≤ (1 − 𝛽𝑡 )2 ‖v𝑡 −M𝑡−1‖2

2

+ 2(1 − 𝛽𝑡 )2E𝑡 [‖((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1))‖2
2] + 2𝛽2

𝑡 E𝑡 [‖z𝑡 −M𝑡 ‖2
2]

(∗)
≤ (1 − 𝛽𝑡 )2 ‖v𝑡−1 −M𝑡−1‖2

2 + 2(1 − 𝛽𝑡 )2E𝑡 [‖z𝑡 − z̃𝑡−1‖2
2] + 2𝛽2

𝑡𝜎
2,

where (�) uses the Young’s inequality, (∗) uses the fact that E[‖𝑎 − E[𝑎] ‖2
2] ≤

E[‖𝑎‖2
2], and E𝑡 [z𝑡 − z̃𝑡−1] = M𝑡 −M𝑡−1. ut

Let us first prove an error recursion of u𝑡 in the lemma below.

Lemma 4.12 Under Assumption (4.7)(ii), we have:

E𝜁𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + 2𝛾2
𝑡 𝜎

2
0 + 2𝐺2

2‖w𝑡 − w𝑡−1‖2
2

E𝜁𝑡
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 2𝛾2

𝑡 𝜎
2
0 + 4𝛾2

𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + 6𝐺2

2‖w𝑡 − w𝑡−1‖2
2.

 Why it matters

Compared to the error recursion of u𝑡 to that in Lemma 4.1, the improvement
comes from the last term reducing from 2𝐺2

2 ‖w𝑡−w𝑡−1 ‖2
2

𝛾𝑡
to 2𝐺2

2‖w𝑡 − w𝑡−1‖2
2.
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Proof. The first part follows directly fromLemma 4.11 by noting themean-Lipschitz
continuity of 𝑔(w; 𝜁). To prove the second part, we proceed as follows:

E𝑡
[
‖u𝑡 − u𝑡−1‖2

2
]

=E𝑡
[
‖𝛾𝑡 (𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1) + (1 − 𝛾𝑡 ) (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡−1; 𝜁𝑡 ))‖2

2
]

≤E𝑡
[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1)‖2

2 + 2(1 − 𝛾𝑡 )2 ‖𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡−1; 𝜁𝑡 )‖2
2
]

≤E𝑡
[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1)‖2

2
]
+ 2(1 − 𝛾𝑡 )2𝐺2

2‖w𝑡 − w𝑡−1‖2
2.

Next, we bound the first term on the RHS as

E𝑡
[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1)‖2

2
]
= E𝑡

[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 ) + 𝑔(w𝑡 ) − u𝑡−1)‖2

2
]

≤ 2𝛾2
𝑡 𝜎

2
0 + 2𝛾2

𝑡 ‖𝑔(w𝑡 ) − u𝑡−1‖2
2

≤ 2𝛾2
𝑡 𝜎

2
0 + 2𝛾2

𝑡 ‖𝑔(w𝑡 ) − 𝑔(w𝑡−1) + 𝑔(w𝑡−1) − u𝑡−1‖2
2

≤ 2𝛾2
𝑡 𝜎

2
0 + 4𝛾2

𝑡 ‖𝑔(w𝑡−1) − u𝑡−1‖2
2 + 4𝛾2

𝑡𝐺
2
2‖w𝑡 − w𝑡−1‖2

2,

where the first inequality uses the fact E [𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 )] = 0. Combining the
above results, we finish the proof. ut

Next, we build an error recursion of ‖v𝑡 −M𝑡 ‖2
2.

Lemma 4.13 Let 𝜎2 = 𝐺2
2𝜎

2
1 + 𝐺2

1𝜎
2
2 . Under Assumptions (4.6) and Assump-

tion (4.7), (4.25) satisfies that

E𝜁 ′𝑡 , 𝜉𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 (4.27)

+ 16𝐺2
2𝐿

2
1𝛾

2
𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + (24𝐺4
2𝐿

2
1 + 4𝐺2

1𝐿
2
2)‖w𝑡 − w𝑡−1‖2

2

+ 2𝛽2
𝑡𝜎

2 + 8𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0 .

Proof. First, (4.21) gives E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤ 𝜎2. Second,

E𝑡
[
‖z𝑡 − z̃𝑡−1‖2

2
]

= E𝑡 [‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )‖2
2]

= E𝑡 [‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )
+ ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )‖2

2]
(4)
≤ 2𝐺2

2𝐿
2
1‖u𝑡 − u𝑡−1‖2

2 + 2𝐺2
1𝐿

2
2‖w𝑡 − w𝑡−1‖2

2,

where (4) uses the Assumption (4.6)(i) and Assumption (4.7)(i). It then follows:

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 )2 ‖v𝑡−1 −M𝑡−1‖2

2

+ 4𝐺2
2𝐿

2
1‖u𝑡 − u𝑡−1‖2

2 + 4𝐺2
1𝐿

2
2‖w𝑡 − w𝑡−1‖2

2 + 2𝛽2
𝑡𝜎

2.

By using the second inequality of Lemma 4.12, i.e.,

150



4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

E𝜁𝑡
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 2𝛾2

𝑡 𝜎
2
0 + 4𝛾2

𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + 6𝐺2

2‖w𝑡 − w𝑡−1‖2
2,

we have

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 + 16𝐺2
2𝐿

2
1𝛾

2
𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+ (24𝐺4
2𝐿

2
1 + 4𝐺2

1𝐿
2
2)‖w𝑡 − w𝑡−1‖2

2 + 2𝛽2
𝑡𝜎

2 + 8𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0 .

ut

Similar to Lemma 4.9, we have the following descent lemma.

Lemma 4.14 For the update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 , 𝑡 ≥ 0, if 𝜂𝑡 ≤ 1/(2𝐿𝐹) we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝜂𝑡𝐺2
2𝐿

2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2 + 𝜂𝑡 ‖v𝑡 − 𝐻𝑡 ‖
2
2

− 𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 . (4.28)

This lemma can be proved following that of lemma 4.9 by bound ‖v𝑡−∇𝐹 (w𝑡 )‖2
2 ≤

2‖v𝑡 −M𝑡 ‖2
2 + 2‖M𝑡 − ∇𝐹 (w𝑡 )‖2

2 ≤ 2‖v𝑡 −M𝑡 ‖2
2 + 2𝐺2

2𝐿
2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2.

Lemma 4.15 For 𝜂𝑡 ≤ 1/𝐿, the non-negative sequences 𝐴𝑡 , 𝐵𝑡 , Γ𝑡 ,Δ𝑡 , 𝛿𝑡 , 𝑡 ≥ 0
satisfy:

(∗)𝐴𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 + 𝜂𝑡𝛿𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡
(♯)Δ𝑡+1 ≤ (1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛾

2
𝑡+1𝛿𝑡 + 𝐶2𝜂

2
𝑡 Γ𝑡 + 𝛽2

𝑡+1𝜎
2 + 𝛾2

𝑡+1𝜎
′2,

(�)𝛿𝑡+1 ≤ (1 − 𝛾𝑡+1)𝛿𝑡 + 𝐶3𝜂
2
𝑡 Γ𝑡 + 𝛾2

𝑡+1𝜎
′′2.

Let Υ𝑡+1 = 𝐴𝑡+1 + 𝑐
𝜂𝑡
Δ𝑡+1 + 𝑐′

𝜂𝑡
𝛿𝑡+1 ≥ 𝐴∗. Suppose 𝑐, 𝑐′, 𝜂𝑡 , 𝛾𝑡 , 𝛽𝑡 satisfy:

𝐶2𝑐 + 𝐶3𝑐
′ ≤ 1

2
, 𝜂𝑡 +

𝑐

𝜂𝑡
(1 − 𝛽𝑡+1) ≤

𝑐

𝜂𝑡−1
,

𝜂𝑡 +
𝑐

𝜂𝑡
𝐶1𝛾

2
𝑡+1 +

𝑐′

𝜂𝑡
(1 − 𝛾𝑡+1) ≤

𝑐′

𝜂𝑡−1
.

(4.29)

Then,

𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ 𝐶Υ +

𝑇−1∑
𝑡=0

(
𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2
)
. (4.30)

If we set 𝑐 = 1
4𝐶2

, 𝑐′ = 1
4𝐶3

, 𝛽𝑡 = 𝜖 𝜂
√
𝐶2

𝜎 , 𝛾𝑡 = min
(
𝜖 𝜂

√
𝐶2

𝜎′ , 𝜖 𝜂
√
𝐶3

𝜎′′ , 𝐶2
2𝐶3𝐶1

)
, and

𝜂𝑡 = 𝜂 = min
(

1
𝐿 ,

𝜖
4
√
𝐶2𝜎

, 𝜖
√
𝐶2

8𝐶3𝜎′ ,
𝜖

8
√
𝐶3𝜎′′ ,

√
𝐶2

4𝐶3
√
𝐶1

)
, then in order to grantee
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𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2, (4.31)

the iteration complexity is in the order of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿

𝜖2 ,
𝐶Υ𝐶3

√
𝐶1/𝐶2

𝜖2 ,
𝐶Υ𝜎

√
𝐶2

𝜖3 ,
𝐶Υ𝐶3𝜎

′

𝜖3√𝐶2
,
𝐶Υ𝜎

′′√𝐶3

𝜖3

})
where 𝐶Υ = Υ0 − 𝐴∗ = 𝐴0 + 1

4𝐶2𝜂
Δ0 + 1

4𝐶3𝜂
𝛿0 − 𝐴∗.

Critical: If (∗), (♯), (�) hold in expectation, then the two inequalities in (4.30)
and (4.31) hold in expectation.

Proof. The proof is constructive. The idea is to multiply the second inequality by
𝑎𝑡+1 and the third inequality by 𝑏𝑡+1 such that we can construct a telescoping series
of 𝐴𝑡 + 𝑎𝑡Δ𝑡 + 𝑏𝑡𝛿𝑡 . First, we have

𝐴𝑡+1 + 𝑎𝑡+1Δ𝑡+1 + 𝑏𝑡+1𝛿𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 + 𝜂𝑡𝛿𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡
+ 𝑎𝑡+1 (1 − 𝛽𝑡+1)Δ𝑡 + 𝑎𝑡+1𝐶1𝛾

2
𝑡+1𝛿𝑡 + 𝑎𝑡+1𝐶2𝜂

2
𝑡 Γ𝑡 + 𝑎𝑡+1𝛽

2
𝑡+1𝜎

2 + 𝑎𝑡+1𝛾
2
𝑡+1𝜎

′2.

+ 𝑏𝑡+1 (1 − 𝛾𝑡+1)𝛿𝑡 + 𝑏𝑡+1𝐶3𝜂
2
𝑡 Γ𝑡 + 𝑏𝑡+1𝛾

2
𝑡+1𝜎

′′2.

Let 𝑎𝑡+1 = 𝑐/𝜂𝑡 and 𝑏𝑡+1 = 𝑐′/𝜂𝑡 , we have

𝐴𝑡+1 +
𝑐

𝜂𝑡
Δ𝑡+1 +

𝑐′

𝜂𝑡
𝛿𝑡+1 ≤ 𝐴𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+
(
𝜂𝑡 +

𝑐

𝜂𝑡
(1 − 𝛽𝑡+1)

)
Δ𝑡 + 𝐶2𝑐𝜂𝑡Γ𝑡 +

𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2

+
(
𝜂𝑡 +

𝑐

𝜂𝑡
𝐶1𝛾

2
𝑡+1 +

𝑐′

𝜂𝑡
(1 − 𝛾𝑡+1)

)
𝛿𝑡 + 𝐶3𝑐

′𝜂𝑡Γ𝑡 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2.

With (4.29) we have

𝐴𝑡+1 +
𝑐

𝜂𝑡
Δ𝑡+1 +

𝑐′

𝜂𝑡
𝛿𝑡+1 ≤ 𝐴𝑡 +

𝑐

𝜂𝑡−1
Δ𝑡 +

𝑐′

𝜂𝑡−1
𝛿𝑡 − 𝜂𝑡𝐵𝑡 −

1
2
𝜂𝑡Γ𝑡

+
𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2

Define Υ𝑡+1 = 𝐴𝑡+1 + 𝑐
𝜂𝑡
Δ𝑡+1 + 𝑐′

𝜂𝑡
𝛿𝑡+1, we have

𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ≤ Υ𝑡 − Υ𝑡+1 +

𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2.

Hence
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𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ Υ0 − 𝐴∗ +

𝑇−1∑
𝑡=0

(
𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2
)
.

Next, let us consider 𝜂𝑡 = 𝜂, 𝛽𝑡 = 𝛽, 𝛾𝑡 = 𝛾. Then we have

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤

Υ0 − 𝐴∗
𝜂𝑇

+
(
𝑐𝛽2

𝜂2 𝜎
2 + 𝑐𝛾

2

𝜂2 𝜎
′2 + 𝑐

′𝛾2

𝜂2 𝜎′′2
)
.

In order to ensure the RHS is less than 𝜖2, it suffices to have

𝛽 =
𝜖𝜂

2
√
𝑐𝜎
, 𝛾 = min

(
𝜖𝜂

2
√
𝑐𝜎′ ,

𝜖𝜂

2
√
𝑐′𝜎′′

)
, 𝑇 =

𝐶Υ

4𝜖2𝜂
.

To ensure (4.29), it suffices to have

𝜂2 ≤ 𝑐𝛽, 𝐶1𝑐𝛾 ≤ 𝑐′/2, 𝜂2 ≤ 𝑐′𝛾/2, 𝑐 =
1

4𝐶2
, 𝑐′ =

1
4𝐶3

.

As a result, if we set

𝜂 = min
(

1
𝐿
,
𝜖
√
𝑐

2𝜎
,
𝜖𝑐′

4
√
𝑐𝜎′ ,

𝜖
√
𝑐′

4𝜎′′ ,
𝑐′

2
√
𝑐𝐶1

)
= min

(
1
𝐿
,

𝜖

4
√
𝐶2𝜎

,
𝜖
√
𝐶2

8𝐶3𝜎′ ,
𝜖

8
√
𝐶3𝜎′′ ,

√
𝐶2

4𝐶3
√
𝐶1

)
𝛽 =

𝜖𝜂
√
𝐶2

𝜎
, 𝛾 = min

(
𝜖𝜂

√
𝐶2

𝜎′ ,
𝜖𝜂

√
𝐶3

𝜎′′ ,
𝐶2

2𝐶3𝐶1

)
,

we have
𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2.

Plugging the values of 𝜂 into the requirement of 𝑇 yields the order of 𝑇 .
ut

Theorem 4.4 Suppose that Assumptions 4.3, 4.6,and 4.7 hold. For SCST, in order
to guarantee

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2

}]
≤ 𝜖2,

we can set the parameters as 𝜂 = min{𝑂 ( 1
𝐿𝐹

), 𝑂 ( 𝜖
𝐿1𝜎

), 𝑂 ( 𝜖
𝐿2

1𝜎0
)}, 𝛽 = 𝑂 ( 𝜖 𝜂𝐿1

𝜎 ),
and 𝛾 = min{𝑂 ( 𝜖 𝜂𝜎0

, 𝑂 (1)}, and the iteration complexity is

𝑇 = 𝑂

(
max(𝐶Υ𝐿1 (𝜎1 + 𝜎2)

𝜖3 ,
𝐶Υ𝜎0𝐿

2
1

𝜖3 ,
𝐶Υ𝐿𝐹
𝜖2 )

)
,
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where 𝐶Υ = 𝑂 (𝐹 (w0) − 𝐹∗ + 1
𝐿2

1 𝜂
‖∇𝑔(w0)∇ 𝑓 (u0) − v0‖2

2 +
1
𝐿2

1 𝜂
‖𝑔(w0) − u0‖2

2).

 Why it matters

We only explicitly maintain the dependence on 𝐿1, which will have implications
when we handle non-smooth 𝑓 in next Chapter.
The above theorem can help us establish an improved iteration complex-
ity of 𝑂 (1/𝜖3). First, we need to ensure 𝐶Υ = 𝑂 (1), which can be sat-
isfied by using a large initial batch size. In particular, we can set u0 =
1
𝐵0

∑𝐵0
𝑖=1 𝑔(w0; 𝜁𝑖), v0 = 1

𝐵0

∑𝐵0
𝑖=1 ∇𝑔(w0; 𝜁 ′𝑖 )∇ 𝑓 (u0; 𝜉𝑖), where {𝜁𝑖 , 𝜁 ′𝑖 , 𝜁𝑖}

𝐵0
𝑖=1 are

independent random variables. Thus, we have E[‖u0 − 𝑔(w0)‖2
2] ≤ 𝑂 ( 1

𝐵0
) and

E[‖v0 − ∇𝑔(w0)∇ 𝑓 (u0)‖2
2] ≤ 𝑂 ( 1

𝐵0
). Hence, if we set 𝐵0 = 𝑂 ( 𝜎

𝐿1 𝜖
, 𝜎0
𝜖 ) we

have 𝐶Υ = 𝑂 (1). This initial batch size requirement can be removed by using a
decreasing parameters 𝜂𝑡 = 𝑂 (1/𝑡1/3), 𝛽𝑡 = 𝑂 (1/𝑡2/3), 𝛾𝑡 = 𝑂 (1/𝑡2/3).
Compared to the result of SCMA in Theorem 4.3, SCST has a higher order of
step size 𝜂 and a smaller order of iteration complexity.

Proof. Let us recall the three inequalities in Lemma 4.14, 4.13 and 4.12:

(∗) 𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝜂𝑡𝐺2
2𝐿

2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2 + 𝜂𝑡 ‖v𝑡 −M𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2

− 1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 ,

(♯) E
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ E[(1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2] + 16𝐺2
2𝐿

2
1𝛾

2
𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2]
+ E[(24𝐺4

2𝐿
2
1 + 4𝐺2

1𝐿
2
2)‖w𝑡 − w𝑡−1‖2

2 + 2𝛽2
𝑡𝜎

2 + 8𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0 ],

(�) E𝜁𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+ E[2𝐺2
2‖w𝑡 − w𝑡−1‖2

2 + 2𝛾2
𝑡 𝜎

2
0 ] .

Define

𝐴𝑡 = 𝐹 (w𝑡 ) − 𝐹∗, 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2/2,

Γ𝑡 = ‖v𝑡 ‖2
2/4, Δ𝑡 = ‖v𝑡 − 𝐻𝑡 ‖2

2, 𝛿𝑡 = 𝐿
2
1𝐺

2
2‖u𝑡 − 𝑔(w𝑡 )‖2

2.

They satisfy the three inequalities marked by ∗, ♯,� in Lemma 4.15 with Then we
have𝐶1 = 16, 𝐶2 = 𝑂 (𝐺4

2𝐿
2
1+𝐺2

1𝐿
2
2), 𝐶3 = 𝑂 (𝐿2

1𝐺
2
2), 𝜎2 = 𝑂 (𝐺2

2𝜎
2
1+𝐺2

1𝜎
2
2 ), 𝜎′2 =

𝑂 (𝐿2
1𝐺

2
2𝜎

2
0 ), 𝜎′′2 = 𝑂 (𝐿2

1𝐺
2
2𝜎

2
0 ). Plugging these into Lemma 4.15, we can finish the

proof. ut

4.4 Non-smooth (Non-convex) Regularized Problems

In this section, we consider the following regularized stochastic compositional opti-
mization:
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

Fig. 4.1: Left: the capped ℓ1-norm regularizer; Right: a non-convex PAR regularizer

min
w∈R𝑑

𝐹̄ (w) := E𝜉 𝑓 (E𝜁 [𝑔(w; 𝜁)]; 𝜉) + 𝑟 (w), (4.32)

where 𝑟 is a non-smooth regularizer, which is potentially non-convex. This in-
cludes constrained problems, where 𝑟 (w) = I0−∞ (w ∈ W). For example, the KL-
constrained DRO (2.19) has a constraint 𝜆 ≥ 0.

We extend the definition of 𝜖-stationary solution of a smooth function to the non-
smooth composite function by noting that 𝜕 (𝐹 + 𝑟)(w) = ∇𝐹 (w) + 𝜕𝑟 (w).

Definition 4.1 (𝜖-stationary solution) A solution w is called an 𝜖-stationary so-
lution to minw∈R𝑑 𝐹 (w) + 𝑟 (w) where 𝐹 is smooth and 𝑟 is non-differentiable, if
dist(0,∇𝐹 (w) + 𝜕𝑟 (w)) ≤ 𝜖 .

To handle non-smoothness or 𝑟 , we assume the proximal mapping of 𝑟 is simple
to compute:

prox𝑟 (ŵ) = arg min
w∈R𝑑

1
2
‖w − ŵ‖2

2 + 𝑟 (w).

Below, we give some examples of non-convex regularizers and their proximal map-
pings, whose derivations are left as exercises for interested readers.

Examples

Example 4.4 (Capped ℓ1-norm). It is defined as 𝑟 (w) = 𝜆∑𝑑
𝑖=1 𝜓(𝑤𝑖), where

𝜓(𝑤𝑖) = min( |𝑤𝑖 |, 𝜃) (cf. Figure (4.1)). It penalizes small coefficients heav-
ily (encouraging sparsity) but stops penalizing once coefficients are large
enough. It was shown to reduce the bias issue of LASSO, which cannot ex-
actly recover the non-zero coefficients under some conditions. Its proximal
mapping is given by

prox𝜆𝜓 (𝑢) =
{
𝑥1 = min(sign(𝑢) ( |𝑢 | − 𝜆)+, 𝜃) if ℎ(𝑥1; 𝑢) < ℎ(𝑥2; 𝑢)
𝑥2 = max(|𝑢 |, 𝜃) otherwise ,

(4.33)
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where ℎ(𝑥; 𝑢) = 1
2 (𝑥 − 𝑢)2 + 𝜆min(|𝑥 |, 𝜃). Similar non-convex sparse regu-

larizers include minimax concave penalty (MCP) and Smoothly Clipped Ab-
solute Deviation (SCAD).

Example 4.5 (Nonconvex Piecewise Affine Regularization (PAR)). A non-
convex PAR is defined as 𝑟 (w) = 𝜆∑𝑑

𝑖=1 𝜓(𝑤𝑖) (cf Figure (4.1)), where

𝜓(𝑥) =
{
|𝑥 | − 𝑘𝑞 if 𝑘𝑞 ≤ |𝑥 | ≤ 2𝑘+1

2 𝑞,
𝑘+1
2 𝑞 if 2𝑘+1

2 𝑞 ≤ |𝑥 | ≤ (𝑘 + 1)𝑞,
𝑘 = 0, 1, . . . , (4.34)

Its proximal mapping is defined as:

• When the regularization strength 𝜆 ≤ 𝑞, we have

prox𝜆𝜓 (𝑢) =

sign(𝑢)𝑘𝑞 if 𝑘𝑞 ≤ |𝑢 | ≤ 𝑘𝑞 + 𝜆,
sign(𝑢) ( |𝑢 | − 𝜆) if 𝑘𝑞 + 𝜆 ≤ |𝑢 | ≤ 2𝑘+1

2 𝑞 + 𝜆
2 ,

sign(𝑢) |𝑢 | if 2𝑘+1
2 𝑞 + 𝜆

2 ≤ |𝑢 | ≤ (𝑘 + 1)𝑞.
(4.35)

• When the regularization strength 𝜆 ≥ 𝑞, we have

prox𝜆𝜓 (𝑢) = sign(𝑢)
⌊
|𝑢 | − 𝜆

2
𝑞

⌉
𝑞. (4.36)

where b·e denotes the nearest integer. When 𝜆 exceeds a certain thresh-
old (e.g., 𝜆 ≥ 𝑞), the proximal operator becomes a hard quantizer,
mapping inputs exactly to discrete levels in a quantization set 𝑄 =
{0,±𝑞,±2𝑞,±3𝑞, . . .}.

Algorithms

We can easily extend SCMA and SCST to solving the non-smooth regularized SCO
problems using the following update:

w𝑡+1 = arg min
1

2𝜂𝑡
‖w − (w𝑡 − 𝜂𝑡v𝑡 )‖2

2 + 𝑟 (w), (4.37)

where v𝑡 is the MA or STORM gradient estimator as in SCMA or SCST.

Convergence Analysis

We first present a lemma similar to Lemma 4.9.

Lemma 4.16 Consider the update in (4.37), if 𝜂𝑡 ≤ 1
4𝐿𝐹 then we have
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) ≤𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 −

𝜂𝑡
10

dist(0, 𝜕𝐹̄ (w𝑡+1))2

− 1
80𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

Proof. Recall the update of w𝑡+1:

w𝑡+1 ∈ arg min
w∈R𝑑

{
𝑟 (w) + 1

2𝜂𝑡
‖w − (w𝑡 − 𝜂𝑡v𝑡 )‖2

2

}
.

Then following variational analysis, we have

−v𝑡 −
1
𝜂𝑡

(w𝑡+1 − w𝑡 ) ∈ 𝜕𝑟 (w𝑡+1),

which implies that

∇𝐹 (w𝑡+1) − v𝑡 −
1
𝜂𝑡

(w𝑡+1 − w𝑡 ) ∈ ∇𝐹 (w𝑡+1) + 𝜕𝑟 (w𝑡+1) = 𝜕𝐹̄ (w𝑡+1). (4.38)

Hence, we have

dist(0, 𝜕𝐹̄ (w𝑡+1))2 ≤ ‖∇𝐹 (w𝑡+1) − v𝑡 −
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2 (4.39)

Due to the update of w𝑡+1, we also have

𝑟 (w𝑡+1) + 〈v𝑡 ,w𝑡+1 − w𝑡 〉 +
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 ≤ 𝑟 (w𝑡 ). (4.40)

Since 𝐹 (w) is smooth with parameter 𝐿𝐹 , then

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 〈∇𝐹 (w𝑡 ),w𝑡+1 − w𝑡 〉 +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2. (4.41)

Combining these two inequalities (4.40) and (4.41) we get

𝐹̄ (w𝑡+1) + 〈v𝑡 − ∇𝐹 (w𝑡 ),w𝑡+1 − w𝑡 〉 ≤ 𝐹̄ (w𝑡 ) − ( 1
2𝜂𝑡

− 𝐿𝐹
2

)‖w𝑡+1 − w𝑡 ‖2
2.

From the above inequality, we obtain two results. The first result is
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2
𝜂𝑡

〈v𝑡 − ∇𝐹 (w𝑡+1),w𝑡+1 − w𝑡 〉

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

− 1
𝜂𝑡

( 1
𝜂𝑡

− 𝐿𝐹)‖w𝑡+1 − w𝑡 ‖2
2

+ 2
𝜂𝑡

〈∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡+1),w𝑡+1 − w𝑡 〉

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

− 1
𝜂𝑡

( 1
𝜂𝑡

− 3𝐿𝐹)‖w𝑡+1 − w𝑡 ‖2
2. (4.42)

The second result is

( 1
2𝜂𝑡

− 𝐿𝐹
2

)‖w𝑡+1 − w𝑡 ‖2
2 ≤ 𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) + 〈∇𝐹 (w𝑡 ) − v𝑡 ,w𝑡+1 − w𝑡 〉

= 𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) + 𝜂𝑡 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 +

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

If 𝐿𝐹2 ≤ 1
8𝜂𝑡 , i.e., 𝜂𝑡 ≤

1
4𝐿𝐹 , the above inequality indicates:

1
8𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 ≤ 𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) + 𝜂𝑡 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2. (4.43)

To proceed, we have

‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

= 2〈v𝑡 − ∇𝐹 (w𝑡+1),
1
𝜂𝑡

(w𝑡+1 − w𝑡 )〉 + ‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2 +

1
𝜂2
𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

Adding the above inequality to (4.42) we have

‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

− 1
𝜂𝑡

( 1
𝜂𝑡

− 3𝐿𝐹)‖w𝑡+1 − w𝑡 ‖2
2

+ ‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2 +

1
𝜂2
𝑡

‖w𝑡+1 − w𝑡 ‖2
2

=
2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))

𝜂𝑡
+ 3𝐿𝐹

𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 + ‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2.

Since

‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2 = ‖v𝑡 − ∇𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡+1)‖2

2

≤ 2‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 + 2‖∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡+1)‖2

2

≤ 2‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 + 2𝐿2

𝐹 ‖w𝑡 ) − w𝑡+1‖2
2.
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Due to 2𝐿2
𝐹 ≤ 𝐿𝐹

2𝜂𝑡 , we have

‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

+ 3.5𝐿𝐹
𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 + 2‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2.

Multiplying both sides by 𝜂𝑡 , we have

𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + 3.5𝐿𝐹 ‖w𝑡+1 − w𝑡 ‖2
2 + 2𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2.

Adding this inequality to (4.43) gives

𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2 +

1
8𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

≤ 3(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + 3𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 + 3.5𝐿𝐹 ‖w𝑡+1 − w𝑡 ‖2

2.

Applying (4.43) again to the RHS, we have

𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2 +

1
8𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

≤ (3 + 28𝐿𝐹𝜂𝑡 ) (𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + (3𝜂𝑡 + 28𝜂2
𝑡 𝐿𝐹)‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2

≤ 10(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + 10𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2.

Combining this with (4.39), we finish the proof. ut

Since the above lemma resembles that in Lemma 4.9, hence, it remains a simple
exercise to derive the complexity of using the MA estimator similar to Theorem 4.3
and of using the STORM estimator similar to Theorem 4.4.

Corollary 4.1 Consider the method (4.37). Under the same assumptions and similar
settings as in Theorem 4.3, the method finds an 𝜖-stationary solution with a complex-
ity of 𝑂 (1/𝜖4). Under the same assumptions and similar settings as in Theorem 4.4,
the method finds an 𝜖-stationary solution with a complexity of 𝑂 (1/𝜖3).

 Why it matters

Since standard regularized stochastic optimization E𝜁 [𝑔(w; 𝜁)] + 𝑟 (w) is a spe-
cial case, the above results directly apply. This corollary shows that regularized
problems can be solved with the same complexities as unregularized ones by
employing either the moving-average gradient estimator or the STORM gradi-
ent estimator. In contrast, without these estimators, solving non-convex regular-
ized problems requires a large batch size at every iteration (Lan, 2020)[Section
6.2.3].
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4.5 Structured Optimization with Compositional Gradient

In this section, we extend the compositional optimization technique to address other
structured optimization problems, including min-max optimization, min-min opti-
mization, and bilevel optimization. These problems share a common structure in the
form of a compositional gradient, denoted byM(w, u∗ (w)), whereM is a mapping
that is Lipschitz continuous with respect to its second argument, and u∗ (w) is defined
as the solution to a strongly convex optimization problem:

u∗ (w) = arg min
u∈U

ℎ(w, u). (4.44)

This structure generalizes the gradient of a compositional function 𝑓 (𝑔(w)), whose
gradient takes the form M(w, u∗ (w)) = ∇𝑔(w)∇ 𝑓 (u∗ (w)) with

u∗ (w) = arg min
u

‖u − 𝑔(w)‖2
2.

The high-level idea underlying the algorithms and analysis presented below is
summarized as follows. To estimateM(w, u∗ (w)) at w𝑡 , we use an auxiliary variable
u𝑡 to track the optimal solution u∗ (w𝑡 ), which is defined by solving (4.44) with one
step update at w𝑡 . A key aspect of the analysis is that the error in the approximation of
M(w𝑡 , u𝑡 ) is controlled by the estimation error ‖u𝑡 −u∗ (w𝑡 )‖2, due to the Lipschitz
continuity of M:

‖M(w𝑡 , u𝑡 ) −M(w𝑡 , u∗ (w𝑡 ))‖2
2 ≤ 𝑂 (‖u𝑡 − u∗ (w𝑡 )‖2

2). (4.45)

Moreover, since u∗ (w) is the solution to a strongly convex problem and is Lipschitz
continuous with respect to w, we can construct a recursion for ‖u𝑡 − u∗ (w𝑡 )‖2

2 to
effectively bound the cumulative error over iterations.

In cases where M(w𝑡 , u𝑡 ) cannot be computed exactly and is instead approxi-
mated by a stochastic estimator M(w𝑡 , u𝑡 ; 𝜁𝑡 ), where 𝜁𝑡 is a random variable, we
employ a moving average (MA) estimator:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡 M(w𝑡 , u𝑡 ; 𝜁𝑡 ).

The model update is then performed using:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 .

Alternatively, if M(w𝑡 , u𝑡 ) is directly computable, the update simplifies to:

w𝑡+1 = w𝑡 − 𝜂𝑡 M(w𝑡 , u𝑡 ).
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

4.5.1 Non-convex Min-Max Optimization

We consider a non-convex min-max optimization problem:

min
w∈R𝑑

max
u∈U

𝑓 (w, u) := E𝜉 [ 𝑓 (w, u; 𝜉)], (4.46)

where 𝑓 (w, u) is a continuous and differentiable and U is a closed convex set. Let
𝐹 (w) = maxu∈U 𝑓 (w, u). Denote by ∇1 𝑓 (·, ·) and ∇2 𝑓 (·, ·) the partial gradients of
the first and second variable, respectively.

We make the following assumptions.

Assumption 4.8. Regarding the problem (4.46), the following conditions hold:

(i) 𝑓 (w, u) is 𝜇-strongly concave in terms of u, and u∗ (w) = arg maxu∈U 𝑓 (w, u)
exists for any w.

(ii) ∇1 𝑓 (w, u) is 𝐿1-Lipschitz continuous such that

‖∇1 𝑓 (w, u) − ∇1 𝑓 (w′, u′)‖2 ≤ 𝐿1 (‖w − w′‖2 + ‖u − u′‖2). (4.47)

(iii) ∇2 𝑓 (w, u) is 𝐿21-Lipschitz continuous with respect to the first variable and is
𝐿22-Lipschitz continuous with respect to the second variable

‖∇2 𝑓 (w, u) − ∇2 𝑓 (w′, u′)‖2 ≤ 𝐿21‖w − w′‖2 + 𝐿22‖u − u′‖2. (4.48)

(iv) there exist 𝜎1, 𝜎2 such that

E[‖∇1 𝑓 (w, u; 𝜉) − ∇1 𝑓 (w, u)‖2
2] ≤ 𝜎2

1 , (4.49)
E[‖∇2 𝑓 (w, u; 𝜉) − ∇2 𝑓 (w, u)‖2

2] ≤ 𝜎2
2 . (4.50)

(v) 𝐹∗ = min
w
𝐹 (w) ≥ −∞.

4.5.1.1 A Double-loop Large mini-batch method

Let us first consider a straightforward approach that updates w𝑡 using a large-batch
gradient estimator

v𝑡 =
1
𝐵

𝐵∑
𝑖=1

∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑖,𝑡 ),

and computes u𝑡 via an inner-loop SGD with 𝐾 updates. It suffices to have 𝐾 =
𝑂 (𝐿2

1𝜎
2
2 /(𝜇2𝜖2)) (by Lemma 3.8) such that

E[‖u𝑡 − u∗ (w𝑡 )‖2
2] ≤

𝜖2

𝐿2
1
.

If 𝐵 = 𝑂 (𝜎2
1 /𝜖2), following the Lemma 4.18 below we have

161



Algorithm 12 SMDA
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u1, v0
2: w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Sample 𝜁𝑡
5: Update u𝑡+1 = ΠU [u𝑡 + 𝛾𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) ]
6: Compute the vanilla gradient estimator z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )
7: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
8: Update the model by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
9: end for

E[‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2] ≤ E

[



 1
𝐵

𝐵∑
𝑖=1

∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑖,𝑡 ) − ∇1 𝑓 (w𝑡 , u∗ (w𝑡 ))




2

2

]
≤ 𝑂

(
𝜎2

1
𝐵

+ 𝐿2
1‖u𝑡 − u∗ (w𝑡 )‖2

2

)
≤ 𝜖2.

Combining this with Lemma 4.9, we can set the step size 𝜂𝑡 = 𝑂 (1/𝐿𝐹) and the
number of iterations 𝑇 = 𝑂 (𝐿𝐹/𝜖2), yielding an overall sample complexity of

𝐵𝑇 + 𝐾𝑇 = 𝑂

(
𝐿𝐹𝜎

2
1

𝜖4 +
𝐿𝐹𝐿

2
1𝜎

2
2

𝜇2𝜖4

)
.

4.5.1.2 A Stochastic Momentum Method

We present a solution method in Algorithm 12, referred to as SMDA (Stochastic
Momentum Descent-Ascent). The method begins by updating the dual variable us-
ing stochastic gradient ascent (Step 4), then computes the moving average gradient
estimator v𝑡 for the primal variable (Step 6), and finally updates the primal variable
using this estimator (Step 7). When 𝛽𝑡 = 1, the method reduces to SGDA. How-
ever, setting 𝛽𝑡 < 1 is crucial for achieving improved complexity. Conceptually, the
method shares similarities with SCMA.

Convergence Analysis
We will prove the convergence of the gradient norm of 𝐹 (w). We first prove the
following lemmas.

Lemma 4.17 Let u∗ (w) = arg maxu∈U 𝑓 (w, u). Under Assumption 4.8(i), (iii),
u∗ (·) is 𝜅-Lipschitz continuous with 𝜅 = 𝐿21

𝜇 .

Proof. Let us consider w1,w2. By the optimality condition of u∗ (w1) and u∗ (w2)
for a concave function, we have
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∇2 𝑓 (w1, u∗ (w1))> (u − u∗ (w1)) ≤ 0, ∀u ∈ U
∇2 𝑓 (w2, u∗ (w2))> (u − u∗ (w2)) ≤ 0, ∀u ∈ U .

Let u = u∗ (w2) in the first inequality and u = u∗ (w1) in the second equality and add
them together we have

(∇2 𝑓 (w1, u∗ (w1)) − ∇2 𝑓 (w2, u∗ (w2)))> (u∗ (w2) − u∗ (w1)) ≤ 0.

Since − 𝑓 (w1, ·) is 𝜇-strongly convex, due to Lemma 1.6, we have

(∇2 𝑓 (w1, u∗ (w1)) − ∇2 𝑓 (w1, u∗ (w2)))> (u∗ (w2) − u∗ (w1))
≥ 𝜇‖u∗ (w2) − u∗ (w1)‖2

2.

Combining these two inequalities we have

𝜇‖u∗ (w2) − u∗ (w1)‖2
2 ≤ (∇2 𝑓 (w2, u∗ (w2)) − ∇2 𝑓 (w1, u∗ (w2)))> (u∗ (w2) − u∗ (w1))

≤ ‖∇2 𝑓 (w2, u∗ (w2)) − ∇2 𝑓 (w1, u∗ (w2))‖2‖u∗ (w2) − u∗ (w1)‖2

≤ 𝐿21‖w2 − w1‖2‖u∗ (w2) − u∗ (w1)‖2.

Thus,

‖u∗ (w2) − u∗ (w1)‖2 ≤ 𝐿21

𝜇
‖w2 − w1‖2.

ut

Lemma 4.18 Under Assumption 4.8(i) and (ii), ∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)), and it is
is 𝐿𝐹-Lipschitz continuous with 𝐿𝐹 = 𝐿1 (1 + 𝜅).

Proof. IfU is bounded, theDanskin’s theorem implies that∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)).
If U is unbounded, we have

∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)) + 𝜕𝑢
∗ (w)
𝜕w

>
∇2 𝑓 (w, u∗ (w)) = ∇1 𝑓 (w, u∗ (w)), (4.51)

where the last equality follows from ∇2 𝑓 (w, u∗ (w)) = 0. To establish the Lipschitz
continuity of ∇𝐹 (w), let us consider w1 and w2. We have

‖∇𝐹 (w1) − ∇𝐹 (w2)‖2 = ‖∇1 𝑓 (w1, u∗ (w1)) − ∇1 𝑓 (w2, u∗ (w2))‖2

≤ 𝐿1 (‖w1 − w2‖2 + ‖u∗ (w1) − u∗ (w2)‖2) ≤ 𝐿1 (1 + 𝜅)‖w1 − w2‖2.

ut

Next, we prove two lemmas similar to Lemma 4.8 and Lemma 4.1, regarding the
recursion of gradient estimation error and the estimation error of u, respectively. The
descent lemma (Lemma 4.9) still holds.

Lemma 4.19 It holds that
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E𝜉𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 +
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2

+ 4𝐿2
1𝛽𝑡 ‖u𝑡 − u∗ (w𝑡 )‖2

2 + 𝛽2
𝑡𝜎

2
1 .

Proof. Let z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜉𝑡 ) and M𝑡 = E𝑡 [z𝑡 ] = ∇1 𝑓 (w𝑡 , u𝑡 ). Then v𝑡 = (1 −
𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 . Noting that E𝑡 [‖z𝑡 −M𝑡 ‖2

2] ≤ 𝜎2
1 and ‖M𝑡 −∇𝐹 (w𝑡 )‖2

2 ≤ 𝐿2
1‖u𝑡 −

u∗ (w)‖2
2. Plugging these into Lemma 4.7 finishes the proof.

ut

Lemma 4.20 Suppose Assumption 4.8 (i), (iii), (iv) hold. Consider the update u𝑡 =
ΠU [u𝑡 + 𝛾𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )]. If 𝛾𝑡 < 1/𝐿22 < 1/𝜇, we have

E𝑡 [‖u𝑡+1 − u∗ (w𝑡+1)‖2
2] ≤ (1 − 𝛾𝑡𝜇

2
)‖u𝑡 − u∗ (w𝑡 )‖2

2 +
3𝜅2

𝛾𝑡𝜇
E𝑡 [‖w𝑡 − w𝑡+1‖2

2]

+ 2𝛾2
𝑡 𝜎

2
2 .

Proof. By Lemma 3.7, if 𝛾 < 1/𝐿22 we have

E𝑡 [‖u𝑡+1 − u∗ (w𝑡 )‖2
2] ≤ (1 − 𝛾𝑡𝜇)‖u𝑡 − u∗ (w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
2 . (4.52)

Then,

E𝑡 [‖u𝑡+1 − u∗ (w𝑡+1)‖2
2] ≤ (1 + 𝛾𝑡𝜇

2
)E𝑡 [‖u𝑡 − u∗ (w𝑡 )‖2

2]

+ (1 + 2
𝛾𝑡𝜇

)E𝑡 [‖u∗ (w𝑡 ) − u∗ (w𝑡+1)‖2
2]

≤ (1 + 𝛾𝑡𝜇
2

)(1 − 𝛾𝑡𝜇)‖u𝑡 − u∗ (w𝑡 )‖2
2 + (1 + 𝛾𝑡𝜇

2
)𝛾2
𝑡 𝜎

2
2

+ 2 + 𝛾𝑡𝜇
𝛾𝑡𝜇

𝜅2E𝑡 [‖w𝑡 − w𝑡+1‖2
2]

≤ (1 − 𝛾𝑡𝜇

2
)‖u𝑡 − u∗ (w𝑡 )‖2

2 + 2𝛾2
𝑡 𝜎

2
2 + 3𝜅2

𝛾𝑡𝜇
E𝑡 [‖w𝑡 − w𝑡+1‖2

2],

where the first inequality uses the Young’s inequality, and the last inequality uses
𝛾𝜇 < 1. ut

Finally, we can prove the following theorem regarding the convergence of SMDA.

Theorem 4.5 Suppose Assumption 4.8 holds. By setting 𝛽𝑡 = 𝛽 = 𝜖2/(3𝜎2
1 ), 𝛾𝑡 =

𝛾 = 𝜇𝜖2/(96𝐿2
1𝜎

2
2 ) and 𝜂𝑡 = 𝜂 = min( 𝛽√

8𝐿𝐹
, 𝛾𝜇

16
√

3𝐿1𝜅
, 1

2𝐿𝐹 ) in SMDA, then the
following holds

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2

}]
≤ 𝜖2, (4.53)
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with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2
1 𝐿𝐹

𝜖4 ,
𝐶Υ𝐿

3
1𝜅𝜎

2
2

𝜖4𝜇2

})
, (4.54)

where 𝐶Υ = 2(𝐹 (w0) − 𝐹∗) + 1√
8𝐿𝐹

‖v0 − ∇𝐹 (w0)‖2
2 +

𝐿1√
3𝜅
‖u0 − u∗ (w0)‖2

2.

 Why it matters

The MA gradient estimator in SMDA is critical to obtaining a complexity of
𝑂 (1/𝜖4). If we simply update the primal variable by SGD, the algorithm be-
comes SGDA. The convergence analysis of SGDA for non-convex minimax
problems will suffer from a large batch size issue or slow convergence. In par-
ticular, SGDA with a batch size of 𝑂 (1/𝜖2) can find an 𝜖-stationary solution in
𝑂 (1/𝜖2) iterations when the problem is smooth in terms of primal and dual vari-
ables and strongly-concave in terms of dual variable, yielding a sample complex-
ity of 𝑂 (1/𝜖4). If using a constant batch size 𝑂 (1), SGDA may need 𝑂 (1/𝜖8)
iterations for finding an 𝜖-stationary solution (Lin et al., 2020).

Proof. The proof is similar to Theorem 4.3. Let us see the three inequalities in
Lemma 4.9, Lemma 4.19, and 4.20 that we have proved so far:

(∗)𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂

2
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2 −
𝜂

2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂

4
‖v𝑡 ‖2

2 ,

(♯)E
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ E

[
(1 − 𝛽) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 +
2𝐿2

𝐹𝜂
2

𝛽
‖v𝑡−1‖2

2

]
+ 4𝐿2

1𝛽E
[
‖u𝑡 − u∗ (w𝑡 )‖2

2 + 𝛽2𝜎2
1

]
,

(�)E‖u𝑡 − u∗ (w𝑡 )‖2
2 ≤ E

[
(1 − 𝛾𝜇

2
)‖u𝑡−1 − u∗ (w𝑡−1)‖2

2 + 2𝛾2𝜎2
2 + 3𝜅2𝜂2

𝛾𝜇
‖v𝑡−1‖2

2

]
.

Let 𝛾̄ = 𝛾𝜇/2, the last inequality becomes:

(�)E‖u𝑡 − u∗ (w𝑡 )‖2
2 ≤ E

[
(1 − 𝛾̄)‖u𝑡−1 − u∗ (w𝑡−1)‖2

2 + 8𝛾̄2𝜎
2
2
𝜇2 + 3𝜅2𝜂2

2𝛾̄
‖v𝑡−1‖2

2

]
.

Let us define 𝐴𝑡 = 2(𝐹 (w𝑡 ) − 𝐹∗) and 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2, Γ𝑡 = ‖v𝑡 ‖2

2 /2, Δ𝑡 =
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2, 𝛿𝑡 = ‖u𝑡 − u∗ (w𝑡 )‖2
2. Then the three inequalities (∗), (♯), (�) sat-

isfy that in Lemma 4.10 with 𝐶1 = 4𝐿2
1, 𝐶2 = 2𝐿2

𝐹 , 𝐶3 = 3𝜅2/2, 𝜎2 = 𝜎2
1 , 𝜎

′2 =
8𝜎2

2 /𝜇2. If 𝜂, 𝛽, 𝛾̄ satisfy

165



𝛽 =
𝜖2

3𝜎2 =
𝜖2

3𝜎2
1
, 𝛾̄ =

𝜖2

6𝐶1𝜎′2 =
𝜖2𝜇2

192𝐿2
1𝜎

2
2
,

𝜂 = min( 1
2𝐿𝐹

,
𝛽

√
4𝐶2

,
𝛾̄

√
8𝐶1𝐶3

) = min( 1
2𝐿𝐹

,
𝛽

√
8𝐿𝐹

,
𝛾̄

√
48𝐿1𝜅

),

then (4.89) holds, and the iteration complexity becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2
1 𝐿𝐹

𝜖4 ,
𝐶Υ𝐿

3
1𝜅𝜎

2
2

𝜖4𝜇2

})
.

ut

Critical: It is worth mentioning that an improved complexity of 𝑂 (1/𝜖3) can
be achieved by employing the STORM gradient estimator for both the primal
and dual variables under the mean-square smooth condition of the objective.

4.5.2 Non-convex Min-Min Optimization

We can extend SMDA to solving a non-convex strongly-convex min-min problem:

min
w∈R𝑑

min
u∈U

𝑓 (w, u) := E𝜉 [ 𝑓 (w, u; 𝜉)], (4.55)

where 𝑓 (w, u) is smooth, non-convex in terms of w and strongly convex in terms
of u and U is a closed convex set. If the u∗ (w) = arg minu∈U 𝑓 (w, u) exists and
unique, then we have ∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)). Hence, its gradient also exhibits a
compositional structure, where the inner function u∗ (w) is a solution to a strongly
convex problem.

SMDA can be modified by replacing the u update with

u𝑡+1 = ΠU [u𝑡 − 𝛾𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )] .

Then, the same convergence result in the last subsection can be established for min-
min problem, which is omitted here.

4.5.2.1 Application to weakly convex minimization

Next, we present an application to solving weakly convex minimization problems:
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Algorithm 13 A novel method for weakly convex minimization
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u1, v1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Sample 𝜁𝑡 and compute G(u𝑡 ; 𝜁𝑡 ) = 𝜕𝑔 (u𝑡 ; 𝜁𝑡 )
4: Update u𝑡+1 = u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 𝜌(u𝑡 − w𝑡 ) )
5: Update w𝑡+1 = (1 − 2𝜂𝑡𝜌)w𝑡 + 2𝜂𝑡𝜌u𝑡
6: end for

min
w
𝐹 (w) := E[𝑔(w; 𝜁)], (4.56)

where 𝐹 > −∞ is 𝜌-weakly convex, as discussed in Chapter 3.
As argued in Section 3.1.4, an 𝜖-stationary solution of the Moreau envelope of

𝐹 (w) corresponds to a nearly 𝜖-stationary solution of the original problem. Hence,
we consider optimizing the Moreau envelope directly:

min
w
𝐹𝜌 (w) := min

u
E[𝑔(u; 𝜁)] + 𝜌‖u − w‖2

2. (4.57)

Define 𝑓 (w, u) = E[𝑔(u; 𝜁)] + 𝜌‖u − w‖2
2. Then 𝑓 (w, u) is 𝜌-strongly convex with

respect to u due to the 𝜌-weak convexity of 𝐹.
For updating u, we use the standard SGD:

u𝑡+1 = u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )). (4.58)

where G(u𝑡 ; 𝜁𝑡 ) ∈ 𝜕𝑔(u𝑡 ; 𝜁𝑡 ). For updating w, then we just apply GD with its gra-
dient given by ∇1 𝑓 (w𝑡 , u𝑡 ) = 2𝜌(w𝑡 − u𝑡 ):

w𝑡+1 = w𝑡 − 𝜂𝑡2𝜌(w𝑡 − u𝑡 ) = (1 − 2𝜂𝑡 𝜌)w𝑡 + 2𝜂𝑡 𝜌u𝑡 . (4.59)

We present the updates in Algorithm 13. An interesting observation about this algo-
rithm is that the u update is similar to the Momentum update (4.18) except that the
momentum term u𝑡 − u𝑡−1 is replaced by u𝑡 − w𝑡 , where w𝑡 is a MA weight vector.

Convergence Analysis

Let us first prove the following lemma.

Lemma 4.21 We have (i) 𝐹𝜌 is 𝐿𝐹-smooth with 𝐿𝐹 = 6
𝜌 ; (ii) ∇1 𝑓 (w, u) is Lipschitz

continuous with 𝐿1 = 2𝜌, and (iii) u∗ (w) is 1-Lipschitz continuous.

Proof. The smoothness of 𝐹𝜌 has been proved in Proposition 3.1 with 𝜆 = 𝜌/2. The
Lipschitz continuity of ∇1 𝑓 (w, u) = 2𝜌(w − u) is obvious. Next, let us prove the
Lipschitz continuity of u∗ (w). The proof is similar to that of Lemma 4.17.

Let us consider w1,w2. By the optimality condition of u∗ (w1) and u∗ (w2) for a
concave function, there exists v(w1) ∈ 𝜕2 𝑓 (w1, u∗ (w1)), v(w2) ∈ 𝜕2 𝑓 (w2, u∗ (w2))
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v(w1)> (u − u∗ (w1)) ≤ 0, ∀u
v(w2)> (u − u∗ (w2)) ≤ 0, ∀u

Let u = u∗ (w2) in the first inequality and u = u∗ (w1) in the second equality and add
them together we have

(v(w1) − v(w2))> (u∗ (w2) − u∗ (w1)) ≤ 0.

Since − 𝑓 (w1, ·) is 𝜌-strongly convex, similar to Lemma 1.6, we have for any v ∈
𝜕2 𝑓 (w1, u∗ (w2)),

(v(w1) − v)> (u∗ (w2) − u∗ (w1)) ≥ 𝜌‖u∗ (w2) − u∗ (w1)‖2
2.

Combining these two inequalities we have

𝜌‖u∗ (w2) − u∗ (w1)‖2
2 ≤ (v(w2) − v)> (u∗ (w2) − u∗ (w1))

≤ ‖v(w2) − v‖2‖u∗ (w2) − u∗ (w1)‖2.

Since there exists v′ ∈ 𝜕𝑔(u∗ (w2)) such that v(w2) = v′ + 𝜌(u∗ (w2) − w2), we let
v = v′ + 𝜌(u∗ (w2) − w1), then

‖u∗ (w2) − u∗ (w1)‖2 ≤ ‖w2 − w1‖2.

ut

Since 𝜕2 𝑓 (w, u) is not Lipschitz continuous with respect to u, lemma 4.20 is not
directly applicable. We develop a similar one below.

Lemma 4.22 Consider the following update:

u𝑡+1 = u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )).

If E𝜁 [‖G(u; 𝜁)‖2
2] ≤ 𝐺2 and 𝛾𝑡 𝜌 < 1/8, then we have

E𝑡 ‖u𝑡+1 − u∗ (w𝑡+1)‖2
2

≤
(
1 − 𝛾𝑡 𝜌

2

)
‖u𝑡 − u∗ (w𝑡 )‖2

2 + 8𝛾2
𝑡𝐺

2 + 12
𝛾𝑡 𝜌

E𝑡 ‖w𝑡+1 − w𝑡 ‖2
2 .

Proof. Since u𝑡+1 is one-step SGD update of 𝑓 (w𝑡 , u), the proof is similar to
Lemma 3.7 for the non-smooth case.

‖u𝑡+1 − u∗ (w𝑡 )‖2
2 = ‖u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )) − u∗ (w𝑡 )‖2

2 (4.60)

= ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 𝛾2

𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )‖2
2

− 2𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 ))> (u𝑡 − u∗ (w𝑡 )).

Note that 0 ∈ 𝜕𝑔(u∗ (w𝑡 )) + 2𝜌(u∗ (w𝑡 ) − w𝑡 ). Thus, v𝑡−1 = 2𝜌(w𝑡 − u∗ (w𝑡 )) ∈
𝜕𝑔(u∗ (w𝑡 )),
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E𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )‖2
2 = E𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) − v𝑡−1 + 2𝜌(u𝑡 − u∗ (w𝑡 ))‖2

2

≤ 2(E𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) + v𝑡−1‖2 + 8𝜌2 ‖u𝑡 − u∗ (w𝑡 )‖2
2

≤ 8𝐺2 + 8𝜌2 ‖u𝑡 − u∗ (w𝑡 )‖2
2 ,

where the last inequality uses ‖v𝑡−1‖2 ≤ 𝐺. For the last term in (4.60), let v𝑡−1 =
E[G(u𝑡 ; 𝜁𝑡 )] + 2𝜌(u𝑡 − w𝑡 ) ∈ 𝜕2 𝑓 (w𝑡 , u𝑡 ), then we have

E𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 ))> (u𝑡 − u∗ (w𝑡 )) = v>𝑡−1 (u𝑡 − u∗ (w𝑡 ))
= (v𝑡−1 − v(w𝑡 ))> (u𝑡 − u∗ (w𝑡 )) ≥ 𝜌 ‖u𝑡 − u∗ (w𝑡 )‖2

2 .

where 0 = v(w𝑡 ) ∈ 𝜕2 𝑓 (w𝑡 , u∗ (w𝑡 )) and the last inequality is due to the strong
convexity of 𝑓 in terms of u. Combining the above inequalities we have

‖u𝑡+1 − u∗ (w𝑡 )‖2
2 = ‖u𝑡 − 𝛾𝑡 (𝜕𝑔(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )) − u∗ (w𝑡 )‖2

2

≤ ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 𝛾2

𝑡 (8𝐺2 + 8𝜌2 ‖u𝑡 − u∗ (w𝑡 )‖2
2) − 2𝛾𝑡 𝜌 ‖u𝑡 − u∗ (w𝑡 )‖2

2

= (1 − 2𝛾𝑡 𝜌 + 8𝛾2
𝑡 𝜌

2) ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 4𝛾2

𝑡𝐺
2

≤ (1 − 𝛾𝑡 𝜌) ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 8𝛾2

𝑡𝐺
2

where the last inequality uses 𝛾𝑡 ≤ 1
8𝜌 . Since u∗ (w) is 1-Lipschitz continuous, we

have

E𝑡 ‖u𝑡+1 − u∗ (w𝑡+1)‖2
2

≤
(
1 + 𝛾𝑡 𝜌

2

)
E𝑡 ‖u𝑡+1 − u∗ (w𝑡 )‖2

2 +
(
1 + 2

𝛾𝑡 𝜌

)
‖u∗ (w𝑡+1) − u∗ (w𝑡 )‖2

2

≤
(
1 − 𝛾𝑡 𝜌

2

)
‖u𝑡 − u∗ (w𝑡 )‖2

2 + 8𝛾2
𝑡𝐺

2 + 3
𝛾𝑡 𝜌

E𝑡 ‖w𝑡+1 − w𝑡 ‖2
2 .

ut

Lemma 4.23 Let z𝑡 = 2𝜌(w𝑡 − u𝑡 ). For the update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 , if 𝜂𝑡 ≤
1/(2𝐿𝐹), we have

𝐹𝜌 (w𝑡+1) ≤ 𝐹𝜌 (w𝑡 ) +
𝜂𝑡
2



∇𝐹𝜌 (w𝑡 ) − z𝑡


2

2 −
𝜂𝑡
2



∇𝐹𝜌 (w𝑡 )

2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 ,

where 𝐿𝐹 is the smoothness parameter of 𝐹𝜌 (·).

Since ∇𝐹𝜌 (w𝑡 ) = 2𝜌(w𝑡 −u∗ (w𝑡 )), hence ‖𝐹𝜌 (w𝑡 ) − z𝑡 ‖2
2 = 4𝜌2‖u𝑡 −u∗ (w𝑡 )‖2

2,
whose recursion has been established in Lemma 4.22. We can combine these two
lemmas and establish a complexity of 𝑂 (1/𝜖4) for Algorithm 13 in order to find an
𝜖-stationary solution to 𝐹𝜌 (·).
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4.5.2.2 Application to weakly-convex strongly-concave min-max problems

The same technique can be applied to solving weakly-convex strongly-concave
min-max problems minw maxu∈U 𝑓 (w, u) with a single loop algorithm. In subsec-
tion 4.5.1, we assume the partial gradient ∇1 𝑓 (w, u) is Lipschitz continuous. We
replace this assumption by an assumption that 𝑓 (w, u) is 𝜌-weakly convex in terms
of w for any u ∈ U.

In this case, 𝐹 (w) = maxu∈U 𝑓 (w, u) is not smooth but weakly convex. Let us
consider its Moreau envelope:

min
w
𝐹𝜌 (w) := min

u1
𝐹 (u1) + 𝜌‖u1 − w‖2

2.

This problem is equivalent to

min
w,u1

max
u2∈U

𝑓 (u1, u2) + 𝜌‖u1 − w‖2
2,

which is strongly convex in terms of u1 and strongly concave in terms of u2.
Compared to (4.57), this problem just adds another layer of inner maximization.

However, it can be still mapped to the general framework as discussed at the begin-
ning. The gradient of 𝐹𝜌 (w) is given by M(w, u∗

1 (w)) = 𝜌(w − u∗
1 (w)). If we track

u∗
1 (w𝑡 ) by u1,𝑡 and its update relies on the gradient 𝜕1 𝑓 (u1,𝑡 , u∗

2 (u1,𝑡 )). Hence, we
just need another variable u2,𝑡 to track u∗

2 (u1,𝑡 ).
We can develop a similar algorithm. First, let us update u1, u2. Givenw𝑡 , u1,𝑡 , u2,𝑡 ,

we update u1,𝑡+1, u2,𝑡+1 with SGD update by

u2,𝑡+1 = ΠU [u2,𝑡 + 𝛾2𝜕2 𝑓 (u1,𝑡 , u2,𝑡 ; 𝜁𝑡 )] (4.61)
u1,𝑡+1 = u1,𝑡 − 𝛾1 (𝜕1 𝑓 (u1,𝑡 , u2,𝑡 ; 𝜁𝑡 ) + 2𝜌(u1,𝑡 − w𝑡 )). (4.62)

Then we update w𝑡+1 with GD update by

w𝑡+1 = w𝑡 − 𝜂2𝜌(w𝑡 − u1,𝑡 ) = (1 − 2𝜂𝜌)w𝑡 + 2𝜂𝜌u1,𝑡 . (4.63)

This algorithm also enjoys a complexity of𝑂 (1/𝜖4) for finding a nearly 𝜖-stationary
solution of 𝐹 (w). We refer the readers to (Hu et al., 2024a) for a convergence analysis
of this algorithm.

4.5.2.3 Application to Compositional Optimization

We can apply a similar strategy to a compositional function 𝐹 (w) = 𝑓0 (𝑔(w)), where
𝑓0 is smooth convex and 𝑔 is weakly convex. With the conjugate of 𝑓0, we can write

min
w

𝑓0 (𝑔(w)) = min
w

max
u2∈U

𝑓 (w, u2) := u>
2 𝑔(w) − 𝑓 ∗0 (u2).
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Since 𝑓0 is smooth, then 𝑓 ∗0 is strongly convex. Then if 𝑔 is weakly convex and U is
bounded (i.e., 𝑓0 is Lipschitz), then 𝑓 (w, u) is weakly convex and strongly concave.
Optimizing the Moreau envelope of 𝑓0 (𝑔(w)) yields:

min
w,u1

max
u2∈U

u>
2 𝑔(u1) − 𝑓 ∗0 (u2) + 𝜌‖u1 − w‖2

2,

which is strongly convex in terms of u1 and strongly concave in terms of u2. We give
an update below:

u2,𝑡+1 = ΠU [u2,𝑡 + 𝛾2𝑔(u1,𝑡 ; 𝜁𝑡 )]
u1,𝑡+1 = u1,𝑡 − 𝛾1 (𝜕1𝑔(u1,𝑡 ; 𝜁𝑡 )u2,𝑡 + 2𝜌(u1,𝑡 − w𝑡 ))
w𝑡+1 = w𝑡 − 𝜂2𝜌(w𝑡 − u1,𝑡 ) = (1 − 2𝜂𝜌)w𝑡 + 2𝜂𝜌u1,𝑡 .

Then similar convergence analysis can be developed with a complexity of 𝑂 (1/𝜖4)
for finding a nearly 𝜖-stationary solution to 𝐹.

4.5.3 Non-convex Bilevel Optimization

In this section, we discuss the application of the compositional gradient estimation
technique to non-convex bilevel optimization defined by

min
w∈R𝑑

𝑓 (w, u∗ (w))

u∗ (w) = arg min
u∈R𝑑′

𝑔(w, u),
(4.64)

where 𝑔 is twice differentiable and 𝜇𝑔-strongly convex in terms of u. Let 𝐹 (w) =
𝑓 (w, u∗ (w)). The following lemma states the gradient of the objective 𝐹 (w).

Lemma 4.24 We have

∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)) − ∇21𝑔(w, u∗ (w))> (∇22𝑔(w, u∗ (w)))−1∇2 𝑓 (w, u∗ (w)).

Proof. By the optimality condition of u∗ (w), we have

∇2𝑔(w, u∗ (w)) = 0.

By taking derivative on both sides, using the chain rule, and the implicit function
theorem, we obtain

∇21𝑔(w, u∗ (w)) + ∇22𝑔(w, u∗ (w)) 𝜕u∗ (w)
𝜕w

= 0.

Hence
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𝜕u∗ (w)
𝜕w

= −(∇22𝑔(w, u∗ (w)))−1∇21𝑔(w, u∗ (w)).

Thus,

∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)) + 𝜕u∗ (w)
𝜕w

>
∇2 𝑓 (w, u∗ (w))

= ∇1 𝑓 (w, u∗ (w)) − ∇21𝑔(w, u∗ (w))> (∇22𝑔(w, u∗ (w)))−1∇2 𝑓 (w, u∗ (w)).

ut

Let us define

M(w, u∗ (w)) =
∇1 𝑓 (w, u∗ (w)) − ∇21𝑔(w, u∗ (w))> (∇22𝑔(w, u∗ (w)))−1∇2 𝑓 (w, u∗ (w)).

If we can establish the Lipschitz continuity of M(w, u∗ (w)) in terms of the second
argument and the Lipschitz continuity of u∗ (w), then the similar technique can be
leveraged. Let u∗ (w𝑡 ) be tracked by u𝑡 . It can be updated by SGD:

u𝑡+1 = u𝑡 − 𝛾𝑡∇2𝑔(w𝑡 , u𝑡 ; 𝜁𝑡 ). (4.65)

With u𝑡 , the gradient at w𝑡 can be estimated by

M(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )> (∇22𝑔(w𝑡 , u𝑡 ))−1∇2 𝑓 (w𝑡 , u𝑡 ). (4.66)

However, another challenge is to handle the Hessian inverse (∇22𝑔(w𝑡 , u𝑡 )−1, which
itself is a compositional structure. We will discuss three different ways to tackle this
challenge. If we have a stochastic estimator of M(w𝑡 , u𝑡 ) denoted by v𝑡 , then we
update the model parameter by:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 . (4.67)

4.5.3.1 Approach 1: The MA Estimator

If the lower level problem is low-dimensional such that the inverse of the Hessian
matrix can be efficiently computed, we can estimate∇22𝑔(w𝑡 , u𝑡 ) by aMA estimator:

𝐻22,𝑡 = 𝑆𝜇𝑔 [(1 − 𝛽)𝐻22,𝑡−1 + 𝛽∇22𝑔(w𝑡 , u𝑡 ; 𝜁2,𝑡 )] .

where 𝑆𝜇𝑔 [·] is a projection operator that projects a matrix into a matrix whose
minimum eigen-value is lower bounded by 𝜇𝑔, where 𝜇𝑔 is the lower bound of eigen-
values of ∇22𝑔(w, u). The projection ensures that [𝐻22,𝑡 ]−1 is Lipschitz continuous
with respect to 𝐻22,𝑡 .

The a vanilla stochastic gradient estimator of w𝑡 and its MA estimator are com-
puted by
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z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜉𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 ; 𝜁 ′2,𝑡 )> (𝐻22,𝑡 )−1∇2 𝑓 (w𝑡 , u𝑡 ; 𝜉𝑡 )
v𝑡 = (1 − 𝛽)v𝑡−1 + 𝛽z𝑡 .

(4.68)

Convergence Analysis

The proof is largely similar to that of Theorem 4.3. We provide a sketch of proof
below. Recall that

M(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )> (∇22𝑔(w𝑡 , u𝑡 ))−1∇2 𝑓 (w𝑡 , u𝑡 ).

Define:

M̂(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )>𝐻−1
22,𝑡∇2 𝑓 (w𝑡 , u𝑡 ).

First, similar to Lemma 4.9, we have the following:

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂𝑡
2
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

(4.69)

We establish a recursion of the error ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 similar to Lemma 4.7 by not-

ing that E𝜉𝑡 ,𝜁 ′2,𝑡 [z𝑡 ] = M̂(w𝑡 , u𝑡 ) and there exists 𝜎 > 0 such that E𝜉𝑡 ,𝜁 ′2,𝑡 [‖z𝑡 −
M̂(w𝑡 , u𝑡 )‖2

2] ≤ 𝜎2. Thus, Lemma 4.7 implies that

E𝜉𝑡 ,𝜁 ′2,𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 (4.70)

+
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝛽𝑡



M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )




2

2
+ 𝛽2

𝑡𝜎
2.

Then, we bound ‖M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2 by

‖M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2 ≤ 2‖M̂(w𝑡 , u𝑡 ) −M(w𝑡 , u𝑡 )‖2

2

+ 2‖M(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2

≤ 𝑂 (‖𝐻22,𝑡 − ∇22𝑔(w𝑡 , u𝑡 )‖2
2) +𝑂 (‖u𝑡 − u∗ (w𝑡 )‖2

2).

As a result, we have

E[‖v𝑡−∇𝐹 (w𝑡 )‖2
2] ≤ (1 − 𝛽𝑡 )‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2 +

2𝐿2
𝐹

𝛽𝑡
‖w𝑡 − w𝑡−1‖2

2

+ 𝛽𝑡 (𝑂 (‖𝐻22,𝑡 − ∇22𝑔(w𝑡 , u𝑡 )‖2
2) +𝑂 (‖u𝑡 − u∗ (w𝑡 )‖2

2)) + 𝛽2
𝑡𝑂 (𝜎2).

This result is similar to that in Lemma 4.8.
We can further build the error recursion of ‖𝐻22,𝑡 − ∇22𝑔(w𝑡 , u𝑡 )‖2

2 similar to
Lemma 4.1, and the error recursion of ‖u𝑡 − u∗ (w𝑡 )‖2

2 similar to Lemma 4.20.
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Combining these results, we can establish a complexity of 𝑂 (1/𝜖4) for finding an
𝜖-stationary solution of 𝐹 (·) in expectation.

4.5.3.2 Approach 2: The Neumann Series (Matrix Taylor Approximation)

If the lower level problem is high-dimensional such that it is prohibited to compute
the Hessian, one approach is to leverage the Neuman series:

𝐴−1 =
∞∑
𝑖=0

(𝐼 − 𝐴)𝑖 , if ‖𝐴‖ ≤ 1. (4.71)

Hence, if ‖∇22𝑔(w𝑡 , u𝑡 )‖ ≤ 𝐿22, we estimate the inverse of 1
𝐿22

∇22𝑔(w𝑡 , u𝑡 ), yield-
ing

(∇22𝑔(w𝑡 , u𝑡 ))−1 ≈ 1
𝐿22

𝐾−1∑
𝑖=0

(
𝐼 − 1

𝐿22
∇22𝑔(w𝑡 , u𝑡 )

) 𝑖
. (4.72)

This can be further estimated by a stochastic route, by sampling 𝑘 from {0, . . . , 𝐾−1}
randomly, then estimate the Hessian inverse by

𝑄22,𝑡 =

{
𝐾
𝐿22

∏𝑘
𝑖=1

(
𝐼 − 1

𝐿22
∇22𝑔(w𝑡 , u𝑡 ; 𝜁𝑖)

)
if 𝑘 ≥ 1

𝐾
𝐿22
𝐼 if 𝑘 = 0

. (4.73)

This is can be justified by

E[𝑄22,𝑡 ] =
1
𝐾

𝐾

𝐿22
𝐼 + 𝐾 − 1

𝐾
E𝑘∼{1,...,𝐾−1}

[
𝐾

𝐿22

𝑘∏
𝑖=1

(
𝐼 − 1

𝐿22
E[∇22𝑔(w𝑡 , u𝑡 ; 𝜁𝑖)]

)]
= E𝑘

𝐾

𝐿22

(
𝐼 − 1

𝐿2
∇22𝑔(w𝑡 , u𝑡 )

) 𝑘
=
𝐾−1∑
𝑘=0

1
𝐿22

(
𝐼 − 1

𝐿22
∇22𝑔(w𝑡 , u𝑡 )

) 𝑘
.

Then the vanilla gradient estimator of w𝑡 and its MA estimator are computed by

z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁1,𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 ; 𝜁 ′2,𝑡 )>𝑄22,𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁1,𝑡 )
v𝑡 = (1 − 𝛽)v𝑡−1 + 𝛽z𝑡 .

(4.74)

Convergence Analysis

We provide a proof sketch below. We can understand that z𝑡 is a unbiased stochastic
estimator of

M̂(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )>E[𝑄22,𝑡 ]∇2 𝑓 (w𝑡 , u𝑡 ).
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Wedecompose the estimation error of v𝑡 similarly as in (4.70) and bound ‖M̂(w𝑡 , u𝑡 )−
∇𝐹 (w𝑡 )‖2

2 by

‖M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2 ≤ 2‖M(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2

2

+ 2‖M̂(w𝑡 , u𝑡 ) −M(w𝑡 , u𝑡 )‖2
2.

The error recursion of the first term on the right hand side can be similarly bounded
as before. To bound the last error, since[

∇2
22𝑔(w, u)

]−1
= E[𝑄22] +

1
𝐿22

∞∑
𝑖=𝐾

[
𝐼 − 1

𝐿22
∇2

22𝑔(w, u)
] 𝑖
,

we have

‖M(w𝑡 , u𝑡 ) − M̂(w𝑡 , u𝑡 )‖2
2 ≤ 𝑂 (‖

[
∇2

22𝑔(w, u)
]−1 − E[𝑄22] ‖2

2)


[∇2
22𝑔(w, u)

]−1 − E[𝑄22]





2
≤ 1
𝐿22

∞∑
𝑖=𝐾





𝐼 − 1
𝐿22

∇2
22𝑔(w, u)





𝑖
2
≤ 1
𝜇𝑔

(
1 −

𝜇𝑔

𝐿22

)𝐾
.

As a result, if 𝐾 = 𝑂 ( 𝐿22
𝜇𝑔

log(1/(𝜇𝑔𝛽𝑡𝜎2))), then ‖M(w𝑡 , u𝑡 ) − M′ (w𝑡 , u𝑡 )‖2
2 ≤

𝑂 (𝛽𝑡𝜎2). Then similar to the analysis of approach 1, we can establish a complexity
of 𝑂 (1/𝜖4) for finding an 𝜖-stationary solution of 𝐹 (·) in expectation.

4.5.3.3 Approach 3: The penalty method

An alternative approach to avoid computing the Hessian inverse and Jacobian ma-
trices is to reformulate the problem as a constrained optimization problem:

min
w,u

𝑓 (w, u)

s.t. 𝑔(w, u) ≤ min
u
𝑔(w, u).

This constrained problem can be addressed using a penaltymethod (see Chapter 6.7):

min
w,u

𝑓 (w, u) + 𝜆
(
𝑔(w, u) − min

y
𝑔(w, y)

)
+,

where 𝜆 > 0 is a penalty parameter and (·)+ denotes the positive part. Since
𝑔(w, u) ≥ miny 𝑔(w, y), the formulation simplifies to:

min
w,u

𝑓 (w, u) + 𝜆
(
𝑔(w, u) − min

y
𝑔(w, y)

)
(4.75)

= min
w,u

max
y

𝑓 (w, u) + 𝜆 (𝑔(w, u) − 𝑔(w, y)) . (4.76)
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If both 𝑓 and 𝑔 are smooth and 𝑔 is strongly convex in its second argument, the result-
ing formulation becomes a non-convex strongly-concave min-max problem, which
can be effectively addressed using the SMDA algorithm with the following update
for 𝑡 ≥ 1:

y𝑡+1 = y𝑡 + 𝛾𝑡𝜆∇2𝑔(w𝑡 , y𝑡 ; 𝜉𝑡 ),

z𝑡 = ∇ 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) + 𝜆
(
∇𝑔(w𝑡 , u𝑡 ; 𝜉𝑡 ) −

[
∇1𝑔(w𝑡 , y𝑡 ; 𝜉𝑡 )

0

] )
,

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 ,[
w𝑡+1

u𝑡+1

]
=

[
w𝑡
u𝑡

]
− 𝜂𝑡v𝑡 .

(4.77)

Convergence Analysis

The convergence analysis of (4.77) for the min–max problem (4.75) follows a sim-
ilar approach to that of Theorem 4.5 for SMDA. However, a remaining challenge
lies in converting the convergence result for the min–max formulation into that of
the original problem. To address this, we provide the detailed convergence analysis
below. We begin by stating the following assumption.

Assumption 4.9. Regarding the problem (4.64), the following conditions hold:

(i) 𝑔(w, u) is 𝜇-strongly concave in terms of u.
(ii) ∇ 𝑓 (w, u) is 𝐿 𝑓 -Lipschitz continuous such that

‖∇ 𝑓 (w1, u1) − ∇ 𝑓 (w2, u2)‖2 ≤ 𝐿 𝑓





(w1

u1

)
−

(
w2

u2

)




2
. (4.78)

(iii) ∇𝑔(w, u) is 𝐿𝑔-Lipschitz continuous such that

‖∇𝑔(w1, u1) − ∇𝑔(w2, u2)‖2 ≤ 𝐿𝑔





(w1

u1

)
−

(
w2

u2

)




2
. (4.79)

(iv) there exist 𝜎 𝑓 , 𝜎𝑔 such that

E[‖∇ 𝑓 (w, u; 𝜁) − ∇ 𝑓 (w, u)‖2
2] ≤ 𝜎2

𝑓 , (4.80)

E[‖∇𝑔(w, u; 𝜉) − ∇𝑔(w, u)‖2
2] ≤ 𝜎2

𝑔 . (4.81)

(v) min
w,u

𝑓 (w, u) ≥ −∞.

Let us define w̄ = (w, u) and

𝑓 (w̄, y) = 𝑓 (w, u) + 𝜆 (𝑔(w, u) − 𝑔(w, y)) (4.82)
𝐹̄ (w̄) = max

y
𝑓 (w̄, y). (4.83)
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Then

∇1 𝑓 (w̄, y) = ∇ 𝑓 (w, u) + 𝜆
(
∇𝑔(w, u) −

[
∇1𝑔(w, y)

0

] )
,

∇2 𝑓 (w̄, y) = −𝜆∇2𝑔(w, y),

∇1 𝑓 (w̄, y; 𝜀) = ∇ 𝑓 (w, u; 𝜁) + 𝜆
(
∇𝑔(w, u; 𝜉) −

[
∇1𝑔(w, y; 𝜉)

0

] )
,

∇2 𝑓 (w̄, y; 𝜉) = −𝜆∇2𝑔(w, y; 𝜉).

where 𝜀 = (𝜁, 𝜉). We first show 𝑓 (w̄, y) satisfies the conditions in Assumption (4.8).

Lemma 4.25 Under Assumption 4.9, we have

(i) 𝑓 (w̄, y) is 𝜇𝜆-strongly concave in terms of u.
(ii) ∇1 𝑓 (w̄, y) is Lipschitz continuous, i.e.,

‖∇1 𝑓 (w̄1, y1) − ∇1 𝑓 (w̄2, y2)‖2 ≤ (𝐿 𝑓 + 2𝐿𝑔𝜆) (‖w̄1 − w̄2‖2 + ‖y1 − y2‖2).

(iii) ∇2 𝑓 (w̄, y) is Lipschitz continuous, i.e.,

‖∇2 𝑓 (w̄1, y1) − ∇2 𝑓 (w̄2, y2)‖2 ≤ 𝐿𝑔𝜆‖w̄1 − w̄2‖2 + 𝐿𝑔𝜆‖y1 − y2‖2.

(iv)

E[‖∇1 𝑓 (w̄, y; 𝜀) − ∇1 𝑓 (w̄, y)‖2
2] ≤ 3𝜎2

𝑓 + 6𝜆2𝜎2
𝑔 ,

E[‖∇2 𝑓 (w̄, y; 𝜉) − ∇2 𝑓 (w̄, y)‖2
2] ≤ 𝜆2𝜎2

𝑔 .

(v) 𝐹̄ (w̄) := maxy 𝑓 (w̄, y) ≥ −∞.

Proof. (i) is obvious. The Lipschitz continuity of∇1 𝑓 (w̄, y) follows that of∇ 𝑓 (w, u)
and ∇𝑔(w, u). For (iii), we have

‖∇2 𝑓 (w̄1, y1) − ∇2 𝑓 (w̄2, y2)‖2 = 𝜆‖∇2𝑔(w1, u1) − ∇2𝑔(w2, u2)‖2

≤ 𝜆‖∇𝑔(w1, u1) − ∇𝑔(w2, u2)‖2 ≤ 𝜆𝐿𝑔




(w1

u1

)
−

(
w2

u2

)




2

≤ 𝜆𝐿𝑔 (‖w1 − w2‖2 + ‖u1 − u2‖2) ≤ 𝜆𝐿𝑔 (‖w̄1 − w̄2‖2 + ‖u1 − u2‖2).

It is trivial to prove (iv). The last result follows that maxy 𝑓 (w̄, y) ≥ 𝑓 (w, u) ≥
∞. ut

Theorem 4.6 Suppose Assumption 4.9 hold. By setting
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𝛽𝑡 = 𝛽 =
𝜖2

9𝜎2
𝑓 + 18𝜆2𝜎2

𝑔

,

𝛾𝑡 = 𝛾 =
𝜇𝑔𝜖

2

96(𝐿 𝑓 + 2𝐿𝑔𝜆)2𝜆𝜎2
𝑔

,

𝜂𝑡 =

min

{
𝛽

√
8(𝐿 𝑓 + 2𝐿𝑔𝜆) (1 + 𝐿𝑔)

,
𝛾𝜇𝑔𝜆

16
√

3(𝐿 𝑓 + 2𝐿𝑔𝜆)𝐿𝑔
,

1
2(𝐿 𝑓 + 2𝐿𝑔𝜆) (1 + 𝐿𝑔)

}
in (4.77), then the following holds

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 +


∇𝐹̄ (w̄𝑡 )

2

2

}]
≤ 𝜖2, (4.84)

with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝜆

𝜖2 ,
𝐶Υ (𝜆𝜎2

𝑓 + 𝜆3𝜎2
𝑔)

𝜖4 ,
𝐶Υ𝜆

3𝜎2
𝑔

𝜖4𝜇2
𝑔

})
, (4.85)

where 𝐶Υ = 2(𝐹̄ (w̄0) − minw̄ 𝐹̄ (w̄)) + 1√
8𝐿𝐹

‖v0 − ∇𝐹̄ (w̄0)‖2
2 +

𝐿1√
3𝜅
‖y0 − y∗ (w0)‖2

2.

Proof. We map the problem into the setting in Theorem 4.5 with 𝐿1 = 𝐿 𝑓 +
2𝐿𝑔𝜆, 𝐿21 = 𝐿𝑔𝜆, 𝐿2 = 𝐿𝑔𝜆, 𝜇 = 𝜇𝑔𝜆, 𝜅 = 𝐿21/(𝜇𝑔𝜆) = 𝐿𝑔, 𝐿𝐹 = 𝐿1 (1 + 𝜅) =
(𝐿 𝑓 + 2𝐿𝑔𝜆) (1 + 𝐿𝑔), 𝜎2

1 = 3𝜎2
𝑓 + 6𝜆2𝜎2

𝑔 , 𝜎
2
2 = 𝜆2𝜎2

𝑔 . Then, plugging these values
into the result in Theorem 4.5, we obtain the results. ut

Convergence of the original function

Next, we derive the convergence of the original function in terms of ‖∇𝐹 (w)‖2. We
need the following additional assumption.

Assumption 4.10. (i) 𝑔 is twice differentiable and ∇21𝑔(w, u) and ∇𝑔22 (w, u) are
𝐿𝑔𝑔-Lipschitz continuous; and (ii) ‖∇2 𝑓 (w, u)‖2 ≤ 𝐺 𝑓 .

Lemma 4.26 Let u∗
𝜆 (w) = arg minu 𝐹̄ (w, u), u∗ (w) = arg minu 𝑔(w, u). Under As-

sumption 4.10(i), we have

‖∇𝐹 (w) − ∇1𝐹̄ (w, u∗
𝜆 (w))‖2 ≤ 𝐿 𝑓 (1 +

𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗ (w)‖2

+ 𝐿𝑔𝑔𝜆(1 +
𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗ (w)‖2
2.

Proof. Let u∗ = u∗ (w). Then,
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∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u) + 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗))
∇2𝐹̄ (w, u) = ∇2 𝑓 (w, u) + 𝜆∇2𝑔(w, u).

Due to Lemma 4.24, we have

∇𝐹 (w) − ∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)
− ∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1∇2 𝑓 (w, u∗) − 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗)).

(4.86)

We can rearrange terms for (∇1𝑔(w, u) − ∇1𝑔(w, u∗)) as the following:

∇1𝑔(w, u) − ∇1𝑔(w, u∗) = ∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗)
+ ∇12𝑔(w, u∗)> (u − u∗).

(4.87)

To continue, we have

u − u∗ = − ∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗) (u − u∗))
+ ∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗)).

By the optimality condition for u∗, ∇2𝑔(w, u∗) = 0, and ∇2𝐹̄ (w, u) = ∇2 𝑓 (w, u) +
𝜆∇2𝑔(w, u), we can express u − u∗ as

u − u∗ = −∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗) (u − u∗))

+ 1
𝜆
∇22𝑔(w, u∗)−1 (∇2𝐹̄ (w, u) − ∇2 𝑓 (w, u)).

(4.88)

Plugging (4.87) and (4.88) back to (4.86), we have

∇𝐹 (w) − ∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)
− ∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1∇2 𝑓 (w, u∗)
− 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗))
+ 𝜆∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗) (u − u∗))
− ∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1 (∇2𝐹̄ (w, u) − ∇2 𝑓 (w, u)).

As a result, we have

∇𝐹 (w) − ∇1𝐹̄ (w, u) + ∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1∇2𝐹̄ (w, u)
= ∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)
− ∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1 (∇2 𝑓 (w, u∗) − ∇2 𝑓 (w, u))
− 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗))
+ 𝜆∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗)(u − u∗)).
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By the Assumption 4.10 we have

‖∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗)‖2 ≤ 𝐿𝑔𝑔‖u − u∗‖2
2,

‖∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗)(u − u∗)‖2 ≤ 𝐿𝑔𝑔‖u − u∗‖2
2.

By the Assumption 4.9 we have

‖∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)‖2 ≤ 𝐿 𝑓 ‖u∗ − u‖2,

‖∇2 𝑓 (w, u∗) − ∇2 𝑓 (w, u)‖2 ≤ 𝐿 𝑓 ‖u∗ − u‖2,

‖∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1‖2 ≤
𝐿𝑔

𝜇𝑔
.

Thus, we have

‖∇𝐹 (w) − ∇1𝐹̄ (w, u) + ∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1∇2𝐹̄ (w, u)‖2

≤ 𝐿 𝑓 (1 +
𝐿𝑔

𝜇𝑔
)‖u − u∗‖2 + 𝐿𝑔𝑔𝜆(1 +

𝐿𝑔

𝜇𝑔
)‖u − u∗‖2

2.

Plugging u = u∗
𝜆 (w) = minu 𝐹̄ (w, u), then ∇2𝐹̄ (w, u∗

𝜆 (w)) = 0 and then we have

‖∇𝐹 (w) − ∇1𝐹̄ (w, u∗
𝜆 (w))‖2

≤ 𝐿 𝑓 (1 +
𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗‖2 + 𝐿𝑔𝑔𝜆(1 +
𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗‖2
2.

ut

Next, we bound ‖u∗
𝜆 (w) − u∗ (w)‖2.

Lemma 4.27 Under Assumption 4.10(ii), we have ‖u∗
𝜆 (w) − u∗ (w)‖2 ≤ 𝐺 𝑓

𝜆𝜇𝑔
.

Proof. By the definitions of u∗
𝜆 (w), u∗ (w), we have

u∗
𝜆 (w) = arg min

u

1
𝜆
𝑓 (w, u) + 𝑔(w, u)

u∗ (w) = arg min
u
𝑔(w, u).

By the optimality condition,

1
𝜆
∇2 𝑓 (w, u∗

𝜆 (w)) + ∇2𝑔(w, u∗
𝜆 (w)) = 0

∇2𝑔(w, u∗ (w)) = 0.

Since 𝑔(w, u) is 𝜇𝑔-strongly convex w.r.t u for any w, then we have
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𝑔(w, u∗
𝜆 (w)) ≥𝑔(w, u∗ (w)) + ∇2𝑔(w, u∗ (w))> (u∗

𝜆 (w) − u∗ (w))

+
𝜇𝑔

2
‖u∗
𝜆 (w) − u∗ (w)‖2

2

𝑔(w, u∗ (w)) ≥𝑔(w, u∗
𝜆 (w)) + ∇2𝑔(w, u∗

𝜆 (w))> (u∗ (w) − u∗
𝜆 (w))

+
𝜇𝑔

2
‖u∗
𝜆 (w) − u∗ (w)‖2

2.

Adding these two inequalities yields:

𝜇𝑔‖u∗
𝜆 (w) − u∗ (w)‖2

2 ≤ −∇2𝑔(w, u∗
𝜆 (w))> (u∗ (w)) − u∗

𝜆 (w)))

=
1
𝜆
∇2 𝑓 (w, u∗

𝜆 (w))> (u∗ (w)) − u∗
𝜆 (w)))

≤ 1
𝜆
‖∇2 𝑓 (w, u∗

𝜆 (w))‖2‖(u∗ (w)) − u∗
𝜆 (w))‖2.

Dividing both sides by ‖u∗ (w)) − u∗
𝜆 (w)‖2 and noting ‖∇2 𝑓 (w, u∗

𝜆 (w))‖2 ≤ 𝐺 𝑓

concludes the proof.
ut

Corollary 4.2 Under the same setting as in Theorem 4.6 with 𝜆 = 𝑂 ( 1
𝜖 ) > 2𝐿 𝑓 /𝜇𝑔

and assume ‖y0 − y∗ (w0)‖2
2 ≤ 𝑂 (𝜖), then the following holds

E [‖∇𝐹 (w𝜏)‖2] ≤ 𝑂 (𝜖), (4.89)

with an iteration complexity of

𝑇 = 𝑂

(
max

{
1
𝜖3 ,

𝜎2
𝑓

𝜖5 ,
𝜎2
𝑔

𝜖7

})
, (4.90)

where 𝜏 ∈ {0, . . . , 𝑇 − 1} is randomly sampled.

Proof. Combining Lemma 4.25 and Lemma 4.27, we have

‖∇𝐹 (w𝜏)‖2 = ‖∇𝐹 (w𝜏) − ∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏))‖2 + ‖∇1𝐹̄ (w𝜏 , u∗

𝜆 (w𝜏))‖2

≤ 𝐿 𝑓 (1 +
𝐿𝑔

𝜇𝑔
)
𝐺 𝑓

𝜇𝑔𝜆
+ 𝐿𝑔𝑔𝜆(1 +

𝐿𝑔

𝜇𝑔
)
𝐺2
𝑓

𝜇2
𝑔𝜆2

+ ‖∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏)) − ∇1𝐹̄ (w𝜏 , u𝜏)‖2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2

≤
2𝐿 𝑓 𝐿𝑔𝐺 𝑓

𝜇2
𝑔𝜆

+
2𝐿𝑔𝑔𝐿𝑔𝐺2

𝑓

𝜇3
𝑔𝜆

+ ‖∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏)) − ∇1𝐹̄ (w𝜏 , u𝜏)‖2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2.

Since 𝐹̄ (w, u) is (𝜆𝜇𝑔 − 𝐿 𝑓 )-strongly convex w.r.t u, Lemma 1.6(c) implies that
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(𝜆𝜇𝑔 − 𝐿 𝑓 )‖u∗
𝜆 (w𝜏) − u𝜏 ‖2

2 ≤ 1
(𝜆𝜇𝑔 − 𝐿 𝑓 )

‖∇2𝐹̄ (w𝜏 , u𝜏) − ∇2𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏))‖2

2

=
1

(𝜆𝜇𝑔 − 𝐿 𝑓 )
‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

2

Due to ∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u) + 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗ (w))), we have

‖∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏)) − ∇1𝐹̄ (w𝜏 , u𝜏)‖2 ≤ (𝐿 𝑓 + 𝜆𝐿𝑔)‖u∗

𝜆 (w𝜏) − u𝜏 ‖2

≤
(𝐿 𝑓 + 𝜆𝐿𝑔)
(𝜆𝜇𝑔 − 𝐿 𝑓 )

‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

≤
2(𝜆𝜇𝑔/2 + 𝜆𝐿𝑔)

𝜆𝜇𝑔
‖∇2𝐹̄ (w𝜏 , u𝜏)‖2 =

𝜇𝑔 + 2𝐿𝑔
𝜇𝑔

‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

where the last inequality uses 𝐿 𝑓 ≤ 𝜆𝜇𝑔/2. Combining the above inequalities, we
obtain

‖∇𝐹 (w𝜏)‖2 ≤
2𝐿 𝑓 𝐿𝑔𝐺 𝑓

𝜇2
𝑔𝜆

+
2𝐿𝑔𝑔𝐿𝑔𝐺2

𝑓

𝜇3
𝑔𝜆

+
𝜇𝑔 + 2𝐿𝑔
𝜇𝑔

‖∇2𝐹̄ (w𝜏 , u𝜏)‖2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2.

From Theorem 4.6, we have

E
[
‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2
2
]
≤ 𝜖2.

Hence, it follows that E[‖∇2𝐹̄ (w𝜏 , u𝜏)‖2] ≤ 𝜖 and E[‖∇1𝐹̄ (w𝜏 , u𝜏)‖2] ≤ 𝜖 . If 𝜆 =
𝑂 (1/𝜖), then E[‖∇𝐹 (w𝜏)‖2] ≤ 𝑂 (𝜖). The iteration complexity can be established
by substituting 𝜆 = 𝑂 (1/𝜖) into Theorem 4.6 and noting that 𝐶Υ = 𝑂 (1) when
‖y0 − y∗ (w0)‖2

2 ≤ 𝑂 (𝜖).
ut
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Critical: The complexity of 𝑂 (1/𝜖7) is not the state-of-the-art sample com-
plexity achievable under the same assumptions. Indeed, a double-loop large-
batch method—similar to the one presented in Section 4.5.1.1 for solving the
min-max problem minw̄ maxy 𝑓 (w̄, y)—can yield a superior sample complex-
ity of 𝑂 (1/𝜖6) for achieving the stationarity condition E[‖∇𝐹 (w)‖2] ≤ 𝜖2.
To see this, we apply the results from Section 4.5.1.1, which indicates that a
sample complexity for achieving E[‖∇𝐹̄ (w̄)‖2

2] ≤ 𝜖2 is 𝑂
(
𝐿̄𝐹 𝜎̄

2
1

𝜖 4 + 𝐿̄𝐹 𝐿̄
2
1 𝜎̄

2
2

𝜇̄2 𝜖 4

)
.

Here, 𝐿̄𝐹 denotes the smoothness constant of the objective function 𝐹̄ (w̄) =
maxy 𝑓 (w̄, y). The remaining parameters are defined as follows:

• 𝐿̄1 = 𝑂 (𝜆) is the Lipschitz constant of ∇1 𝑓 (·, ·);
• 𝜇̄ = 𝑂 (𝜆) is the strong concavity parameter of 𝑓 (·, y) with respect to y;
• 𝜎̄2

2 = 𝑂 (𝜆2) represents the variance of the stochastic gradient with respect
to y;

• 𝜎̄2
1 = 𝑂 (𝜆2) is the variance of the stochastic gradient with respect to w̄ =

(w, u).
Given that we can establish 𝐿̄𝐹 = 𝑂 (1) independent of 𝜆 (Chen et al., 2025a,
see Lemma B.7) and 𝜆 = 𝑂 (1/𝜖), the total sample complexity reduces to
𝑂 (1/𝜖6).
However, it remains an open problem to develop a single-loop stochastic algo-
rithm that achieves 𝑂 (1/𝜖6) complexity without requiring a large batch size
or assuming mean-square smoothness (see next section for more discussion).

4.6 History and Notes

The optimization techniques presented in this chapter for stochastic compositional
optimization are rooted in the pioneering work of Yuri Ermoliev (Ermoliev, 1976;
Ermoliev and Wets, 1988). The monograph (Ermoliev, 1976), written in Ukrainian,
laid the early foundations. Chapter 6 of the edited volume (Ermoliev andWets, 1988)
introduces an early form of the Stochastic Compositional Gradient Descent (SCGD)
method, employing a sequence of moving average estimators u𝑡 to track the inner
function values at each iteration—referred to then simply as“averaging.”The con-
vergence analysis in these early works is largely limited to asymptotic results, if
provided at all. Notably, these works considered a broader class of problems with
functional constraints, which will be discussed further in Chapter 6.

The study of non-smooth compositional optimization, where a non-smooth con-
vex function is composed with a smooth function, was first initiated in the works
of Fletcher and Watson (1980); Fletcher (1982). Their proposed method, known as
the prox-linear method, has since been extensively studied and developed in subse-
quent research (Lewis andWright, 2009; Duchi and Ruan, 2018; Drusvyatskiy et al.,
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2021; Duchi and Ruan, 2017; Drusvyatskiy and Paquette, 2019). We will consider
non-smooth compositional optimization in next chapter.

The modern convergence analysis with non-asymptotic rates for stochastic com-
positional optimization was pioneered by Wang et al. (2017a). Their initial analysis
established an 𝑂 (1/𝜖8) complexity for finding an 𝜖-stationary solution to a smooth
compositional problem, primarily due to suboptimal choices of learning rates. Sub-
sequent works have aimed to improve this convergence rate (Ghadimi et al., 2020;
Wang et al., 2017b; Chen et al., 2021a). The improved complexity of 𝑂 (1/𝜖5) for
SCGD is derived by following the parameter settings introduced in Qi et al. (2021c).
A further refined complexity of 𝑂 (1/𝜖4), under the assumption that the inner func-
tion is smooth, was achieved in Chen et al. (2021a). The use of a moving-average
gradient estimator to attain the 𝑂 (1/𝜖4) complexity in stochastic compositional op-
timization is credited to (Ghadimi et al., 2020).

The modern variance-reduction technique for estimating the gradient of a smooth
function originates from (Johnson and Zhang, 2013; Mahdavi and Jin, 2013; Zhang
et al., 2013), and was inspired by earlier work (Schmidt et al., 2017) that estab-
lished linear convergence for finite-sum problems with convex and smooth objec-
tives. This technique is now widely known as SVRG. For the objective function
𝑓 (w) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (w), the SVRG gradient estimator takes the form ∇ 𝑓𝑖 (w𝑡 ) −

∇ 𝑓𝑖 (w̄) + ∇ 𝑓 (w̄), where w̄ is a reference point whose full gradient ∇ 𝑓 (w̄) is com-
puted periodically.

For non-convex optimization, the variance reduction technique named SPIDER
was initiated by Fang et al. (2018), which proposes a gradient estimator v𝑡 =
v𝑡−1 + ∇ 𝑓𝑖 (w𝑡 ) − ∇ 𝑓𝑖 (w𝑡−1), with v being periodically re-initialized using either
a full gradient or a large-batch gradient. This approach was earlier proposed under
the name SARAH for convex optimization in (Nguyen et al., 2017). The technique
later evolved into the STORM estimator (Cutkosky and Orabona, 2019), defined as
v𝑡 = (1− 𝛽)v𝑡−1 + 𝛽∇ 𝑓 (w𝑡 ; 𝜉𝑡 ) + (1− 𝛽) [∇ 𝑓 (w𝑡 ; 𝜉𝑡 ) − ∇ 𝑓 (w𝑡−1; 𝜉𝑡 )], which elim-
inates the need for periodic re-initialization.

Huo et al. (2018) applied the SVRG technique for finite-sum compositional opti-
mization where both the inner and outer expectation is an average over a finite set.
Hu et al. (2019) and Zhang and Xiao (2019) concurrently applied SARAH/SPIDER
to compositional optimization with an expectation form and a finite-sum structure,
and derived a complexity of 𝑂 (1/𝜖3) for the expectation form and 𝑂 (√𝑛/𝜖2) for a
finite-sum structure with 𝑛 components. Qi et al. (2021a) applied the STORM esti-
mator for SCO with a complexity of 𝑂 (1/𝜖3) and Chen et al. (2021b) applied the
STORM estimator to only the inner function estimation for SCO with a complexity
of 𝑂 (1/𝜖4).

The capped ℓ1 norm for sparse regularization was introduced by Zhang (2013).
The minimax concave penalty (MCP) was proposed by Zhang (2010), while the
smoothly clipped absolute deviation (SCAD) regularizer was introduced by Fan and
Li (2001). The proximal mappings for these non-convex regularizers were studied
in (Gong et al., 2013). The non-convex piecewise affine regularization method for
quantization was proposed by Ma and Xiao (2025). The theoretical analysis pre-
sented in Section 4.4 on non-convex optimization with non-convex regularizers fol-
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lows the framework established by Xu et al. (2019a), whose results were applied
by Deleu and Bengio (2021) to train sparse deep neural networks.

Stochastic weakly-convex–concave min–max optimization with a complexity of
𝑂 (1/𝜖6) was first studied by Rafique et al. (2018). When the problem is weakly-
convex and strongly-concave, the complexity can be improved to 𝑂 (1/𝜖4) using
double-loop algorithms (Rafique et al., 2018; Yan et al., 2020a). The analysis of
SGDA for smooth non-convex min-max optimization was first established by Lin
et al. (2020), who derived a complexity of 𝑂 (1/𝜖4) when using a large batch size
on the order of 𝑂 (1/𝜖2) for problems that are strongly concave in the dual variable.
Without employing a large batch size, the complexity degrades to 𝑂 (1/𝜖8), which
also applies to problems lacking strong concavity. The analysis of the single-loop
SMDA algorithm was provided by (Guo et al., 2021b), which also established the
convergence guarantees for stochastic bilevel optimization using the first approach
introduced in Section 4.5.3. A similar convergence result was achieved in Qiu et al.
(2020), which employed moving-average gradient estimators for both the primal and
dual variables. Chen et al. (2021a) obtained a complexity of𝑂 (1/𝜖4) for smooth non-
convex strongly-concave problems without relying on moving-average gradient esti-
mators, under the stronger assumption that the Hessian/Jacobian matrix is Lipschitz
continuous. An improved rate of 𝑂 (1/𝜖3) for smooth non-convex strongly-concave
problems was established by (Huang et al., 2022) through the use of STORM esti-
mators.

Bilevel optimization has a long and rich history (Bracken and McGill, 1973). The
first complexity analysis of bilevel optimization was initiated by Ghadimi and Wang
(2018), who employed the Neumann series to approximate the inverse of the Hes-
sian. Their proposed double-loop stochastic algorithm achieves a sample complexity
of𝑂 (1/𝜖6) for solving the lower-level problem and𝑂 (1/𝜖4) for the upper-level prob-
lem. Subsequent research has led to improved complexity bounds:𝑂 (1/𝜖5) in (Hong
et al., 2020), 𝑂 (1/𝜖4) in (Ji et al., 2020; Guo et al., 2021b; Chen et al., 2021a), and
further down to 𝑂 (1/𝜖3) in (Yang et al., 2021; Khanduri et al., 2021; Guo et al.,
2021a) under mean-square smoothness conditions. The analysis corresponding to
Approach 1 in Section 4.5.3 can be found in (Qiu et al., 2022), while that of Ap-
proach 2 is provided in (Guo et al., 2021b).

Penalty-based metholds for bilevel optimization date back to (Ye et al., 1997),
with recent developments appearing in (Liu et al., 2021, 2022; Shen andChen, 2023).
Lemma 4.26 is due to Kwon et al. (2023), which established a sample complexity of
𝑂 (1/𝜖7)—comparable to Theorem 4.6—for a different double-loop algorithm. They
also derived a complexity of 𝑂 (1/𝜖6) for an algorithm similar to update (4.77), ex-
cept that the gradient estimators for both the lower- and upper-level functions are
replaced with STORM estimators under stronger mean-square smoothness assump-
tions.

The complexity of 𝑂 (1/𝜖4) for stochastic compositional optimization is known
to be optimal, as it matches the lower bound established for standard stochastic opti-
mization (Arjevani et al., 2022). Moreover, under mean-square smoothness assump-
tions, a reduced complexity of 𝑂 (1/𝜖3) is also proven to be optimal (Arjevani et al.,
2022).
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Chapter 5
Advances: Finite-sum Coupled Compositional
Optimization

Abstract In this chapter, we study a novel family of stochastic compositional
optimization problems namely finite-sum coupled compositional optimization
(FCCO), and introduce algorithms for solving them. These algorithms have direct
applications in addressing the empirical X-risk minimization challenges discussed in
Chapter 2. To ensure broad applicability, we examine various settings of this prob-
lem, characterized by different properties of outer and inner functions, including
smooth and non-smooth cases, as well as convex, weakly convex, and non-convex
scenarios. The results presented here also significantly extend and complement those
discussed in Chapter 4. We also discuss how to efficiently optimize compositional
optimized certainty equivalent risks, especially compositional entropic risk.

Coupling reveals depth where composition meets reality!
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5.1. FINITE-SUM COUPLED COMPOSITIONAL OPTIMIZATION

5.1 Finite-sum Coupled Compositional Optimization

Specifically, we focus on the following optimization problem:

min
w∈R𝑑

𝐹 (w) :=
1
𝑛

𝑛∑
𝑖=1

𝑓𝑖
(
E𝜁∼P𝑖𝑔𝑖 (w; 𝜁)

)
, (5.1)

where 𝑔𝑖 (·; 𝜁) : R𝑑 → R𝑑
′ is a stochastic mapping, 𝑓𝑖 (·) : R𝑑′ → R is a determin-

istic function, and P𝑖 denotes the distribution of the random variable 𝜁 .
We refer to this problem as finite-sum coupled compositional optimization

(FCCO). If we interpret 𝑖 as an outer random variable, a distinctive feature that sets
FCCO apart from standard stochastic compositional optimization (SCO) is that each
inner stochastic function 𝑔𝑖 (w; 𝜁) depends on both an inner random variable 𝜁 and an
outer index 𝑖, giving rise to the term coupled. While this problem can be cast as a spe-
cial case of SCO by defining 𝑓 (g) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖) and g(w) = [𝑔1 (w), . . . , 𝑔𝑛 (w)],

the high dimensionality of g due to large 𝑛, along with its stochastic components, sig-
nificantly complicates the construction of unbiased estimators and theoretical anal-
ysis. Therefore, FCCO warrants the development of specialized optimization meth-
ods.

Below, we revisit several applications of FCCO in ML and discuss the properties
of 𝑓𝑖 and 𝑔𝑖 .

Group DRO

In Section 2.2.3, we have formulated the CVaR divergence regularized group DRO
as

min
w,𝜈

1
𝐾𝛼

𝐾∑
𝑖=1

[𝐿𝑖 (w) − 𝜈]+ + 𝜈, (5.2)

where 𝛼 ∈ (0, 1), 𝐿𝑖 (w) = 1
𝑛𝑘

∑𝑛𝑘
𝑗=1 ℓ(w; x𝑖𝑗 , 𝑦

𝑖
𝑗 ) denotes the average loss over data

from the 𝑖-th group. The first term above is an instance of the FCCO objective, where
the outer function 𝑓 (𝑔) = ( [𝑔]1 − [𝑔]2)+ is a convex but non-smooth function of
𝑔, and each inner function 𝑔𝑖 (w, 𝜈) = [𝐿𝑖 (w), 𝜈]> could be convex or non-convex,
smooth or non-smooth depending on applications.

AP Maximization

In Section 2.3.2, the APmaximization has been formulated as the following problem:

min
w

1
𝑛+

∑
x𝑖∈S+

𝑓 (𝑔𝑖 (w)), (5.3)
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where S+ is the set of 𝑛+ positive examples, 𝑔𝑖 (w) = [𝑔1 (w; x𝑖 ,S), 𝑔2 (w; x𝑖 ,S)]>
is a vector mapping with two components:

𝑔1 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝑔2 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

and 𝑓 (g) = − [g]1
[g]2

is simple function.We can see that 𝑓 is non-convex and smooth if
the loss value is upper bounded and ℓ(0) is lower bounded. The inner mapping 𝑔𝑖 (w)
could be convex (e.g., a linear model) or non-convex (e.g., a deep model), smooth or
non-smooth depending on applications.

Contrastive Representation Learning

The contrastive objective of self-supervised representation learning presented in (2.50),
is the following:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­«𝜀 + 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ .

The outer function 𝑓 (𝑔) = 𝜏 log(𝜀 + 𝑔) is a non-convex function and smooth when
𝜀 is lower bounded. Each inner function 𝑔𝑖 is a non-convex function of w in general.

5.2 Smooth Functions

In this section, we consider a non-convex but smooth objective function 𝐹 (w) with
smooth outer functions. In addition, we assume the inner stochastic functions satisfy
the following conditions throughout this section.

Assumption 5.1. We assume that

(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2
2] ≤ 𝜎2

0 .
(ii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁) − ∇𝑔𝑖 (w)‖2

2] ≤ 𝜎2
2 .

(iii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁)‖2
2] ≤ 𝐺2

2.
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5.2.1 The SOX Algorithm

The first algorithm for solving FCCO is called SOX, named byStochasticOptimization
ofX-risks. Owing to its ease of implementation and favorable practical performance,
this algorithm is commonly adopted for addressing FCCO. Below, we outline the as-
sumptions necessary for its analysis.

Assumption 5.2. There exist 𝐺1, 𝐿1, 𝐿𝐹 > 0 such that

(i) 𝑓𝑖 : R𝑑′ ↦→ R is 𝐺1-Lipschitz continuous and 𝐿1-smooth;
(ii) 𝐹 : R𝑑 ↦→ R is 𝐿𝐹-smooth;
(iii) 𝐹∗ = minw 𝐹 (w) ≥> −∞.

Similar to that for SCO, we also need to track and estimate the inner functions.
However, the difference is that we need to maintain and update 𝑛 estimators for the
𝑛 inner functions 𝑔𝑖 (w), 𝑖 ∈ [𝑛].

To this end, we maintain 𝑛 sequence of estimators {u𝑖,𝑡 , 𝑡 ∈ [𝑇]}𝑛𝑖=1. At the 𝑡-th
iteration, we draw a set of 𝐵 random indices B𝑡 ⊂ [𝑛] with |B𝑡 | = 𝐵. We update
u𝑖,𝑡 , 𝑖 ∈ [𝑛] by the following:

u𝑖,𝑡 =
{
(1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ), 𝑖 ∈ B𝑡
u𝑖,𝑡−1, o.w. , 𝑡 = 1, . . . , 𝑇, (5.4)

where 𝜁𝑖,𝑡 ∼ P𝑖 is a random variable. We refer to the above estimator as coordinate
moving average estimator. Then, similar to SCMA, a moving average estimator of
the gradient is computed by:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 ,

where z𝑡 =
1

|B𝑡 |
∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ).

Then, the model parameters are updated by:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 .

The detailed steps are presented in Algorithm 14.

Convergence Analysis

Let us first define two notations:

Δ𝑡 = ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 , (5.5)

𝛿𝑡 =
1
𝑛

𝑛∑
𝑖=1



u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2
2 . (5.6)
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Algorithm 14 SOX
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw a batch of samples B𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators

u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) ,

8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute the vanilla gradient estimator z𝑡 = 1

|B𝑡 |
∑
𝑖∈B𝑡 ∇𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
11: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
12: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
13: end for

The descent lemma (Lemma 4.9) remains valid. Next, we analyze the recursion of
Δ𝑡 and 𝛿𝑡 . One point of deviation is that only some randomly selected coordinates
of u are updated and used for computing the gradient estimator z𝑡 . To facilitate the
proof, we introduce a virtual sequence:

ū𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ),∀𝑖 = 1, . . . , 𝑛. (5.7)

This is similar to that is done in the analysis of stochastic coordinate descent method
in Section 3.3. Then, we have

M𝑡 = EB𝑡 ,𝜁 ′𝑡 [z𝑡 ] =
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ).

Critical: Since u𝑡 is a random variable that depends on B𝑡 , hence

EB𝑡 ,𝜁 ′𝑡 [z𝑡 ] ≠
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ).

We first bound the error recursion of 𝛿𝑡 .

Lemma 5.1 Consider the u𝑡 updates in Algorithm 14. Under Assumption 5.1, if 𝛾𝑡 ≤
1, then

E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾𝑡

2𝑛

)
E [𝛿𝑡−1] +

2𝑛𝐺2
2

𝐵𝛾𝑡
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
.

Proof. Since ū𝑖,𝑡 is updated using MA, then similar to (4.6), for all 𝑖 ∈ [𝑛] we have
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5.2. SMOOTH FUNCTIONS

E𝜁𝑖,𝑡 [‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2] ≤ (1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 .

Given 𝑖 ∈ [𝑛], with a probability of 𝐵/𝑛 that 𝑖 ∈ B𝑡 , we have u𝑖,𝑡 = ū𝑖,𝑡 ; otherwise,
u𝑖,𝑡 = u𝑖,𝑡−1. Hence,

E𝜁𝑖,𝑡EB𝑡 [‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2]

=
𝐵

𝑛
E𝜁𝑖,𝑡 [‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2] + (1 − 𝐵

𝑛
)‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2

≤ 𝐵

𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2 +
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
+ (1 − 𝐵

𝑛
)‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2

≤ (1 − 𝐵𝛾𝑡
2𝑛

)2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2
2 +

𝐵𝛾2
𝑡 𝜎

2
0

𝑛
,

where we use the fact 𝐵𝑛 (1 − 𝛾𝑡 )2 + (1 − 𝐵
𝑛 ) ≤ (1 − 𝛾𝑡𝐵

2𝑛 )2. Then, taking expectation
over all randomness on both sides yields

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
≤ (1 − 𝐵𝛾𝑡

2𝑛
)2E

[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
.

Then using the Young’s inequality similar to the proof of Lemma 4.1, we have

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
≤ (1 + 𝐵𝛾𝑡

2𝑛
)(1 − 𝐵𝛾𝑡

2𝑛
)2E

[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2
]

+ (1 + 2𝑛
𝐵𝛾𝑡

) (1 − 𝐵𝛾𝑡
2𝑛

)2E
[
‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛

≤ (1 − 𝐵𝛾𝑡
2𝑛

)E
[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2
]
+

2𝑛𝐺2
2

𝐵𝛾𝑡
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
,

where we use 𝛾𝑡 ≤ 1 < 2𝑛
𝐵 . The desired result follows by taking average over 𝑖 =

1, . . . , 𝑛 on both sides.
ut

Lemma 5.2 (Variance of z𝑡 ) Let 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 . We have

E𝑡
[
‖z𝑡 −M𝑡 ‖2

2
]
≤ 𝜎2.

Proof. First, using the variance bound of the average of 𝐵 independent zero-mean
random variables gives

𝐴1 = E𝑡







 1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ) −
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )





2

2

 ≤
𝐺2

1𝜎
2
2

𝐵
,

and using the variance bound of 𝐵 random variables without replacement yields
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𝐴2 = E𝑡







 1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )





2

2

 ≤
𝐺2

1𝐺
2
2

𝐵

𝑛 − 𝐵
𝑛 − 1

.

As a result,

E𝑡
[
‖z𝑡 −M𝑡 ‖2

2
]

= E𝑡







 1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )





2

2


= 𝐴1 + 𝐴2 ≤

𝐺2
1𝜎

2
2

𝐵
+
𝐺2

1𝐺
2
2

𝐵

𝑛 − 𝐵
𝑛 − 1

:= 𝜎2.

ut

Lemma 5.3 Under Assumptions 5.1 and 5.2, if 𝛽𝑡 ≤ 1, the gradient estimation error
Δ𝑡 can be bounded as

E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E [Δ𝑡−1] +
2𝐿2

𝐹 + 8𝛽2
𝑡𝐺

4
2𝐿

2
1

𝛽𝑡
E

[
‖w𝑡 − w𝑡−1‖2

2
]
+ 8𝛽𝑡𝐿2

1𝐺
2
2E [𝛿𝑡−1]

+ 𝛽2
𝑡𝜎

2 + 4𝐺2
2𝐿

2
1𝛽𝑡𝛾

2
𝑡 𝜎

2
0 ,

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 .

Proof. Since v𝑡 is updated using MA, we apply Lemma 4.7 in light of Lemma 5.2,
yielding

E
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 )E[‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2] (5.8)

+
2𝐿2

𝐹

𝛽𝑡
E[‖w𝑡−1 − w𝑡 ‖2

2] + 4𝛽𝑡E[‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2] + 𝛽2

𝑡𝜎
2.

Next, we bound E[‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2] .

‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 =





1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓 (ū𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓 (𝑔𝑖 (w𝑡 ))




2

2

≤ 𝐺2
2𝐿

2
1
1
𝑛

𝑛∑
𝑖=1

‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

From Lemma 5.1, we have

E𝜁𝑖,𝑡 [‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2] ≤ (1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 ,∀𝑖.

Hence

194
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E
[
1
𝑛

𝑛∑
𝑖=1

‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2

]
≤ (1 − 𝛾𝑡 )2E

[
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2
2

]
+ 𝛾2

𝑡 𝜎
2
0

≤ (1 − 𝛾𝑡 )2E
[
1
𝑛

𝑛∑
𝑖=1

(2‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2
2 + 2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2)
]
+ 𝛾2

𝑡 𝜎
2
0

≤ 2E[𝛿𝑡−1] + 𝛾2
𝑡 𝜎

2
0 + E

[
2𝐺2

2‖w𝑡−1 − w𝑡 ‖2
2

]
.

As a result,

E[‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2] ≤ 2𝐺2

2𝐿
2
1E[𝛿𝑡−1] + 𝐺2

2𝐿
2
1𝛾

2
𝑡 𝜎

2
0 + E

[
2𝐺4

2𝐿
2
1‖w𝑡−1 − w𝑡 ‖2

2

]
.

Plugging the above results into (5.8) we finish the proof.
ut

For combining the descent lemma and the above lemmas, we present a result
similar to Lemma 4.10, with differences highlighted in boxes.

Lemma 5.4 If 𝜂𝑡 ≤ 1/𝐿, assume that there exist non-negative sequences 𝐴𝑡 , 𝐵𝑡 , Γ𝑡 ,Δ𝑡 , 𝛿𝑡 , 𝑡 ≥
0 satisfying:

(∗)𝐴𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

(♯)Δ𝑡+1 ≤ (1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛽𝑡+1 𝛿𝑡 +
𝐶2𝜂

2
𝑡

𝛽𝑡+1
Γ𝑡 + 𝛽2

𝑡+1𝜎
2 + 𝛽𝑡+1𝛾

2
𝑡+1𝜎

′′2 ,

(�)𝛿𝑡+1 ≤ (1 − 𝛾𝑡+1)𝛿𝑡 +
𝐶3𝜂

2
𝑡

𝛾𝑡+1
Γ𝑡 + 𝛾2

𝑡+1𝜎
′2.

If 𝛽 = 𝜖 2

4𝜎2 , 𝛾 = min( 𝜖 2

8𝐶1𝜎′2 ,
𝜖

2𝜎′′ ), 𝜂 = min( 1
𝐿 ,

𝛽√
4𝐶2

, 𝛾√
8𝐶1𝐶3

), then in order to
guarantee

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2.

the iteration complexity is in the order of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶1𝐶3𝜎

′′

𝜖3 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
.

where 𝐶Υ ≤ 𝐴0 − min𝑡 𝐴𝑡 + 1
2
√
𝐶2
Δ0 +

√
𝐶1
2𝐶3

𝛿0.

Proof. Following similar analysis to Lemma 4.10, we have

195



𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + (𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
− 𝐶1𝜂𝑡 )𝛿𝑡+1 ≤ 𝐴𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+
(
𝜂𝑡 +

𝜂𝑡
𝛽𝑡+1

(1 − 𝛽𝑡+1)
)
Δ𝑡 +

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

Γ𝑡 + 𝜂𝑡 (𝛽𝑡+1𝜎
2 + 𝛾2

𝑡+1𝜎
′′2 ) + 𝐶1𝜂𝑡 (𝛿𝑡 − 𝛿𝑡+1)

+ 𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
(1 − 𝛾𝑡+1)𝛿𝑡 +

𝐶3𝐶1𝜂
3
𝑡 (1 + 𝛾𝑡+1)
𝛾2
𝑡+1

Γ𝑡 + 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)𝛾𝑡+1𝜎
′2.

where the terms in the box highlight the difference due to the slight difference in the
recursion of Δ𝑡 . Under similar conditions of 𝛽𝑡+1, 𝛾𝑡+1, 𝜂𝑡 and similar analysis, we
get

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡 + 𝐶1𝜂𝑡 (𝛿𝑡 − 𝛿𝑡+1)

− 𝜂𝑡𝐵𝑡 −
1
2
𝜂𝑡Γ𝑡 + 𝜂𝑡 (𝛽𝑡+1𝜎

2 + 𝛾2
𝑡+1𝜎

′′2 ) + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Since 𝜂𝑡+1 ≤ 𝜂𝑡 , we have

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 + 𝐶1𝜂𝑡+1𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡 + 𝐶1𝜂𝑡𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
1
2
𝜂𝑡Γ𝑡 + 𝜂𝑡 (𝛽𝑡+1𝜎

2 + 𝛾2
𝑡+1𝜎

′′2 ) + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Define Υ𝑡+1 = 𝐴𝑡+1 + 𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + 𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 + 𝐶1𝜂𝑡+1𝛿𝑡+1 , we have

𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ≤ Υ𝑡 − Υ𝑡+1 + 𝜂𝑡 (𝛽𝑡+1𝜎

2 + 𝛾2
𝑡+1𝜎

′′2 ) + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Hence

𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ Υ0 − 𝐴∗ +

𝑇−1∑
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2 + 𝜂𝑡𝛾2

𝑡+1𝜎
′′2

)
.

Next, let us consider 𝜂𝑡 = 𝜂, 𝛽𝑡 = 𝛽, 𝛾𝑡 = 𝛾. Then we have

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤

𝐶Υ

𝑇
+

(
𝛽𝜎2 + 2𝛾𝐶1𝜎

′2 + 𝛾2𝜎′′2)
)
.

Since 𝜂𝑡 = 𝜂, 𝛾𝑡 = 𝛾, 𝛽𝑡 = 𝛽, in order to ensure the RHS is less than 𝜖2, it suffices to
have

𝛽 =
𝜖2

4𝜎2 , 𝛾 = min( 𝜖2

8𝐶1𝜎′2 ,
𝜖

2𝜎′′ ), 𝑇 ≥ 𝐶Υ

4𝜖2𝜂
.

Since
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𝜂 = min( 1
𝐿
,

𝛽
√

4𝐶2
,

𝛾
√

8𝐶1𝐶3
).

Thus the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶2

𝜖2𝛽
,
𝐶Υ

√
𝐶1𝐶3

𝛾𝜖2

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶1𝐶3𝜎

′′

𝜖3 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
where

𝐶Υ = 𝐴0 − 𝐴∗ +
𝜂

𝛽
Δ0 +

𝐶1𝜂

𝛾
𝛿0 + 𝐶1𝜂𝛿0 ≤ 𝐴0 − 𝐴∗ +

1
2
√
𝐶2

Δ0 + 2
√
𝐶1√
8𝐶3

𝛿0.

ut

Finally, we state the convergence of SOX.

Theorem 5.1 Under Assumption 5.1 and 5.2, SOX with 𝛽 = 𝜖 2

4𝜎2 < 1
4𝐿1𝐺2

, 𝛾 =

min( 𝜖 2

64𝐺2
2𝐿

2
1𝜎02 ,

𝑛
2𝐵𝐺1𝐿1𝜎0

), 𝜂 = min( 1
2𝐿𝐹 ,

𝛽

2
√
𝐶2
, 𝐵𝛾

𝑛
√

32𝐶1𝐶3
), can find w𝜏 with 𝜏 ran-

domly sampled from {1, . . . , 𝑇} so that E
[
‖v𝜏 ‖2

2 + ‖∇𝐹 (w𝜏)‖2
2
]
≤ 𝜖2 with an iter-

ation complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿
2
1𝜎0

𝜖3 ,
𝐶Υ𝐿𝐹𝜎

2

𝜖4 ,
𝐶Υ𝐿

3
1𝑛𝜎

2
0

𝜖4𝐵

})
,

where 𝐶1 = 8𝐺2
2𝐿1, 𝐶2 = 4𝐿2

𝐹 + 2, 𝐶3 = 2𝐺2
2, 𝜎

2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 , and 𝐶Υ =

𝑂 (𝐹 (w0) − 𝐹∗ + 1
𝐿𝐹

‖v0 − ∇𝐹 (w0)‖2
2 + 𝐿1

1
𝑛 ‖u0 − 𝑔(w0)‖2

2).

 Why it matters

Theorem 5.1 shows that SOX achieves a complexity dominated by𝑂
(
𝐶Υ𝐿

3
1𝑛𝜎

2
0

𝜖 4𝐵
),

which is comparable to that of SCMA for finding an 𝜖-stationary solution. The
key difference is that the complexity of SOX is scaled by a factor of 𝑛/𝐵, since
it must track and estimate 𝑛 inner functions.

Proof. Assume that 𝜖 is sufficiently small such that 8𝛽2𝐺2
2𝐿

2
1 ≤ 1. We have estab-

lished the following three inequalities:
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(∗) E [𝐹 (w𝑡+1)] ≤ E [𝐹 (w𝑡 )] +
𝜂

2
E[Δ𝑡 ] −

𝜂

2
E

[
‖∇𝐹 (w𝑡 )‖2

2
]
− 𝜂

4
E

[
‖v𝑡 ‖2

2
]
,

(♯) E[Δ𝑡+1] ≤ (1 − 𝛽)E [Δ𝑡 ] +
2𝐿2

𝐹 + 1
𝛽

𝜂2E
[
‖v𝑡 ‖2

2
]
+ 8𝛽𝐿2

1𝐺
2
2E [𝛿𝑡 ]

+ 𝛽2𝜎2 + 4𝐺2
2𝐿

2
1𝛽𝛾

2𝜎2
0 ,

(�) E [𝛿𝑡+1] ≤
(
1 − 𝐵𝛾

2𝑛

)
E [𝛿𝑡 ] +

2𝑛𝐺2
2𝜂

2

𝐵𝛾
E

[
‖v𝑡 ‖2

2
]
+
𝐵𝛾2𝜎2

0
𝑛

.

Let us define 𝛾̄ = 𝐵𝛾
2𝑛 , the last inequality becomes

(�) E [𝛿𝑡+1] ≤ (1 − 𝛾̄) E [𝛿𝑡 ] +
𝐺2

2𝜂
2

𝛾̄
E

[
‖v𝑡 ‖2

2
]
+

4𝑛𝛾̄2𝜎2
0

𝐵
.

Define 𝐴𝑡 = 2(𝐹 (w𝑡 ) − 𝐹 (w∗)) and 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2, Γ𝑡 = ‖v𝑡 ‖2

2 /2, Δ𝑡 =

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2, 𝛿𝑡 =

1
𝑛 ‖u𝑡 − 𝑔(w𝑡 )‖

2
2, and Υ𝑡 = 𝐴𝑡 + 𝜂𝑡−1

𝛽𝑡
Δ𝑡 + 𝐶1𝜂𝑡−1

𝛾̄𝑡
𝛿𝑡 .

Then the three inequalities satisfy that in Lemma 4.10 with 𝐶1 = 8𝐺2
2𝐿

2
1, 𝐶2 =

2(2𝐿2
𝐹 + 1), 𝐶3 = 2𝐺2

2, 𝜎
2 =

𝐺2
1𝜎

2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 , 𝜎

′2 =
4𝑛𝜎2

0
𝐵 , 𝜎′′2 = 4𝐺2

2𝐿
2
1𝜎

2
0 . Then

𝜂, 𝛽, 𝛾̄ satisfy

𝛽 =
𝜖2

4𝜎2 , 𝛾̄ = min
(

𝜖2

8𝐶1𝜎′2 ,
𝜖

2𝜎′′

)
= min

(
𝜖2𝐵

128𝐺2
2𝐿

2
1𝑛𝜎02

,
𝜖

4𝐺2𝐿1𝜎0

)
,

𝜂 = min
(

1
2𝐿𝐹

,
𝛽

√
4𝐶2

,
𝛾̄

√
8𝐶1𝐶3

)
.

Thus the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶1𝐶3𝜎

′′

𝜖3 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿
2
1𝜎0

𝜖3 ,
𝐶Υ𝐿𝐹𝜎

2

𝜖4 ,
𝐶Υ𝐿

3
1𝑛𝜎

2
0

𝜖4𝐵

})
,

where

𝐶Υ

≤ 2(𝐹 (w0) − 𝐹 (w∗)) +
1

2
√
𝐶2

‖v0 − ∇𝐹 (w0)‖2
2 +

√
𝐶1√
2𝐶3

1
𝑛
‖u0 − 𝑔(w0)‖2

2

= 2(𝐹 (w0) − 𝐹 (w∗)) +𝑂
(

1
𝐿𝐹

)
‖v0 − ∇𝐹 (w0)‖2

2 +𝑂 (𝐿1)
1
𝑛
‖u0 − 𝑔(w0)‖2

2.

ut
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5.2.2 Multi-block Single-Probe Variance Reduction

In this subsection, we present a second algorithm for solving FCCO with an im-
proved complexity than that of SOX under a stronger condition on 𝑔𝑖 . We replace
Assumption 5.2 by the following:

Assumption 5.3. There exist 𝐺1, 𝐿1, 𝐿2 > 0 such that

(i) 𝑓𝑖 : R𝑑′ ↦→ R is 𝐺1-Lipschitz continuous and 𝐿1-smooth;
(ii) ∇𝑔𝑖 (·, 𝜁) : R𝑑 ↦→ R𝑑

′ is mean-squared Lipschitz continuous, i.e.,

E𝜁 [‖∇𝑔𝑖 (w, 𝜁) − ∇𝑔𝑖 (w′, 𝜁)‖2
2] ≤ 𝐿2

2‖w − w′‖2
2,∀w,w′;

(iii) 𝐹∗ = minw 𝐹 (w) ≥> −∞.

The idea is to leverage advanced variance reduction for tracking both the inner
functions and the gradient. A straightforward approach is to change the update of
u𝑖,𝑡−1 by using the STORM estimator and do similarly for the gradient estimator. In
particular, one may change the update for u𝑖,𝑡 according to STORM:

u𝑖,𝑡 =
(1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ (1 − 𝛾𝑡 ) (𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

)
)︸                                             ︷︷                                             ︸

error correction

𝑖 ∈ B𝑡

u𝑖,𝑡−1 𝑖 ∉ B𝑡
.

(5.9)

However, this naive approach does not work as the standard error correction term
marked above only accounts for the randomness in 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) but not in the ran-
domness caused by sampling 𝑖 ∈ B𝑡 .

In order to tackle this challenge, we introduce the following estimator termed
multi-block single-probe variance reduction estimator (MSVR):

u𝑖,𝑡 =

{
(1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
𝑖 ∈ B𝑡

u𝑖,𝑡−1 𝑖 ∉ B𝑡
.

(5.10)

The difference from (5.9) lies at the value of 𝛾′𝑡 , which is set as 𝑛−𝐵
𝐵(1−𝛾𝑡 ) + (1 −

𝛾𝑡 ) with 𝐵 = |B𝑡 |. The MSVR estimator can track multiple functional mappings
(𝑔1, 𝑔2, · · · , 𝑔𝑛), simultaneously, while the number of sampled blocks 𝐵1 for probing
can be as small as one. It is notable that when 𝐵 = 𝑛, i.e., all blocks are probed at each
iteration, 𝛾′𝑡 = 1−𝛾𝑡 and MSVR reduces to STORM applied to g(w). The additional
factor in 𝛾′𝑡 , i.e., 𝛼𝑡 = 𝑛−𝐵

𝐵(1−𝛾𝑡 ) is to account for the randomness in the sampled blocks
and noise in those blocks that are not updated.

With u𝑡 , we compute a vanilla gradient estimator by
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z𝑡 =
1
𝐵

∑
𝑖∈B′

𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ),

where B′
𝑡 ⊂ [𝑛] is a mini-batch of 𝐵 indices independent of B𝑡 .

Similar to SCST, we apply another STORM estimator to estimate

M𝑡 = EB′
𝑡 ,𝜁

′
𝑡
[z𝑡 ] =

1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ),

with an extra vanilla gradient estimator at previous iteration:

z̃𝑡−1 =
1
𝐵

∑
𝑖∈B′

𝑡

∇𝑔𝑖 (w𝑡−1; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1).

This is computed by the following sequence:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1). (5.11)

Then we use v𝑡 to update the model parameter. The full steps are presented in Algo-
rithm 15.

Critical: We use an independent batch B′
𝑡 because z𝑡 depends on u𝑡 , which

depends on B𝑡 . If we use the same batch B𝑡 to compute z𝑡 , then

M𝑡 = EB𝑡 ,𝜁 ′𝑡

[
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
]

= EB𝑡 ,𝜁 ′𝑡

[
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )
]
=

1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ).

where ū𝑡 independent ofB𝑡 is defined in (5.12). However, we cannot construct
an unbiased estimator of M𝑡−1 since ū𝑡−1 is not available in the algorithm.

An alternative approach is that we use u𝑡−1 and u𝑡−2 to compute z𝑡 and z̃𝑡−1,
respectively, with B𝑡 , i.e.,

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1)

z̃𝑡−1 =
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡−1; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−2),

and compute v𝑡 by

v𝑡 = (1 − 𝛽𝑡 )v𝑡 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1).

200



5.2. SMOOTH FUNCTIONS

Algorithm 15 MSVR
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw two batches of samples B𝑡 , B′

𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators

u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖
(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B′

𝑡
∇𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
11: Compute the extra vanilla gradient estimator z̃𝑡−1 = 1

𝐵

∑
𝑖∈B′

𝑡
∇𝑔𝑖 (w𝑡−1; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1 )
12: Update the STORM gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 ) (z𝑡 − z̃𝑡−1 )
13: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
14: end for

The converge analysis can be performed similarly with slight modifications.

Convergence Analysis

We first analyze the error recursion of

𝛿𝑡 =
1
𝑛
‖u𝑡 − g(w𝑡 )‖2

2 :=
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

Similar to the analysis of SOX, we introduce virtual sequences ū𝑖,𝑡 ,∀𝑖 :

ū𝑖,𝑡 = (1−𝛾𝑡 )u𝑖,𝑡−1 +𝛾𝑡𝑔𝑖
(
w𝑡 ; 𝜁𝑖,𝑡

)
+𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
,∀𝑖. (5.12)

Lemma 5.5 Consider the u𝑡 updates in Algorithm 15. Under Assumption 5.1 and
5.3 (ii), by setting 𝛾′𝑡 = 𝑛−𝐵

𝐵(1−𝛾𝑡 ) + (1 − 𝛾𝑡 ), for 𝛾𝑡 ≤ 1
2 , we have:

E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾𝑡

𝑛

)
E [𝛿𝑡−1] +

2𝐵
𝑛
𝛾2
𝑡 𝜎

2
0 +

12𝑛𝐺2
2

𝐵
E

[
‖w𝑡 − w𝑡−1‖2] .

Proof. Let us consider a fixed 𝑖 ∈ [𝑛]. With a probability 𝐵/𝑛 that 𝑖 ∈ B𝑡 , we have
u𝑖,𝑡 = ū𝑖,𝑡 ; otherwise u𝑖,𝑡 = u𝑖,𝑡−1. Hence,

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
=
𝐵

𝑛
E

[
‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]︸                    ︷︷                    ︸

𝐴1

+(1 − 𝐵

𝑛
) E

[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2
]︸                       ︷︷                       ︸

𝐴2

.
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Note that the first term 𝐴1 in the R.H.B. can be bounded similarly as in Lemma 4.12
for using the STORM estimator by building a recursion with ‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2.
However, there exists the second term due to the randomness of B𝑡 , which can be
decomposed as

𝐴2 = E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1) + 𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2
2]

= E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2
2]︸                          ︷︷                          ︸

𝐴21

+E[‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2
2]︸                           ︷︷                           ︸

𝐴22

+ E[2(u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))> (𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 ))]︸                                                        ︷︷                                                        ︸
𝐴23

.

The first two terms in RHS (𝐴21 and 𝐴22) can be easily handled. The difficulty comes
from the third term, which cannot be simply bounded by using Young’s inequality. If
doing so, it will end up with a non-diminishing error of u𝑖,𝑡 . To combat this difficulty,
we use the additional factor brought by 𝛾′𝑡 (𝑔𝑖

(
w𝑡 ; 𝜉𝑖𝑡

)
−𝑔𝑖

(
w𝑡−1; 𝜉𝑖𝑡

)
) in 𝐴1 to cancel

𝐴23. This is more clear by the following decomposition of 𝐴1.

𝐴1 = E[‖(1 − 𝛾𝑡 )(u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))︸                                ︷︷                                ︸
𝐴11

+𝛼𝑡 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))︸                       ︷︷                       ︸
𝐴12

+ 𝛾𝑡 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ))︸                          ︷︷                          ︸
𝐴13

+ 𝛾′𝑡 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜉𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))︸                                                                ︷︷                                                                ︸
𝐴14

‖2
2],

where 𝛼𝑡 = 𝛾′𝑡 + 𝛾𝑡 − 1. Since E𝑡 [𝐴13] = 0,E𝑡 [𝐴14] = 0, then we have

𝐴1 ≤E[‖𝐴11 + 𝐴12‖2
2] + E

[
‖𝐴13 + 𝐴14‖2

2
]
.

In light of the above decomposition, we can bound E[‖𝐴11 + 𝐴12‖2
2] ≤ E[‖𝐴11‖2

2 +
‖𝐴12‖2

2+2𝐴>
11𝐴12] and E[‖𝐴13+𝐴14‖2

2] ≤ 2E[‖𝐴13‖2
2] +2E[‖𝐴14‖2

2]. The resulting
term E[2𝐴>

11𝐴12] has a negative sign as 𝐴23. Hence, by carefully choosing 𝛾′𝑡 , we
can cancel both terms. Specifically, we have
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𝐵

𝑛
𝐴1 ≤ 𝐵

𝑛

(
E[‖𝐴11‖2

2 + ‖𝐴12‖2
2 + 2𝐴>

11𝐴12] + 2E[‖𝐴13‖2
2] + 2E[‖𝐴14‖2

2]
)

= E
[
𝐵

𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2

]
+ E

[
𝐵

𝑛
𝛼2
𝑡 ‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2

]
+ E

[
𝐵

𝑛
2𝛼𝑡 (1 − 𝛾𝑡 )(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))

]
+ E

[
𝐵

𝑛
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 )

2
2

]
+ E

[
𝐵

𝑛
2𝛾′𝑡

2 

(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))


2

2

]
.

Combining the upper bounds of 𝐴1 and 𝐴2, we have

𝐵

𝑛
𝐴1 +

𝑛 − 𝐵
𝑛

𝐴2

≤ E[ 𝐵
𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2 +
𝐵

𝑛
𝛼2
𝑡 ‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2]

+ E
[
𝐵

𝑛
2𝛼𝑡 (1 − 𝛾𝑡 ) (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))

]
+ E

[
𝐵

𝑛
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 )

2
2

]
+ E

[
𝐵

𝑛
2(𝛾′𝑡 )2 

(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))



2
2

]
+ E

[
𝑛 − 𝐵
𝑛

‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2
2] + E[ 𝑛 − 𝐵

𝑛
‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2

2

]
+ E

[
𝑛 − 𝐵
𝑛

2(u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))> (𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 ))
]
.

Since 𝐵
𝑛 2𝛼𝑡 (1− 𝛾𝑡 ) = 2 𝐵𝑛

(𝑛−𝐵)
𝐵(1−𝛾𝑡 ) (1− 𝛾𝑡 ) = 2 𝑛−𝐵𝑛 , then cross terms will cancel out.

The remaining terms can be merged and handled separately. First,

E
[
𝐵

𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2 +
𝑛 − 𝐵
𝑛

‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2
2

]
≤ (1 − 𝐵

𝑛
𝛾𝑡 )E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2],

where we use 𝐵
𝑛 (1− 𝛾𝑡 )2 + 𝑛−𝐵

𝑛 ≤ 1− 2𝐵
𝑛 𝛾𝑡 +

𝐵
𝑛 𝛾

2
𝑡 ≤ 1− 𝐵

𝑛 𝛾𝑡 due to 𝛾𝑡 < 1. Second

𝐵

𝑛
𝛼2
𝑡 ‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2] +
𝑛 − 𝐵
𝑛

‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2
2

≤
(
𝐵

𝑛

(𝑛 − 𝐵)2

𝐵2 (1 − 𝛾𝑡 )2 + 𝑛 − 𝐵
𝑛

)
𝐺2

2‖w𝑡 − w𝑡−1‖2
2 ≤ 4𝑛 − 4𝐵

𝐵
𝐺2

2‖w𝑡 − w𝑡−1‖2
2,
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wherewe use 𝐵𝑛
(𝑛−𝐵)2

𝐵2 (1−𝛾𝑡 )2 + 𝑛−𝐵𝑛 ≤ 𝑛−𝐵
𝑛

(
(𝑛−𝐵)
𝐵(1−𝛾𝑡 )2 + 1

)
≤ 𝑛−𝐵

𝑛

(
4(𝑛−𝐵)
𝐵 + 4

)
= 4𝑛−4𝐵

𝐵

due to 𝛾𝑡 ≤ 1/2. Third,

E
[
𝐵

𝑛
2𝛾′2𝑡



(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))


2

2

]
≤ 𝐵

𝑛
2𝛾′2𝑡E

[ 

(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )


2

2

]
≤ 𝐵

𝑛
2
(

𝑛 − 𝐵
𝐵(1 − 𝛾𝑡 )

+ 1 − 𝛾𝑡
)2
𝐺2

2‖w𝑡 − w𝑡−1‖2
2 ≤ 8𝑛 − 4𝐵

𝐵
𝐺2

2‖w𝑡 − w𝑡−1‖2
2,

where we use 𝐵
𝑛 2( 𝑛−𝐵

𝐵(1−𝛾𝑡 ) + 1 − 𝛾𝑡 )2 ≤ 𝐵
𝑛 2( 2(𝑛−𝐵)

𝐵 + 1)2 ≤ 𝐵
𝑛 2( 2𝑛−𝐵

𝐵 )2 =
2(2𝑛−𝐵) (2𝑛−𝐵)

𝑛𝐵 ≤ 8𝑛−4𝐵
𝐵 .

Combining the above results, we have

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
≤ (1 − 𝐵

𝑛
𝛾𝑡 )E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2]

+ 12𝑛 − 8𝐵
𝐵

𝐺2
2‖w𝑡 − w𝑡−1‖2

2 +
𝐵

𝑛
2𝛾2
𝑡 𝜎

2
0 .

Averaging over 𝑖 = 1, . . . , 𝑛 concludes the proof. ut

Lemma 5.6 Consider the u𝑡 updates in Algorithm 15. Suppose that Assumption 5.1
and 5.3 hold. With 𝛾𝑡 ≤ 1

2 and 𝛾′𝑡 = 𝑛−𝐵
𝐵(1−𝛾𝑡 ) + (1 − 𝛾𝑡 ), we have

E
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 6𝐵𝛾2

𝑡 𝜎
2
0 + 6𝐵𝛾2

𝑡 E[𝛿𝑡−1] +
10𝑛2𝐺2

2
𝐵

E
[
‖w𝑡 − w𝑡−1‖2

2
]
.

Proof. Since ‖u𝑡 − u𝑡−1‖2
2 =

∑𝑛
𝑖=1 ‖u𝑖,𝑡 − u𝑖,𝑡−1‖2

2, with a probability 𝐵/𝑛 we have
u𝑖,𝑡 = ū𝑖,𝑡 and a probability 1 − 𝐵/𝑛 we have u𝑖,𝑡 = u𝑖,𝑡−1, then

E
[
‖u𝑡 − u𝑡−1‖2

2
]

=
𝐵

𝑛

𝑛∑
𝑖=1

E
[

 − 𝛾𝑡u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) ) 

2
2

]
≤ 𝐵

𝑛

𝑛∑
𝑖=1

E
[
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − u𝑖,𝑡−1


2

2 + 2(𝛾′𝑡 )2 

𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡
)

2

2

]
≤ 𝐵

𝑛

𝑛∑
𝑖=1

E
[
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − u𝑖,𝑡−1


2

2

]
+ 2𝐵(𝛾′𝑡 )2𝐺2

2 ‖w𝑡 − w𝑡−1‖2
2 .

To the first term on the RHS, we use the Young’s inequality and Lipschitz continuity
of 𝑔𝑖:
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E
[

𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − u𝑖,𝑡−1



2
2

]
≤ 3E

[

𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 )

2
2

]
+ 3E

[
‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2 + 3


𝑔𝑖 (w𝑡−1) − u𝑖,𝑡−1



2
2

]
≤ 3𝜎2

0 + 3𝐺2
2E

[
‖w𝑡 − w𝑡−1‖2

2 + 3


𝑔𝑖 (w𝑡−1) − u𝑖,𝑡−1



2
2

]
.

Combining the above results, we have

E
[
‖u𝑡 − u𝑡−1‖2

2
]

≤ 6𝐵𝛾2
𝑡 𝜎

2
0 + 6𝐵𝛾2

𝑡 E [𝛿𝑡−1] + 2𝐵𝐺2
2 (3𝛾2

𝑡 + (𝛾′𝑡 )2)E
[
‖w𝑡 − w𝑡−1‖2

2
]
.

With 𝛾𝑡 ≤ 1
2 , we have 𝛾′𝑡 ≤ 2𝑛

𝐵 , which yields (3𝛾2
𝑡 + (𝛾′𝑡 )2) ≤ 5𝑛2

𝐵2 . ut

Next, we analyze error recursion of Δ𝑡 := ‖v𝑡 −M𝑡 ‖2
2.

Lemma 5.7 Consider the v𝑡 updates in Algorithm 15 and suppose that Assump-
tion 5.1 and 5.3 hold. Then we have

E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E[Δ𝑡−1] +
24𝐺2

2𝐿
2
1𝐵𝛾

2
𝑡

𝑛
E[𝛿𝑡−1]

+
(
4𝐿2

2𝐺
2
1 +

40𝐺4
2𝐿

2
1𝑛

𝐵

)
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+ 2𝛽2

𝑡𝜎
2 +

24𝐺2
2𝐿

2
1𝐵

𝑛
𝛾2
𝑡 𝜎

2
0 ,

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 .

Proof. Similar to Lemma 5.2, we have E𝑡 [‖z𝑡 − M𝑡 ‖2
2] ≤ 𝜎2. Since v𝑡 = (1 −

𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1), applying Lemma 4.11, we have

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 + E𝑡 [2‖z𝑡 − z̃𝑡−1‖2
2] + 2𝛽2

𝑡𝜎
2.

To bound E𝑡 [‖z𝑡 − z̃𝑡−1‖2
2], we have

E𝑡 [‖z𝑡 − z̃𝑡−1‖2
2]

≤ 2E𝑡


1
𝐵

∑
𝑖∈B′

𝑡



∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ) − ∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1)


2

2


+ 2E𝑡


1
𝐵

∑
𝑖∈B′

𝑡



∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1) − ∇𝑔𝑖 (w𝑡−1; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1)


2

2


≤ 2𝐺2

2𝐿
2
1E𝑡


1
𝐵

∑
𝑖∈B′

𝑡

‖u𝑖,𝑡 − u𝑖,𝑡−1‖2
2

 + 2𝐿2
2𝐺

2
1‖w𝑡 − w𝑡−1‖2

2

= 2𝐺2
2𝐿

2
1E𝑡

[
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − u𝑖,𝑡−1‖2
2

]
+ 2𝐿2

2𝐺
2
1‖w𝑡 − w𝑡−1‖2

2,
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where the last inequality follows the Assumption 5.3.
As a result, we have

E[Δ𝑡 ] ≤(1 − 𝛽𝑡 )E[Δ𝑡−1] +
4𝐺2

2𝐿
2
1

𝑛
E

[
‖u𝑡 − u𝑡−1‖2

2
]
+ 4𝐿2

2𝐺
2
1E

[
‖w𝑡−1 − w𝑡 ‖2

2
]

+ 2𝛽2
𝑡𝜎

2.

Combining with the result in Lemma 5.6, i.e.,

E
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 6𝐵𝛾2

𝑡 𝜎
2
0 + 6𝐵𝛾2

𝑡 E[𝛿𝑡−1] +
10𝑛2𝐺2

2
𝐵

E
[
‖w𝑡 − w𝑡−1‖2

2
]
.

we have

E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E[Δ𝑡−1] +
24𝐵𝐺2

2𝐿
2
1

𝑛
𝛾2
𝑡 E[𝛿𝑡−1]

+
(
4𝐿2

2𝐺
2
1 +

40𝐺4
2𝐿

2
1𝑛

𝐵

)
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+ 2𝛽2

𝑡𝜎
2 +

24𝐵𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0

𝑛
,

which completes the proof.
ut

Lemma 5.8 For the update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 , 𝑡 ≥ 0, if 𝜂𝑡 ≤ 1/(2𝐿𝐹) we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝐺2
2𝐿

2
1𝜂𝑡𝛿𝑡 + 𝜂𝑡Δ𝑡 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

(5.13)

Proof. It follows directly from Lemma 4.9 by noting that

‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 = ‖v𝑡 −M𝑡 +M𝑡 − ∇𝐹 (w𝑡 )‖2

2

≤ 2Δ𝑡 + 2






1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (𝑔𝑖 (w𝑡 ))





2

2

≤ 2Δ𝑡 +
2𝐺2

2𝐿
2
1

𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

Taking expectation over all randomness on both sides yields the desired result. ut

Now we state the convergence theorem for MSVR.

Theorem 5.2 Suppose that Assumption 5.1 and 5.3 hold. Let 𝛽 = 𝑂 ( 𝜖 𝜂𝐿1
√
𝑛

𝜎
√
𝐵

), 𝛾 =

min
(
𝜖 𝜂𝐿1𝑛
𝜎0𝐵

, 1
)
, 𝜂 = min

(
1

2𝐿𝐹 , 𝑂 ( 𝜖
√
𝐵

𝐿1𝜎
√
𝑛
), 𝑂 ( 𝜖 𝐵

𝐿2
1𝜎0𝑛

), 𝑂 ( 𝐵
𝑛𝐿1

)
)
. Then MSVR can

find w𝜏 that is sampled randomly from {0, . . . , 𝑇 − 1} satisfying
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E
[
‖v𝜏 ‖2

2 + ‖∇𝐹 (w𝜏)‖2
2
]
≤ 𝑂 (𝜖).

with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿1𝑛

𝜖2𝐵
,
𝐶Υ𝐿1𝜎

√
𝑛

𝜖3
√
𝐵

,
𝐶Υ𝐿

2
1𝜎0𝑛

𝜖3𝐵

})
.

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) , 𝐶Υ = 𝑂 (𝐹 (w0) − 𝐹∗ + 𝐵
𝑛𝐿2

1 𝜂
Δ0 + 𝐵

𝑛𝐿2
1 𝜂
𝛿0).

 Why it matters

Theorem 5.2 indicates that when the initial estimators u0 and v0 have an esti-
mation error in the order of 𝑂 (𝜖) such that 𝐶Υ is 𝑂 (1), MSVR attains a better
complexity than SOX for finding an 𝜖-stationary solution under stronger assump-
tions of the mean-Lipschitz continuity of 𝑔 and ∇𝑔. Its complexity is comparable
to that of SCST in Theorem 4.4, up to a factor of 𝑛/𝐵.

Proof. We have established the following:

(∗) 𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝐺2
2𝐿

2
1𝜂𝑡𝛿𝑡 + 𝜂𝑡Δ𝑡 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

(♯)E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E[Δ𝑡−1] +
24𝐵𝐺2

2𝐿
2
1

𝑛
𝛾2
𝑡 E[𝛿𝑡−1]

+
(
4𝐿2

2𝐺
2
1 +

40𝐺4
2𝐿

2
1𝑛

𝐵

)
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+ 2𝛽2

𝑡𝜎
2 +

24𝐵𝐺2
2𝐿

2
1𝜎

2
0

𝑛
𝛾2
𝑡 ,

(�)E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾𝑡

𝑛

)
E [𝛿𝑡−1] +

2𝐵
𝑛
𝛾2
𝑡 𝜎

2
0 +

12𝑛𝐺2
2

𝐵
E

[
‖w𝑡 − w𝑡−1‖2] .

In order to apply Lemma 4.15, we let 𝐴𝑡 = 𝐹 (w𝑡 ) − 𝐹∗, 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2/2, Γ𝑡 =

‖v𝑡 ‖2
2/4, 𝛿𝑡 = 𝐿2

1𝐺
2
2𝛿𝑡 , 𝛾̄𝑡 =

𝐵𝛾𝑡
𝑛 . Then the following three inequalities

(∗)E[𝐴𝑡+1] ≤ E[𝐴𝑡 + 𝜂𝑡Δ𝑡 + 𝜂𝑡𝛿𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡 ]
(♯)E [Δ𝑡+1] ≤ E[(1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛾̄

2
𝑡+1𝛿𝑡 + 𝐶2𝜂

2
𝑡 Γ𝑡 + 𝛽2

𝑡+1𝜎
2 + 𝛾̄2

𝑡+1𝜎
′2],

(�)E
[
𝛿𝑡+1

]
≤ E[(1 − 𝛾̄𝑡+1)𝛿𝑡 + 𝐶3𝜂

2
𝑡 Γ𝑡 + 𝛾̄2

𝑡+1𝜎
′′2] .

hold with 𝐶1 = 𝑂 (𝑛/𝐵), 𝐶2 = 𝑂 (𝐿2
1𝑛/𝐵 + 𝐿2

2), 𝐶3 = 𝑂 (𝐿2
1𝑛/𝐵), 𝜎2 =

𝐺2
1𝜎

2
2

𝐵 +
𝐺2

1𝐺
2
2 (𝑛−𝐵)

𝐵(𝑛−1) ), 𝜎′2 = 𝑂 (𝐿2
1𝜎

2
0 𝑛/𝐵), 𝜎′′2 = 𝑂 (𝐿2

1𝜎
2
0 𝑛/𝐵). Following the settings in

Lemma 4.15, we can finish the proof with
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𝑓𝑖 𝑔𝑖 𝐹

Lipschitz
continuity

Weak
convexity Monotonicity Lipschitz

continuity
Weak

convexity Smoothness Weak convexity (𝜌)

5.5(i) 𝐺1 𝜌1 𝜕 𝑓 ≥ 0 𝐺2 𝜌2 - 𝐺1𝜌2
√
𝑑′ + 𝜌1𝐺

2
2

5.5(ii) 𝐺1 𝜌1
𝜕 𝑓 ≥ 0

or 𝜕 𝑓 ≤ 0 𝐺2 - 𝐿2 𝐺1𝐿2
√
𝑑′ + 𝜌1𝐺

2
2

Table 5.1: Conditions of 𝑓𝑖 and 𝑔𝑖 to make 𝐹 (w) = 1
𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w)) weakly convex,

where 𝑔𝑖 : R𝑑 → R𝑑
′ and 𝑓𝑖 : R𝑑′ → R.

𝜂 = min
(

1
𝐿
,

𝜖

4
√
𝐶2𝜎

,
𝜖
√
𝐶2

8𝐶3𝜎′ ,
𝜖

8
√
𝐶3𝜎′′ ,

√
𝐶2

4𝐶3
√
𝐶1

)
= min

(
1

2𝐿𝐹
, 𝑂

(
𝜖

𝐿1𝜎

√
𝐵

𝑛

)
, 𝑂

(
𝜖𝐵

𝐿2
1𝜎0𝑛

)
, 𝑂

(
𝐵

𝑛𝐿1

))
,

𝛽 =
𝜖𝜂

√
2𝐶2

2𝜎
= 𝑂

(
𝜖𝜂𝐿1

2𝜎

√
𝑛

𝐵

)
,

𝛾̄ = min
(
𝜖𝜂

√
𝐶2

𝜎′ ,
𝜖𝜂

√
𝐶3

𝜎′′ ,
𝐶2

2𝐶3𝐶1

)
= min

(
𝑂

(
𝜖𝜂

𝜎0

)
, 𝑂

(
𝐵

𝑛

))
,

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿1𝑛

𝜖2𝐵
,
𝐶Υ𝐿1𝜎

√
𝑛

𝜖3
√
𝐵

,
𝐶Υ𝐿

2
1𝜎0𝑛

𝜖3𝐵

})
.

where 𝐶Υ = 𝐹 (w0) − 𝐹∗ + 1
4𝐶2𝜂

Δ0 + 1
4𝐶3𝜂

𝛿0.
ut

5.3 Non-Smooth Weakly Convex Functions

In this section, we consider non-smooth weakly convex functions, where either the
outer function or the inner function are non-smooth. The group DRO objective (5.2)
falls into this category. Another instance is the two-way partial AUC maximization
problem as discussed in Section 6.4.3.

Assumption 5.4. We assume that

(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2
2] ≤ 𝜎2

0 .
(ii) E𝜁∼P𝑖 [‖G𝑖 (w; 𝜁)‖2

2] ≤ 𝐺2
2 for any G𝑖 (w; 𝜁) ∈ 𝜕𝑔𝑖 (w; 𝜁).

The second condition above implies that 𝑔𝑖 is 𝐺2-Lipschitz continuous.

Assumption 5.5. We assume either of the following conditions holds:

(i) 𝑓𝑖 is 𝜌1-weakly convex, 𝐺1-Lipschitz continuous, and 𝜕 𝑓𝑖 (𝑔) ≥ 0 ∀𝑔; 𝑔𝑖 is 𝜌2-
weakly convex.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

(ii) 𝑓𝑖 is 𝜌1-weakly convex, 𝐺1-Lipschitz continuous, and 𝜕 𝑓𝑖 (𝑔) ≥ 0 or 𝜕 𝑓𝑖 (𝑔) ≤ 0
∀𝑔; and 𝑔𝑖 is 𝐿2-smooth.

We first characterize the conditions on 𝑓𝑖 and 𝑔𝑖 to induce weak convexity of 𝐹.

Lemma 5.9 Under Assumption 5.4 and 5.5, the objective function 𝐹 is 𝜌-weakly
convex for some 𝜌 > 0. If Assumption 5.5(i) holds, then 𝜌 = 𝐺1𝜌2

√
𝑑′ + 𝜌1𝐺

2
2 and

if Assumption 5.5(ii) holds, then 𝜌 = 𝐺1𝐿2
√
𝑑′ + 𝜌1𝐺

2
2.

Proof. The weak convexity of 𝑓𝑖 implies that for any v𝑖 ∈ 𝜕 𝑓𝑖 (𝑔𝑖 (w)):

𝑓𝑖 (𝑔𝑖 (w′)) ≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑔𝑖 (w′) − 𝑔𝑖 (w)) − 𝜌1

2
‖𝑔𝑖 (w′) − 𝑔𝑖 (w)‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑔𝑖 (w′) − 𝑔𝑖 (w)) −
𝜌1𝐺

2
2

2
‖w − w′‖2

2.

Let us first prove the weak convexity under Assumption 5.5(i). Since 𝑔𝑖 is 𝜌2-
weakly convex, we have for any𝑈𝑖 ∈ 𝜕𝑔𝑖 (w)

𝑔𝑖 (w′) − 𝑔𝑖 (w) ≥ 𝑈>
𝑖 (w′ − w) − 𝜌2

2
‖w′ − w‖2

21. (5.14)

where 1 denotes a vector of all ones. Since v𝑖 ≥ 0, we have

𝑓𝑖 (𝑔𝑖 (w′)) ≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑈>
𝑖 (w′ − w) − 𝜌2

2
‖w − w′‖2

21) −
𝜌1𝐺

2
2

2
‖w − w′‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + (𝑈𝑖v𝑖)> (w′ − w) −
𝐺1

√
𝑑′𝜌2 + 𝜌1𝐺

2
2

2
‖w − w′‖2

2

Since 𝑈𝑖v𝑖 ∈ 𝜕𝑔𝑖 (w)𝜕 𝑓𝑖 (𝑔𝑖 (w)), the above inequality indicates that 𝑓𝑖 (𝑔𝑖 (w)) is 𝜌-
weakly convex, where 𝜌 = 𝐺1

√
𝑑′𝜌2 + 𝜌1𝐺

2
2. As a result, 𝐹 (w) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w))

is 𝜌-weakly convex.
Next, we prove the weak convexity of 𝐹 under Assumption 5.5(ii). Due to the

smoothness of 𝑔(·) we have

𝑔(w) − 𝑔(w′) ≤ ∇𝑔(w′)> (w − w′) + 𝐿2

2
‖w − w′‖2

21,

𝑔(w) − 𝑔(w′) ≥ ∇𝑔(w′)> (w − w′) − 𝐿2

2
‖w − w′‖2

21.
(5.15)

If 𝜕 𝑓𝑖 (𝑔𝑖 (w)) ≥ 0, we use the second inequity above and follow the same steps
as before to prove the 𝜌-weak convexity of 𝐹 with 𝜌 = 𝐺1

√
𝑑′𝐿2 + 𝜌1𝐺

2
2. If

𝜕 𝑓𝑖 (𝑔𝑖 (w)) ≤ 0, we will use the first inequality above to get:
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Algorithm 16 SONX
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u0
2: w1 = w0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw a batch of samples B𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators by

v1: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )
v2: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute z𝑡 = 1

𝐵

∑
𝑖∈B′

𝑡
𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ) � check text for discussion
11: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
12: end for

𝑓𝑖 (𝑔𝑖 (w′)) ≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑔𝑖 (w′) − 𝑔𝑖 (w)) − 𝜌1

2
‖𝑔𝑖 (w′) − 𝑔𝑖 (w)‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (∇𝑔𝑖 (w)> (w′ − w) + 𝐿2

2
‖w − w′‖2

21) −
𝜌1𝐺

2
2

2
‖w − w′‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + (∇𝑔𝑖 (w)v𝑖)> (w′ − w) −
𝐺1

√
𝑑′𝐿2 + 𝜌1𝐺

2
2

2
‖w − w′‖2

2.

This concludes the proof. ut

5.3.1 SONX for Non-smooth Inner Functions

Since we do not assume smoothness for the overall objective function, the key differ-
ence from the previous two sections is that we no longer have the descent lemma in
Lemma 4.9, hence cannot leverage the MA or STORM gradient estimators. Conse-
quently, we employ the vanilla gradient estimator z𝑡 to update the model parameter
w𝑡+1. The updating steps are summarized in Algorithm 16, referred to as SONX.
The two options correspond to different strategies for updating the inner function
value estimators: v1 uses a coordinate MA estimator, while v2 adopts the MSVR
estimator.

For ease of presentation, we compute the vanilla gradient estimator z𝑡 using a
batch B′

𝑡 independent from B𝑡 :

z𝑡 =
1
𝐵

∑
𝑖∈B′

𝑡

𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ).
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However, for SONX-v1 with MA estimator, we can indeed use the same vanilla
gradient estimator z𝑡 as in SOX:

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ).

An alternative method for using both options is to compute z𝑡 by

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡−1).

Convergence Analysis

Similar to Section 3.1.4, we state the convergence using the Moreau envelope of 𝐹:

𝐹𝜆 (w) := min
u
𝐹 (u) + 1

2𝜆
‖u − w‖2

2.

Recall the definition:

prox𝜆𝐹 (w) = arg min
u
𝐹 (u) + 1

2𝜆
‖u − w‖2

2.

We first present a result similar to Lemma 3.5 for standard SGD to account for
the bias of z𝑡 .

Lemma 5.10 Suppose Assumption 5.4 and 5.5 hold. Let 𝜌̄ = 𝜌 + 𝜌2𝐺1 + 2𝜌1𝐺
2
2.

Consider the step update of SONX, we have

E𝜁 ′𝑡 ,B′
𝑡
[𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) +

𝜂2
𝑡 𝜌̄𝐺

2

2
− 𝜂𝑡

2
‖∇𝐹1/𝜌̄ (w𝑡 )‖2

2

+ 𝜌̄𝜂𝑡
𝑛

𝑛∑
𝑖=1

[
2𝐺1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2 + 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2

]
.

If 𝑓𝑖 is further 𝐿1-smooth, then

E𝜁 ′𝑡 ,B′
𝑡
[𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) +

𝜂2
𝑡 𝜌̄𝐺

2

2
− 𝜂𝑡

2
‖∇𝐹1/𝜌̄ (w𝑡 )‖2

2

+ 𝜌̄𝜂𝑡
𝑛

𝑛∑
𝑖=1

[
𝐿1

2
‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2 + 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

]
.

where 𝐺2 = 𝐺2
1𝐺

2
2.

If u𝑖,𝑡 = 𝑔𝑖 (w𝑡 ), i.e., there is no bias in z𝑡 , then the terms in the square bracket
are gone, the above lemma reduces to Lemma 3.4.

Proof. Define ŵ𝑡 := prox𝐹/𝜌̄ (w𝑡 ) and E𝑡 [·] = E𝜁 ′𝑡 ,B′
𝑡
[·]. First,
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E𝑡 [‖z𝑡 ‖2
2] ≤ E𝑡

[
1
𝐵

∑
𝑖∈B𝑡

‖𝜕𝑔𝑖 (w𝑡 , 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 )‖2
2

]
≤ E𝑡

[
1
𝐵

∑
𝑖∈B𝑡

‖𝜕𝑔𝑖 (w𝑡 , 𝜁 ′𝑖,𝑡 )‖2
2𝐺

2
1

]
≤ 𝐺2

2𝐺
2
1 = 𝐺2.

Following Lemma 3.4, we have

E𝑡 [𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) + 𝜌̄𝜂𝑡 (E𝑡 [z𝑡 ])> (ŵ𝑡 − w𝑡 ) +
𝜂2
𝑡 𝜌̄𝐺

2

2
. (5.16)

Next we bound the termE𝑡 [z𝑡 ]> (ŵ𝑡−w𝑡 ) on the RHS of (5.16). Note thatE𝑡 [z𝑡 ] =
1
𝑛

∑𝑛
𝑖=1 𝜕𝑔𝑖 (w𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ). For a given 𝑖 ∈ [𝑛], we have

𝑓𝑖 (𝑔𝑖 (ŵ𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 )
(𝑎)
≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ) −

𝜌1

2
‖𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ‖2

2

≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ) − 𝜌1‖𝑔𝑖 (ŵ𝑡 ) − 𝑔𝑖 (w𝑡 )‖2
2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2

≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ) − 𝜌1𝐺
2
2‖ŵ𝑡 − w𝑡 ‖2

2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

(𝑏)
≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )>

[
𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 + 𝜕𝑔𝑖 (w𝑡 )> (ŵ𝑡 − w𝑡 ) −

𝜌2

2
‖ŵ𝑡 − w𝑡 ‖2

2

]
− 𝜌1𝐺

2
2‖ŵ𝑡 − w𝑡 ‖2

2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

(𝑐)
≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) + 𝜕 𝑓𝑖 (u𝑖,𝑡 )>𝜕𝑔𝑖 (w𝑡 )> (ŵ𝑡 − w𝑡 )

− ( 𝜌2𝐺1

2
+ 𝜌1𝐺

2
2)‖ŵ𝑡 − w𝑡 ‖2

2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2,

where (a) follows from the 𝜌1-weak-convexity of 𝑓𝑖 , (b) follows from that 𝜕 𝑓𝑖 (·) ≥ 0
and the weak convexity of 𝑔𝑖 , (c) is due to ‖𝜕 𝑓𝑖 (u𝑖,𝑡 )‖2 ≤ 𝐺1. When 𝜕 𝑓𝑖 (·) ≤ 0 and
𝑔𝑖 is smooth, we can bound similarly with 𝜌2 in the last inequality replaced by 𝐿2.

Then rearranging the above inequality and averaging over 𝑖 yields

E𝑡 [z𝑡 ]> (ŵ𝑡 − w𝑡 ) =
1
𝑛

𝑛∑
𝑖=1

𝜕 𝑓𝑖 (u𝑖,𝑡 )>𝜕𝑔𝑖 (w𝑡 )> (ŵ𝑡 − w𝑡 )

≤ 1
𝑛

𝑛∑
𝑖=1

[
𝑓𝑖 (𝑔𝑖 (ŵ𝑡 )) − 𝑓𝑖 (𝑔𝑖 (w𝑡 )) + 𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 )

− 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) + ( 𝜌2𝐺1

2
+ 𝜌1𝐺

2
2)‖ŵ𝑡 − w𝑡 ‖2

2 + 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

]
.

(5.17)
Due to the 𝜌-weak convexity of 𝐹 (w), we have that 𝐹 (w) + 𝜌̄

2 ‖w𝑡 − w‖2
2 is (𝜌̄ − 𝜌)-

strongly convex. Then
[
𝐹 (w𝑡 )+ 𝜌̄2 ‖w𝑡−w𝑡 ‖2

2

]
−

[
𝐹 (ŵ𝑡 )+ 𝜌̄2 ‖w𝑡−ŵ𝑡 ‖2

2

]
≥ 𝜌̄−𝜌

2 ‖ŵ𝑡−

w𝑡 ‖2
2. It follows that:
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

1
𝑛

𝑛∑
𝑖=1

[
𝑓𝑖 (𝑔𝑖 (ŵ𝑡 )) − 𝑓𝑖 (𝑔𝑖 (w𝑡 ))

]
= 𝐹 (ŵ𝑡 ) − 𝐹 (w𝑡 )

=

[
𝐹 (ŵ𝑡 ) +

𝜌̄

2
‖w𝑡 − ŵ𝑡 ‖2

2

]
−

[
𝐹 (w𝑡 ) +

𝜌̄

2
‖w𝑡 − w𝑡 ‖2

2

]
− 𝜌̄

2
‖w𝑡 − ŵ𝑡 ‖2

2

≤ ( 𝜌
2
− 𝜌̄)‖w𝑡 − ŵ𝑡 ‖2

2

(5.18)

Combining inequality (5.17), (5.16) and (5.18) yields

E𝑡 [𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) +
𝜂2
𝑡 𝜌̄𝐺

2

2
− 𝜌̄2𝜂𝑡

2
‖w𝑡 − ŵ𝑡 ‖2

2

+ 𝜌̄𝜂𝑡
𝑛

𝑛∑
𝑖=1

[
𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 ) − 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 )

+ 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

]
.

We finish the proof by noting that ‖∇𝐹1/𝜌̄ (w𝑡 )‖2 = 𝜌̄‖w𝑡 − ŵ𝑡 ‖2, using

𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 ) − 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) ≤ 2𝐺1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2,

if 𝑓𝑖 is 𝐺1-Lipschitz continuous, or using

𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 ) − 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) ≤
𝐿1

2
‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2,

if 𝑓𝑖 is 𝐿1-smooth. ut

Convergence of SONX-v1

Recall the definition:

𝛿𝑡 =
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

Let us also define:

𝛿′𝑡 =
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2.

From Lemma 5.10, the key is to bound 𝛿𝑡 and 𝛿′𝑡 .

Lemma 5.11 Consider the update of SONX-v1, under Assumptions 5.4 and 5.5, with
constant parameters 𝛾𝑡 = 𝛾 ≤ 1 and 𝜂𝑡 = 𝜂, we have
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E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾

4𝑛

)2𝑡
𝛿0 +

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 .

E
[
𝛿′𝑡

]
≤

(
1 − 𝐵𝛾

4𝑛

) 𝑡
𝛿′0 +

4𝑛𝐺2
2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0.

Proof. From the proof of Lemma 5.1, we have

E
[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2

2

]
≤

(
1 − 𝐵𝛾𝑡

2𝑛

)
E

[

u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)


2

2

]
+

2𝑛𝐺2
2

𝐵𝛾𝑡
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛

≤
(
1 − 𝐵𝛾𝑡

2𝑛

)
E

[

u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)


2

2

]
+

2𝑛𝐺2
2𝜂

2
𝑡−1

𝐵𝛾𝑡
E

[
‖z𝑡−1‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛

≤
(
1 − 𝐵𝛾𝑡

4𝑛

)2
E

[

u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)


2

2

]
+

2𝑛𝐺4
2𝐺

2
1𝜂

2
𝑡−1

𝐵𝛾𝑡
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
.

Applying the above inequality recursively for 𝛾𝑡 = 𝛾 and 𝜂𝑡 = 𝜂, we obtain

E
[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2

2

]
≤

(
1 − 𝐵𝛾

4𝑛

)2𝑡 

u𝑖,0 − 𝑔𝑖 (w0)


2

2 +
𝑡−1∑
𝑗=0

(
1 − 𝐵𝛾

4𝑛

)2 𝑗
(
2𝑛𝐺4

2𝐺
2
1𝜂

2

𝐵𝛾
+
𝐵𝛾2𝜎2

0
𝑛

)
≤

(
1 − 𝐵𝛾

4𝑛

)2𝑡 

u𝑖,0 − 𝑔𝑖 (w0)


2

2 +
8𝑛2𝐺4

2𝐺
2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 ,

where we use

𝑡−1∑
𝑗=0

(1 − 𝛼)2 𝑗 ≤
∞∑
𝑗=0

(1 − 𝛼)2 𝑗 =
1

1 − (1 − 𝛼)2 =
1

𝛼(2 − 𝛼) ≤ 1
𝛼
,∀𝛼 ∈ (0, 1).

Averaging the above inequality over 𝑖, we prove the first result in the lemma.
It follows

E
[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2

]
≤

√
E

[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2
2

]
≤

√(
1 − 𝐵𝛾

4𝑛

)2𝑡 

u𝑖,0 − 𝑔𝑖 (w0)


2

2 +
8𝑛2𝐺4

2𝐺
2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0

≤
(
1 − 𝐵𝛾

4𝑛

) 𝑡 

u𝑖,0 − 𝑔𝑖 (w0)




2 +
4𝑛𝐺2

2𝐺1𝜂

𝐵𝛾
+ 2𝛾1/2𝜎0.

Averaging the above result, we prove the second result. ut
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Theorem 5.3 (Convergence of SONX-v1 with Lipschitz 𝑓𝑖) Consider SONX-v1,
and suppose Assumption 5.4 and 5.5 hold and 𝑓𝑖 is 𝐺1-Lipschitz continuous. Let
𝜂𝑡 = 𝜂 = 𝑂 ( 𝐵𝜖 6

𝑛𝜎2
0
), 𝛾𝑡 = 𝛾 = 𝑂 ( 𝜖 4

𝜎2
0
). Then after 𝑇 = 𝑂 ( 𝑛𝜎

2
0

𝐵𝜖 8 ) iterations, we have
E[‖∇𝐹1/𝜌̄ (w𝑡 )‖2

2] ≤ 𝑂 (𝜖2).

Proof. From Lemma 5.10, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[2
∑𝑇
𝑡=1 (𝐹1/𝜌̄ (w𝑡 ) − 𝐹1/𝜌̄ (w𝑡+1))

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 4𝜌̄𝐺1E
[
1
𝑇

𝑇∑
𝑡=1

𝛿′𝑡

]
+ 2𝜌̄𝜌1E

[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
.

Next, we bound the last two terms. From Lemma 5.11, we have

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
≤ 1
𝑇

𝑇∑
𝑡=1

(
1 − 𝐵𝛾

4𝑛

)2𝑡
𝛿0 +

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 .

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿′𝑡

]
≤ 1
𝑇

𝑇∑
𝑡=1

(
1 − 𝐵𝛾

4𝑛

) 𝑡
𝛿′0 +

4𝑛𝐺2
2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0.

Since
∑𝑇
𝑡=1 (1 − 𝜇)𝑡 ≤ 1

𝜇 for 𝜇 ∈ (0, 1), we have

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
≤ 4𝑛𝛿0

𝐵𝛾𝑇
+

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 .

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿′𝑡

]
≤

4𝑛𝛿′0
𝐵𝛾𝑇

+
4𝑛𝐺2

2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0.

From Proposition 3.2, we have

𝑇∑
𝑡=1

(𝐹1/𝜌̄ (w𝑡 ) − 𝐹1/𝜌̄ (w𝑡+1)) = 𝐹1/𝜌̄ (w1) − 𝐹1/𝜌̄ (w𝑇+1) ≤ 𝐹 (w1) − 𝐹 (w∗).

Combining the above results, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[
2(𝐹 (w1) − 𝐹∗)

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 4𝜌̄𝐺1

(4𝑛𝛿′0
𝐵𝛾𝑇

+
4𝑛𝐺2

2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0

)
+ 2𝜌̄𝜌1

(
4𝑛𝛿0

𝐵𝛾𝑇
+

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0

)
.

Plugging the order of 𝜂, 𝛾, we finish the proof.
ut
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Theorem 5.4 (Convergence of SONX-v1 with smooth 𝑓𝑖) Consider SONX-v1, and
suppose Assumption 5.1 and 5.5 hold and 𝑓𝑖 is 𝐿1-smooth. Let 𝜂𝑡 = 𝜂 = 𝑂 ( 𝐵𝜖 3

𝑛𝜎2
0
),

𝛾𝑡 = 𝛾 = 𝑂 ( 𝜖 2

𝜎2
0
), then after 𝑇 = 𝑂 ( 𝑛𝜎

2
0

𝐵𝜖 5 ) iterations, we have E[‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2] ≤

𝑂 (𝜖2).

Proof. By using the result for smooth 𝑓𝑖 in Lemma 5.10, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[2
∑𝑇
𝑡=1 (𝐹1/𝜌̄ (w𝑡 ) − 𝐹1/𝜌̄ (w𝑡+1))

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 𝜌̄(𝐿1 + 2𝜌1)E
[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
.

Plugging the bounds for the first and last term in the RHS, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[
2(𝐹 (w1) − 𝐹∗)

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 𝜌̄(𝐿1 + 2𝜌1)
(
4𝑛𝛿0

𝐵𝛾𝑇
+

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0

)
.

Plugging the order of 𝜂, 𝛾, we finish the proof.
ut

Convergence of SONX-v2

Similar to the first option, we need to bound 𝛿𝑡 , 𝛿′𝑡 first.

Lemma 5.12 Under Assumption 5.4, 5.5, by setting 𝛾𝑡 = 𝛾 ≤ 1
2 , 𝜂𝑡 = 𝜂, 𝛾′𝑡 =

𝑛−𝐵
𝐵(1−𝛾) + (1 − 𝛾), we have:

E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾

2𝑛

)2𝑡
𝛿0 + 4𝛾𝜎2

0 +
24𝑛2𝐺4

2𝐺
2
1𝜂

2

𝐵2𝛾
,

E
[
𝛿′𝑡

]
≤

(
1 − 𝐵𝛾

2𝑛

) 𝑡
𝛿′0 + 2𝛾1/2𝜎0 +

5𝑛𝐺2
2𝐺1𝜂

𝐵𝛾1/2 .

Proof is omitted as it is similar to that of Lemma 5.11 but based on Lemma 5.5.

Theorem 5.5 (Convergence of SONX-v2) Consider SONX-v2, and suppose As-
sumption 5.4, and 5.5 hold.

• If 𝑓𝑖 is 𝐺1-Lipschitz continuous, by setting 𝜂 = 𝑂 ( 𝐵𝜖 4

𝑛𝜎0
), 𝛾 = 𝑂 ( 𝜖 4

𝜎2
0
), then after

𝑇 = 𝑂 ( 𝑛𝜎0
𝐵𝜖 6 ) iterations, we have E[‖∇𝐹1/𝜌̄ (x𝑡 )‖2

2] ≤ 𝜖2.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

• If 𝑓𝑖 is further 𝐿1-smooth, by setting 𝜂 = 𝑂 ( 𝐵𝜖 2

𝑛𝜎0
), 𝛾 = 𝑂 ( 𝜖 2

𝜎2
0
), then the complexity

reduces to 𝑇 = 𝑂 ( 𝑛𝜎0
𝐵𝜖 4 ).

The proof follows similarly to that of Theorem 5.3 and Theorem 5.4 and is left as
an exercise for interested readers.

5.3.2 SONEX for Non-smooth Outer functions

When 𝑓𝑖 is Lipschitz continuous and non-smooth, the best complexity derived in last
subsection is 𝑂 (𝑛/(𝐵𝜖6)). Can we further improve the complexity when the inner
functions are smooth? We present a method and its analysis in this section.

Let us make the following assumptions.

Assumption 5.6. We assume that

(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2
2] ≤ 𝜎2

0
(ii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁) − ∇𝑔𝑖 (w)‖2

2] ≤ 𝜎2
2

(iii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁)‖2
2] ≤ 𝐺2

2.

Assumption 5.7. The following conditions hold:

(i) 𝑓𝑖 is 𝜌1-weakly convex, 𝐺1-Lipschitz continuous,
(ii) 𝑔𝑖 is 𝐿2-smooth and 𝐺2-Lipschitz continuous.

Moreau Envelope Smoothing of the outer function

A classical approach of improving the convergence for non-smooth functions in con-
vex optimization is smoothing, i.e., first smoothing the function and then using an
optimizer for solving the resulting smoothed function. We define the Moreau enve-
lope smoothing of 𝑓𝑖 as follows:

𝑓𝑖 (𝑔) = min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + 𝑓𝑖 (u), (5.19)

where 𝜌̄1 > 𝜌1. We present a lemma below regarding 𝑓𝑖 .

Lemma 5.13 If 𝑓𝑖 is 𝐺1-Lipschitz continuous and 𝜌1-weakly convex, then 𝑓𝑖 is 𝐿̄1-
smooth and 𝐺1 Lipschitz continuous, where 𝐿̄1 = 𝜌̄1 (2𝜌̄1−𝜌1 )

(𝜌̄1−𝜌1 ) .

Proof. Define prox 𝑓𝑖/𝜌̄1
(𝑔) = arg minu∈R𝑑′

𝜌̄1
2 ‖u − 𝑔‖2

2 + 𝑓𝑖 (u). We have

∇ 𝑓𝑖 (𝑔) = 𝜌̄1 (𝑔 − prox 𝑓𝑖/𝜌̄1
(𝑔)).

Due to the optimality condition of prox 𝑓𝑖/𝜌̄1
(𝑔), we have
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𝜌̄1 (𝑔 − prox 𝑓𝑖/𝜌̄1
(𝑔)) ∈ 𝜕 𝑓𝑖 (prox 𝑓𝑖/𝜌̄1

(𝑔)).

Hence,∇ 𝑓𝑖 (𝑔) ∈ 𝜕 𝑓𝑖 (prox 𝑓𝑖/𝜌̄1
(𝑔)), which implies ‖∇ 𝑓𝑖 (𝑔)‖ ≤ 𝐺1. The smoothness

of 𝑓𝑖 follows from Proposition 3.1. ut

Relationship with Nesterov Smoothing

When 𝑓𝑖 is a convex function, its Moreau envelope smoothing is also equivalent to
the well-known Nesterov smoothing. To see this, let 𝑓 ∗𝑖 denote the convex conjugate
of 𝑓𝑖 , i.e., 𝑓 ∗𝑖 (u) = max𝑔∈R𝑑′ u>𝑔 − 𝑓𝑖 (𝑔). Since 𝑓𝑖 is convex, we have 𝑓𝑖 (𝑔) =
maxu∈U u>𝑔 − 𝑓 ∗𝑖 (u), where U = dom( 𝑓 ∗𝑖 ) is bounded as ‖𝜕 𝑓𝑖 (𝑔)‖ ≤ 𝐺1. As a
result,

𝑓𝑖 (𝑔) = min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + 𝑓𝑖 (u) = min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + max
u′∈U

u′>u − 𝑓 ∗𝑖 (u′).

By Sion’s minimax theorem, we can switch the min and max. Hence,

𝑓𝑖 (𝑔) = max
u′∈U

min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + u′>u − 𝑓 ∗𝑖 (u′).

By solving the minimization over u and plugging the optimal solution into the ex-
pression, we get

𝑓𝑖 (𝑔) = max
u′∈U

𝑔>u′ − 𝑓 ∗𝑖 (u′) − 1
2𝜌̄1

‖u′‖2
2. (5.20)

This is known as Nesterov smoothing of the function 𝑓𝑖 (𝑔). When 𝜌̄1 is sufficiently
large, we can prove that 𝑓𝑖 is sufficiently close to 𝑓𝑖 .

Example

Example 5.1. Let us consider the Nesterov smoothing of the hinge function
𝑓 (𝑥) = [𝑥]+. Let 𝜌̄1 = 1/𝜀 for some small 𝜀 � 1. Then, the Nesterov smooth-
ing of the hinge function is

𝑓 (𝑥) = max
𝑢∈[0,1]

𝑢𝑥 − 𝜀

2
𝑢2 =


𝑥 − 𝜀

2 if 𝑥 ≥ 𝜀
𝑥2

2𝜀 if 0 < 𝑥 < 𝜀
0 o.w.

.

This is also known as the smoothed hinge function.
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Solving the smoothed problem

With a smoothed outer function 𝑓𝑖 , we consider optimizing the following problem
with some proper value of 𝜌̄1:

min
w
𝐹̄ (w) :=

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)). (5.21)

Following Lemma 4.3, 𝐹̄ (·) is smooth with a smoothness parameter 𝐿̄𝐹 = 𝐺1𝐿2 +
𝐺2

2 𝐿̄1.
The key concern is how the convergence of solving the above problem translates

to the convergence of solving the original problem (5.1). To address this question,
we introduce a new convergence measure, named approximate 𝜖-stationarity.

Definition 5.1 (Approximate 𝜖-stationary solution) A point w is an approximate
𝜖-stationary solution to the original problem (5.1), if there exists (u1, . . . , u𝑛) and
𝜆𝑖 ∈ 𝜕 𝑓 (u𝑖),∀𝑖 such that 




1

𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)𝜆𝑖







2

≤ 𝜖, (5.22)

‖u𝑖 − 𝑔𝑖 (w)‖2 ≤ 𝑂 (𝜖),∀𝑖. (5.23)

We note that this condition is closely related to theKKT condition of the following
equivalent constrained formulation of the original problem (5.1):

min
w,u

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (u𝑖) (5.24)

s.t. 𝑔𝑖 (w) = u𝑖 ,∀𝑖. (5.25)

The Lagrangian function of this constrained formulation is given by

𝐹 (w, u, 𝜆) = 1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (u𝑖) +
𝑛∑
𝑖=1

𝜆>𝑖 (𝑔𝑖 (w) − u𝑖).

A solution (w, u, 𝜆) satisfies the KKT condition, if

1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)𝜆𝑖 = 0, 𝜆𝑖 ∈ 𝜕 𝑓𝑖 (u𝑖)

u𝑖 = 𝑔𝑖 (w).

Hence, an approximate 𝜖-stationary solution satisfies the KKT condition approxi-
mately when 𝜖 � 1.

If 𝑓𝑖 is 𝐿1-smooth, an approximate 𝜖-stationary solution is also a standard 𝑂 (𝜖)-
stationary solution. To see this, we have
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Algorithm 17 SONEX
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, v0, u0
2: w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw a batch of samples B𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators by

v1: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )
v2: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B′

𝑡
∇𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
11: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
12: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
13: end for






1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (𝑔𝑖 (w))







2

=






1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (𝑔𝑖 (w)) − 1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (u𝑖) +
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (u𝑖)







2

≤ 1
𝑛

𝑛∑
𝑖=1

𝐺2𝐿1‖u𝑖 − 𝑔𝑖 (w)‖2 + 𝜖 ≤ 𝑂 (𝜖).

The following proposition states that an 𝜖-stationary solution to the smoothed
problem (5.21) is an approximate 𝜖-stationary solution to the original problem when
𝜌̄1 is sufficiently large.

Proposition 5.1 Let w be an 𝜖-stationary solution to (5.21), when 𝜌̄1 = 1/𝜖 , then w
is also an approximate 𝜖-stationary solution to (5.1).

Proof. Given that w be an 𝜖-stationary solution to (5.21), we have




1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (𝑔𝑖 (w))







2

≤ 𝜖 .

We define u𝑖 = prox 𝑓𝑖/𝜌̄1
(𝑔𝑖 (w)) = arg minu 𝑓𝑖 (u) + 𝜌̄1

2 ‖u − 𝑔𝑖 (w)‖2
2 and 𝜆𝑖 =

∇ 𝑓𝑖 (𝑔𝑖 (w)). Since ∇ 𝑓𝑖 (𝑔𝑖 (w)) ∈ 𝜕 𝑓𝑖 (prox 𝑓𝑖/𝜌̄1
(𝑔𝑖 (w))) = 𝜕 𝑓𝑖 (u𝑖). As a result, we

have 𝜆𝑖 ∈ 𝜕 𝑓𝑖 (u𝑖) and


 1
𝑛

∑𝑛
𝑖=1 ∇𝑔𝑖 (w)𝜆𝑖




2 ≤ 𝜖 .

Due to the optimality condition of u𝑖 , we have 𝑔𝑖 (w) − u𝑖 ∈ 𝜕 𝑓𝑖 (u𝑖)/𝜌̄1. Since 𝑓𝑖
is 𝐺1-Lipschitz continuous and 𝜌̄1 ≥ 1/𝜖 , hence, ‖u𝑖 − 𝑔𝑖 (w)‖2 ≤ 𝑂 (𝜖). ut
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Next, we discuss algorithms and complexities for solving the smoothed problem
when 𝜌̄1 = 1/𝜖 . Since both inner and outer functions of the smoothed problem are
smooth, we can leverage themoving average gradient estimators.We present detailed
steps for solving the smoothed problem in Algorithm 17, which is referred to as
SONEX.

A step in implementing SONEX for solving the smoothed problem (5.21) is the
calculation of ∇ 𝑓𝑖 (u𝑖,𝑡 ), which amounts to solving a proximal mapping of 𝑓𝑖 , i.e.,

prox 𝑓𝑖/𝜌̄1
(u𝑖,𝑡 ) = arg min

u∈R𝑑′
𝜌̄1

2
‖u − u𝑖,𝑡 ‖2

2 + 𝑓𝑖 (u).

In fact, ∇ 𝑓𝑖 (u𝑖,𝑡 ) = 𝜌̄1 (u𝑖,𝑡 − prox 𝑓𝑖/𝜌̄1
(u𝑖,𝑡 )).

Convergence of SONEX-v1

Finally, we present the complexity of SONEX-v1 for finding an 𝜖-stationary solution
to the smoothed problem when 𝜌̄1 = 1/𝜖 .

Corollary 5.1 (Convergence of SONEX-v1) Under Assumptions 5.6 and 5.7, if we
set u0 such that 1

𝑛E[
∑𝑛
𝑖=1 ‖u𝑖,0 − 𝑔𝑖 (w0)‖2

2] ≤ 𝑂 (𝜖), 𝛽 = 𝑂 ( 𝜖 2

𝜎2 ), 𝛾 = 𝑂 ( 𝜖 4

𝜎2
0
), 𝜂 =

min(𝜖, 𝑂 (𝛽𝜖), 𝑂 ( 𝐵𝜖 𝛾𝑛 )), 𝜌̄1 = 1/𝜖 > 𝜌1, then SONEX-v1 finds an approximate
𝑂 (𝜖)-stationary solution to the original problem (5.1) with a complexity of𝑂 ( 𝑛𝜎

2
0

𝐵𝜖 7 ).

Proof. The proof can be completed by using the convergence result of SOX with
noting the order of 𝐿̄1 = 𝑂 ( 𝜌̄1) = 𝑂 (1/𝜖) and 𝐿𝐹 = 𝑂 ( 𝐿̄1) = 𝑂 (1/𝜖). ut

Convergence of SONEX-v2

SONEX-v2 is a combination of SOX andMSVR, i.e., with u𝑡 sequence fromMSVR
and v𝑡 from SOX.

Theorem 5.6 (Convergence of SONEX-v2) Under Assumptions 5.6 and 5.7, if
we set u1 such that 1

𝑛E[
∑𝑛
𝑖=1 ‖u𝑖,0 − 𝑔𝑖 (w0)‖2

2] ≤ 𝑂 (𝜖3/𝜎0), 𝛽 = 𝑂 ( 𝜖 2

𝜎2 ), 𝛾 =

𝑂 ( 𝜖 2

𝜎2
0
), 𝜂 = min(𝑂 (𝜖), 𝑂 (𝛽𝜖), 𝑂 ( 𝐵

√
𝛾𝜖

𝑛 )) and 𝜌̄1 = 1
𝜖 > 𝜌1, then SONEX-v2 finds

an approximate 𝜖-stationary solution to the original problem (5.1) with a complexity
of

𝑇 = 𝑂

(
max

{
1
𝜖3 ,

𝜎2

𝜖5 ,
𝑛𝜎0

𝐵𝜖5

})
,

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. The proof is similar to that of Theorem 4.3 except that the � inequality in
Lemma 4.10 is replaced by the following for usingMSVRestimators (see Lemma 5.5):
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(�) E [𝛿𝑡+1] ≤ E[(1 − 𝛾̄)𝛿𝑡 + 𝐶3𝜂
2Γ𝑡 + 𝛾̄2𝜎′2],

where 𝛾̄= 𝐵𝛾𝑛 , 𝜎
′2 =

2𝑛𝜎2
0

𝐵 , 𝐶3 = 𝑂 (𝑛/𝐵)
We only highlight the changes below and leave details as an exercise. First, the

condition on 𝜂 in Lemma 4.10 is changed to

𝜂 ≤ 𝑂
(

1
𝐿
,
𝛽

√
𝐶2
,

√
𝛾̄

𝐶1𝐶3

)
.

The settings on 𝛽, 𝛾̄ remain the same as 𝛽 = 𝑂 ( 𝜖 2

𝜎2 ), 𝛾̄ = 𝑂 ( 𝜖 2

𝐶1𝜎′2 ). The iteration
complexity becomes:

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶2

𝜖2𝛽
,
𝐶Υ

√
𝐶1𝐶3√
𝛾̄𝜖2

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶3𝐶1𝜎

′

𝜖3

})
.

and 𝐶Υ is changed to

𝐶Υ = 𝐴0 − 𝐴∗ +
𝜂

𝛽
Δ0 +

𝐶1𝜂

𝛾̄
𝛿0 ≤ 𝐴0 − 𝐴∗ +𝑂

(
1

√
𝐶2

)
Δ0 +𝑂

( √
𝐶1√
𝐶3𝛾̄

)
𝛿0

= 𝐴0 − 𝐴∗ +𝑂
(

1
√
𝐶2

)
Δ0 +𝑂

(
𝐶1𝜎

′
√

8𝐶3𝜖

)
𝛿0.

Then, as in the proof of Theorem 5.1, we substitute 𝐶1 = 𝑂 ( 𝐿̄2
1), 𝐶2 = 𝑂 ( 𝐿̄2

𝐹),
𝐶3 = 𝑂 (𝑛/𝐵), 𝜎2 =

𝐺2
1𝜎

2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) , and 𝜎′2 = 𝑂 (𝑛𝜎2
0 /𝐵) into the above

complexity expression and 𝐶Υ, and obtain

𝑇 = 𝑂

(
max

{
𝐶Υ 𝐿̄𝐹
𝜖2 ,

𝐶Υ 𝐿̄𝐹𝜎
2

𝜖4 ,
𝐶Υ𝑛𝐿̄

2
1𝜎0

𝐵𝜖3

})
,

𝐶Υ ≤ 𝑂 (𝐹 (w0) − 𝐹̄∗) +𝑂
(

1
𝐿̄𝐹

)
Δ0 +𝑂

(
𝐿̄2

1𝜎0

𝜖

)
𝛿0.

We finish the proof by noting that 𝐿̄1 = 𝑂 (1/𝜖) and 𝐿̄𝐹 = 𝑂 (1/𝜖) and 𝐶Υ = 𝑂 (1)
if 𝛿0 ≤ 𝑂 (𝜖3/𝜎0).

ut

5.4 Convex inner and outer functions

In Chapter 3, we discussed standard stochastic convex optimization and estab-
lished the iteration complexities of various algorithms. For general convex problems,
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Algorithm 18 ALEXR
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛼𝑡 }𝑇𝑡=1, 𝜃 ∈ [0, 1]; starting points w0, y1 ∈ Y1 ×

· · · × Y𝑛
2: Let w1 = w0
3: for 𝑡 = 1, . . . , 𝑇 − 1 do
4: Sample a batch B𝑡 ⊂ {1, . . . , 𝑛}, | B𝑡 | = 𝐵
5: for each 𝑖 ∈ S𝑡 do
6: Draw a sample 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
7: Compute 𝑔̃𝑖,𝑡 = 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) + 𝜃 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) )
8: Update 𝑦𝑖,𝑡+1 = arg max𝑦𝑖 ∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖 ) − 1

𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 )

}
9: end for
10: For each 𝑖 ∉ B𝑡 , 𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡
11: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B𝑡 [𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 ) ]>𝑦𝑖,𝑡+1

12: Update w𝑡+1 = arg minw

{
z>𝑡 w + 1

2𝜂𝑡 ‖w − w𝑡 ‖2
2 + 𝑟 (w)

}
13: end for

stochastic gradient descent (SGD) achieves a complexity of 𝑂 (1/𝜖2), while for 𝜇-
strongly convex problems, its complexity improves to 𝑂 (1/(𝜇𝜖)). These analyses
rely on the assumption of unbiased stochastic gradient estimators, which does not
hold for convex compositional optimization problems.

In this section, we introduce stochastic algorithms for a family of convex FCCO
problems, where both the inner and outer functions are convex. We establish that
these algorithms attain the same order of iteration complexities as SGD in standard
stochastic convex optimization. In particular, let us consider a regularized convex
FCCO:

min
w∈R𝑑

𝐹 (w) :=
1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)) + 𝑟 (w), (5.26)

where 𝑔𝑖 (w) = E𝜁∼P𝑖 [𝑔𝑖 (w; 𝜁)], the outer and inner functions satisfy the following
assumption.

Assumption 5.8. The following conditions hold:

(i) 𝑓𝑖 is convex, 𝐺1-Lipschitz continuous, and 𝜕 𝑓𝑖 (·) ≥ 0.
(ii) 𝑔𝑖 is convex and 𝐺2-Lipschitz continuous.
(iii) 𝑟 is 𝜇-strongly convex for some 𝜇 ≥ 0.

Group DRO (5.2) could satisfy the above assumption when the individual loss
function is convex and Lipschitz with respect to the model parameter. Two-way par-
tial AUCmaximization considered in Section 6.4.3 is another example satisfying the
above assumption when the loss function is convex and Lipschitz continuous.

Let 𝑓 ∗𝑖 denote the convex conjugate of 𝑓𝑖 . We can write 𝑓𝑖 (𝑔𝑖 (w)) as

𝑓𝑖 (𝑔𝑖 (w)) = max
𝑦𝑖∈Y𝑖

(𝑦>𝑖 𝑔𝑖 (w) − 𝑓 ∗𝑖 (𝑦𝑖),
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where Y𝑖 = dom( 𝑓 ∗1 ). Since 0 ≤ 𝜕 𝑓𝑖 (·) and ‖𝜕 𝑓𝑖 (·)‖ ≤ 𝐺1, hence Y𝑖 is a compact
set following from Lemma 1.8.

Then, we can convert (5.26) into an equivalent minimax optimization problem:

min
w∈R𝑑

max
y∈Y

1
𝑛

𝑛∑
𝑖=1

(𝑦>𝑖 𝑔𝑖 (w) − 𝑓 ∗𝑖 (𝑦𝑖)) + 𝑟 (w), (5.27)

where y = (𝑦1, . . . , 𝑦𝑛)>, Y = Y1 × · · · Y𝑛. Thus, the above problem is convex-
concave problem under Assumption 5.8.

We introduce a method to optimize the above minimax problem. However, there
are several unique challenges: (i) updating all coordinates of y is difficult because it is
computationally prohibitive to traverse all data points 𝑖 = 1, . . . , 𝑛 at each iteration;
(ii) we only have access to stochastic evaluations of the functions 𝑔𝑖 (w; 𝜁), which
limits our ability to update both the corresponding coordinate of y and the parameter
w.

5.4.1 The ALEXR Algorithm

To present the algorithm, we assume a strongly convex prox-function 𝜓𝑖 for the 𝑖-th
coordinate and impose the following conditions.

Assumption 5.9. Suppose 𝜓𝑖 is differentiable and obeys the following conditions

(i) 𝜓𝑖 is 𝜇𝜓-strongly convex with respect to ‖·‖2, i.e.,𝜓𝑖 (𝑦) ≥ 𝜓𝑖 (𝑦′)+∇𝜓𝑖 (𝑦′)> (𝑦−
𝑦′) + 𝜇𝜓

2 ‖𝑦 − 𝑦′‖2
2.

(ii) 𝐷 𝑓 ∗𝑖
(𝑦, 𝑦′) ≥ 𝜌𝐷𝜓𝑖 (𝑦, 𝑦′) for some 𝜌 ≥ 0.

(iii) The following proximal mapping can be easily computed:

𝑦𝑖,𝑡+1 = arg max
𝑦𝑖∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 )

}
.

A meta-algorithm, termed ALEXR, is presented in Algorithm 18. ALEXR em-
ploys stochastic block-coordinate proximal mirror ascent to update y, using the prox-
function 𝜓𝑖 for the 𝑖-th coordinate, and applies stochastic proximal gradient descent
to update w. Below, we consider different choices of the prox-functions 𝜓𝑖 and the
corresponding updates for 𝑦𝑖,𝑡+1.

ALEXR-v1 for smooth 𝑓𝑖: using 𝜓𝑖 = 𝑓 ∗𝑖

When 𝑓𝑖 is 𝐿1-smooth, its convex conjugate 𝑓 ∗𝑖 is 1/𝐿1-strongly convex. We can use
𝜓𝑖 = 𝑓 ∗𝑖 to define a Bregman divergence 𝐷𝜓𝑖 (𝑦, 𝑦′) = 𝐷 𝑓 ∗𝑖

(𝑦, 𝑦′).
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Critical: In this case, Assumption 5.9 (i) and (ii) hold with 𝜇𝜓 = 1/𝐿1, and
𝜌 = 1.

Let us consider the update of 𝑦𝑖,𝑡+1, which becomes:

𝑦𝑖,𝑡+1 = arg max
𝑦𝑖∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝐷 𝑓 ∗𝑖

(𝑦𝑖 , 𝑦𝑖,𝑡 )
}
,∀𝑖 ∈ B𝑡 . (5.28)

The following lemma provides an efficient way to compute 𝑦𝑖,𝑡+1, which also builds
the connection to the sequence of u𝑖,𝑡 in SOX and MSVR.

Lemma 5.14 Let u𝑖,𝑡−1 ∈ 𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 ). Then for 𝑖 ∈ B𝑡 we have 𝑦𝑖,𝑡+1 = ∇ 𝑓𝑖 (u𝑖,𝑡 ),
where u𝑖,𝑡 = 1

1+𝛼𝑡 u𝑖,𝑡−1 + 𝛼𝑡
1+𝛼𝑡 𝑔̃𝑖,𝑡 .

Proof. For the problem (5.28), we have

𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −
1
𝛼𝑡
𝐷 𝑓 ∗𝑖

(𝑦𝑖 , 𝑦𝑖,𝑡 )

= 𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −
1
𝛼𝑡

( 𝑓 ∗𝑖 (𝑦𝑖) − 𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )> (𝑦𝑖 − 𝑦𝑖,𝑡 ) − 𝑓 ∗𝑖 (𝑦𝑖,𝑡 ))

= 𝑦>𝑖 (𝑔̃𝑖,𝑡 +
1
𝛼𝑡
𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )) − (1 + 1

𝛼𝑡
) 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )>𝑦𝑖,𝑡 +

1
𝛼𝑡
𝑓 ∗𝑖 (𝑦𝑖,𝑡 ).

Hence 𝑦𝑖,𝑡+1 ∈ arg max𝑦𝑖∈Y𝑖 𝑦>𝑖 (
𝛼𝑡

1+𝛼𝑡 𝑔̃𝑖,𝑡 +
1

1+𝛼𝑡 𝜕 𝑓
∗
𝑖 (𝑦𝑖,𝑡 )) − 𝑓 ∗𝑖 (𝑦𝑖). If we define

u𝑖,𝑡 = 𝛼𝑡
1+𝛼𝑡 𝑔̃𝑖,𝑡 +

1
1+𝛼𝑡 𝜕 𝑓

∗
𝑖 (𝑦𝑖,𝑡 ), we have

𝑓 (u𝑖,𝑡 ) = max
𝑦𝑖∈Y𝑖

𝑦>𝑖 u𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) = 𝑦>𝑖,𝑡+1u𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖,𝑡+1).

Hence, u𝑖,𝑡 ∈ arg maxu 𝑦
>
𝑖,𝑡+1u − 𝑓𝑖 (u) and therefore 𝑦𝑖,𝑡+1 = ∇ 𝑓𝑖 (u𝑖,𝑡 ). ut

If 𝑓𝑖 is a Legendre function such that ∇ 𝑓 −1
𝑖 = ∇ 𝑓 ∗𝑖 (see Lemma 1.8). Then, we can

derive the following equivalent update of u sequence such that 𝑦𝑖,𝑡 = ∇ 𝑓𝑖 (u𝑖,𝑡−1).

u𝑖,𝑡 =
{ 1

1+𝛼𝑡 u𝑖,𝑡−1 + 𝛼𝑡
1+𝛼𝑡 𝑔̃𝑖,𝑡 , if 𝑖 ∈ B𝑡

u𝑖,𝑡−1 o.w. . (5.29)

When 𝜃 = 0, the equivalent u update (5.64) becomes:

u𝑖,𝑡 = (1 − 𝛼𝑡
1 + 𝛼𝑡

)u𝑖,𝑡−1 +
𝛼𝑡

1 + 𝛼𝑡
𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ),∀𝑖 ∈ B𝑡 . (5.30)

This is the same as the moving average estimator in SOX with 𝛾𝑡 = 𝛼𝑡/(1 + 𝛼𝑡 ).
Using the equivalent u sequence, the stochastic gradient estimator becomes z𝑡 =
1
𝐵

∑
𝑖∈B𝑡 [𝜕𝑔𝑖 (𝑥𝑡 ; 𝜁 ′𝑖,𝑡 )]>∇ 𝑓𝑖 (u𝑖,𝑡 ). If the regularizer 𝑟 is not present, the update of

the model parameter becomes w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 . In this case, ALEXR with 𝜃 = 0 is
the same as SOX with 𝛽𝑡 = 1. We will prove its convergence for convex and strongly
convex regularizer 𝑟.
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When 𝜃 > 0, the equivalent u update (5.64) becomes:

u𝑖,𝑡 = (1 − 𝛼𝑡
1 + 𝛼𝑡

)u𝑖,𝑡−1 +
𝛼𝑡

1 + 𝛼𝑡
𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) +

𝜃𝛼𝑡
1 + 𝛼𝑡

(𝑔𝑖 (w𝑡 ; 𝜁𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑡 )).
(5.31)

This is similar to the MSVR estimator with 𝛾𝑡 = 𝛼𝑡
1+𝛼𝑡 and 𝛾′𝑡 = 𝜃𝛼𝑡

1+𝛼𝑡 . However,
the key difference is that 𝛾′𝑡 in MSVR is larger than 1, while it is smaller than 1 in
ALEXR for convex problems. In practice, setting 𝛾′𝑡 < 1 is a better choice. We will
prove a better convergence of ALEXR with 𝜃 ∈ (0, 1) for a strongly convex 𝑟.

ALEXR-v2 for non-smooth 𝑓𝑖: using a quadratic function 𝜓𝑖 (·)

When 𝑓𝑖 is non-smooth, we cannot use 𝑓 ∗𝑖 as the prox function. In this case, we will
use a smooth and strongly convex 𝜓𝑖 . a quadratic function 𝜓𝑖 (𝑦) = 1

2 ‖𝑦‖2
2.

Critical: In this case, Assumption 5.9 (i) holds with 𝜇𝜓 = 1, and Assump-
tion 5.9 (ii) holds with 𝜌 = 0.

Example

Example 5.2. For the update of 𝑦𝑖,𝑡+1, consider the example 𝑓𝑖 (·) = [ · ]+, as
used in GDRO and TPAUC maximization. In this case, the conjugate 𝑓 ∗𝑖 (𝑦)
is the indicator function of the interval [0, 1]. Consequently, 𝑦𝑖,𝑡+1 can be
computed as:

𝑦𝑖,𝑡+1 = arg max
𝑦𝑖∈[0,1]

{
𝑦>𝑖 𝑔̃𝑖,𝑡 −

1
2𝛼𝑡

(𝑦𝑖 − 𝑦𝑖,𝑡 )2
}
= Π[0,1] (𝑦𝑖,𝑡 − 𝛼𝑡 𝑔̃𝑖,𝑡 ),∀𝑖 ∈ B𝑡 ,

where Π[0,1] (·) projects the input into the range of [0, 1].

5.4.2 Technical Lemmas

To facilitate the analysis, we define (w∗, y∗) as the saddle point to the minimax prob-
lem and
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𝐹 (w, y) = 1
𝑛

𝑛∑
𝑖=1

𝑦>𝑖 𝑔𝑖 (w) − 𝑓 ∗𝑖 (𝑦𝑖) + 𝑟 (w),

𝑔̃𝑡 = (𝑔̃1,𝑡 , . . . , 𝑔̃𝑛,𝑡 )>,

𝑦̄𝑖,𝑡+1 = arg max
𝑦𝑖∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 )

}
,∀𝑖 ∈ [𝑛]

𝐷𝜓 (y, y′) =
𝑛∑
𝑖=1

𝐷𝜓𝑖 (𝑦𝑖 , 𝑦′𝑖).

Note that ȳ𝑡+1 is a virtual sequence, which is updated for all coordinates from y𝑡
making it independent of B𝑡 .

We make the following assumption regarding the stochastic estimators.

Assumption 5.10. We assume that
(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2

2] ≤ 𝜎2
0 .

(ii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁) − ∇𝑔𝑖 (w)‖2
2] ≤ 𝜎2

2 .
(iii) E𝑖∼U𝑛

[

𝑦𝑖∇𝑔𝑖 (w) − 1
𝑛

∑𝑛
𝑖=1 𝑦𝑖∇𝑔𝑖 (w)



2
2

]
≤ 𝛿2 for any fixed y, where U𝑛 de-

notes a uniform distribution.

Lemma 5.15 The following holds for any w, y ∈ Y after the 𝑡-th iteration of Algo-
rithm 18.

𝐹 (w𝑡+1, y) − 𝐹 (w, ȳ𝑡+1) (5.32)

≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 − ( 1

2𝜂𝑡
+ 𝜇

2
) ‖w − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2

+ 𝐴𝑡 (y) + 𝐵𝑡 (y) + 𝐶𝑡 (w),

where

𝐴𝑡 (y) =
1
𝑛𝛼𝑡

𝐷𝜓 (y, y𝑡 ) − ( 1
𝑛𝛼𝑡

+ 𝜌
𝑛
)𝐷𝜓 (y, ȳ𝑡+1) −

1
𝑛𝛼𝑡

𝐷𝜓 (ȳ𝑡+1, y𝑡 )

𝐵𝑡 (y) =
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

𝐶𝑡 (w) = 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w).

Proof. Following Lemma 3.10, for all 𝑖 ∈ [𝑛] the dual update rule implies that for
any 𝑦 ∈ Y it holds

𝑔̃>𝑖,𝑡 (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) + 𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) − 𝑓 ∗𝑖 (𝑦𝑖)

≤ 1
𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 ) − ( 1

𝛼𝑡
+ 𝜌)𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̄𝑖,𝑡+1) −

1
𝛼𝑡
𝐷𝜓𝑖 ( 𝑦̄𝑖,𝑡+1, 𝑦𝑖,𝑡 ).

Averaging this inequality over 𝑖 = 1, . . . , 𝑛.
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1
𝑛

𝑛∑
𝑖=1
𝑔̃>𝑖,𝑡 (𝑦𝑖,𝑡 − 𝑦̄𝑖,𝑡+1) +

1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 (𝑦𝑖) (5.33)

≤ 1
𝑛𝛼𝑡

𝐷𝜓 (y, y𝑡 ) − ( 1
𝑛𝛼𝑡

+ 𝜌
𝑛
)𝐷𝜓 (y, ȳ𝑡+1) −

1
𝑛𝛼𝑡

𝐷𝜓 (ȳ𝑡+1, y𝑡 ).

According to Lemma 3.6, the primal update rule implies that

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) (5.34)

≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 − ( 1

2𝜂𝑡
+ 𝜇

2
) ‖w − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 .

By the definition of 𝐹 (w, y), we have

𝐹 (w𝑡+1, y) − 𝐹 (w, ȳ𝑡+1)

=
1
𝑛

𝑛∑
𝑖=1

𝑦>𝑖 𝑔𝑖 (w𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 (𝑦𝑖) + 𝑟 (w𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑦̄>𝑖,𝑡+1𝑔𝑖 (w)

+ 1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) − 𝑟 (w)

=
1
𝑛

𝑛∑
𝑖=1

𝑔𝑖 (w𝑡+1)> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) +
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 (𝑦𝑖)

+ 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w))> 𝑦̄𝑖,𝑡+1 + 𝑟 (w𝑡+1) − 𝑟 (w).

Combining the equation above with (5.34) and (5.33), we can finish the proof. ut

Next, we bound the three terms 𝐴𝑡 (y), 𝐵𝑡 (y), 𝐶𝑡 (w) separately.

Lemma 5.16 Let 𝜏𝑡 = 1/𝛼𝑡 . For y that possibly depends on all randomness in the
algorithm and any 𝜆0 > 0, we have

E[𝐴𝑡 (y)] = E
[ 𝜏𝑡
𝑛
𝐷𝜓 (y, y𝑡 ) −

𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y, ȳ𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
(5.35)

≤ E

[
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y, y𝑡+1)
]
− 𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+ E

[
𝜆0 (𝜏𝑡 + 𝜌)

𝑛
(𝐷𝜓 (y, ŷ𝑡 ) − 𝐷𝜓 (y, ŷ𝑡+1))

]
+ (𝑛 − 𝐵)(𝜏𝑡 + 𝜌)

2𝜇𝜓𝜆0𝑛𝐵
E

[
𝑛∑
𝑖=1



∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2

]
,

where the sequence {ŷ𝑡 }𝑡 , ŷ𝑡 ∈ Y is virtual. In addition, for y∗, we have

228



5.4. CONVEX INNER AND OUTER FUNCTIONS

E[𝐴𝑡 (y∗)] = E
[ 𝜏𝑡
𝑛
𝐷𝜓 (y∗, y𝑡 ) −

𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y∗, ȳ𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
(5.36)

≤ E

[
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y∗, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y∗, y𝑡+1)
]
− 𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
.

Proof.

𝜏𝑡
𝑛
𝐷𝜓 (y, y𝑡 ) −

𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y, ȳ𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 ) (5.37)

=
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y, y𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

+
(
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y, y𝑡+1) −
𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y, ȳ𝑡+1) +
(𝐵 − 𝑛)(𝜏𝑡 + 𝜌)

𝑛𝐵
𝐷𝜓 (y, y𝑡 )

)
.

For bounding the last three terms, we consider the following:

1
𝐵
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡+1) −

1
𝑛
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̄𝑖,𝑡+1) +

(𝐵 − 𝑛)
𝑛𝐵

𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 ) (5.38)

=
1
𝐵

(
𝜓𝑖 (𝑦𝑖) − 𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡+1)> (𝑦𝑖 − 𝑦𝑖,𝑡+1)

)
− 1
𝑛

(
𝜓𝑖 (𝑦𝑖) − 𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1)> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

)
+ (𝐵 − 𝑛)

𝑛𝐵

(
𝜓𝑖 (𝑦𝑖) − 𝜓𝑖 (𝑦𝑖,𝑡 ) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )> (𝑦𝑖 − 𝑦𝑖,𝑡 )

)
=

[
1
𝑛

(
𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) −

𝑛

𝐵
𝜓𝑖 (𝑦𝑖,𝑡+1) +

𝑛 − 𝐵
𝐵

𝜓𝑖 (𝑦𝑖,𝑡 )
)]

+
[

1
𝐵
∇𝜓𝑖 (𝑦𝑖,𝑡+1)>𝑦𝑖,𝑡+1 −

1
𝑛
∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1)> 𝑦̄𝑖,𝑡+1 +

(𝐵 − 𝑛)
𝑛𝐵

∇𝜓𝑖 (𝑦𝑖,𝑡 )>𝑦𝑖,𝑡
]

+ 1
𝑛
(− 𝑛
𝐵
∇𝜓𝑖 (𝑦𝑖,𝑡+1) + ∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝐵

∇𝜓𝑖 (𝑦𝑖,𝑡 ))>𝑦𝑖︸                                                                    ︷︷                                                                    ︸
♯

.

Taking expectation over B𝑡 for the first two terms in the brackets of the above bound
will give zeros. This is because that both 𝑦̄𝑖,𝑡+1 and 𝑦𝑖,𝑡 are independent of B𝑡 such
that

EB𝑡 [𝜓𝑖 (𝑦𝑖,𝑡+1)] =
𝐵

𝑛
𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝑛

𝜓𝑖 (𝑦𝑖,𝑡 ),

EB𝑡
[
∇𝜓𝑖 (𝑦𝑖,𝑡+1)>𝑦𝑖,𝑡+1

]
=
𝐵

𝑛
∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1)> 𝑦̄𝑖,𝑡+1 +

𝑛 − 𝐵
𝑛

∇𝜓𝑖 (𝑦𝑖,𝑡 )>𝑦𝑖,𝑡 ,

EB𝑡
[
∇𝜓𝑖 (𝑦𝑖,𝑡+1)

]
=
𝐵

𝑛
∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝑛

∇𝜓𝑖 (𝑦𝑖,𝑡 ).

Next, we bound the ♯ term. When y = y∗, expectation of ♯ is also zero which
proves (5.36).
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When y is possibly random, let us apply Lemma 3.13 to the update 𝑦̂𝑖,𝑡+1 =
arg min𝑣 −Δ>

𝑖,𝑡 𝑣 + 𝜆0𝐷𝜓𝑖 (𝑣, 𝑦̂𝑖,𝑡 ),∀𝑖 (𝜆0 to be determined), where

Δ𝑖,𝑡 := − 𝑛
𝐵
∇𝜓𝑖 (𝑦𝑖,𝑡+1) + ∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝐵

∇𝜓𝑖 (𝑦𝑖,𝑡 )

is a martingale sequence due to

EB𝑡 [(∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))] =
𝐵

𝑛
(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )).

We have

E[♯] ≤ E
[
𝜆0

𝑛
(𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡 ) − 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡+1))

]
+ 1

2𝑛𝜇𝜓𝜆0
E

[

Δ𝑖,𝑡

2
2

]
.

Note that EB𝑡 [(∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))] = 𝐵
𝑛 (∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )) such that

EB𝑡

[

Δ𝑖,𝑡

2
2

]
= EB𝑡




(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )) −
𝑛

𝐵
(∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )




2

2

≤ 𝑛2

𝐵2EB𝑡


∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )



2
2 −



(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))


2

2

≤ 𝑛

𝐵



∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2 −


(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))



2
2 .

Thus, we have

E[♯] ≤ E
[
𝜆0

𝑛
(𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡 ) − 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡+1))

]
+ 𝑛 − 𝐵

2𝜇𝜓𝜆0𝑛𝐵
E

[

∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2

]
.

Averaging (5.38) multiplied by 𝜏𝑡 + 𝜌 and combining (5.37) finishes the proof. ut

Lemma 5.17 Suppose 𝜓𝑖 is 𝜇𝜓-strongly convex. For any 𝜆2, 𝜆3, 𝜆4, 𝜆5 > 0 and y
that possibly depends on all randomness in the algorithm, we have

E[𝐵𝑡 (y)] =
1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) ≤ E[Γ𝑡+1 − 𝜃Γ𝑡 ] (5.39)

+
(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]

𝜇𝜓𝑛
+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4

+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
+
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
+
𝜃𝜎2

0𝜆5

2𝜇𝜓

+ 1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜃

𝑛𝜆5
E[𝐷𝜓 (y, y̆𝑡 ) − 𝐷𝜓 (y, y̆𝑡+1)],
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where Γ𝑡 := 1
𝑛

∑𝑛
𝑖=1 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖 − 𝑦𝑖,𝑡 ) and y̆𝑡 , ỹ𝑡 are some virtual se-

quences. In addition, we have

E[𝐵𝑡 (y∗)] =
1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖,∗ − 𝑦̄𝑖,𝑡+1) ≤ E[Γ∗
𝑡+1 − 𝜃Γ∗

𝑡 ] (5.40)

+
(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]

𝜇𝜓𝑛
+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4

+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
,

where Γ∗
𝑡 := 1

𝑛

∑𝑛
𝑖=1 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖,∗ − 𝑦𝑖,𝑡 ).

Proof. Since

𝑔̃𝑖,𝑡 = 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) + 𝜃 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )),

we have

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) (5.41)

=
1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)︸                                                       ︷︷                                                       ︸
I

+ 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)︸                                                        ︷︷                                                        ︸
II

+ 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 )) + 𝜃 (𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)︸                                                                                ︷︷                                                                                ︸
III

.

Define

¤𝑦𝑖,𝑡+1 := arg max
𝑣∈Y𝑖

{𝑣> ((1+𝜃)𝑔𝑖 (w𝑡 )−𝜃𝑔𝑖 (w𝑡−1))− 𝑓 ∗𝑖 (𝑣)−
1
𝛼𝑡
𝐷𝜓𝑖 (𝑣, 𝑦𝑖,𝑡 )},∀𝑖 ∈ [𝑛] .

This update differs from that of 𝑦̄𝑖,𝑡+1 in that it uses full gradients instead of stochastic
gradients. We decompose the I term in (5.41) as
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I =
1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

=
1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> ( ¤𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1)︸                                                           ︷︷                                                           ︸
I1

+ 1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))>𝑦𝑖︸                                         ︷︷                                         ︸
I2

− 1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> ¤𝑦𝑖,𝑡+1︸                                             ︷︷                                             ︸
I3

.

Taking expectation over 𝜁𝑖,𝑡 ,∀𝑖 will make E𝜁𝑡 [I3] = 0. Below, we will bound I1 and
I2.

I1 ≤ 1 + 𝜃
𝑛

𝑛∑
𝑖=1



𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )

2



 ¤𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1




2 .

Since 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 ) is 𝜇𝜓-strongly convex, Lemma 3.8 implies that

‖ ¤𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1‖2

≤ 𝛼𝑡
𝜇𝜓

(
(1 + 𝜃)



𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )

2 + 𝜃


𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )




2

)
Hence

E𝜁𝑡 [I1] ≤
(1 + 𝜃)𝛼𝑡
𝑛𝜇𝜓

·

𝑛∑
𝑖=1

E
[
(1 + 1.5𝜃)



𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )

2
2 + 0.5𝜃



𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )


2

2

]
≤

(1 + 𝜃) (1 + 2𝜃)𝜎2
0𝛼𝑡

𝜇𝜓
. (5.42)

Next, let us handle I2. Let us define an auxiliary sequence {ỹ𝑡 }𝑡≥1,

𝑦̃𝑖,𝑡+1 = arg min
𝑣∈Y𝑖

{(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ))>𝑣 +
1
𝜆2
𝐷𝜓𝑖 (𝑣, 𝑦̃𝑖,𝑡 )},

where 𝜆2 > 0. Lemma 3.13 implies that

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))>𝑦𝑖 ≤
1
𝜆2

E[𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̃𝑖,𝑡 ) − 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̃𝑖,𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
.

Averaging over 𝑖 = 1, . . . , 𝑛 and multiplying (1 + 𝜃) yields a bound of I2:
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E[I2] ≤
1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
.

As a result, the I term in (5.41) can be bounded as

E[I] ≤ 1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
+
(1 + 𝜃)(1 + 2𝜃)𝜎2

0𝛼𝑡

𝜇𝜓
.

(5.43)

Similarly, the II term in (5.41) can be bounded as

E[II] ≤ 𝜃

𝑛𝜆5
E[𝐷𝜓 (y, y̆𝑡 ) − 𝐷𝜓 (y, y̆𝑡+1)] +

𝜃𝜆5𝜎
2
0

2𝜇𝜓
+
𝜃 (0.5 + 1.5𝜃)𝜎2

0𝛼𝑡

𝜇𝜓
. (5.44)

where

𝑦̆𝑖,𝑡+1 = arg min
𝑣∈Y𝑖

{(𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ))>𝑣 + 𝜆5𝐷𝜓𝑖 (𝑣, 𝑦̆𝑖,𝑡 )},∀𝑖.

Next, let us bound III. Recall Γ𝑡 := 1
𝑛

∑𝑛
𝑖=1 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖 − 𝑦𝑖,𝑡 ). For

any 𝜆3, 𝜆4 > 0, III can be rewritten as

III = Γ𝑡+1 − 𝜃Γ𝑡 +
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1)

− 𝜃

𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖,𝑡 − 𝑦̄𝑖,𝑡+1)

≤ Γ𝑡+1 − 𝜃Γ𝑡 +
𝐺2

2 ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝜆3 ‖y𝑡+1 − ȳ𝑡+1‖2

2
2𝑛

+
𝐺2

2𝜃 ‖w𝑡 − w𝑡−1‖2
2

2𝜆4
+
𝜆4𝜃 ‖y𝑡 − ȳ𝑡+1‖2

2
2𝑛

.

Note that 𝑦𝑖,𝑡+1 = 𝑦̄𝑖,𝑡+1 if 𝑖 ∈ B𝑡 and 𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 otherwise. Then, ‖y𝑡+1 − ȳ𝑡+1‖2
2 ≤

‖y𝑡 − ȳ𝑡+1‖2
2 such that

III ≤ Γ𝑡+1 − 𝜃Γ𝑡 +
𝐺2

2 ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃 ‖w𝑡 − w𝑡−1‖2
2

2𝜆4
(5.45)

+
(𝜆3 + 𝜆4𝜃)𝐷𝜓 (ȳ𝑡+1, y𝑡 )

𝜇𝜓𝑛
.

Combining (5.43), (5.45), (5.44), we have
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E[𝐵𝑡 (y)] ≤ E[Γ𝑡+1 − 𝜃Γ𝑡 ]

+ 1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜃

𝑛𝜆5
E[𝐷𝜓 (y, y̆𝑡 ) − 𝐷𝜓 (y, y̆𝑡+1)]

+
(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]

𝜇𝜓𝑛
+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4

+
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
+
𝜃𝜎2

0𝜆5

2𝜇𝜓
+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
.

ut

Lemma 5.18 When 𝜃 = 0, for any 𝜆2, 𝜆4 ≥ 0 and y that possibly depends on all
randomness in the algorithm, we have

E[𝐵𝑡 (y)] =
1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) ≤
𝐺2

2E
[
‖w𝑡+1 − w𝑡 ‖2

2
]

4𝜆4
+ 4𝜆4𝐺

2
1

+ 1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
+
𝜎2

0𝛼𝑡

𝜇𝜓
. (5.46)

Proof. For ALEXR with 𝜃 = 0, we have 𝑔̃𝑖,𝑡 = 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ). Then, for any 𝜆4 > 0 we
have

1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) =
1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
+ 1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
. (5.47)

We bound the first term on the RHS by Young’s inequality:

1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
≤ 1
𝑛

𝑛∑
𝑖=1

(
𝐺2

2‖w𝑡+1 − w𝑡 ‖2
2

4𝜆4
+ 𝜆4



𝑦𝑖 − 𝑦̄𝑖,𝑡+1


2

2

)
≤
𝐺2

2‖w𝑡+1 − w𝑡 ‖2
2

4𝜆4
+ 4𝐺2

1.

The second term in (5.47) can be bounded similarly as (5.43) by:

1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
≤ 1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
+
𝜎2

0𝛼𝑡

𝜇𝜓
.

Combining the above inequalities together, we have
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1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) ≤
𝐺2

2E
[
‖w𝑡+1 − w𝑡 ‖2

2
]

4𝜆4
+ 4𝜆4𝐺

2
1

+ 1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
+
𝜎2

0𝛼𝑡

𝜇𝜓
.

ut

Lemma 5.19 If 𝑔𝑖 is 𝐿2-smooth and 𝜂 ≤ 1
2𝐺1𝐿2

, then

E[𝐶𝑡 (w∗)] = E

[
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗)
]

(5.48)

≤ 𝜂𝜎2 + 1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

If 𝑔𝑖 is 𝐺2-Lipschitz continuous, then

E[𝐶𝑡 (w∗)] = E

[
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗)
]

(5.49)

≤ 𝜂(𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. We define Δ𝑡 := 1
𝐵

∑
𝑖∈B𝑡 [𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )]>𝑦𝑖,𝑡+1 − 1

𝑛

∑𝑛
𝑖=1 [𝜕𝑔𝑖 (w𝑡 )]> 𝑦̄𝑖,𝑡+1.

Similar to Lemma 5.2, we have E𝑡 [‖Δ𝑡 ‖2
2] ≤ 𝜎2. To proceed, we have

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗)

=
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> 𝑦̄𝑖,𝑡+1 +
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1

+ 1
𝑛

𝑛∑
𝑖=1

( [𝜕𝑔𝑖 (w𝑡 )]> 𝑦̄𝑖,𝑡+1 + Δ𝑡 )> (w∗ − w𝑡+1).

Since 𝑔𝑖 is convex and Y𝑖 ⊂ R𝑛+ as 𝜕 𝑓𝑖 ≥ 0, we have

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 ≤ 1
𝑛

𝑛∑
𝑖=1

[∇𝑔𝑖 (w𝑡 )]> (w𝑡 − w∗)> 𝑦̄𝑖,𝑡+1.

Adding the above two inequalities, we have
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1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗) (5.50)

≤ 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − ∇𝑔𝑖 (w𝑡 )> (w𝑡+1 − w𝑡 ))> 𝑦̄𝑖,𝑡+1 +
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − w𝑡+1).

If 𝑔𝑖 is 𝐿2-smooth, the first term in (5.50) can be bounded by

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − ∇𝑔𝑖 (w𝑡 )> (w𝑡+1 − w𝑡 ))> 𝑦̄𝑖,𝑡+1

≤ 𝐺1

𝑛

𝑛∑
𝑖=1



𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − ∇𝑔𝑖 (w𝑡 )> (w𝑡+1 − w𝑡 )




2 ≤ 𝐺1𝐿2

2
‖w𝑡+1 − w𝑡 ‖2

2 .

(5.51)

To bound the second term in (5.50), we note that EB𝑡 ,𝜁𝑡 [Δ𝑡 ] = 0. Let us define
ŵ𝑡+1 = arg minw w> 1

𝑛

∑𝑛
𝑖=1 [∇𝑔𝑖 (w𝑡 )]> 𝑦̄𝑖,𝑡+1 + 1

2𝜂 ‖w − w𝑡 ‖2
2 + 𝑟 (w). Then we have

E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − w𝑡+1)

]
= E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − ŵ𝑡+1 + ŵ𝑡+1 − w𝑡+1)

]
= E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (ŵ𝑡+1 − w𝑡+1)

]
,

where we use the fact that

E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − ŵ𝑡+1)

]
= E

[
1
𝑛

𝑛∑
𝑖=1

EB𝑡 ,𝜁 ′𝑡 [Δ𝑡 ]
> (w∗ − ŵ𝑡+1)

]
= 0.

According to Lemma 1.7 we have

E[Δ>
𝑡 (ŵ𝑡+1 − w𝑡+1)] ≤

𝜂

1 + 𝜇𝜂E ‖Δ𝑡 ‖2
2 ≤ 𝜂𝜎2

1 + 𝜇𝜂 . (5.52)

Then, combining (5.50), (5.51) and (5.52) leads to

1
𝑛

𝑛∑
𝑖=1

E[(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1] − Ez>𝑡 (w𝑡+1 − w∗)

≤ 𝜂𝜎2

1 + 𝜇𝜂 + 𝐿2𝐺1

2
‖w𝑡+1 − w𝑡 ‖2

2 ,

which finishes the first part by noting the condition on 𝜂.
If 𝑔𝑖 is 𝐺2-Lipschitz continuous, we have
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𝐺1

𝑛

𝑛∑
𝑖=1

‖𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − 𝜕𝑔𝑖 (w𝑡 )(w𝑡+1 − w𝑡 )‖2 (5.53)

≤ 2𝐺1𝐺2 ‖w𝑡+1 − w𝑡 ‖2 ≤ 𝜂4𝐺2
1𝐺

2
2 +

1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

Combining (5.50), (5.52), and (5.53), we get

1
𝑛

𝑛∑
𝑖=1

E[𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗)> 𝑦̄𝑖,𝑡+1] − Ez>𝑡 (w𝑡+1 − w∗)

≤ 𝜂(𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

ut

5.4.3 Strongly convex objectives

In this section, we derive a complexity of 𝑂 (1/𝜖) under the the following condition.

Assumption 5.11. We assume that the function 𝑟 is 𝜇-strongly convex (𝜇 > 0) and
each 𝑓𝑖 is 𝐿1-smooth, both with respect to the Euclidean norm ‖ · ‖2.

With this assumption, theminimax problem becomes strongly convex and strongly
concave since the dual 𝑓 ∗𝑖 is 1/𝐿1-strongly convex with respect to ‖ · ‖2. In this case,
we will establish the convergence of 𝜇‖w − w∗‖2

2.

Critical: Under Assumption 5.11, parts (i) and (ii) of Assumption 5.9 hold
for both variants of ALEXR. For ALEXR-v1, we have 𝜇𝜓 = 1/𝐿1 and 𝜌 = 1,
whereas for ALEXR-v2, we have 𝜇𝜓 = 1 and 𝜌 = 1/𝐿1. Hence, the following
theorem holds for both variants of ALEXR.

Let us introduce a few notations:

𝑎 =
𝜖 𝜇𝜓𝜌

24𝜎2
0
, 𝑏1 = 3(𝜎2 + 4𝐺2

1𝐺
2
2), 𝑏2 = 3𝜎2.

Theorem 5.7 Suppose Assumptions 5.8, 5.10 and 5.11 hold.

• If 𝑔𝑖 is 𝐺2-Lipschitz continuous, by setting 𝛼 = 1−𝜃
𝜌(𝜃−(1−𝐵/𝑛) ) , 𝜂 = 1−𝜃

𝜃𝜇 and

𝜃 = max

{
1 −

𝑎 𝐵𝑛
1 + 𝑎 , 1 − 𝜇𝜖

𝑏1 + 𝜇𝜖

}
.

ALEXR finds a solution w𝑇+1 such that E[𝜇‖w𝑇+1 − w∗‖2
2] ≤ 𝜖 with an iteration

complexity of
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𝑇 = 𝑂

(
1

1 − 𝜃 log(3Υ/𝜖)
)
= 𝑂̃

(
max

(
𝑛

𝐵
,
(𝜎2 + 𝐺2

1𝐺
2
2)

𝜇𝜖
,
𝑛𝜎2

0
𝐵𝜖𝜇𝜓𝜌

))
.

• If 𝑔𝑖 is further 𝐿2-smooth, by setting 𝛼 = 1−𝜃
𝜌(𝜃−(1−𝐵/𝑛) ) , 𝜂 = 1−𝜃

𝜃𝜇 and

𝜃 = max

{
1 −

𝑎 𝐵𝑛
1 + 𝑎 , 1 − 𝜇𝜖

𝑏2 + 𝜇𝜖
, 1 − 𝜇

2𝐺1𝐿2 + 𝜇

}
,

for sufficiently small 𝜖 , ALEXR finds a solution w𝑇+1 such that E[𝜇‖w𝑇+1 −
w∗‖2

2] ≤ 𝜖 with an iteration complexity of

𝑇 = 𝑂

(
1

1 − 𝜃 log(3Υ/𝜖)
)
= 𝑂̃

(
max

(
𝐺1𝐿2

𝜇
,
𝑛

𝐵
,
𝜎2

𝜇𝜖
,
𝑛𝜎2

0
𝐵𝜖𝜇𝜓𝜌

))
.

where Υ = 𝜇
2 ‖w1 − w∗‖2

2 +
2𝜌
𝐵 𝐷𝜓 (y∗, y1) and 𝜎2 =

𝐺2
1𝜎

2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) .

 Why it matters

For smooth functions 𝑔𝑖 , the iteration complexity is improved in the sense that
the 𝑂 (1/𝜖) dependence is scaled by the variance of the stochastic estimators. In
contrast, for non-smooth 𝑔𝑖 , the complexity always has a term 𝐺2

1𝐺
2
2

𝜇𝜖 independent
of variance.

Proof. We first consider non-smooth 𝑔𝑖 . Combining (5.32), (5.36) for 𝐴𝑡 (y∗), (5.40)
for 𝐵𝑡 (y∗), (5.49) for 𝐶𝑡 (w∗) together we have

E[𝐹 (w𝑡+1, y∗) − 𝐹 (w∗, ȳ𝑡+1)]

≤ 1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 − ( 1

2𝜂𝑡
+ 𝜇

2
) ‖w∗ − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2

+ E

[
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y∗, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y∗, y𝑡+1)
]
− 𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+ E[Γ∗

𝑡+1 − 𝜃Γ∗
𝑡 ] +

(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]
𝜇𝜓𝑛

+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4
+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓

+ 𝜂𝑡 (𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

Define Υ1,𝑡 := 1
2 ‖w∗ − w𝑡 ‖2

2 and Υ2,𝑡 = 1
𝐵𝐷𝜓 (y∗, y𝑡 ). Since

𝐹 (w𝑡+1, y∗) −𝐹 (w∗, ȳ𝑡+1) ≥ 𝐹 (w𝑡+1, y∗) −𝐹 (w∗, y∗) +𝐹 (w∗, y∗) −𝐹 (w∗, ȳ𝑡+1) ≥ 0,

multiplying the above inequality by 𝜃−𝑡 on both sides, we have
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0 ≤ 𝜃−𝑡E
[

1
𝜂𝑡
Υ1,𝑡 + (𝜏𝑡 + 𝜌(1 − 𝐵

𝑛
)))Υ2,𝑡 − 𝜃Γ∗

𝑡

]
(5.54)

− 𝜃−𝑡E
[
( 1
𝜂𝑡

+ 𝜇)Υ1,𝑡+1 + (𝜏𝑡 + 𝜌)Υ2,𝑡+1 − Γ∗
𝑡+1

]
− 𝜃−𝑡 ( 1

2𝜂𝑡
E ‖w𝑡+1 − w𝑡 ‖2

2 +
𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
) + 𝜃−𝑡

(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]
𝜇𝜓𝑛

+ 𝜃−𝑡
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+ 𝜃−𝑡

𝐺2
2𝜃E ‖w𝑡 − w𝑡−1‖2

2
2𝜆4

+ 𝜃−𝑡 1
4𝜂𝑡

E ‖w𝑡+1 − w𝑡 ‖2
2

+ 𝜃−𝑡
(
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
+ 𝜂𝑡 (𝜎2 + 4𝐺2

1𝐺
2
2)

)
.

Let

1
𝜂𝑡−1

+ 𝜇 =
1
𝜂𝑡𝜃

, (𝜏𝑡−1 + 𝜌) =
1
𝜃
(𝜏𝑡 + 𝜌(1 − 𝐵

𝑛
)). (5.55)

Hence,

𝑇∑
𝑡=1

{
𝜃−𝑡

[
1
𝜂𝑡
Υ1,𝑡 + (𝜏𝑡 + 𝜌(1 − 𝐵

𝑛
)))Υ2,𝑡 − 𝜃Γ∗

𝑡

]
−𝜃−𝑡

[
( 1
𝜂𝑡

+ 𝜇)Υ1,𝑡+1 + (𝜏𝑡 + 𝜌)Υ2,𝑡+1 − Γ∗
𝑡+1

]}
≤

𝑇∑
𝑡=1

{
𝜃−(𝑡−1)

[
( 1
𝜂𝑡−1

+ 𝜇)Υ1,𝑡 + (𝜏𝑡−1 + 𝜌)Υ2,𝑡 − Γ∗
𝑡

]
−𝜃−𝑡

[
( 1
𝜂𝑡

+ 𝜇)Υ1,𝑡+1 + (𝜏𝑡 + 𝜌)Υ2,𝑡+1 − Γ∗
𝑡+1

]}
=

[
( 1
𝜂0

+ 𝜇)Υ1,1 + (𝜏0 + 𝜌)Υ2,1 − Γ1

]
− 𝜃−𝑇

[
( 1
𝜂𝑇

+ 𝜇)Υ1,𝑇+1 + (𝜏𝑇 + 𝜌)Υ2,𝑇+1 − Γ𝑇+1

]
.

Since

− Γ𝑇+1 ≥ −1
𝑛

𝑛∑
𝑖=1

𝐺2‖w𝑇+1 − w𝑇 ‖2‖𝑦𝑖,∗ − 𝑦𝑖,𝑇+1‖2

≥ −1
𝑛

𝑛∑
𝑖=1

(
𝐺2

2𝐵

𝑛(𝜌 + 𝜏𝑇 )𝜇𝜓
‖w𝑇+1 − w𝑇 ‖2

2 +
𝑛𝜇𝜓 (𝜌 + 𝜏𝑇 )

4𝐵
‖𝑦𝑖,∗ − 𝑦𝑖,𝑇+1‖2

2)

≥ −(
𝐺2

2𝐵

2𝑛(𝜌 + 𝜏𝑇 )𝜇𝜓
‖w𝑇+1 − w𝑇 ‖2

2 +
𝜌 + 𝜏𝑇

2
Υ2,𝑇+1). (5.56)
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Summing (5.54) over 𝑡 = 1, . . . , 𝑇 and utilizing the above two inequalities, we have

𝜃−𝑇E
[
( 1
𝜂𝑇

+ 𝜇)Υ1,𝑇+1 +
𝜌 + 𝜏𝑇

2
Υ2,𝑇+1

]
≤

[
( 1
𝜂0

+ 𝜇)Υ1,1 + (𝜏0 + 𝜌)Υ2,1 − Γ1

]
+

𝜃−𝑇𝐺2
2𝐵

2𝑛(𝜌 + 𝜏𝑇 )𝜇𝜓
E‖w𝑇+1 − w𝑇 ‖2

2 − E

[
𝑇∑
𝑡=1

𝜃−𝑡

2
( 1
𝜂𝑡

−
𝐺2

2
𝜆3

−
𝐺2

2
𝜆4

− 1
2𝜂𝑡

) ‖w𝑡+1 − w𝑡 ‖2
2

]
− E

[
𝑇∑
𝑡=1

𝜃−𝑡

𝑛
( 1
𝛼𝑡

− 𝜆3 + 𝜆4𝜃

𝜇𝜓
)𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+

𝑇∑
𝑡=1

𝜃−𝑡
(
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
+ 𝜂𝑡 (𝜎2 + 4𝐺2

1𝐺
2
2)

)
,

wherewe use the fact
∑𝑇
𝑡=1 ‖w𝑡 − w𝑡−1‖2

2 ≤ ∑𝑇+1
𝑡=1 ‖w𝑡 − w𝑡−1‖2

2 =
∑𝑇
𝑡=1 ‖w𝑡+1 − w𝑡 ‖2

2.
Let 𝜂𝑡 = 𝜂, 𝛼𝑡 = 1

𝜏𝑡
= 𝛼, 𝜆3 = 𝜆4 = 8𝜂𝐺2

2. If 𝛼 ≤ 𝜇𝜓
16𝜂𝐺2

2
(to be verfied later),

we have 𝜏 ≥ 4𝜂𝐺2
2𝐵

𝑛𝜇𝜓
. As a result, 𝐺2

2𝐵

2𝑛(𝜌+𝜏𝑡 )𝜇𝜓 ≤ 1
8𝜂 and 1

𝛼𝑡
≥ 16𝜂𝐺2

2
𝜇𝜓

. Then the terms
related to ‖w𝑡+1 − w𝑡 ‖ and 𝐷𝜓 (ȳ𝑡+1, y𝑡 ) is less than zero. As a result,[

( 1
𝜂
+ 𝜇)Υ1,𝑇+1 + ( 𝜌

2
+ 1

2𝛼
)Υ2,𝑇+1

]
≤ 𝜃𝑇

[
( 1
𝜂
+ 𝜇)Υ1,1 + ( 1

𝛼
+ 𝜌)Υ2,1

]
+

𝑇∑
𝑡=1

𝜃𝑇−𝑡
(
8𝜎2

0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

)
≤ 𝜃𝑇

[
( 1
𝜂
+ 𝜇)Υ1,1 + ( 1

𝛼
+ 𝜌)Υ2,1

]
+ 1

1 − 𝜃

(
8𝜎2

0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

)
.

Due to the relationship between 𝜂, 𝛼 and 𝜃 in (5.55), we have

𝜃 =
1

1 + 𝜇𝜂 =
1 + 𝛼𝜌(1 − 𝐵/𝑛)

1 + 𝛼𝜌 ≥ 1
1 + 𝛼𝜌

𝛼 =
1 − 𝜃

𝜌(𝜃 − (1 − 𝐵/𝑛)) , 𝜂 =
1 − 𝜃
𝜃𝜇

.

Then, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS[
𝜇Υ1,𝑇+1

]
=

𝜇𝜂

1 + 𝜂𝜇 (
1
𝜂
+ 𝜇)Υ1,𝑇+1

≤ 𝜃𝑇𝜇
[
Υ1,1 +

(1 + 𝛼𝜌)𝜂
𝛼(1 + 𝜂𝜇)Υ2,1

]
+ 1

1 − 𝜃
𝜂𝜇

1 + 𝜂𝜇

(
8𝜎2

0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

)
= 𝜃𝑇Υ +

8𝜎2
0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

≤ 𝜃𝑇Υ + 1 − 𝜃
𝜌(𝜃 − (1 − 𝐵/𝑛))

8𝜎2
0

𝜇𝜓
+ 1 − 𝜃

𝜃𝜇
(𝜎2 + 4𝐺2

1𝐺
2
2),

where Υ = 𝜇Υ1,1 + 𝜇 (1+𝛼𝜌)𝜂
𝛼(1+𝜂𝜇)Υ2,1.

To let the RHS be less than 𝜖 , it is sufficient to have

𝑇 ≥ 1
1 − 𝜃 log(3Υ/𝜖) ≥ −1

log(𝜃) log(3Υ/𝜖) ⇒ 𝜃𝑇Υ ≤ 𝜖/3,

𝜃 ≥ 1 −
𝜖 𝜇𝜓𝜌𝐵/(24𝜎2

0 𝑛)
1 + 𝜖𝜇𝜓𝜌/(24𝜎2

0 )
⇒ 1 − 𝜃

𝜌(𝜃 − (1 − 𝐵/𝑛))
8𝜎2

0
𝜇𝜓

≤ 𝜖/3,

𝜃 ≥ 1
1 + 𝜇𝜖/(3(𝜎2 + 4𝐺2

1𝐺
2
2))

⇒ 1 − 𝜃
𝜃𝜇

(𝜎2 + 4𝐺2
1𝐺

2
2) ≤

𝜖

3
.

As a result,

𝑇 = 𝑂

(
1

1 − 𝜃 log(3Υ/𝜖)
)
= 𝑂̃

(
max

( (𝜎2 + 𝐺2
1𝐺

2
2)

𝜇𝜖
,
𝑛

𝐵
,
𝑛𝜎2

0
𝐵𝜖𝜇𝜓𝜌

))
.

Finally, we verify that if 𝜖2 ≤ 9(𝜎2+4𝐺2
1𝐺

2
2 )𝜎

2
0

2𝐺2
2

, then it holds that

𝛼 ≤
𝜇𝜓𝜖

24𝜎2
0
=
𝜇𝜓𝜖

2

24𝜎2
0 𝜖

≤
𝜇𝜓3(𝜎2 + 4𝐺2

1𝐺
2
2)

16𝐺2
2𝜖

≤
𝜇𝜓𝜃𝜇

16𝐺2
2 (1 − 𝜃)

=
𝜇𝜓

16𝜂𝐺2
2
.

Since 𝛼𝜌 ≤ 𝑂 (1), we have

(1 + 𝛼𝜌)𝜂
(1 + 𝜇𝜂)𝛼 ≤ 2

𝜂

𝛼
≤ 2

𝜌

𝜇
,

thus Υ1,1 + (1+𝛼𝜌)𝜂
𝛼(1+𝜇𝜂)Υ2,1 ≤ Υ1,1 + 2𝜌

𝜇 Υ2,1. Thus, Υ ≤ 𝜇Υ1,1 + 2𝜌Υ2,1.
For smooth 𝑔𝑖 , the proof is similar by using (5.48) instead of using (5.49). Hence,

𝜂𝑡 (𝜎2+4𝐺2
1𝐺

2
2) becomes 𝜂𝑡 (𝜎2) and there is additional condition 𝜂𝑡 ≤ 1

2𝐺1𝐿2
, which

transfers to a condition on 𝜃. ut
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5.4.4 Convex objectives with non-smooth outer functions

In this section, we only consider ALEXR-v2 for solving convex objectives with
non-smooth 𝑓𝑖 . For ALEXR-v2, we have that 𝜓 is 1-smooth and 1-strongly convex.
Hence, we have

(𝑛 − 𝐵)(𝜏 + 𝜌)
2𝜇𝜓𝜆0𝑛𝐵

E

[
𝑛∑
𝑖=1



∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2

]
(5.57)

≤ (𝑛 − 𝐵)(𝜏 + 𝜌)
2𝜆0𝑛𝐵

E

[
𝑛∑
𝑖=1



𝑦̄𝑖,𝑡+1 − 𝑦𝑖,𝑡


2

2

]
≤ (𝑛 − 𝐵)(𝜏 + 𝜌)

𝜆0𝑛𝐵
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
.

Theorem 5.8 Suppose Assumption 5.9 holds with 𝜌 = 0, 𝜇𝜓 = 1, and Assump-
tions 5.8, 5.10 hold. If 𝑔𝑖 is 𝐺2-Lipschitz continuous, setting 𝜃 = 0 and

𝛼 =
𝜖

6𝜎2
0
, 𝜂 =

𝜖

6(𝜎2 + 8𝐺2
1𝐺

2
2)
,

ALEXR-v2 returns an 𝜖-optimal solution w̄𝑇 =
∑𝑇
𝑡=1 w𝑡/𝑇 in expectation with a

complexity of

𝑇 = 𝑂

(
𝜎2 + 𝐺2

1𝐺
2
2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

Ω𝜎2
0

𝑛𝜖2

)
.

where Ω is a constant such that E[𝐷𝜓 (y∗𝑇 , y1)] ≤ Ω ≤ 𝑂 (𝐺2
1𝑛), and y∗𝑇 =

arg maxy∈Y1×···×Y𝑛 𝐹 (w̄𝑇 , y).

 Why it matters

In the worst case, the complexity is 𝑂
(
𝐺2

1𝐺
2
2

𝜖 2 + 𝑛𝐺2
1𝜎

2
0

𝐵𝜖 2

)
. This will match the

lower bounds established in next section.

Proof. Combining (5.35) with (5.57) yields

E
[ 𝑇∑
𝑡=1

𝐴𝑡 (y)
]
≤ 𝜏

𝐵
E[𝐷𝜓 (y, y1)] −

𝜏

𝑛
E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
+ 𝜆0𝜏

𝑛
E𝐷𝜓 (y, ŷ1)

(5.58)

+ (𝑛 − 𝐵)𝜏
𝜆0𝑛𝐵

E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]

(5.59)

Adding this inequality with (5.32), (5.46), and (5.49) over 𝑡 = 1, . . . , 𝑇 , we have
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E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]
≤ 1

2𝜂
‖w∗ − w1‖2

2 −
1
2𝜂

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+ 𝜏

𝐵
E[𝐷𝜓 (y, y1)] −

𝜏

𝑛
E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
+ 𝜆0𝜏

𝑛
E𝐷𝜓 (y, ŷ1)

+ (𝑛 − 𝐵)𝜏
𝜆0𝑛𝐵

E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
,

+
𝐺2

2
4𝜆4

E

[
𝑇∑
𝑡=1

‖w𝑡+1 − w𝑡 ‖2
2

]
+ 4𝜆4𝑇𝐺

2
1 +

1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ1)]

+
𝜆2𝜎

2
0

2
𝑇 + 𝜎2

0𝛼𝑇,

+ 𝜂𝑇 (𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂

𝑇∑
𝑡=1

E ‖w𝑡+1 − w𝑡 ‖2
2 .

If we set𝜆0 = 𝑛−𝐵
𝐵 and 𝐺2

2
4𝜆4

= 1
4𝜂 , we observe that the terms involvingE

[∑𝑇
𝑡=1 ‖w𝑡+1 − w𝑡 ‖2]

and E
[∑𝑇

𝑡=1 𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
cancel out, leaving us with the following:

E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]

≤ 1
2𝜂

‖w∗ − w1‖2
2 +

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 1
𝑛𝜆2

)
E𝐷𝜓 (y, y1)

+ 𝜂𝑇 (𝜎2 + 8𝐺2
1𝐺

2
2) +

𝜆2𝜎
2
0

2
𝑇 + 𝜎2

0𝛼𝑇.

Let y = y∗𝑇 = arg max 𝐹 (w̄𝑇 , y). Since 1
𝑇

∑𝑇
𝑡=1 𝐹 (w𝑡+1, y) ≥ 𝐹 (w̄𝑇 , y∗𝑇 ) = 𝐹 (w̄𝑇 )

and 𝐹 (w∗, ȳ𝑡+1) ≤ 𝐹 (w∗, y∗), we have

E
[
𝐹 (w̄𝑇 ) − 𝐹 (w∗)

]
≤ 1

2𝜂𝑇
‖w∗ − w1‖2

2 +
1
𝑇

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 1
𝑛𝜆2

)
Ω

+ 𝜂(𝜎2 + 8𝐺2
1𝐺

2
2) +

𝜆2𝜎
2
0

2
+ 𝜎2

0𝛼. (5.60)

Let

𝛼 =
𝜖

6𝜎2
0
, 𝜆2 =

𝜖

3𝜎2
0
, 𝜂 =

𝜖

6(𝜎2 + 8𝐺2
1𝐺

2
2)
,

𝑇 ≥ 𝑂
(
max

( ‖w1 − w∗‖2
2

12𝜂𝜖
,
Ω(1 + 𝜆0𝐵/𝑛)

6𝐵𝜖𝛼
,

Ω
6𝑛𝜆2𝜖

))
.

Then, the RHS of (5.60) is less than 𝜖 . As a result, the complexity is in the order of
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𝑂

(
max

(
𝜎2 + 𝐺2

1𝐺
2
2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

Ω𝜎2
0

𝑛𝜖2

))
.

ut

Theorem 5.9 Suppose Assumption 5.9 holds with 𝜌 = 0, 𝜇𝜓 = 1, Assumptions 5.8, 5.10
hold. If 𝑔𝑖 is 𝐺2-Lipschitz continuous and 𝐿2-smooth, for sufficiently small 𝜖 , setting
𝜃 = 1 and

𝛼 =
𝜖

64𝜎2
0
, 𝜂 = min

(
𝜖

8𝜎2 ,
1

2𝐺1𝐿2

)
ALEXR-v2 returns an 𝜖-optimal solution w̄𝑇 =

∑𝑇
𝑡=1 w𝑡/𝑇 in expectation with a

complexity of

𝑇 = 𝑂

(
𝐺1𝐿2

𝜖
,
𝜎2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

Ω𝜎2
0

𝑛𝜖2

)
.

where Ω and y∗𝑇 are defined similarly as in last theorem.

 Why it matters

For smooth functions 𝑔𝑖 , the iteration complexity is improved in the sense that
the 𝑂 (1/𝜖2) dependence is scaled by the variance of the stochastic estimators.
In contrast, for non-smooth 𝑔𝑖 , the complexity always includes a term 𝐺2

1𝐺
2
2

𝜖 2 ,
regardless of the variance.

Proof. The proof is similar to that of previous theorem except that we use (5.39)
instead of (5.46), and using (5.48) instead of using (5.49). Additionally, we use

𝑇∑
𝑡=1

(Γ𝑡+1 − Γ𝑡 ) = Γ𝑇+1 − Γ1 ≤ 1
𝑛

𝑛∑
𝑖=1

𝐺2‖w𝑇+1 − w𝑇 ‖2‖𝑦𝑖 − 𝑦𝑖,𝑇+1‖2 (5.61)

≤
𝐺2

2𝐵

2𝑛𝜏
‖w𝑇+1 − w𝑇 ‖2

2 +
𝜏𝑛/𝐵
𝑛

𝐷𝜓 (y, y𝑇+1).

Combining this with (5.39), we have

E
[ 𝑇∑
𝑡=1

𝐵𝑡 (y)
]
≤
𝐺2

2𝐵

2𝑛𝜏
E[‖w𝑇+1 − w𝑇 ‖2

2] +
𝜏

𝐵
E[𝐷𝜓 (y, y𝑇+1)] (5.62)

+ 2
𝑛𝜆2

E[𝐷𝜓 (y, ỹ1)] +
(𝜆3 + 𝜆4)

𝑛

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+
𝐺2

2
2𝜆3

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+
𝐺2

2
2𝜆4

𝑇∑
𝑡=1

E[‖w𝑡 − w𝑡−1‖2
2] + 8𝜎2

0𝛼𝑇 + 𝜆2𝜎
2
0𝑇 +

𝜎2
0𝜆5

2
𝑇 + 1

𝑛𝜆5
E[𝐷𝜓 (y, y̆1)] .

Summing the inequalities in (5.32), (5.58), (5.62), and (5.49) over 𝑡 = 1, . . . , 𝑇 , we
have
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E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]
≤ 1

2𝜂
‖w∗ − w1‖2

2 −
1
2𝜂

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+ 𝜏

𝐵
E[𝐷𝜓 (y, y1) − 𝐷𝜓 (y, y𝑇+1)] −

𝜏

𝑛

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+ 𝜆0𝜏

𝑛
E𝐷𝜓 (y, ŷ1) +

(𝑛 − 𝐵)𝜏
𝜆0𝑛𝐵

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
,

+
𝐺2

2𝐵

2𝑛𝜏
E[‖w𝑇+1 − w𝑇 ‖2

2] +
𝜏

𝐵
E[𝐷𝜓 (y, y𝑇+1)]

+ 2
𝑛𝜆2

E[𝐷𝜓 (y, ỹ1)] +
(𝜆3 + 𝜆4)

𝑛

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+
𝐺2

2
2𝜆3

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+
𝐺2

2
2𝜆4

𝑇∑
𝑡=1

E[‖w𝑡 − w𝑡−1‖2
2] + 8𝜎2

0𝛼𝑇 + 𝜆2𝜎
2
0𝑇 +

𝜎2
0𝜆5

2
𝑇 + 1

𝑛𝜆5
E[𝐷𝜓 (y, y̆1)],

+ 1
4𝜂

𝑇∑
𝑡=1

E ‖w𝑡+1 − w𝑡 ‖2
2 + 𝜂𝑇𝜎2.

Similarly as before, if we let 𝜆0 = 2(𝑛−𝐵)
𝐵 ,

𝐺2
2

2𝜆3
=
𝐺2

2
2𝜆4

= 1
16𝜂 , 𝜆3 +𝜆4 = 16𝜂𝐺2

2 ≤ 𝜏/2,

and 𝐺2
2𝐵

2𝑛𝜏 ≤ 1
8𝜂 , we observe that all the cumulated terms cancel out, leaving us the

following:

E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]
≤

1
2𝜂

‖w∗ − w1‖2
2 +

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 2
𝑛𝜆2

+ 1
𝑛𝜆5

)
E𝐷𝜓 (y, y1)

+ 𝜂𝑇𝜎2 + 8𝜎2
0𝛼𝑇 + 𝜆2𝜎

2
0𝑇 +

𝜎2
0𝜆5

2
𝑇.

Let y = y∗𝑇 = arg max 𝐹 (w̄𝑇 , y). Since 1
𝑇

∑𝑇
𝑡=1 𝐹 (w𝑡+1, y) ≥ 𝐹 (w̄𝑇 , y∗𝑇 ) = 𝐹 (w̄𝑇 )

and 𝐹 (w∗, ȳ𝑡+1) ≤ 𝐹 (w∗, y∗), we have

E
[
𝐹 (w̄𝑇 ) − 𝐹 (w∗)

]
≤ 1

2𝜂𝑇
‖w∗ − w1‖2

2 +
1
𝑇

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 2
𝑛𝜆2

+ 1
𝑛𝜆5

)
Ω

+ 𝜂(𝜎2) + 8𝜎2
0𝛼 + 𝜆2𝜎

2
0 +

𝜎2
0𝜆5

2
. (5.63)

Let
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Fig. 5.1: Relationship between different algorithms for FCCO.

𝛼 =
𝜖

64𝜎2
0
, 𝜆2 =

𝜖

8𝜎2
0
, 𝜆5 =

𝜖

4𝜎2
0
, 𝜂 = min

(
𝜖

8𝜎2 ,
1

2𝐺1𝐿2

)
𝑇 ≥ 𝑂

(
max

( ‖w1 − w∗‖2
2

32𝜂𝜖
,
Ω(1 + 𝜆0𝐵/𝑛)

8𝐵𝜖𝛼
,

Ω
4𝑛𝜆2𝜖

,
Ω

8𝑛𝜆5𝜖

))
.

Then the conditions 16𝜂𝐺2
2 ≤ 𝜏/2, 𝐺

2
2𝐵

2𝑛𝜏 ≤ 1
8𝜂 hold for sufficiently small 𝜖 , and the

RHS of (5.63) is less than 𝜖 . As a result, the complexity is in the order of

𝑂

(
max

(
𝐺1𝐿2

𝜖
,
𝜎2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

𝜎2
0Ω

𝑛𝜖2

))
.

ut
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Critical: The convergence results above remain valid for ALEXR-v2 even
when the outer functions 𝑓𝑖 are smooth. If 𝑓𝑖 is a smooth Legendre function,
ALEXR-v1 can also be applied and its convergence can be established. The
key is to note that

∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )



2
2 =



∇ 𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇ 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )


2

2 =


ū𝑖,𝑡 − u𝑖,𝑡−1



2
2 ,

where u𝑖,𝑡−1 is defined in Lemma 5.14 and ū𝑖,𝑡 is a virtual sequence similar
to u𝑖,𝑡 (5.64) except that all coordinates are updated by:

ū𝑖,𝑡 =
1

1 + 𝛼𝑡
u𝑖,𝑡−1 +

𝛼𝑡
1 + 𝛼𝑡

𝑔̃𝑖,𝑡 ,∀𝑖. (5.64)

Then, similar to the analysis of SOX, we can establish a bound of∑𝑇
𝑡=1

∑𝑛
𝑖=1 E[



ū𝑖,𝑡 − u𝑖,𝑡−1


2

2] and use it to prove the convergence of ALEXR-
v1. However, it remains unclear whether ALEXR-v1 provides any conver-
gence advantage over ALEXR-v2 when 𝑓𝑖 are smooth.

5.4.5 Double-loop ALEXR for weakly convex inner functions

ALEXR can be also useful for solving non-convex FCCO with convex outer func-
tions and weakly convex inner functions. In particular, we consider the following
non-convex problem:

min
w

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)) + 𝑟 (w),

where 𝑔𝑖 : R𝑑 → R𝑑
′ and 𝑓𝑖 : R𝑑′ → R satisfy the following conditions:

Assumption 5.12. Assume

(i) 𝑓𝑖 is convex, 𝐺1-Lipschitz continuous and 𝜕 𝑓 (𝑔) ≥ 0.
(ii) each dimension of 𝑔𝑖 is 𝜌2-weakly convex and 𝐺2-Lipschitz continuous.
(iii) 𝑟 (w) is a convex function.

The key idea is to solve the following quadratic problem sequentially:

w𝑡+1 ≈ arg min 𝐹̄ (w,w𝑡 ) :=
1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)) + 𝜌̄
2
‖w − w𝑡 ‖2

2,

where 𝜌̄ > 𝜌, with 𝜌 being the weak-convexity parameter of 𝐹 (w). We can employ
ALEXR to solveminw 𝐹̄ (w,w𝑡 ) approximately up to an 𝜖-level. This yields a double-
loop scheme.
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𝑓𝑖 𝑔𝑖 𝑟 F Algorithm Convergence Measure Complexity Theorem

sm - 0 ncx, sm SOX Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 4

)
Thm. 5.1

sm mss 0 ncx MSVR Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 3

)
Thm. 5.2

sm - pm ncx, sm SOX Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 4

)
Thm. 5.1

sm mss pm ncx MSVR Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 3

)
Thm. 5.2

wc, nd wc 0 ncx SONX (v1) Nearly Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 8

)
Thm. 5.3

sm, nd wc 0 ncx SONX (v1) Nearly Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 5

)
Thm. 5.4

wc, nd wc 0 ncx SONX (v2) Nearly Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 6

)
Thm. 5.5

sm, nd wc 0 ncx SONX (v2) Nearly Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 4

)
Thm. 5.5

wc, pm sm 0 ncx SONEX (v1) Approx. Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 7

)
Cor. 5.1

wc, pm sm 0 ncx SONEX (v2) Approx. Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 5

)
Thm. 5.6

nd, cvx, 𝑓 ∗𝑖 pm sm, cvx cvx, pm cx ALEXR (v2) Obj. Gap 𝑂
(
max

(
𝜎2

𝜖 2 ,
𝑛𝜎2

0
𝐵𝜖 2

))
Thm. 5.9

nd, cvx, 𝑓 ∗𝑖 pm cvx cvx, pm cx ALEXR (v2) Obj. Gap 𝑂
(
max

(
1
𝜖 2 ,

𝑛𝜎2
0

𝐵𝜖 2

))
Thm. 5.8

sm, nd, cvx cvx scx, pm cx ALEXR Dist. Gap 𝑂
(
max

(
1
𝜇𝜖 ,

𝑛𝜎2
0

𝐵𝜖

))
Thm.5.7

sm, nd, cvx sm, cvx scx, pm cx ALEXR Dist. Gap 𝑂
(
max

(
𝜎2

𝜇𝜖 ,
𝑛𝜎2

0
𝐵𝜖

))
Thm.5.7

sm, nd, cvx, 𝑓 ∗𝑖 pm wc cx, pm ncx ALEXR-DL Nearly Stationary 𝑂
(
max

(
1
𝜖 4 ,

𝑛𝜎2
0

𝐵𝜖 4

))
-

nd, cvx, 𝑓 ∗𝑖 pm wc cx, pm ncx ALEXR-DL Approx. Stationary 𝑂
(
max

(
1
𝜖 5 ,

𝑛𝜎2
0

𝐵𝜖 5

))
-

Table 5.2: Complexity of solving FCCO 𝐹 (w) = 1
𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w)) + 𝑟 (w) under dif-

ferent conditions of 𝑓𝑖 and 𝑔𝑖 , where 𝑓𝑖 is a deterministic Lipschitz continuous and
𝑔𝑖 is mean Lipschitz continuous. pms means ”proximal mapping is simple to com-
pute”, mss mean “mean squared smoothness”, and ALEXR-DL denotes a double-
loop method that employs ALEXR in the inner loop.

We highlight the key results as follows. If each 𝑓𝑖 is non-smooth, the double loop
method achieves a sample complexity of 𝑂

(
𝑛𝜎2

0
𝐵𝜖 6

)
for finding a nearly 𝜖-stationary

solution. The analysis can be found in (Zhou et al., 2025).
If each 𝑓𝑖 is 𝐿1-smooth, the sample complexity improves to𝑂

(
𝑛𝐿1𝜎

2
0

𝐵𝜖 4

)
for obtain-

ing a nearly 𝜖-stationary solution. This result further implies that, for non-smooth 𝑓𝑖 ,
we may apply the Nesterov smoothing 𝑓𝑖 in (5.20) with 𝜌̄1 = 1/𝜖 , so that 𝑓𝑖 becomes
𝐿1 = 𝜌̄1-smooth. Hence, Proposition 5.1 implies that the double-loop ALEXR algo-
rithm can find an approximate 𝜖-stationary stationary solution of 𝐹 (w) with a sample
complexity𝑂

(
𝑛𝐿1𝜎

2
0

𝐵𝜖 4

)
= 𝑂

(
𝑛𝜎2

0
𝐵𝜖 5

)
. The analysis can be found in (Chen et al., 2025b).

Finally, we summarize the sample complexities of all methods introduced in this
chapter in Table 5.2, and illustrate the relationship between different methods in Fig-
ure 5.1.
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Algorithm 19 Abstract Stochastic Update Scheme for Convex FCCO
1: Initialize affine subspaces 𝔛0, 𝔜0, 𝔤0, 𝔊0
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample a batch B𝑡 ⊂ {1, . . . , 𝑛}, | B𝑡 | = 𝐵
4: for each 𝑖 ∈ B𝑡 do
5: Sample 𝜁𝑖,𝑡 , 𝜁𝑖,𝑡 from P𝑖
6: 𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 + span{𝑔𝑖 ( 𝑥̂; 𝜁𝑖,𝑡 ) | 𝑥̂ ∈ 𝔛𝑡 }
7:

𝔜(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡 +span
{
arg max

𝑦𝑖

{
𝑦𝑖 𝑔̂

(𝑖) − 𝑓 ∗𝑖 (𝑦𝑖 ) −
1
𝛼
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂ (𝑖) )

}
| 𝑔̂ (𝑖) ∈ 𝔤 (𝑖)𝑡+1, 𝑦̂

(𝑖) ∈ 𝔜(𝑖)
𝑡

}
8: end for
9: For each 𝑖 ∉ S𝑡 , 𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 ,𝔜

(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡

10: 𝔊𝑡+1 = 𝔊𝑡 + span
{ 1
𝐵

∑
𝑖∈B𝑡 𝑦̂

(𝑖)∇𝑔𝑖 ( 𝑥̂; 𝜁𝑖,𝑡 ) | 𝑥̂ ∈ 𝔛𝑡 , 𝑦̂ ∈ 𝔜𝑡+1
}

11: 𝔛𝑡+1 = 𝔛𝑡 + span
{
arg min𝑥

{
𝐺̂>𝑥 + 𝑟 (𝑥 ) + 1

2𝜂 ‖𝑥 − 𝑥̂ ‖2
2

}
| 𝑥̂ ∈ 𝔛𝑡 , 𝐺̂ ∈ 𝔊𝑡+1

}
12: end for

5.4.6 Lower Bounds

In this section, we prove that the complexities of ALEXR for strongly convex and
convex FCCO problems are nearly optimal by establishing the matching lower
bounds.

What is a lower bound?

A lower bound states: for any algorithm in a certain class, there exists a“hard”
optimization problem such that the algorithm cannot converge faster than a
specified rate.

Lower bounds for convex optimization are typically derived under the standard
oracle model, where the algorithm has access only to first-order information—either
exact gradients in the deterministic setting or unbiased stochastic gradients in the
stochastic setting. In the latter case, a classical result by Nemirovski and Yudin es-
tablishes that no stochastic algorithm using unbiased gradient oracles can achieve a
convergence rate faster than𝑂 (1/

√
𝑇) in terms of the objective gap after𝑇 iterations.

For strongly convex problems, this lower bound improves to 𝑂 (1/𝑇). Nevertheless,
these lower bounds do not apply to convex FCCO problems or to ALEXR, because
the algorithm does not have access to unbiased stochastic gradients.

Below, we establish lower bounds for an abstract stochastic update scheme de-
scribed in Algorithm 19, where the symbol “+” denotes Minkowski addition. We
consider an oraclemodel that, upon receiving a query point, returns unbiased stochas-
tic function values and stochastic gradients of the inner functions 𝑔𝑖 , as well as the
solution to the proximal mirror-descent update of 𝑓 ∗𝑖 with respect to a proximal func-
tion 𝜓𝑖 . Since there are 𝑛 inner functions in total, we assume that at each iteration
the algorithm is allowed to access information from only 𝐵 randomly selected in-
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Fig. 5.2: Visualization of 𝑓 (left) and 𝐹 (right) in (5.65).

ner functions. Algorithm 19 is sufficiently general to encompass ALEXR, as well as
SOX and MSVR.

Theorem 5.10 Consider the abstract scheme (Algorithm 19) with an initialization
𝔛 (𝑖)

0 = {0}, 𝔜(𝑖)
0 = {0}, 𝔤 (𝑖)0 = ∅, 𝔊(𝑖)

0 = ∅.
• There exists a convex FCCO problem (5.26) with smooth 𝑓𝑖 and 𝜇-strongly con-

vex 𝑟 such that any algorithm in the abstract scheme requires at least 𝑇 = Ω
(
𝑛𝜎2

0
𝐵𝜖

)
iterations to find an 𝑥 that satisfies E

[ 𝜇
2 ‖𝑥 − 𝑥∗‖2

2
]
≤ 𝜖 or E[𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 .

• There exists a convex FCCO problem (5.26) with non-smooth 𝑓𝑖 such that any
algorithm in the abstract scheme requires at least 𝑇 = Ω

(
𝑛𝜎2

0
𝐵𝜖 2

)
iterations to find an

𝑥 that satisfies E[𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 .

 Why it matters

In light of this theorem,we see that ALEXR (v1/v2) attains a nearly optimal com-
plexity up to a logarithmic factor for solving strongly convex FCCO problems,

as its upper bounds are 𝑂̃
(
max

(
1
𝜇𝜖 ,

𝑛𝜎2
0

𝐵𝜖

))
. Moreover, ALEXR-v2 achieves the

optimal complexity for solving convex FCCO problems with non-smooth outer
functions.

Proof. We construct the hard problems for (i) smooth 𝑓𝑖; and (ii) non-smooth 𝑓𝑖
separately.

(i) Smooth 𝑓𝑖 and strongly convex 𝑟: Consider the following strongly convex
FCCO problem
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min
𝑥∈X

𝐹 (𝑥) = 1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑔𝑖 (𝑥)) + 𝑟 (𝑥),

𝑓 (𝑢) =

(𝜈 − 1)𝑢 + 1

2 (𝜈 − 1)2 + 𝜈 − 1 − 𝜈2

2 , 𝑢 ∈ (−∞,−1)
1
2 (𝑢 + 𝜈)2 − 𝜈2

2 , 𝑢 ∈ [−1, 1]
(1 + 𝜈)𝑢 + 1

2 (1 + 𝜈)2 − 1 − 𝜈 − 𝜈2

2 , 𝑢 ∈ (1,∞)
, 𝑟 (𝑥) = 1

4𝑛
‖𝑥‖2

2 ,

(5.65)

where X = [−1, 1]𝑛, the outer function 𝑓 : R → R is smooth and Lipschitz
continuous for some 𝜈 ∈ (0, 1/2). Besides, the inner function 𝑔𝑖 : R𝑛 → R is
𝑔𝑖 (𝑥) = E𝜁∼P [𝑔𝑖 (𝑥; 𝜁)] and 𝑔𝑖 (𝑥; 𝜁) = 𝑥𝑖 + 𝜁 , where 𝜁 follows a distribution P de-
fined below:

P :

{
Pr(𝜁 = −𝜈) = 1 − 𝑝,
Pr(𝜁 = 𝜈(1 − 𝑝)/𝑝) = 𝑝

, where 𝑝 :=
𝜈2

𝜎2
0
< 1.

We will determine the values of 𝜈 later. We can verify that

E𝜁 [|𝑔𝑖 (𝑥; 𝜁) − 𝑔𝑖 (𝑥) |2] = E𝜁 [𝜁2] = 𝜈2 (1 − 𝑝) + 𝜈
2 (1 − 𝑝)2

𝑝
=
𝜈2 (1 − 𝑝)

𝑝
≤ 𝜎2

0 .

By the definition of convex conjugate, for any 𝑦𝑖 ∈ R we have

𝑓 ∗ (𝑦𝑖) = max
{

sup
𝑢<−1

{
𝑢𝑦𝑖 −

(
(𝜈 − 1)𝑢 + 1

2
(𝜈 − 1)2 + 𝜈 − 1 − 𝜈2

2

)}
,

sup
−1≤𝑢≤1

{
𝑢𝑦𝑖 −

1
2
(𝑢 + 𝜈)2 + 𝜈

2

2

}
, (5.66)

sup
𝑢>1

{
𝑢𝑦𝑖 −

(
(1 + 𝜈)𝑢 + 1

2
(1 + 𝜈)2 − 1 − 𝜈 − 𝜈2

2

)}}
=

{
+∞, 𝑦𝑖 ∈ (−∞, 𝜈 − 1) ∪ (𝜈 + 1,∞)
1
2 (𝑦𝑖 − 𝜈)2, 𝑦𝑖 ∈ [𝜈 − 1, 𝜈 + 1] .

(5.67)

We define 𝐹𝑖 (𝑥𝑖) := 𝑓 (𝑔𝑖 (𝑥)) + 1
4 [𝑥𝑖]2 such that 𝐹 (𝑥) = 1

𝑛

∑𝑛
𝑖=1 𝐹𝑖 (𝑥𝑖). Let 𝑥∗ =

arg min𝑥∈X 𝐹 (𝑥). Since the problem is separable over the coordinates, we have 𝑥𝑖,∗ =
arg min𝑥∈[−1,1] 𝐹𝑖 (𝑥𝑖). Thus, we have 𝑥𝑖,∗ = − 2𝜈

3 and 𝐹𝑖 (𝑥𝑖,∗) = − 𝜈2

3 .
Since P𝑖 = P in the “hard” problem (5.65), the abstract scheme (Algorithm 19)

only needs to sample shared 𝜁𝑡 , 𝜁𝑡 ∼ P for all coordinates 𝑖 ∈ S𝑡 in the 𝑡-th iteration.
For any 𝑖 ∈ [𝑛], suppose that 𝔤 (𝑖)𝜏 = ∅ or {−𝜈}, 𝔜(𝑖)

𝜏 = {0}, 𝔛 (𝑖)
𝜏 = {0} for all 𝜏 ≤ 𝑡.

Note that when 𝔤 (𝑖)𝜏 = ∅, it means that the corresponding 𝑦 (𝑖) will not be updated.
Then,

• If 𝑖 ∉ B𝑡 , the abstract scheme (Algorithm 19) leads to

𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈}, 𝔜(𝑖)
𝑡+1 = {0}, 𝔛 (𝑖)

𝑡+1 = {0}.
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• If 𝑖 ∈ B𝑡 and 𝜁𝑡 = −𝜈, the abstract scheme (Algorithm 19) proceeds as

𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 + span
{
𝑥𝑖 + 𝜁𝑡 | 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑡

}
,

𝔜(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡

+ span

{
arg max

𝑦𝑖∈[𝜈−1,𝜈+1]

{
𝑦𝑖 𝑔̂𝑖 −

1
2
(𝑦𝑖 − 𝜈)2 − 1

𝛼
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖)

}
| 𝑔̂𝑖 ∈ 𝔤 (𝑖)𝑡+1, 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡

}
,

𝔛 (𝑖)
𝑡+1 = 𝔛 (𝑖)

𝑡

+ span

{
arg min
𝑥𝑖∈[−1,1]

{
1
𝐵
𝑦̂𝑖𝑥𝑖 +

1
4𝑛

[𝑥𝑖]2 + 1
2𝜂

(𝑥𝑖 − 𝑥𝑖)2
}
| 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡+1, 𝑥𝑖 ∈ 𝔛 (𝑖)
𝑡

}
.

Then, we can derive that 𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈}, 𝔜(𝑖)
𝑡+1 = {0}, and 𝔛 (𝑖)

𝑡+1 = {0}.
To sum up, given the event

⋂𝑡
𝜏=1{𝔤

(𝑖)
𝜏 = ∅ or {−𝜈}, 𝔜(𝑖)

𝜏 = {0}, 𝔛 (𝑖)
𝜏 = {0}},

we can make sure that {𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈} ∧ 𝔜(𝑖)
𝑡+1 = {0} ∧ 𝔛 (𝑖)

𝑡+1 = {0}} for the
abstract scheme inAlgorithm 19when one of the followingmutually exclusive events
happens:

• Event I: 𝑖 ∉ B𝑡 ;
• Event II: 𝑖 ∈ B𝑡 and 𝜁𝑡 = −𝜈.

Note that the random variable 𝜁𝑡 is independent of B𝑡 . Thus, the probability of the
event 𝐸 (𝑖)

𝑡+1 := {𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈} ∧ 𝔜(𝑖)
𝑡+1 = {0} ∧ 𝔛 (𝑖)

𝑡+1 = {0}} conditioned on⋂𝑡
𝜏=1 𝐸

(𝑖)
𝜏 can be bounded as

Pr

[
𝐸 (𝑖)
𝑡+1 |

𝑡⋂
𝜏=1

𝐸 (𝑖)
𝜏

]
= P

[{
𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈} ∧𝔜(𝑖)

𝑡+1 = {0} ∧ 𝔛 (𝑖)
𝑡+1 = {0}

}
|
𝑡⋂
𝜏=1

𝐸 (𝑖)
𝜏

]
≥ P [{𝑖 ∉ B𝑡 }] + P [{{𝑖 ∈ B𝑡 } ∧ {𝜁𝑡 = −𝜈}}]
= P [{𝑖 ∉ B𝑡 }] + P [{𝑖 ∈ B𝑡 }] P [{𝜁𝑡 = −𝜈}]

=

(
1 − 𝐵

𝑛

)
+ 𝐵
𝑛
(1 − 𝑝) = 1 − 𝐵𝑝

𝑛
.

Since B𝑡 and 𝜁𝑡 in different iterations 𝑡 are mutually independent, we have

Pr
[
𝐸 (𝑖)
𝑇

]
≥ P

[
𝑇−1⋂
𝑡=0

𝐸 (𝑖)
𝑡+1

]
=
𝑇−1∏
𝑡=0

P

[
𝐸 (𝑖)
𝑡+1 |

𝑡⋂
𝑡=1

𝐸 (𝑖)
𝑡

]
=

(
1 − 𝐵𝑝

𝑛

)𝑇
> 3/4 − 𝑇𝐵𝑝

𝑛
,

where the last inequality is due to the Bernoulli inequality (1+𝑥)𝑟 ≥ 1+𝑟𝑥 for every
integer 𝑟 ≥ 1 and 𝑥 ≥ −1.

Thus, if 𝑇 < 𝑛
4𝐵𝑝 we have Pr

[
𝐸 (𝑖)
𝑇

]
> 1

2 . Let us set 𝜈 = 3
√

2𝜖 such that 𝑝 = 𝜈2

𝜎2
0
=

18𝜖
𝜎2

0
. For any 𝑖 ∈ [𝑛] and any output 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑇 , we have
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E
[ (
𝑥𝑖 − 𝑥𝑖,∗

)2
]
= E

[
I
𝐸

(𝑖)
𝑇

(
𝑥𝑖 − 𝑥𝑖,∗

)2 + I
𝐸

(𝑖)
𝑇

(
𝑥 (𝑖) − 𝑥𝑖,∗

)2
]

≥ E
[
I
𝐸

(𝑖)
𝑇

(
𝑥𝑖 − 𝑥𝑖,∗

)2
]

= E
[
I
𝐸

(𝑖)
𝑇

(
𝑥𝑖,∗

)2
]
= Pr

[
𝐸 (𝑖)
𝑇

] (
𝑥𝑖,∗

)2
>

2𝜈2

9
= 4𝜖,

where I𝐸 denotes the indicator function of an event 𝐸. Moreover, we have

E[𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)] = E
[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

)
+ I

𝐸
(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
≥ E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= Pr[𝐸 (𝑖)

𝑇 ]
(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

)
>
𝜈2

6
> 𝜖.

Since the derivations above hold for arbitrary 𝑖 ∈ [𝑛] and the 𝑟 (𝑥) in (5.65) is 1
2𝑛 -

strongly convex (𝜇 = 1
2𝑛 ), we can derive that

E
[ 𝜇
2
‖𝑥 − 𝑥∗‖2

2

]
= E

[
1
4𝑛

‖𝑥 − 𝑥∗‖2
2

]
=

1
4𝑛

𝑛∑
𝑖=1

E
[ (
𝑥𝑖 − 𝑥𝑖,∗

)2
]
> 𝜖,

E [𝐹 (𝑥) − 𝐹 (𝑥∗)] =
1
𝑛

𝑛∑
𝑖=1

E
[
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

]
> 𝜖.

Thus, to find an output 𝑥 that satisfies E
[ 𝜇

2 ‖𝑥 − 𝑥∗‖2
2
]
≤ 𝜖 or E [𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 ,

the abstract scheme requires at least 𝑇 ≥ 𝑛
4𝐵𝑝 =

𝑛𝜎2
0

72𝐵𝜖 iterations.
(ii) Non-smooth 𝑓𝑖: Let 𝑔𝑖 (𝑥) = E𝜁 [𝑥𝑖 + 𝜁] = 𝑥𝑖 be defined the same as in the

smooth case. Let 𝐹𝑖 (𝑥𝑖) := 𝑓 (𝑔𝑖 (𝑥)) + 𝛼
2 [𝑥𝑖]2 = 𝛽max{𝑥𝑖 ,−𝜈} + 𝛼

2 [𝑥𝑖]2 such that
𝐹 (𝑥) = 1

𝑛

∑𝑛
𝑖=1 𝐹𝑖 (𝑥𝑖), where 𝛼, 𝛽 > 0. Let the domain X be [−2𝜈, 2𝜈]𝑛. Hence, 𝑓

is 𝛽-Lipschitz continuous and 𝐹 is 𝛼-strongly convex. By the definition of convex
conjugate, we have 𝑓 (𝑔̂𝑖) = max𝑦𝑖∈[0,𝛽 ] {𝑦𝑖 𝑔̂𝑖 − 𝜈(𝛽 − 𝑦𝑖)} .

Since the problem is separable over the coordinates, we have

𝑥𝑖,∗ = arg min
𝑥∈[−2𝜈,2𝜈 ]

𝐹𝑖 (𝑥𝑖) = arg min
𝑥𝑖∈[−2𝜈,2𝜈 ]

{
𝛽max{𝑥𝑖 ,−𝜈} +

𝛼

2
[𝑥𝑖]2

}
.

Considering

𝐹𝑖 (𝑥𝑖) =
{
𝛽𝑥𝑖 + 𝛼

2 [𝑥𝑖]2 𝑥𝑖 ≥ −𝜈
−𝛽𝜈 + 𝛼

2 [𝑥𝑖]2 𝑥𝑖 < −𝜈
,

we have
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𝑥𝑖,∗ =

{
−𝛽/𝛼 if 𝛼 > 𝛽/𝜈
−𝜈 if 𝛼 ∈ 𝛽

𝜈 [0, 1]
, 𝐹𝑖 (𝑥𝑖,∗) ≤

{
−𝛽2/(2𝛼) if 𝛼 > 𝛽/𝜈
−𝛽𝜈/2 if 𝛼 ∈ 𝛽

𝜈 [0, 1] .

Since 𝐹𝑖 (0) = 0, we can derive that 𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗) ≥ 1
2 min{𝛽𝜈, 𝛽2/𝛼}. Consider

an arbitrary 𝑖 ∈ [𝑛]. Suppose that 𝔤 (𝑖)𝜏 = ∅ or {−𝜈}, 𝔛 (𝑖)
𝜏 = {0}, 𝔜(𝑖)

𝜏 = {0} for all
𝜏 ≤ 𝑡.

• If 𝑖 ∉ B𝑡 , the abstract scheme (Algorithm 19) leads to

𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈}, 𝔜(𝑖)
𝑡+1 = {0}, 𝔛 (𝑖)

𝑡+1 = {0}.

• If 𝑖 ∈ B𝑡 , the abstract scheme (Algorithm 19) proceeds as

𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 + span
{
𝑥𝑖 + 𝜁𝑡 | 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑡

}
,

𝔜(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡

+ span

{
arg max
𝑦𝑖∈[0,𝛽 ]

{
𝑦𝑖 𝑔̂𝑖 − 𝜈(𝛽 − 𝑦𝑖) −

1
𝛼
𝐷𝜓 (𝑦𝑖 , 𝑦̂𝑖)

}
| 𝑔̂𝑖 ∈ 𝔤 (𝑖)𝑡+1, 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡

}
,

𝔛 (𝑖)
𝑡+1 = 𝔛 (𝑖)

𝑡

+ span

{
arg min

𝑥𝑖∈[−2𝜈,2𝜈 ]

{
1
𝐵
𝑦̂𝑖𝑥𝑖 +

1
𝑛
[𝑥𝑖]2 + 1

2𝜂
(𝑥𝑖 − 𝑥𝑖)2

}
| 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡+1, 𝑥𝑖 ∈ 𝔛 (𝑖)
𝑡

}
.

Due to the same reason as in the smooth 𝑓𝑖 case, the probability of the event 𝐸 (𝑖)
𝑇

:=
{𝔤 (𝑖)𝑇 = ∅ or {−𝜈} ∧𝔜(𝑖)

𝑇 = {0} ∧ 𝔛 (𝑖)
𝑇 = {0}} can be bounded as

Pr
[
𝐸 (𝑖)
𝑇

]
≥ P

[
𝑇−1⋂
𝑡=0

𝐸 (𝑖)
𝑡+1

]
=
𝑇−1∏
𝑡=0

P

[
𝐸 (𝑖)
𝑡+1 |

𝑡⋂
𝑡=1

𝐸 (𝑖)
𝑡

]
=

(
1 − 𝐵𝑝

𝑛

)𝑇
> 3/4 − 𝑇𝐵𝑝

𝑛
.

Thus, if 𝑇 < 𝑛
4𝐵𝑝 we have P

[
𝐸 (𝑖)
𝑇

]
> 1

2 . Let us set 𝛽 = 𝐺1, 𝜈 = 4𝜖
𝐺1

such that

𝑝 := 𝜈2

𝜎2
0
= 16𝜖 2

𝐺2
1𝜎

2
0
. For any 𝑖 ∈ [𝑛] and any output 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑇 , we have

E[𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)] = E
[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

)
+ I

𝐸
(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
≥ E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= Pr[𝐸 (𝑖)

𝑇 ]
(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

)
> min{𝛽𝜈, 𝛽2/𝛼}/4 = 𝜖 .

Since the derivations above hold for arbitrary 𝑖 ∈ [𝑛], we can derive that
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E[𝐹 (𝑥) − 𝐹 (𝑥∗)] =
1
𝑛

𝑛∑
𝑖=1

E[𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)] > 𝜖.

Thus, to find an output 𝑥 that satisfies E[𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 , the abstract scheme
requires at least 𝑇 ≥ 𝑛

4𝐵𝑝 =
𝑛𝐺2

1𝜎
2
0

64𝐵𝜖 2 iterations. ut

Critical: From the proof of the non-smooth case, we can see that even when
the overall objective is strongly convex, the lower bound complexity is still𝑇 =

Ω
(
𝑛𝜎2

0
𝐵𝜖 2

)
as long as 𝑓𝑖 is non-smooth. This behavior contrasts with standard

strongly stochastic optimization with an optimal complexity of 𝑂 (1/𝜖) and
highlights a fundamental challenge in solving compositional problems.

5.5 Stochastic Optimization of Compositional OCE

The goal of this section is to present and analyze stochastic algorithms for solving
compositional OCE (COCE) risk minimization as introduced in Chapter 3. In par-
ticular, we consider the following abstract problem:

min
w∈R𝑑 ,𝝂∈R𝑛

𝐹 (w, 𝝂) :=
1
𝑛

𝑛∑
𝑖=1

𝐹𝑖 (w, 𝜈𝑖), (5.68)

where

𝐹𝑖 (w, 𝜈𝑖) = E𝜁∼P𝑖 [Φ𝑖 (w, 𝜈𝑖; 𝜁)], Φ𝑖 (w, 𝜈𝑖; 𝜁) = 𝜏𝜙∗
(
𝑠𝑖 (w; 𝜁) − 𝜈𝑖

𝜏

)
+ 𝜈𝑖 ,

where 𝜏 > 0 is a constant.
In the special case when 𝜙∗ (·) = [·]+/𝛼 for some 𝛼 ∈ (0, 1), the general COCE

minimization problem reduces to

min
w,𝝂

𝐹 (w, 𝝂) :=
1
𝑛

𝑛∑
𝑖=1

E𝜁∼P𝑖
[𝑠𝑖 (w; 𝜁) − 𝜈𝑖]+

𝛼
+ 𝜈𝑖 . (5.69)

We refer to this problem as the compositional CVaRminimization (CCVaR) prob-
lem. The direct one-way partial AUC optimization problem (2.39) can be reformu-
lated as an instance of CCVaR minimization as shown in (6.26).

In the special case when 𝜙∗ (·) = exp(·) − 1, the problem (5.68) reduces to

min
w
𝐹 (w) :=

1
𝑛

𝑛∑
𝑖=1

𝜏 log
(
E𝜁∼P𝑖 exp

(
𝑠𝑖 (w; 𝜁)

𝜏

))
. (5.70)

255



Algorithm 20 The ASGD Algorithm for solving (5.68)
1: Initialize w0, 𝝂0, step sizes 𝜂𝑡 and 𝛾𝑡
2: for 𝑡 = 0, 1 . . . , 𝑇 − 1 do
3: Sample B𝑡 ⊂ {1, . . . , 𝑛} and | B𝑡 | = 𝐵
4: for each 𝑖 ∈ B𝑡 do
5: Update 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 − 𝛾𝑡𝜕2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )
6: end for
7: Compute z𝑡 = 1

𝐵

∑
𝑖∈B𝑡 𝜕1Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )

8: Update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
9: end for

We refer to this problem as the compositional entropic riskminimization (CERM)
problem. The cross-entropy loss for multi-class classification, the listwise cross-
entropy loss for ranking, the indirect one-way partial AUC loss for imbalanced classi-
fication, and the contrastive losses for representation learning discussed in Chapter 2
are all instances of the CERM problem. In particular, for cross-entropy loss mini-
mization, the proposed framework becomes especially relevant when the number of
classes is very large, so that the normalization term in the loss cannot be computed
efficiently. This setting naturally motivates the stochastic algorithms developed in
this section.

Although we can cast the CERM problem into a special instance of FCCO, there
remain some gaps to be filled. (i) For the convex CERM problem with a convex loss
function 𝑠𝑖 (·; 𝜁), the ALEXR algorithm and its convergence analysis are not directly
applicable, since the outer function 𝑓 (·) = 𝜏 log(·) is not convex, as required by
ALEXR. Consequently, a convergence rate of 𝑂 (1/𝜖2) for solving convex CERM
remains to be developed. (ii) For the CCVaR problem, the optimal solution of 𝝂
given w is typically difficult to derive in closed form, and hence the problem cannot
be reduced to an instance of FCCO. As a result, previous analyses for FCCO do not
directly apply. We address these gaps in this section.

5.5.1 A Basic Algorithm

For optimizing the general COCEminimization problem, we present a basic stochas-
tic algorithm in Algorithm 20. It alternates the stochastic block-coordinate update for
𝝂 and a SGD update for w, which is referred to as ASGD. Below, we present its con-
vergence analysis for both convex and non-convex loss functions.

5.5.1.1 Convex loss

For notational simplicity, we set 𝜏 = 1 throughout the analysis.

Assumption 5.13. 𝑠𝑖 (·, 𝜁) is a convex function.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Lemma 5.20 𝐹 (w, 𝝂) is jointly convex in terms of (w>, 𝝂>)> if 𝑠𝑖 (·; 𝜁) is convex.

Proof. We prove that Φ𝑖 (w, 𝜈𝑖; 𝜁) is jointly convex in terms of (w>, 𝜈𝑖)>. Then the
convexity of 𝐹 (w, 𝝂) follows. Let u = (w>, 𝜈)>. Consider u1, u2, 𝛼 ∈ [0, 1], and
ū = 𝛼u1 + (1 − 𝛼)u2. Then

Φ𝑖 (ū; 𝜁) = 𝜙∗ (𝑠𝑖 (w̄; 𝜁) − 𝜈̄) + 𝜈̄.

If 𝑠𝑖 (·; 𝜁) is convex, we have 𝑠𝑖 (w̄; 𝜁) ≤𝑖 (w1; 𝜁) + (1 − 𝛼)𝑠𝑖 (w2; 𝜁). Since 𝜙∗ (·) is
non-decreasing (cf. Lemma 2.3), we have

𝜙∗ (𝑠𝑖 (w̄; 𝜁) − 𝜈̄) ≤ 𝜙∗ (𝛼(𝑠𝑖 (w1; 𝜁) − 𝜈1) + (1 − 𝛼) (𝑠𝑖 (w2; 𝜁) − 𝜈2)).

Since 𝜙∗ (·) is convex, we further have

𝜙∗ (𝛼(𝑠𝑖 (w1; 𝜁) − 𝜈1) + (1 − 𝛼)(𝑠𝑖 (w2; 𝜁) − 𝜈2))
≤ 𝛼𝜙∗ (𝑠𝑖 (w1; 𝜁) − 𝜈1) + (1 − 𝛼)𝜙∗ (𝑠𝑖 (w2; 𝜁) − 𝜈2).

As a result,

Φ𝑖 (ū; 𝜁) ≤ 𝛼Φ𝑖 (u1; 𝜁) + (1 − 𝛼)Φ𝑖 (u2; 𝜁),

which proves the convexity of Φ𝑖 (u; 𝜁).
ut

Assumption 5.14. Assume that either of the following conditions hold:

• (i) 𝐹 (w, 𝝂) is smooth satisfying:

‖∇1𝐹 (w, 𝝂)‖2
2 + ‖∇2𝐹 (w, 𝝂)‖2

2 ≤ 2𝐿𝐹 (𝐹 (w, 𝝂) − 𝐹 (w∗, 𝝂∗)),

• (ii) 𝐹 (w, 𝝂) non-smooth such that for any v1 ∈ 𝜕1𝐹 (w, 𝝂), v2,𝑖 ∈ 𝜕2𝐹𝑖 (w, 𝜈𝑖) it
holds

‖v1‖2
2 ≤ 𝐺2

1, |v2,𝑖 |2 ≤ 𝐺2
2,

where w∗, 𝝂∗ denotes an optimal solution to (5.68), and ∇1𝐹 (w, 𝝂)(𝜕1𝐹 (w, 𝝂)), and
∇2𝐹 (w, 𝝂)(𝜕2𝐹 (w, 𝝂)) denote (partial) gradients with respect to w, 𝝂, respectively.

Critical: For CERM, the smoothness assumption is satisfied when 𝑠𝑖 (w; 𝜁) is
bounded, Lipschitz, and smooth. For CCVaR, the non-smoothness assumption
is satisfied when 𝑠𝑖 (w; 𝜁) is bounded and Lipschitz.

Assumption 5.15 (Bounded Variance). There exist 𝜎2
1 , 𝜎

2
2 , 𝛿

2 such that

257



E𝜁 ‖∇1Φ𝑖 (w, 𝜈𝑖; 𝜁) − ∇1𝐹𝑖 (w, 𝜈𝑖)‖2
2 ≤ 𝜎2

1 , ∀𝑖 ∈ [𝑛],
E𝜁 ‖∇2Φ𝑖 (w, 𝜈𝑖; 𝜁) − ∇2𝐹𝑖 (w, 𝜈𝑖)‖2

2 ≤ 𝜎2
2 , ∀𝑖 ∈ [𝑛],

1
𝑛

𝑛∑
𝑖=1

‖∇1𝐹𝑖 (w, 𝜈𝑖) − ∇1𝐹 (w, 𝝂)‖2
2 ≤ 𝛿2.

In the non-smooth case, the gradients above are replaced by subgradients. The sub-
sequent analysis proceeds analogously.

Lemma 5.21 Let 𝐷2
w,0 := E‖w0 − w∗‖2

2 and 𝜂𝑡 = 𝜂, we have

1
𝑇

𝑇−1∑
𝑡=0

(2E[∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗)] − 𝜂E‖∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2
2) ≤

𝐷2
w,0

𝜂𝑇
+ 𝜂𝜎2.

where 𝝂𝑡 = (𝜈1,𝑡 , . . . , 𝜈𝑛,𝑡 )> and 𝜎2 =
𝜎2

1
𝐵 + 𝛿2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. Let E𝑡 denote the expectation over the random samples in the 𝑡-th iteration.
First, we note that E𝑡 [z𝑡 ] = ∇1𝐹 (w𝑡 , 𝝂𝑡 ). Similar to Lemma 5.2, we have

E𝑡 ‖z𝑡 − ∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2
2

= E𝑡

[



z𝑡 − 1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) +
1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) − ∇1𝐹 (w𝑡 , 𝝂𝑡 )




2

2

]
= E𝑡

[



z𝑡 − 1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )




2

2

]
+ E𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) − ∇1𝐹 (w𝑡 , 𝝂𝑡 )




2

2

]
≤
𝜎2

1
𝐵

+ 𝛿
2 (𝑛 − 𝐵)
𝐵(𝑛 − 1) := 𝜎2.

Due to the update of w, we have

‖w𝑡+1 − w∗‖2
2 = ‖w𝑡 − w∗‖2

2 − 2𝜂z>𝑡 (w𝑡 − w∗) + 𝜂2‖z𝑡 ‖2
2.

Then,

E‖w𝑡+1 − w∗‖2
2 ≤ E‖w𝑡 − w∗‖2

2 − 2𝜂E[∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗)] (5.71)
+ 𝜂2E‖∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2

2 + 𝜂2𝜎2.

Summing over 𝑡 = 0, . . . , 𝑇 − 1 and rearranging it finishes the proof. ut

Lemma 5.22 Let 𝐷2
𝜈,0 := E‖𝝂0 − 𝝂∗‖2

2 and 𝛾𝑡 = 𝛾, we have

1
𝑇

𝑇−1∑
𝑡=0

(2E[∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗)] − 𝛾𝑛E‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2
2) ≤

𝐷2
𝜈,0

𝛾𝐵𝑇
+ 𝛾𝜎2

2 .

258
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Proof. Let E𝑡 denote the expectation over the random samples in the 𝑡-th iteration.
Note that E𝑡 [∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )] = ∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) and E𝑡 ‖∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 ) −
∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )‖2

2 ≤ 𝜎2
0 for each 𝑖 ∈ [𝑛] (For those 𝑖 ∉ B𝑡 , ∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 ) are not

explicitly computed). For each 𝑖 ∈ [𝑛], we have

E‖𝜈𝑖,𝑡+1 − 𝜈𝑖,∗‖2
2

= (1 − 𝐵

𝑛
)E‖𝜈𝑖,𝑡 − 𝜈𝑖,∗‖2

2 +
𝐵

𝑛
E‖𝜈𝑖,𝑡 − 𝛾∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 ) − 𝜈𝑖,∗‖2

2

≤ E‖𝜈𝑖,𝑡 − 𝜈𝑖,∗‖2
2 −

2𝛾𝐵
𝑛

E[∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )> (𝜈𝑖,𝑡 − 𝜈𝑖,∗)] +
𝛾2𝐵

𝑛
E‖∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )‖2

2

+
𝛾2𝜎2

2 𝐵

𝑛
.

Summing over 𝑖 ∈ [𝑛] leads to

E‖𝝂𝑡+1 − 𝝂∗‖2
2 = E‖𝝂𝑡 − 𝝂∗‖2

2 −
2𝛾𝐵
𝑛

E
[ 𝑛∑
𝑖=1

∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )> (𝜈𝑖,𝑡 − 𝜈𝑖,∗)
]

+ 𝛾
2𝐵

𝑛
E
[ 𝑛∑
𝑖=1

‖∇2𝐹𝑖 (w𝑡 , 𝝂𝑖,𝑡 )‖2
2

]
+ 𝛾2𝜎2

2 𝐵. (5.72)

Since

∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗) =
1
𝑛

𝑛∑
𝑖=1

∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) (𝜈𝑖,𝑡 − 𝜈𝑖,∗)

‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2
2 =

1
𝑛2

𝑛∑
𝑖=1

‖∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )‖2
2,

plugging these into (5.73) we have

E‖𝝂𝑡+1 − 𝝂∗‖2
2 ≤ E‖𝝂𝑡 − 𝝂∗‖2

2 − 2𝛾𝐵E
[
∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗)

]
+ 𝛾2𝑛𝐵E

[
‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2

2

]
+ 𝛾2𝜎2

2 𝐵. (5.73)

Summing over 𝑡 = 0, . . . , 𝑇 − 1 and rearranging it finishes the proof. ut

Theorem 5.11 (Smooth case) Suppose Assumption 5.13, 5.14(i) and 5.15 hold. If
we set 𝛾 = min{ 1

2𝑛𝐿𝐹 ,
𝜖

2𝜎2
2
}, 𝜂 = min{ 1

2𝐿𝐹 ,
𝜖

2𝜎2 } and 𝑇 = max( 2𝐷2
w,0
𝜂𝜖 ,

2𝐷2
𝜈,0

𝛾𝐵𝜖 ), then
ASGD guarantees that

E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗))
]
≤ 𝜖 .
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The iteration complexity is

𝑇 = 𝑂

(
max

{
𝐷2

w,0𝐿𝐹

𝜖
,
𝑛𝐷2

𝜈,0𝐿𝐹

𝐵𝜖
,
𝐷2

w,0𝜎
2
1

𝜖2 ,
𝐷2
𝜈,0𝜎

2
2

𝐵𝜖2

})
,

where 𝜎2 =
𝜎2

1
𝐵 + 𝛿2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. From Lemma 5.21 and Lemma 5.22, we have

1
𝑇

𝑇−1∑
𝑡=0

(2E∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗) − 𝜂E‖∇1𝐹 (w𝑡 , 𝜈𝑡 )‖2
2) ≤

𝐷2
w,0

𝜂𝑇
+ 𝜂𝜎2,

1
𝑇

𝑇−1∑
𝑡=0

(2E∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗) − 𝛾𝑛E‖∇2𝐹 (w𝑡 , 𝜈𝑡 )‖2
2) ≤

𝐷2
𝜈,0

𝛾𝐵𝑇
+ 𝛾𝜎2

2 .

If 𝐹 is smooth and 𝜂 ≤ 1
2𝐿𝐹 and 𝛾𝑛 ≤ 1

2𝐿𝐹 ,

𝜂‖∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2
2 + 𝛾𝑛‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2

2 ≤ 1
2𝐿𝐹

(
‖∇1𝐹 (w, 𝝂)‖2

2 + ‖∇2𝐹 (w, 𝝂)‖2
2

)
≤ 𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗),

where the last inequality uses the Lemma 1.5(b).
On the other hand, the joint convexity of 𝐹 implies

𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗) ≤ ∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗).

Then combining the above inequalities, we have

E

[
1
𝑇

𝑇−1∑
𝑡=0

[𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗)]
]
≤
𝐷2

w,0

2𝜂𝑇
+ 𝜂𝜎

2

2
+
𝐷2
𝜈,0

2𝛾𝐵𝑇
+
𝛾𝜎2

2
2
.

In order to let the RHS above be less than 𝜖 , we set 𝛾 = min{ 1
2𝑛𝐿𝐹 ,

𝜖
2𝜎2

2
} and 𝜂 =

min{ 1
2𝐿𝐹 ,

𝜖
2𝜎2 }, and 𝑇 ≥ max( 2𝐷2

w,0
𝜂𝜖 ,

2𝐷2
𝜈,0

𝛾𝐵𝜖 ). As a result, the complexity is the in the
order of

𝑇 = 𝑂

(
max

{
𝐷2

w,0𝐿𝐹

𝜖
,
𝑛𝐷2

𝜈,0𝐿𝐹

𝐵𝜖
,
𝐷2

w,0𝜎
2

𝜖2 ,
𝐷2
𝜈,0𝜎

2
2

𝐵𝜖2

})
.

ut

Theorem 5.12 (Non-smooth case) Suppose Assumption 5.13, 5.14(ii) and 5.15
hold. If we set 𝛾 = 𝜖

2(𝐺2
2+𝜎

2
2 )
, 𝜂 = 𝜖

2(𝐺2
1+𝜎2 ) and 𝑇 = max( 2𝐷2

w,0
𝜂𝜖 ,

2𝐷2
𝜈,0

𝛾𝐵𝜖 ), then ASGD
guarantees that

E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗))
]
≤ 𝜖 .
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The iteration complexity is

𝑇 = 𝑂

(
max

{
𝐷2

w,0 (𝐺2
1 + 𝜎2)
𝜖2 ,

𝐷2
𝜈,0 (𝐺2

2 + 𝜎2
2 )

𝐵𝜖2

})
.

We leave the proof as an exercise for the reader.

 Why it matters

Since 𝐹 (w, 𝝂) is jointly convex in (w, 𝝂), the above two theorems imply con-
vergence of the objective with respect to the primary variable w, i.e., 𝐹1 (w) =
min𝝂 𝐹 (w, 𝝂). In particular, if we define the averaged iterate w̄𝑇 = 1

𝑇

∑𝑇−1
𝑡=0 w𝑡 ,

we have

E[𝐹1 (w̄𝑇 ) − 𝐹1 (w∗)] ≤ E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹1 (w𝑡 ) − 𝐹1 (w∗))
]

≤ E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗))
]
≤ 𝜖 .

5.5.1.2 Non-convex loss

If 𝑠𝑖 (w, 𝜁) is non-convex, we consider two different cases: (1) smooth case and (2)
non-smooth weakly convex case. If 𝐹 (w, 𝝂) is smooth in terms of w, 𝝂 and is strongly
convex in terms of 𝝂 (e.g, compositional entropic risk or COCE with 𝜒2 divergence
for 𝜙(·)), we can follow the analysis in Chapter 4 [Section 4.5] to design an algorithm
and an analysis to prove the convergence for finding an 𝜖-stationary point of 𝐹1 (w) =
min𝝂 𝐹 (w; 𝝂). We leave this as an exercise for the reader.

Below, we analyze the convergence of ASGD for non-smooth weakly convex
losses. We also assume 𝜙∗ is non-smooth such that it covers the CCVaR minimiza-
tion.
Assumption 5.16. Suppose the following conditions hold:
• 𝑠𝑖 (w; 𝜁) is 𝜌0-weakly convex with respect to w, and E𝜁 [‖𝜕𝑠𝑖 (w; 𝜁)‖2

2] ≤ 𝐺2
ℓ;

• Assume | 𝜕𝜙
∗ (𝑞)
𝜕𝑞 | ≤ 𝐺0 for any 𝑞 = 𝑠𝑖 (w, 𝜁) − 𝜈𝑖 .

Lemma 5.23 𝐹 (w, 𝜈) is 𝜌-weakly convex with respect to (w, 𝝂), where 𝜌 = 𝜌0𝐺0.

Proof. We first prove that 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) is weakly convex in terms of (w, 𝜈𝑖), i.e.
there exists 𝜌 > 0 such that 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) + 𝜌

2 ‖w‖2
2 + 𝜌

2 𝜈
2
𝑖 is jointly convex in

terms of w, 𝜈𝑖 .
Since 𝑠𝑖 (w; 𝜁) is 𝜌0-weakly convex, we have that 𝑞(w, 𝜈𝑖 , 𝜁) = 𝑠𝑖 (w, 𝜁) − 𝜈𝑖 is

𝜌0-weakly convex in terms of v𝑖 = (w, 𝜈𝑖):

𝑞(v𝑖 , 𝜁) ≥ 𝑞(v′𝑖 , 𝜁) + 𝜕𝑞(v′𝑖 , 𝜁)> (v𝑖 − v′𝑖) −
𝜌0

2
‖v′𝑖 − v𝑖 ‖2

2,∀v𝑖 , v′𝑖 .
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For any 𝜁 , we abbreviate 𝑞(v𝑖; 𝜁) as 𝑞(v𝑖). Since 𝜙∗ is convex and monotonically
non-decreasing, for any 𝜔 ∈ 𝜕𝜙∗ (𝑞(v′𝑖)) ∈ [0, 𝐺0] we have

𝜙∗ (𝑞(v𝑖)) ≥ 𝜙∗ (𝑞(v′𝑖)) + 𝜔(𝑞(v𝑖) − 𝑞(v′𝑖))

≥ 𝜙∗ (𝑞(v′𝑖)) + 𝜔(𝜕𝑞(v′𝑖)> (v𝑖 − v′𝑖) −
𝜌0

2
‖v𝑖 − v′𝑖 ‖2

2)

≥ 𝜙∗ (𝑞(v′𝑖)) + 𝜕𝜙∗ (𝑞(v′𝑖))> (v𝑖 − v′𝑖) −
𝐺0𝜌0

2
‖v𝑖 − v′𝑖 ‖2

2.

The above inequality implies that 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) is 𝜌 = 𝐺0𝜌0-weakly convex in
terms of (w, 𝜈𝑖), i.e., E𝜁 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) + 𝜌

2 (‖w‖2
2 + |𝜈𝑖 |2) is convex. As a result

𝐹 (w, 𝝂) + 𝜌
2 ‖w‖2

2 +
𝜌
2 ‖𝝂‖2

2 is jointly convex in terms of (w, 𝝂). ut

Similar to the SGD for weakly convex objectives in Chapter 3[Section 3.1.4], we
use the Moreau envelope of 𝐹 (w; 𝝂). In particular, let v = (w>, 𝝂>)> and consider
some 𝜌̄ > 𝜌, we define:

𝐹1/𝜌̄ (v) = min
u
𝐹 (u) + 𝜌̄

2
‖u − v‖2

2, (5.74)

prox𝐹/𝜌̄ (v) := arg min
u
𝐹 (u) + 𝜌̄

2
‖u − v‖2

2. (5.75)

Convergence Analysis

Lemma 5.24 Under Assumption 5.16, we have

E𝑡 [‖z𝑡 ‖2
2] ≤ 𝐺2

1, |𝜕2𝐹𝑖 (w, 𝜈𝑖) |2 ≤ 𝐺2
2,

where 𝐺2
1 = 𝐺2

0𝐺
2
ℓ , and 𝐺

2
2 = (1 + 𝐺0)2.

Proof. For the first part,

E𝑡 [‖z𝑡 ‖2
2] = E𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

𝜕1Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )




2

2

]
≤ 𝐺2

0𝐺
2
ℓ .

For the second part,

|𝜕2𝐹𝑖 (w, 𝜈𝑖) |2 =

����E𝜁 [ − 𝜕𝜙∗ (𝑞(w, 𝜈𝑖; 𝜁))
𝜕𝑞

+ 1
] ����2 ≤ (1 + 𝐺0)2.

ut

Lemma 5.25 Under Assumption (5.16), let v𝑡 = (w>
𝑡 , 𝝂

>
𝑡 )>, for one iteration of

ASGD, we have

262



5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

E𝑡 [𝐹1/𝜌̄ (v𝑡+1)] ≤ 𝐹1/𝜌̄ (v𝑡 ) + 𝜌̄𝜂𝑡 (𝐹 (v̄𝑡 ) − 𝐹 (v𝑡 ) +
𝜌

2
‖v𝑡 − v̄𝑡 ‖2

2)

+
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2
,

where v̄𝑡 = prox𝐹/𝜌̄ (v𝑡 ).
Proof. Let E𝑡 denote the expectation over the random samples at the 𝑡-th iteration
conditioned on that in all previous iterations.

E𝑡 [𝐹1/𝜌̄ (v𝑡+1)] ≤ E𝑡

[
𝐹 (v̄𝑡 ) +

𝜌̄

2
‖v𝑡+1 − v̄𝑡 ‖2

2

]
≤ 𝐹 (v̄𝑡 ) +

𝜌̄

2
E𝑡 [‖w𝑡 − 𝜂𝑡z𝑡 − w̄𝑡 ‖2

2 + ‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2
2]

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
E𝑡 [‖w𝑡 − 𝜂𝑡z𝑡 − w̄𝑡 ‖2

2] +
𝜌̄

2
E𝑡 [‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2

2]

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
‖w𝑡 − w̄𝑡 ‖2

2 + 𝜌̄𝜂𝑡E𝑡 [(w̄𝑡 − w𝑡 )>𝜕1𝐹 (w𝑡 , 𝜈𝑡 )] +
𝜌̄𝜂2
𝑡𝐺

2
1

2

+ 𝜌̄
2
E𝑡 [‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2

2]

where the last step uses E𝑡 [z𝑡 ] = 𝜕1𝐹 (w𝑡 , 𝝂𝑡 ) and E[‖z𝑡 ‖2
2] ≤ 𝐺2

1.
Similar to (5.73), we can prove that

E𝑡 ‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2
2 = ‖𝝂𝑡 − 𝝂̄𝑡 ‖2

2 − 2𝛾𝑡𝐵𝜕2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂̄𝑡 ) + 𝛾2
𝑡𝐺

2
2𝐵.

Let 𝛾𝑡𝐵 = 𝜂𝑡 , combining the above we have

E𝑡 [𝐹1/𝜌̄ (v𝑡+1)]

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
‖v𝑡 − v̄𝑡 ‖2

2 + 𝜌̄𝜂𝑡E𝑡 [(v̄𝑡 − v𝑡 )>𝜕𝐹 (v𝑡 )] +
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
‖v𝑡 − v̄𝑡 ‖2

2 + 𝜌̄𝜂𝑡E𝑡 [(v̄𝑡 − v𝑡 )>𝜕𝐹 (v𝑡 )] +
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2

≤ 𝐹1/𝜌̄ (v𝑡 ) + 𝜌̄𝜂𝑡 (𝐹 (v̄𝑡 ) − 𝐹 (v𝑡 ) +
𝜌

2
‖v𝑡 − v̄𝑡 ‖2

2) +
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2
.

where the last step uses the definition of 𝐹1/𝜌̄ (v𝑡 ) and the 𝜌-weak convexity of 𝐹.
Rearranging this inequality finishes the proof.

ut
Theorem 5.13 Suppose Assumption (5.16) holds and 𝐹∗ = inf 𝐹 (w, 𝝂) ≥ ∞, by
setting 𝜌̄ = 2𝜌, 𝜂 = 𝜖2/(2𝜌̄(𝐺2

1 + 𝐺2
2/𝐵)), 𝛾 = 𝜂/𝐵 and 𝑇 ≥ 4(𝐹 (w0 ,𝝂0 )−𝐹∗ )

𝜖 2𝜂
, ASGD

guarantees that

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (v𝑡 )‖2
2

]
≤ 𝜖2
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with a complexity of 𝑇 = 𝑂
(
𝜌(𝐺2

1+𝐺
2
2/𝐵)

𝜖 4

)
.

Proof. Since 𝐹 (v) + 𝜌̄
2 ‖v − v𝑡 ‖2

2 is ( 𝜌̄ − 𝜌)-strongly convex and have a minimum
solution at v̄𝑡 , then we have

𝐹 (v𝑡 ) − 𝐹 (v̄𝑡 ) −
𝜌

2
‖v𝑡 − v̄𝑡 ‖2

2

= (𝐹 (v𝑡 ) +
𝜌̄

2
‖v𝑡 − v𝑡 ‖2

2) − (𝐹 (v̄𝑡 ) +
𝜌̄

2
‖v̄𝑡 − v𝑡 ‖2

2) + ( 𝜌̄
2
− 𝜌

2
)‖v𝑡 − v̄𝑡 ‖2

2

≥ ( 𝜌̄ − 𝜌)
2

‖v𝑡 − v̄𝑡 ‖2
2 +

( 𝜌̄ − 𝜌)
2

‖v𝑡 − v̄𝑡 ‖2
2 = ( 𝜌̄ − 𝜌)‖v𝑡 − v̄𝑡 ‖2

2

=
𝜌̄ − 𝜌
𝜌̄2 ‖∇𝐹1/𝜌̄ (v𝑡 )‖2

2.

Combining this result with that in Lemma 5.25 and noting that 𝜌̄ = 2𝜌, 𝜂𝑡 = 𝜂, we
have

E
[
1
𝑇

𝑇−1∑
𝑡=0

‖∇𝐹1/𝜌̄ (v𝑡 )‖2
2

]
≤

2(𝐹1/𝜌̄ (v0) − 𝐹∗)
𝜂𝑇

+ 𝜌̄𝜂(𝐺2
1 + 𝐺2

2/𝐵)

≤ 2(𝐹 (v0) − 𝐹∗)
𝜂𝑇

+ 𝜌̄𝜂(𝐺2
1 + 𝐺2

2/𝐵)

By setting 𝜂 = 𝜖2/(2𝜌̄(𝐺2
1+𝐺2

2/𝐵)) and𝑇 ≥ 4(𝐹 (v0 )−𝐹∗ )
𝜖 2𝜂

, we haveE[‖∇𝐹1/𝜌̄ (v𝜏)‖2
2] ≤

𝜖2 for a randomly selected 𝜏 ∈ {0, . . . , 𝑇 − 1}. ut

5.5.2 A Geometry-aware Algorithm for Entropic Risk

Although last section presents a general algorithm for solving COCE risk minimiza-
tion, it may exhibits numerical instability issue and slow convergence when solving
compositional entropic risk minimization:

min
w

min
𝜈

[
𝐹 (w, 𝜈) = 1

𝑛

𝑛∑
𝑖=1

{E𝜁 exp(𝑠𝑖 (w; 𝜁) − 𝜈𝑖) − 1 + 𝜈𝑖}
]

=min
w

1
𝑛

𝑛∑
𝑖=1

log
(
E𝜁 exp(𝑠𝑖 (w; 𝜁))

)
.

The numerical instability issue is caused by dealing with exponential functions, e.g.,
exp(𝑠𝑖 (w; 𝜁) −𝜈𝑖), in calculation of stochastic gradients of 𝜈𝑖 . The slow convergence
arises because the standard SGD update for 𝜈𝑖 fails to exploit the geometric structure
of the problem.
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5.5.2.1 Stochastic Optimization of Log-E-Exp

We first consider a simplified problem where there is only one component 𝑛 = 1,
i.e.,

min
w
𝐹1 (w) := log

(
E𝜁 exp(𝑠(w; 𝜁))

)
. (5.76)

The KL-regularized DRO problem (2.14) is a special case. It is also known as log-
E-Exp, a more general form of the log-Sum-Exp function, where the middle “E”
denotes an expectation and highlights the associated computational challenges.

Application of SCGD

At the beginning of Section 4.1, we treat this problem as a special case of stochastic
compositional optimization (SCO), where the outer function is 𝑓 (·) = log(·) and the
inner function is 𝑔(w) = E𝜁 [exp(𝑠(w; 𝜁))]. Let us first apply the SCGD algorithm.
The key updates are presented below:

𝑢𝑡 = (1 − 𝛾𝑡 )𝑢𝑡−1 + 𝛾𝑡 exp(𝑠(w𝑡 ; 𝜁𝑡 )),

z𝑡 =
1
𝑢𝑡

exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ))∇𝑠(w𝑡 ; 𝜁 ′𝑡 ),

w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 ,

(5.77)

where 𝑢𝑡 is an estimator of the inner function value 𝑔(w𝑡 ) and z𝑡 = ∇ 𝑓 (𝑢𝑡 )∇𝑔(w𝑡 ; 𝜁 ′𝑡 )
is a gradient estimator of w𝑡 .

From a practitioner’s perspective, the algorithm can be readily implemented and
applied to real applications. However, from a theoretical perspective, several open
problems remain. In particular: (1) Can we establish an 𝑂 (1/𝜖2) convergence rate
for this algorithm to find an 𝜖-optimal solution when 𝑠(w; 𝜁) is convex? (2) If yes,
what are the practical advantages of this algorithm compared with the ASGDmethod
presented in the previous section?

Wait! Shouldn’t we established the convergence rate of SCGD in Chapter 4? It is
true that we presented a convergence analysis of the above algorithm for non-convex
problems under proper conditions, however, it remains an open problem to establish
the complexity of 𝑂 (1/𝜖2) for finding an 𝜖-optimal solution under the convexity
of 𝑠(w; 𝜁). A naive analysis of SCGD for convex problems yields a complexity of
𝑂 (1/𝜖4) (see Wang et al. (2017a)).

A Novel Algorithm

To address these open questions, we present a novel algorithm based on the min-min
reformulation of log-E-exp, i.e.,
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min
w

min
𝜈
𝐹 (w, 𝜈) := E𝜁 exp(𝑠(w; 𝜁) − 𝜈) + 𝜈. (5.78)

where we ignored the constant −1 in the objective. As proved in Lemma 5.20,
𝐹 (w; 𝜈) is jointly convex in terms of w, 𝜈 when 𝑠(w; 𝜁) is convex.

Motivation

The key novelty of our design is a geometry-aware algorithm for solving the equiv-
alent min-min optimization (5.78). Let us first discuss the motivation. One challenge
for solving the min-min optimization problem is that the objective function 𝐹 (w, 𝜈)
could have exponentially large smoothness constant in terms of 𝜈. We will formally
analyze this phenomenon in next section. Hence, a vanilla gradient method that uses
the firs-order approximation of 𝐹 will inevitably impacted by the large smoothness
parameter.

To mitigate the adverse effects of a large smoothness parameter with respect to
𝜈, we resort to the classical approach of employing a proximal mapping. Proximal
mappings have been widely used to handle a non-smooth function in composite ob-
jectives consisting of a smooth loss and a non-smooth regularizer. This approach
enables optimization algorithms to retain the favorable convergence properties of
smooth optimization and often leads to faster convergence despite the presence of
non-smooth terms. Analogously, even when a function is smooth but characterized
by a very large smoothness parameter, applying its proximal mapping can effectively
alleviate the negative impact of this large smoothness constant.

However, there is an important distinction from classical proximal methods,
which typically rely on direct access to the function of interest for computing the
proximal mapping. In our setting, we cannot directly apply the proximal mapping of
𝐹 (w, 𝜈). Instead, we only have access to a stochastic estimator

Φ(w, 𝜈; 𝜁) = 𝑒𝑠 (w;𝜁 )−𝜈 + 𝜈,

defined for a random sample 𝜁 . As a result, it becomes necessary to explicitly account
for the noise introduced by this stochastic approximation.

Algorithm

To account for the stochastic noise, we introduce a Bregman divergence 𝐷𝜑 (·, ·) and
update 𝜈𝑡 according to the following scheme:

𝜈𝑡 = arg min
𝜈

Φ(w𝑡 , 𝜈; 𝜁𝑡 ) +
1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑡−1), (5.79)

where 𝜁𝑡 ∼ P is a random sample and 𝛼𝑡 > 0 is a step size parameter. We refer
to this step as stochastic proximal mirror descent (SPMD) update. To respect the
geometry of the stochastic objective Φ(w𝑡 , 𝜈; 𝜁𝑡 ), we construct a tailored Bregman
divergence induced by the function 𝜑(𝜈) = 𝑒−𝜈 , namely,
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Algorithm 21 The SCENT Algorithm for solving Log-E-Exp (5.76)
1: Initialize w1, 𝜈0, step sizes 𝜂𝑡 and 𝛼𝑡 , 𝜑 (𝜈) = 𝑒−𝜈 .
2: for 𝑡 = 1 . . . , 𝑇 − 1 do
3: Sample 𝜁𝑡 , 𝜁 ′

𝑡

4: Update 𝜈𝑡 = arg min𝜈 exp(𝑠 (w𝑡 ; 𝜁𝑡 ) − 𝜈) + 𝜈 + 1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑡−1 )

5: Compute z𝑡 = exp(𝑠 (w𝑡 ; 𝜁 ′
𝑡 ) − 𝜈𝑡 )∇𝑠 (w𝑡 ; 𝜁 ′

𝑡 )
6: Compute v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
7: Update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
8: end for

𝐷𝜑 (𝜈, 𝜈𝑡−1) = 𝑒−𝜈 − 𝑒−𝜈𝑡−1 + 𝑒−𝜈𝑡−1 (𝜈 − 𝜈𝑡−1). (5.80)

Once we have 𝜈𝑡 , we compute a vanilla gradient estimator by

z𝑡 = exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 ). (5.81)

If the problem is non-convex, we compute a moving-average estimator v𝑡 = (1 −
𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 and then update the model parameter w𝑡+1. We present the full steps
in Algorithm 21, which is referred to SCENT.

SCGD is just a special case of SCENT

To see the connection with SCGD, we present the following lemma.

Lemma 5.26 The update of 𝜈𝑡 defined by (5.79) can be computed by

𝑒𝜈𝑡 =
1

1 + 𝛼𝑡𝑒𝜈𝑡−1
𝑒𝜈𝑡−1 + 𝛼𝑡𝑒

𝜈𝑡−1

1 + 𝛼𝑡𝑒𝜈𝑡−1
exp(𝑠(w𝑡 ; 𝜁𝑡 )). (5.82)

If 𝑦𝑡 = 𝑒−𝜈𝑡 , we have
𝑦𝑡 =

𝑦𝑡−1 + 𝛼𝑡
1 + 𝛼𝑡𝑒𝑠 (w𝑡 ;𝜁𝑡 )

.

Proof. We compute the gradient of the problem (5.79) and set it to zero for
computing 𝜈𝑡 , i.e.,

− exp(𝑠(w𝑡 ; 𝜁𝑡 ) − 𝜈𝑡 ) + 1 + 1
𝛼𝑡

(−𝑒−𝜈𝑡 + 𝑒−𝜈𝑡−1 ) = 0.

Solving this equation finishes the proof. ut

If we define 𝑢𝑡 = 𝑒𝜈𝑡 and 𝛾′𝑡 =
𝛼𝑡𝑒

𝜈𝑡−1
1+𝛼𝑡𝑒𝜈𝑡−1 , then the updates of SCENT (𝛽𝑡 = 1)

are equivalent to
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𝑢𝑡 = (1 − 𝛾′𝑡 )𝑢𝑡−1 + 𝛾′𝑡 exp(𝑠(w𝑡 ; 𝜁𝑡 ))

z𝑡 =
1
𝑢𝑡

exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ))∇𝑠(w𝑡 ; 𝜁 ′𝑡 ),

w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 .

(5.83)

Comparing this update with that of SCGD (5.77), the key difference lies in
the choice of the moving-average parameter: SCENT adopts an adaptive pa-
rameter 𝛾′𝑡 = 𝛼𝑡𝑒

𝜈𝑡−1
1+𝛼𝑡𝑒𝜈𝑡−1 , whereas SCGD uses a non-adaptive 𝛾𝑡 . If we set

𝛼𝑡 =
𝛾𝑡

1−𝛾𝑡 𝑒
−𝜈𝑡−1 , then the updates of SCENT reduce to that of SCGD.

Convergence analysis for convex problems

Since z𝑡 = ∇w exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 ), we have

E𝜁 ′𝑡 [z𝑡 ] = ∇wE𝜁 ′𝑡 [exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )] = ∇1𝐹 (w𝑡 , 𝜈𝑡 ).

Let w∗, 𝜈∗ be the optimal solution:

(w∗, 𝜈∗) = arg min
w,𝜈

𝐹 (w, 𝜈).

It is straightforward to derive 𝜈∗ = log[E exp(𝑠(w∗; 𝜁))].
Assumption 5.17. Assume that the following conditions hold:

(i) 𝑠(w; 𝜁) is convex;
(ii) the loss function is bounded such that 𝑠(w; 𝜁) ∈ [𝑐0, 𝑐1],∀w, 𝜁 .
(iii) there exists 𝐺 such that E𝜁 ‖∇𝑠(w𝑡 , 𝜁)‖2

2] ≤ 𝐺2,∀𝑡.

Critical: To relax the second assumption, we can assume that w is restricted
to a bounded domainW and 𝑠(w; 𝜁) is regular. In practice, we always enforce
the boundness of w𝑡 through either projection onto W or using a regularizer
𝑟 (w). The update of w𝑡+1 can be modified as the SPGD update:

w𝑡+1 = arg min
w

z>𝑡 w + 𝑟 (w) + 1
𝜂𝑡

‖w − w𝑡 ‖2
2.

The analysis can be performed similarly.

Lemma 5.27 Under Assumption 5.17(ii), 𝜈∗ ∈ [𝑐0, 𝑐1] and if 𝜈0 ∈ [𝑐0, 𝑐1] then
𝜈𝑡 ∈ [𝑐0, 𝑐1],∀𝑡.

Proof. 𝜈∗ ∈ [𝑐0, 𝑐1] can be seen from 𝜈∗ = log[E exp(𝑠(w∗; 𝜁))]. The second result
can be easily seen from the update of 𝑒𝜈𝑡 as in (5.82) by induction. ut
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For the ease of analysis, we define two quantities to capture the variance terms
caused by using stochastic estimators.

𝜎2
𝑡 := E𝜁 ′𝑡 ‖ exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 )‖2

2],
𝛿2
𝑡 := E𝜁𝑡 [𝑒−𝜈𝑡−1 |𝑒𝑠 (w𝑡 ;𝜁𝑡 ) − E𝜁 [𝑒𝑠 (w𝑡 ;𝜁 ) ] |2] .

Under Assumption 5.17 (ii) and (iii), 𝜎𝑡 , 𝛿𝑡 are bounded because 𝑒𝜈𝑡 , 𝑒𝜈𝑡−1 and
𝑒𝑠 (w𝑡 ;𝜁𝑡 ) is upper and lower bounded.

Critical: These two quantities are related to the variance of stochastic estima-
tors in terms of w𝑡 and 𝜈𝑡 , respectively. Both quantities have a normalization
term 𝑒−𝜈𝑡 or 𝑒−𝜈𝑡−1 .

Lemma 5.28 Under Assumption 5.17 and 𝛽𝑡 = 1, we have

E[𝜂𝑡∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗)] ≤ E
[
1
2
‖w𝑡 − w∗‖2

2 −
1
2
‖w𝑡+1 − w∗‖2

2

]
+
𝜂2
𝑡𝜎

2
𝑡

2
.

Proof. The proof is a simple application of Lemma 3.3. ut

If the SPGD update is used, we can use Lemma 3.6 giving us

z>𝑡 (w𝑡+1 − w∗) + 𝑟 (w𝑡+1) − 𝑟 (w∗) ≤
1

2𝜂𝑡
(‖w𝑡 − w∗‖2

2 − ‖w𝑡+1 − w∗‖2
2)

− 1
2𝜂𝑡

‖w𝑡 − w𝑡+1‖2
2.

Then,

z>𝑡 (w𝑡 − w∗) + 𝑟 (w𝑡 ) − 𝑟 (w∗) ≤
1

2𝜂𝑡
(‖w𝑡 − w∗‖2

2 − ‖w𝑡+1 − w∗‖2
2)

+ z>𝑡 (w𝑡 − w𝑡+1) −
1

2𝜂𝑡
‖w𝑡 − w𝑡+1‖2

2 + 𝑟 (w𝑡 ) − 𝑟 (w𝑡+1)

≤ 1
2𝜂𝑡

(‖w𝑡 − w∗‖2
2 − ‖w𝑡+1 − w∗‖2

2) +
𝜂𝑡
2
‖z𝑡 ‖2

2 + 𝑟 (w𝑡 ) − 𝑟 (w𝑡+1).

Taking expectation on both sides, we have

E[𝜂𝑡∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗)] + 𝜂𝑡 (𝑟 (w𝑡 ) − 𝑟 (w∗))

≤ E
[(
𝜂𝑡𝑟 (w𝑡 ) +

1
2
‖w𝑡 − w∗‖2

2

)
−

(
𝜂𝑡𝑟 (w𝑡+1) +

1
2
‖w𝑡+1 − w∗‖2

2

)]
+
𝜂2
𝑡𝜎

2
𝑡

2
.

If 𝜂𝑡+1 ≤ 𝜂𝑡 and 𝑟 (w) ≥ 0, then 𝜂𝑡𝑟 (w𝑡+1) ≤ 𝜂𝑡+1𝑟 (w𝑡+1), then the terms in the
square bracket will form a telescoping series over 𝑡 = 1, . . . , 𝑇 . As a result, the
following analysis will proceed similarly.
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Lemma 5.29 Under Assumption 5.17 (ii), we have

𝛼𝑡∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 )> (𝜈𝑡 − 𝜈∗) ≤ 𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 ) − 𝐷𝜑 (𝜈𝑡 , 𝜈𝑡−1).

Proof. Recall the definition

Φ(w𝑡 , 𝜈; 𝜁𝑡 ) = exp(𝑠(w𝑡 ; 𝜁𝑡 ) − 𝜈) + 𝜈
𝜑(𝜈) = 𝑒−𝜈 , 𝐷𝜑 (𝑎, 𝑏) = 𝜑(𝑎) − 𝜑(𝑏) − 〈∇𝜑(𝑏), 𝑎 − 𝑏〉,

and the update of 𝜈𝑡 :

𝜈𝑡 = arg min
𝜈
𝛼𝑡Φ(w𝑡 , 𝜈; 𝜁𝑡 ) + 𝐷𝜑 (𝜈, 𝜈𝑡−1).

The first-order optimality gives

𝛼𝑡∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 ) + ∇𝜑(𝜈𝑡 ) − ∇𝜑(𝜈𝑡−1) = 0.

Taking inner product with (𝜈𝑡 − 𝜈∗) and rearranging gives

𝛼𝑡 〈∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 ), 𝜈𝑡 − 𝜈∗〉 = 〈∇𝜑(𝜈𝑡−1) − ∇𝜑(𝜈𝑡 ), 𝜈𝑡 − 𝜈∗〉
= 𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 ) − 𝐷𝜑 (𝜈𝑡 , 𝜈𝑡−1)

where the last equality holds by three-point identity as in Lemma 3.9. ut

Critical: To proceed the analysis, we need to bound E[𝛼𝑡∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 −
𝜈∗)]. In light of the above lemma, we will bound the following difference in
expectation:

E[(∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗) − ∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 )> (𝜈𝑡 − 𝜈∗)] .

The challenge lies at 𝜈𝑡 depends on 𝜁𝑡 , making the above expectation not equal
to zero.

Lemma 5.30 Assume 𝛼𝑡 ≤ 𝜌𝑒−𝜈𝑡−1 for any constant 𝜌 > 0, then we have

|E[(∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗) − ∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 )> (𝜈𝑡 − 𝜈∗)] | ≤ 𝛼𝑡𝛿2
𝑡𝐶. (5.84)

where 𝐶 = (1 + 𝜌)(1 + 𝑐1 − 𝑐0).

Proof. In the following proof, we let F𝑡−1 denote the filtration (the “information
available”) up to time 𝑡 − 1.

Let us define 𝑧𝑡 = 𝑒𝑠 (w𝑡 ;𝜁𝑡 ) , 𝑚𝑡 = E𝜁 [𝑒𝑠 (w𝑡 ;𝜁 ) |F𝑡−1], and 𝑦𝑡 = 𝑒−𝜈𝑡 . Let 𝑧 and 𝑧′
two independent variables so that E[𝑧 |F𝑡−1] = E[𝑧′ |F𝑡−1] = 𝑚𝑡 . Since 𝜈𝑡 depends
on 𝑧𝑡 , let us define random functions:
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𝑦𝑡 (𝑧) =
𝑦𝑡−1 + 𝛼𝑡
𝛼𝑡 𝑧 + 1

, 𝜈𝑡 (𝑧) = − log 𝑦𝑡 (𝑧)

ℎ𝑡 (𝑧) = 𝑒−𝜈𝑡 (𝑧)
(
𝜈𝑡 (𝑧) − 𝜈∗

)
= 𝑦𝑡 (𝑧)

(
𝜈𝑡 (𝑧) − 𝜈∗

)
.

According to the update of 𝜈𝑡 , we have 𝑦𝑡 = 𝑦𝑡 (𝑧𝑡 ), 𝜈𝑡 = 𝜈𝑡 (𝑧). For the target, we
have

E[(∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 ) − ∇2𝐹 (w𝑡 , 𝜈𝑡 ))> (𝜈𝑡 − 𝜈∗) | F𝑡−1]
= E[E𝜁 [𝑒𝑠 (w𝑡 ;𝜁 ) ] − 𝑒𝑠 (w𝑡 ;𝜁𝑡 ) )𝑒−𝜈𝑡

(
𝜈𝑡 − 𝜈∗

)
| F𝑡−1]

= E[(𝑚𝑡 − 𝑧𝑡 )ℎ𝑡 (𝑧𝑡 ) | F𝑡−1] = E𝑧 [(𝑚𝑡 − 𝑧)ℎ𝑡 (𝑧) |F𝑡−1] .
(5.85)

Since 𝑧′ is an i.i.d. copy of 𝑧 and independent of 𝑧 given F𝑡−1,

𝑚𝑡 = E[𝑧 | F𝑡−1] = E[𝑧′ | F𝑡−1] .

Using the conditional independence,

E
[
(𝑚𝑡 − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
= E

[
(𝑧′ − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
.

By exchangeability of (𝑧, 𝑧′) conditional on F𝑡−1,

E
[
(𝑧′ − 𝑧)ℎ𝑡 (𝑧′) | F𝑡−1

]
= −E

[
(𝑧′ − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
.

Averaging the last two displays gives the standard symmetrization:

E
[
(𝑚𝑡 − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
=

1
2
E
[
(𝑧′ − 𝑧)

(
ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)

)
| F𝑡−1

]
. (5.86)

Next, we show that ℎ(𝑧) is Lipschitz continuous. By definition,

𝑦𝑡 (𝑧) =
𝑦𝑡−1 + 𝛼𝑡
𝛼𝑡 𝑧 + 1

, ℎ𝑡 (𝑧) = 𝑦𝑡 (𝑧)
(
𝜈𝑡 (𝑧) − 𝜈∗

)
.

Differentiate with respect to 𝑧:

𝑑𝑦𝑡 (𝑧)
𝑑𝑧

= (𝑦𝑡−1 + 𝛼𝑡 )
𝑑

𝑑𝑧

(
(𝛼𝑡 𝑧 + 1)−1) = −𝛼𝑡 (𝑦𝑡−1 + 𝛼𝑡 )

(𝛼𝑡 𝑧 + 1)2 .

Using 𝑦𝑡 (𝑧) (𝛼𝑡 𝑧 + 1) = 𝑦𝑡−1 + 𝛼𝑡 , we can rewrite this as

𝑑𝑦𝑡 (𝑧)
𝑑𝑧

= − 𝛼𝑡 𝑦𝑡 (𝑧)
𝛼𝑡 𝑧 + 1

.

Since 𝜈𝑡 (𝑧) = − log 𝑦𝑡 (𝑧), we have

𝑑𝜈𝑡 (𝑧)
𝑑𝑧

= − 1
𝑦𝑡 (𝑧)

𝑑𝑦𝑡 (𝑧)
𝑑𝑧

=
𝛼𝑡

𝛼𝑡 𝑧 + 1
.

As a result,
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𝑑ℎ𝑡 (𝑧)
𝑑𝑧

=
𝑑𝑦𝑡 (𝑧)
𝑑𝑧

(
𝜈𝑡 (𝑧) − 𝜈∗

)
+ 𝑦𝑡 (𝑧)

𝑑𝜈𝑡 (𝑧)
𝑑𝑧

=
𝛼𝑡 𝑦𝑡 (𝑧)
𝛼𝑡 𝑧 + 1

(
1 − (𝜈𝑡 (𝑧) − 𝜈∗)

)
.

Since 𝜈𝑡 (𝑧), 𝜈∗ ∈ [𝑐0, 𝑐1], then��1 − (𝜈𝑡 (𝑧) − 𝜈∗)
�� ≤ 1 + 𝑐1 − 𝑐0,

and since 𝑦𝑡 (𝑧) = 𝑦𝑡−1+𝛼𝑡
𝛼𝑡 𝑧+1 ≤ 𝑦𝑡−1 + 𝛼𝑡 ≤ (1 + 𝜌)𝑦𝑡−1, we have����𝑑ℎ𝑡𝑑𝑧 ���� ≤ 𝛼𝑡 𝑦𝑡−1 (1 + 𝜌)(1 + 𝑐1 − 𝑐0),

which means i.e. ℎ𝑡 is 𝐿𝑡 -Lipschitz with

𝐿𝑡 ≤ 𝛼𝑡 𝑦𝑡−1𝐶.

Then, it holds��(𝑧′ − 𝑧) (ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)) �� ≤ 𝐿𝑡 (𝑧′ − 𝑧)2 ≤ 𝐶𝛼𝑡 𝑦𝑡−1 (𝑧′ − 𝑧)2.

Thus,

E
[��(𝑧′ − 𝑧) (ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)) | F𝑡−1

]
≤ 𝐶𝛼𝑡E[𝑦𝑡−1 (𝑧′ − 𝑧)2) | F𝑡−1]

= 𝐶𝛼𝑡 · 2E[𝑦𝑡−1 (𝑧 − E[𝑧])2 | F𝑡−1] ≤ 2𝐶𝛼𝑡𝛿2
𝑡 ,

where the last step uses the definition of 𝛿2
𝑡 . Applying this result to (5.86), we have���E[

(𝜇𝑡 − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1
] ��� ≤ 1

2
E
[��(𝑧′ − 𝑧) (ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)) �� | F𝑡−1

]
≤ 𝐶𝛼𝑡𝛿2

𝑡 .

By noting (5.85), we finish the proof. ut

Combining Lemma 5.29 and Lemma 5.30, we have the following lemma for one-
step analysis of the 𝜈-update.

Lemma 5.31 Under Assumption (5.17) (ii), we have

E[𝛼𝑡∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗)] ≤ E[𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 ) + 𝐶𝛼2
𝑡 𝛿

2
𝑡 ] . (5.87)

Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.14 Suppose Assumption 5.17 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , 𝛼𝑡 < 𝜌𝑒−𝑣𝑡−1 ,
then SCENT guarantees that
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E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Proof. Since 𝜂𝑡 = 𝜂𝛼𝑡 , from Lemma 5.28, we obtain

E[𝛼𝑡∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗)] ≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 +

𝜂𝛼2
𝑡 𝜎

2
𝑡

2

]
.

Combining this with Lemma 5.31, we have

E[𝛼𝑡 (∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗))]

≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 )

]
+ E

[
𝜂𝛼2

𝑡 𝜎
2
𝑡

2
+ 𝐶𝛼2

𝑡 𝛿
2
𝑡

]
.

By the joint convexity of 𝐹 (w, 𝜈), we have

𝛼𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) ≤ 𝛼𝑡 (∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗)).

Combining the last two inequalities and summing over 𝑡 = 1, . . . , 𝑇 , we have

E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

ut

We present two corollaries of the above theorem.

Corollary 5.2 Suppose Assumption 5.17 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , 𝛼𝑡 = 𝛼√
𝑇
<

𝜌𝑒−𝑣𝑡−1 for some constant 𝜌 > 0, then SCENT guarantees that

E [(𝐹1 (w̄𝑇 ) − 𝐹1 (w∗))] ≤
𝐷0

𝛼
√
𝑇
+ 𝛼𝑉√

𝑇
.

where w̄𝑇 =
∑𝑇
𝑡=1 w𝑡
𝑇 , 𝐷0 = 1

2𝜂 ‖w1 − w∗‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) and

𝑉 = E

[
𝜂
∑𝑇
𝑡=1 𝜎

2
𝑡

2𝑇
+

∑𝑇
𝑡=1 𝐶𝛿

2
𝑡

𝑇

]
.
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Proof. Plugging 𝛼𝑡 = 𝛼/
√
𝑇 into Theorem 5.14, we have

E

[
1
𝑇

𝑇∑
𝑡=1

(𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]
≤ 𝐷0

𝛼
√
𝑇
+ 𝛼𝑉√

𝑇
.

Using 𝐹1 (w) = min𝜈 𝐹 (w, 𝜈), 𝐹1 (w∗) = 𝐹 (w∗, 𝜈∗) and the Jensen inequality, we
can finish the proof. ut

 Why it matters

Since 𝛿𝑡 , 𝜎𝑡 are finite, the above result implies a convergence rate of 𝑂 (1/
√
𝑇)

for SCENT.

Corollary 5.3 Suppose Assumption 5.17 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , 𝛼𝑡 = 𝛼𝑒−𝜈𝑡−1√
𝑇

,
if 1
𝑇

∑𝑇
𝑡=1 𝑒

−𝜈𝑡−1 ≥ 𝑆 almost surely, then SCENT guarantees that

E [𝐹1 (ŵ𝑇 ) − 𝐹1 (w∗)] ≤
𝐷0

𝛼
√
𝑇𝑆

+ 𝛼𝑉̄
√
𝑇𝑆

.

where ŵ𝑇 =
∑
𝑡 𝛼𝑡w𝑡∑𝑇
𝑡=1 𝛼𝑡

and

𝑉̄ = E

[
𝜂
∑𝑇
𝑡=1 𝑒

−2𝜈𝑡−1𝜎2
𝑡

2𝑇
+

∑𝑇
𝑡=1 𝐶𝑒

−2𝜈𝑡−1𝛿2
𝑡

𝑇

]
.

Proof. Let 𝛼̂𝑡 = 𝛼𝑡∑𝑇
𝑡=1 𝛼𝑡

. From Theorem 5.14, we have

E

[
𝑇∑
𝑡=1

𝛼𝑡

𝑇∑
𝑡=1

𝛼̂𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Since
∑𝑇
𝑡=1 𝛼𝑡 =

∑𝑇
𝑡=1

𝛼𝑒−𝜈𝑡−1√
𝑇

≥ 𝛼
√
𝑇𝑆, then

E

[
𝑇∑
𝑡=1

𝛼̂𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]
≤

1
2𝜂 ‖w1 − w‖2

2 + 𝐷𝜑 (𝜈∗, 𝜈0)

𝛼
√
𝑇𝑆

+ 𝛼𝑉̄
√
𝑇𝑆

.

Applying the joint convexity of 𝐹 (w, 𝜈) and 𝐹1 = min𝜈 𝐹 (w, 𝜈), we can finish the
proof. ut
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 Why it matters

Under the stated setting, SCENT reduces to SCGD with 𝛾𝑡 = 𝛼√
𝑇+𝛼 . Since 𝑆 can

be lower bounded by a constant, the above corollary implies 𝑂 (1/
√
𝑇) conver-

gence rate for SCGD to minimize log-E-Exp.

Analysis of the Variance Terms

Since the final convergence bound depends on the variance terms 𝜎2
𝑡 , 𝛿

2
𝑡 , we would

like to provide further analysis on them.
Let us introduce some notations:

𝑧(w; 𝜁) = 𝑒𝑠 (w;𝜁 ) , 𝜇(w) = logE𝜁 𝑒𝑠 (w;𝜁 ) , (5.88)

𝑚𝑡 = E𝜁 𝑒𝑠 (w𝑡 ;𝜁 ) , 𝜇𝑡 = 𝜇(w𝑡 ) = log𝑚𝑡 . (5.89)

For the analysis, we make two reasonable assumptions.

Assumption 5.18. Assume there exist constants 𝜅, 𝜎′2 such that (i)E
[

E[𝑧 (w;𝜁 )2 ]
(E[𝑧 (w;𝜁 ) ] )2

]
≤

𝜅 for all w; (ii) E‖𝑒𝑠 (w𝑡 ;𝜁 ′ )−𝜇𝑡∇𝑠(w𝑡 ; 𝜁 ′)‖2 ≤ 𝜎′2 for all 𝑡;

Critical: These assumptions are necessary. In next section, we show that
the dependence on 𝜅 is unavoidable. The second assumption is the standard
bounded stochastic gradient assumption for optimizing 𝐹1 (w).

Lemma 5.32 (Dual Variance Term) Under Assumption 5.18, we have

𝛿2
𝑡 ≤ 2(𝜅 − 1)𝑚𝑡

(
𝐹 (w𝑡 , 𝜈𝑡−1) − 𝐹 (w∗, 𝜈∗) + 1

)
. (5.90)

 Why it matters

When 𝐹 (w𝑡 , 𝜈𝑡−1)−𝐹 (w∗, 𝜈∗) → 0, the variance term in the convergence bound
caused by the stochastic update of 𝜈𝑡 will be dominated by 2(𝜅−1)𝑚𝑡 . Large 𝑚𝑡
can be mitigated by choosing small 𝛼𝑡 .

Proof. Recall that
𝛿2
𝑡 = E𝜁𝑡

[
𝑒−𝜈𝑡−1

(
𝑧(w𝑡 ; 𝜁𝑡 ) − 𝑚𝑡

)2
]

By Assumption 5.18(i),

Var(𝑧(w𝑡 ; 𝜁)) ≤ (𝜅 − 1)𝑚2
𝑡 .

Hence
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𝛿2
𝑡 = 𝑒

−𝜈𝑡−1 Var(𝑧(w𝑡 ; 𝜁)) ≤ (𝜅 − 1)𝑒−𝜈𝑡−1𝑚2
𝑡 = (𝜅 − 1)𝑚𝑡 · (𝑚𝑡𝑒−𝜈𝑡−1 ).

Let 𝑟𝑡−1 := 𝑚𝑡𝑒−𝜈𝑡−1 . By the definition:

𝐹 (w𝑡 , 𝜈𝑡−1) = E𝑒𝑠 (w𝑡 ;𝜁 )−𝜈𝑡−1 + 𝜈𝑡−1 = 𝑟𝑡−1 + 𝜈𝑡−1.

Since 𝑟𝑡−1 = 𝑒log𝑚𝑡−𝜈𝑡−1 , we have

𝐹 (w𝑡 , 𝜈𝑡−1) − (1 + 𝜇𝑡 ) = 𝑟𝑡−1 + 𝜈𝑡−1 − (1 + log𝑚𝑡 ) = 𝑟𝑡−1 − log 𝑟𝑡−1 − 1.

Using 𝑟 ≤ 2(𝑟 − log 𝑟) for all 𝑟 > 0 yields

𝑟𝑡−1 ≤ 2
(
𝐹 (w𝑡 , 𝜈𝑡−1) − (1 + 𝜇𝑡 ) + 1

)
.

Since w∗ minimizes 𝜇(w), we have 𝜇𝑡 = 𝜇(w𝑡 ) ≥ 𝜇(w∗) and thus (1 + 𝜇𝑡 ) ≥
(1 + 𝜇(w∗)) = 𝐹 (w∗, 𝜈∗), implying

𝐹 (w𝑡 , 𝜈𝑡−1) − (1 + 𝜇𝑡 ) ≤ 𝐹 (w𝑡 , 𝜈𝑡−1) − 𝐹 (w∗, 𝜈∗).

As a result, we have

𝑟𝑡−1 ≤ 2
(
𝐹 (w𝑡 , 𝜈𝑡−1) − 𝐹 (w∗, 𝜈∗) + 1

)
. (5.91)

Combining this with the bound of 𝛿2
𝑡 , we complete the proof. ut

Lemma 5.33 (Primal Variance Term) Under Assumption 5.18, we have

𝜎2
𝑡 ≤ 4𝜎′2 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) + 1

)2
.

 Why it matters

When 𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) → 0, the variance term in the convergence bound
caused by the stochastic update of w𝑡 will be dominated by 𝑂 (𝜎′2).

Proof.

𝜎2
𝑡 = E𝜁 ′𝑡 ‖ exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 )‖2

2],
= E𝜁 ′𝑡 [𝑒

2(𝜇𝑡−𝜈𝑡 ) ‖ exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜇𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 )‖2
2] ≤ 𝑟2

𝑡 𝜎
′2,

where 𝑟𝑡 = 𝑒𝜇𝑡−𝜈𝑡 . Similar to (5.91), we have show that

𝑟𝑡 ≤ 2
(
𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) + 1

)
.

Hence,

𝜎2
𝑡 ≤ 4𝜎′2 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) + 1

)2
.

ut
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Algorithm 22 The SCENT Algorithm for solving CERM
1: Initialize w1, 𝝂0, step sizes 𝜂𝑡 and 𝛼𝑡 , 𝜑 (𝜈) = 𝑒−𝜈 .
2: for 𝑡 = 1 . . . , 𝑇 − 1 do
3: Sample B𝑡 ⊂ {1, . . . , 𝑛} with | B𝑡 | = 𝐵
4: for each 𝑖 ∈ B𝑡 do
5: Sample 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
6: Update 𝜈𝑖,𝑡 = arg min𝜈 exp(𝑠𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝜈) + 𝜈 + 1

𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑖,𝑡−1 )

7: end for
8: Compute z𝑡 = 1

𝐵

∑
𝑖∈B𝑡 exp(𝑠𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′
𝑖,𝑡 )

9: Compute v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
10: Update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
11: end for

5.5.2.2 Compositional Entropic Risk Minimization

In this section, we extend the results to solving compositional entropic risk mini-
mization (CERM):

min
w
𝐹1 (w) :=

1
𝑛

𝑛∑
𝑖=1

log
(
E𝜁∼P𝑖 exp(𝑠𝑖 (w; 𝜁))

)
via its equivalent min-min formulation:

min
w

min
𝝂
𝐹 (w, 𝝂) :=

1
𝑛

𝑛∑
𝑖=1

{E𝜁∼P𝑖 exp(𝑠𝑖 (w; 𝜁) − 𝜈𝑖) + 𝜈𝑖}.

The difference from Log-E-Exp is that there are multiple 𝜈𝑖 , 𝑖 = 1, . . . , 𝑛, which
needs to be updated using stochastic block coordinate method. The technique has
been used in algorithms presented in previous sections of this chapter.

We present an extension of SCENT to solving CERM in Algorithm 22. The major
change lies at the stochastic block coordinate update of 𝝂 in Step 5. This extension
is analogous to SOX for FCCO, employing stochastic block-coordinate updates for
the inner estimators. Indeed, SOX applied to CERM can be recovered as a special
case of SCENT by choosing the coordinate-wise step size 𝛼𝑡 ,𝑖 = 𝛾𝑡

1−𝛾𝑡 𝑒
−𝜈𝑖,𝑡−1 , using

an argument similar to (5.83).

Convergence analysis for convex problems

Let us define some notations:

Φ𝑖 (w𝑡 , 𝜈𝑖; 𝜁) = exp(𝑠𝑖 (w𝑡 ; 𝜁𝑡 ) − 𝜈𝑖) + 𝜈𝑖
𝐹𝑖 (w𝑡 , 𝜈𝑖) = E𝜁∼P𝑖 [Φ𝑖 (w𝑡 , 𝜈𝑖; 𝜁)]
(w∗, 𝝂∗) = arg min

w,𝝂
𝐹 (w, 𝝂).
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Similar as before, 𝜈𝑖,∗ = log[E𝜁∼P𝑖 exp(𝑠𝑖 (w∗; 𝜁))]. Since we deal with stochastic
block coordinate update, we introduce a virtual sequence 𝝂̄𝑡 , where

𝜈̄𝑖,𝑡 = arg min
𝜈

exp(𝑠𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝜈) + 𝜈 +
1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑖,𝑡−1),∀𝑖

Following Lemma 5.26, we have

𝑒 𝜈̄𝑖,𝑡 =
1

1 + 𝛼𝑡𝑒𝜈𝑖,𝑡−1
𝑒𝜈𝑖,𝑡−1 + 𝛼𝑡𝑒

𝜈𝑖,𝑡−1

1 + 𝛼𝑡𝑒𝜈𝑖,𝑡−1
exp(𝑠𝑖 (w𝑡 ; 𝜁𝑡 )),∀𝑖.

Assumption 5.19. Assume that the following conditions hold:

(i) 𝑠𝑖 (w; 𝜁) is convex;
(ii) the loss function is bounded such that 𝑠𝑖 (w; 𝜁) ∈ [𝑐0, 𝑐1],∀w, 𝜁 , 𝑖.
(iii) there exists 𝐺 such that E𝜁 ‖∇𝑠𝑖 (w𝑡 , 𝜁)‖2

2] ≤ 𝐺2,∀𝑡, 𝑖
Define 𝜎𝑖,𝑡 , 𝛿𝑖,𝑡 as

𝜎2
𝑖,𝑡 := E𝜁 ′𝑖,𝑡∼P𝑖 ‖ exp(𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )‖2

2],∀𝑖, 𝑡,

𝛿2
𝑖,𝑡 := E𝜁𝑖,𝑡∼P𝑖 [𝑒−𝜈𝑖,𝑡−1 |𝑒𝑠𝑖 (w𝑡 ;𝜁𝑖,𝑡 ) − E𝜁𝑖∼P𝑖 [𝑒𝑠𝑖 (w𝑡 ;𝜁𝑖 ) ] |2],∀𝑖, 𝑡.

Similar to Lemma 5.27, the following lemma can be proved.

Lemma 5.34 Under Assumption 5.19, if 𝝂0 ∈ [𝑐0, 𝑐1] then 𝝂𝑡 ∈ [𝑐0, 𝑐1],∀𝑡.

Similar to Lemma 5.28, we have the following lemma regarding one-step update
of w𝑡 .

Lemma 5.35 Under Assumption (5.19) and 𝛽𝑡 = 1, we have

E[𝜂𝑡∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗)] ≤ E
[
1
2
‖w𝑡 − w∗‖2

2 −
1
2
‖w𝑡+1 − w∗‖2

2

]
+
𝜂2
𝑡𝜎

2
𝑡

2
,

where 𝜎2
𝑡 = 1

𝑛

∑𝑛
𝑖=1 𝜎

2
𝑖,𝑡 .

Proof. We first bound E𝑡 [‖z𝑡 ‖2
2 | F𝑡−1], where E𝑡 denotes the expectation over ran-

domness in 𝑡-th iteration given w𝑡 , 𝜈𝑡−1.

E𝑡 [‖z𝑡 ‖2
2] = E𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

exp(𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )




2

2

]
= EB𝑡 ,𝜁𝑡E𝜁 ′𝑡 | B𝑡 ,𝜁𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

exp(𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )




2

2

]
≤ EB𝑡 ,𝜁𝑡

[
1
𝐵

∑
𝑖∈B𝑡

𝜎2
𝑖,𝑡

]
=

1
𝑛

𝑛∑
𝑖=1

𝜎2
𝑖,𝑡 .

Since 𝜈̄𝑖,𝑡 = 𝜈𝑖,𝑡 ,∀𝑖 ∈ B𝑡 , we have
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E𝑡 [z𝑡 ] = E𝜁 ′𝑡 ,𝜁𝑡 ,B𝑡

[
1
𝐵

∑
𝑖∈B𝑡

∇Φ𝑖 (w𝑡 , 𝜈̄𝑖,𝑡 ; 𝜁 ′𝑖,𝑡 )
]
= ∇1𝐹 (w𝑡 , 𝝂̄𝑡 ).

Then following Lemma 3.3, we can finish the proof. ut

Next, we analyze the update of 𝜈̄𝑡 .

Lemma 5.36 Under Assumption (5.19) (ii) and 𝛼𝑡 ≤ min𝑖 𝜌𝑒−𝜈𝑖,𝑡−1 , we have

E[𝛼𝑡∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗)] ≤
1
𝐵
E

[
𝐷𝜑 (𝝂∗, 𝝂𝑡−1) − 𝐷𝜑 (𝝂∗, 𝝂𝑡 )

]
+ 𝐶𝛼2

𝑡 𝛿
2
𝑡 .

where 𝐷𝜑 (𝝂∗, 𝝂𝑡 ) =
∑𝑛
𝑖=1 𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 ) and 𝛿2

𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝛿

2
𝑖,𝑡 .

Proof. By applying Lemma 5.30 and Lemma 5.29 for each coordinate of 𝜈̄𝑖,𝑡 , we
have

E[𝛼𝑡∇2𝐹𝑖 (w𝑡 , 𝜈̄𝑖,𝑡 )> (𝜈̄𝑖,𝑡 − 𝜈𝑖,∗)] ≤ 𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 ) + 𝐶𝛼2
𝑡 𝛿

2
𝑖,𝑡 ,∀𝑖.

Averaging the above inequality over 𝑖 = 1, . . . , 𝑛, we have

E[𝛼𝑡∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗)] ≤
1
𝑛

𝑛∑
𝑖=1

(
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 )

)
+ 𝐶𝛼𝑡𝛿2

𝑡 .

(5.92)

Due to the randomness of B𝑡 , we have

E[𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 )] = E
[
(1 − 𝐵

𝑛
)𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) +

𝐵

𝑛
𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 )

]
,∀𝑖.

Hence

E

[
1
𝑛

𝑛∑
𝑖=1

(
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 )

) ]
= E

[
1
𝑛

𝑛∑
𝑖=1

(
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) −

𝑛

𝐵
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 ) + ( 𝑛

𝐵
− 1)𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1)

)]
=

1
𝐵
E

[
𝑛∑
𝑖=1

(𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 ))
]
.

Combining this with (5.92), we finish the proof. ut

Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.15 Suppose Assumption 5.19 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , and 𝛼𝑡 =
𝛼√
𝑇
< 𝜌min𝑖 𝑒−𝑣𝑖,𝑡−1 , then SCENT guarantees that
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E [(𝐹1 (w̄𝑇 ) − 𝐹1 (w∗))] ≤
1

2𝜂𝛼
√
𝑇
‖w1 − w∗‖2

2 +
𝐷𝜑 (𝝂∗, 𝝂0)
𝛼𝐵

√
𝑇

+ 𝛼𝑉√
𝑇
.

where w̄𝑇 =
∑𝑇
𝑡=1 w𝑡
𝑇 , and 𝑉 = E

[
𝜂

∑𝑇
𝑡=1 𝜎

2
𝑡

2𝑇 +
∑𝑇
𝑡=1𝐶𝛿

2
𝑡

𝑇

]
.

 Why it matters

In order to achieve an 𝜖-optimal solution, the above convergence bound implies
the following complexity:

𝑇 = 𝑂

(
‖w1 − w∗‖4

2
𝜂2𝛼2𝜖2 +

𝐷𝜑 (𝝂∗, 𝝂0)2

𝛼2𝐵2𝜖2 + 𝛼
2𝑉2

𝜖2

)
.

For simplicity of discussion, let us consider a setting of 𝜂 such that the first term
matches the second term. As a result, the complexity becomes:

𝑇 = 𝑂

(
𝐷𝜑 (𝝂∗, 𝝂0)2

𝛼2𝐵2𝜖2 + 𝛼
2𝑉2

𝜖2

)
.

Insight 1: Since 𝜎𝑡 , 𝛿𝑡 are finite, and 𝐷𝜑 (𝝂∗, 𝝂0) = 𝑂 (𝑛), if 𝛼 ∝
√
𝑛/𝐵, the

above result implies an iteration complexity of 𝑂 ( 𝑛
𝐵𝜖 2 ) for SCENT.

Insight 2: When the loss 𝑠𝑖 (w𝑡 ; 𝜁) ≥ 0 is large, the term 𝑒−𝜈𝑖,𝑡−1 becomes very
small, suggesting that the step size parameter 𝛼 should be chosen small so as to
mitigate the large variance term 𝛿𝑡 . In contrast, when the loss 𝑠𝑖 (w𝑡 ; 𝜁) < 0 is
small, the term 𝑒−𝜈𝑖,𝑡−1 can become large, allowing 𝛼 to be set relatively larger,
which helps offset the large distance measure 𝐷𝜑 (𝝂∗, 𝝂0).

Proof. Since 𝜂𝑡 = 𝜂𝛼𝑡 , from Lemma 5.35, we obtain

E[𝛼𝑡∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗)] ≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 +

𝜂𝛼2
𝑡 𝜎

2
𝑡

2

]
.

Adding this to the inequality in Lemma 5.36, we have

E[𝛼𝑡 (∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗))]

≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 +

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂𝑡−1) −

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂𝑡 )

]
+ E

[
𝜂𝛼2

𝑡 𝜎
2
𝑡

2
+ 𝐶𝛼2

𝑡 𝛿
2
𝑡

]
.

By the joint convexity of 𝐹 (w, 𝜈), we have

𝛼𝑡 (𝐹 (w𝑡 , 𝝂̄𝑡 ) − 𝐹 (w∗, 𝝂∗) ≤ 𝛼𝑡 (∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗)).

Combining the last two inequalities and summing over 𝑡 = 1, . . . , 𝑇 , we have
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E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹 (w𝑡 , 𝝂̄𝑡 ) − 𝐹 (w∗, 𝝂∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 +

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Since 𝐹1 (w∗) = 𝐹 (w∗, 𝝂∗), and 𝐹1 (w𝑡 ) ≤ 𝐹 (w𝑡 , 𝝂̄𝑡 ), we have

E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹1 (w𝑡 ) − 𝐹1 (w∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 +

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Plugging the value of 𝛼𝑡 , we finish the proof.
ut

5.5.2.3 Why SCENT is better than ASGD?

In this section, we provide theoretical insight into why SCENT outperforms ASGD
for entropic risk minimization. The key distinction between the two methods lies in
their updates of the dual variable 𝜈: SCENT employs a stochastic proximal mirror
descent (SPMD) update, whereas ASGD relies on a standard SGD update. Accord-
ingly, our analysis focuses exclusively on the 𝜈-update while keeping w fixed. In
particular, we consider the following problem:

min
𝜈
𝐹 (𝜈) := E𝜁 𝑒𝑠 (𝜁 )−𝜈 + 𝜈, (5.93)

where we omit w in 𝑠(𝜁).
Recall the definitions 𝑧 := 𝑒𝑠 (𝜁 ) , 𝑚 := E[𝑧], 𝑟 (𝜈) := 𝑚𝑒−𝜈 = 𝑒𝜈∗−𝜈 as used

previously, and the facts 𝜈∗ = arg min𝜈 𝐹 (𝜈) = log𝑚, 𝐹 (𝜈∗) = 𝑚𝑒−𝜈∗ + 𝜈∗ = 1 + 𝜈∗.
Recall the SPMD update:

𝑒𝜈𝑡 =
1

1 + 𝛼𝑡𝑒𝜈𝑡−1
𝑒𝜈𝑡−1 + 𝛼𝑡𝑒

𝜈𝑡−1

1 + 𝛼𝑡𝑒𝜈𝑡−1
𝑒𝑠 (𝜁𝑡 ) .

Let us define an important quantity to characterize the difficulty of the problem:

𝜅 =
E[𝑧2]
(E[𝑧])2 ,

which is known as second-order moment ratio. Larger 𝜅 indicates heavier tails or
higher variability relative to the mean.
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A Clean Bound of SPMD

The optimality gap can be written as

𝐹 (𝜈) − 𝐹 (𝜈∗) = 𝑚𝑒−𝜈 + 𝜈 − (1 + 𝜈∗) = 𝑟 (𝜈) − log 𝑟 (𝜈) − 1. (5.94)

We assume 𝑠(𝜁) ∈ [𝑐0, 𝑐1] and without loss of generality we assume 𝑐1 ≤ 0. If not,
we can define 𝑠′ (𝜁) = 𝑠(𝜁) − 𝑐1, 𝑧

′ = 𝑒𝑠
′ (𝜁 ) and 𝐹′ (𝜈′) = E[𝑧′𝑒−𝜈′ ] + 𝜈′. Then

𝐹 (𝜈) − 𝐹 (𝜈∗) = 𝐹′ (𝜈′) − min 𝐹′ (𝜈) if 𝜈 = 𝜈′ − 𝑐1.

Lemma 5.37 (Self-bounding inequality) For all 𝑟 > 0,

𝑟 ≤ 2 (𝑟 − log 𝑟). (5.95)

Equivalently, for all 𝜈 ∈ R,

𝑟 (𝜈) ≤ 2
(
𝐹 (𝜈) − 𝐹 (𝜈∗) + 1

)
. (5.96)

Proof. If 0 < 𝑟 ≤ 2, then 𝑟 ≤ 2 ≤ 2(𝑟 − log 𝑟) since 𝑟 − log 𝑟 ≥ 1 for all 𝑟 > 0. If
𝑟 ≥ 2, then log 𝑟 ≤ 𝑟/2, hence 𝑟 − log 𝑟 ≥ 𝑟/2, i.e. 𝑟 ≤ 2(𝑟 − log 𝑟). Substituting
𝑟 = 𝑟 (𝜈) and using (5.94) yields (5.96). ut

Theorem 5.16 Suppose 𝑠(𝜁) ∈ [𝑐0, 𝑐1] ≤ 0 holds. By setting 𝛼𝑡 =
√
𝐷𝜑 (𝜈∗ ,𝜈0 )𝑚
2𝐶𝑇Var(𝑧) ≤

min( 𝑚
4𝐶Var(𝑧) , 𝜌) for sufficiently large 𝑇 , SPMD guarantees that

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤ 4
√

2

√
𝐶 (𝜅 − 1)

(
1 − 𝑟0 + 𝑟0 log 𝑟0

)
𝑇

+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)
𝑇

.

(5.97)
where 𝐶 = (1 + 𝜌)(1 + 𝑐1 − 𝑐0), and 𝑟0 = 𝑟 (𝜈0) = 𝑒𝜈∗−𝜈0 .

 Why it matters

When 𝜈0 � 𝜈∗ (over-estimation), then 1 − 𝑟0 + 𝑟0 log 𝑟0 = 𝑂 (1), the dom-
inating term becomes 𝑂 (

√
𝜅
𝑇 ). This upper bound characterizes the intrinsic

complexity of SPMD, which depends on the second-order moment ratio 𝜅. If
𝑠(𝜁)) ∼ N (𝜇𝑠 , 𝜎2

𝑠 ), then 𝜅 = 𝑒𝜎
2
𝑠 , which does not depend on the exponential of

the mean 𝜇𝑠 but rather 𝑒𝜎
2
𝑠 .

Proof. From Lemma 5.31, we obtain the SPMD averaged bound

𝐺̄𝑇 :=
1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤
𝐷𝜑 (𝜈∗, 𝜈0)

𝛼𝑇
+ 𝐶 𝛼𝑉, (5.98)

where
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𝑉 :=
1
𝑇

𝑇∑
𝑡=1

E[𝛿2
𝑡 ], 𝛿2

𝑡 = E
[
𝑒−𝜈𝑡−1 (𝑧𝑡 − 𝑚)2] = 𝑒−𝜈𝑡−1Var(𝑧).

Since 𝑒−𝜈𝑡−1 = 𝑟 (𝜈𝑡−1)/𝑚, we can rewrite

𝑉 =
Var(𝑧)
𝑚

· 1
𝑇

𝑇∑
𝑡=1

E[𝑟 (𝜈𝑡−1)] . (5.99)

By Lemma 5.37,

1
𝑇

𝑇∑
𝑡=1

E[𝑟 (𝜈𝑡−1)] ≤
2
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗) + 1]

= 2

(
1 + 1

𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗)]
)
.

Next, observe the index shift:

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗)] = E[𝐹 (𝜈0) − 𝐹 (𝜈∗)] +
𝑇−1∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)]

≤ E[𝐹 (𝜈0) − 𝐹 (𝜈∗)] +
𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] .

Dividing by 𝑇 yields

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗)] ≤
E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇
+ 𝐺̄𝑇 . (5.100)

Combining this with (5.99) we have

𝑉 ≤ 2 Var(𝑧)
𝑚

(
1 + 𝐺̄𝑇 + E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇

)
. (5.101)

Plugging (5.101) into (5.98) yields

𝐺̄𝑇 ≤
𝐷𝜑 (𝜈∗, 𝜈0)

𝛼𝑇
+ 2𝐶𝛼Var(𝑧)

𝑚

(
1 + 𝐺̄𝑇 + E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇

)
.

If 𝛼 ≤ 𝑚
4𝐶 Var(𝑧) , then

2𝐶𝛼Var(𝑧)
𝑚 ≤ 1

2 , and therefore
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𝐺̄𝑇 ≤
2𝐷𝜑 (𝜈∗, 𝜈0)

𝛼𝑇
+ 4𝐶𝛼Var(𝑧)

𝑚

(
1 + E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇

)
≤

2𝐷𝜑 (𝜈∗, 𝜈0)
𝛼𝑇

+ 4𝐶𝛼Var(𝑧)
𝑚

+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)
𝑇

.

Optimizing the right-hand side over 𝛼 (assuming 𝑇 is large enough) gives:

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤ 4
√

2
√
𝐶 𝐷𝜑 (𝜈∗, 𝜈0)Var(𝑧)

𝑚𝑇
+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)

𝑇
.

With 𝑟0 := 𝑟 (𝜈0) = 𝑒𝜈∗−𝜈0 ,

𝐷𝜑 (𝜈∗, 𝜈0) = 𝑒−𝜈∗ − 𝑒−𝜈0 + 𝑒−𝜈0 (𝜈∗ − 𝜈0) =
1
𝑚

(
1 − 𝑟0 + 𝑟0 log 𝑟0

)
.

Since Var(𝑧)/𝑚2 = 𝜅 − 1, thus the convergence upper bound becomes

4
√

2

√
𝐶 (𝜅 − 1)

(
1 − 𝑟0 + 𝑟0 log 𝑟0

)
𝑇

+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)
𝑇

.

ut

Comparison with SGD.

Benefit under the noise setting

In order to control the variance, we consider projected SGD. Let Π[𝑐0 ,𝑐1 ] denote
projection onto [𝑐0, 𝑐1]. The projected SGD update is

𝜈𝑡+1 = Π[𝑐0 ,𝑐1 ]
(
𝜈𝑡 − 𝛼′ 𝑔𝑡

)
, 𝑔𝑡 := 1 − 𝑧𝑡𝑒−𝜈𝑡 , (5.102)

where {𝑧𝑡 }𝑡≥0 are i.i.d. copies of 𝑧 and 𝛼′ > 0 is a constant step size. Note that
E[𝑔𝑡 | 𝜈𝑡 ] = ∇𝐹 (𝜈𝑡 ) = 1 − 𝑚𝑒−𝜈𝑡 .

We present a corollary of Theorem 3.5 for SGD to minimize 𝐹 (𝜈) below.

Corollary 5.4 Suppose 𝑠(𝜁) ∈ [𝑐0, 𝑐1] holds and 𝐹 (·) is 𝐿-smooth in the range of
[𝑐0, 𝑐1]. Let {𝜈𝑡 } follow (5.102). If 𝜂 ≤ 1

𝐿 , Then

𝐺̄SGD
𝑇 :=

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤
(𝜈0 − 𝜈∗)2

2𝛼′𝑇
+ 𝛼′𝑉 ′.

where

𝑉 ′ =
𝛼′

𝑇

𝑇−1∑
𝑡=0

(𝛿′𝑡 )2 =
Var(𝑧)
𝑇

𝑇−1∑
𝑡=0

E[𝑒−2𝜈𝑡 ] .
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We quantify the smoothness on the bounded domain of the objective, which in-
troduces an exponential constant.

Lemma 5.38 On [𝑐0, 𝑐1], the function 𝐹 (𝜈) = 𝑚𝑒−𝜈 + 𝜈 is 𝐿-smooth with

𝐿 = sup
𝜈∈[𝑐0 ,𝑐1 ]

𝐹′′ (𝜈) = sup
𝜈∈[𝑐0 ,𝑐1 ]

𝑚𝑒−𝜈 = 𝑚𝑒−𝑐0 = 𝑒𝜈∗−𝑐0 .

Proof. We have 𝐹′′ (𝜈) = 𝑚𝑒−𝜈 , which is decreasing in 𝜈, so the maximum over
[𝑐0, 𝑐1] is attained at 𝑐0. ut

Theorem 5.17 By choosing the optimal 𝛼′ = |𝜈0−𝜈∗ |𝑒𝑐0√
2𝑇Var(𝑧)

≤ 1
𝐿 = 𝑒𝑐0

𝑚 , SGD’s upper
bound becomes

𝐺̄SGD
𝑇 ≤

√
2|𝜈0 − 𝜈∗ | 𝑒𝜈∗−𝑐0

√
𝜅 − 1
𝑇

. (5.103)

where 𝜅 = E[𝑧2]/(E[𝑧])2.

Proof. The proof follows Corollary 5.4 by noting that 𝑉 ′ ≤ Var(𝑧)𝑒−2𝑐0 and
Var(𝑧) = 𝑚2 (𝜅 − 1) = 𝑒2𝜈∗ (𝜅 − 1). ut

 Why it matters

By comparing the convergence bound of SPMD with that of SGD, the resulting
ratio is:

1
|𝜈0 − 𝜈∗ |𝑒𝜈∗−𝑐0

.

Notably, this ratio becomes exponentially small in regimes where 𝜈∗ � 𝑐0, high-
lighting the superior efficiency of SPMD.

Benefit under the noiseless setting

We further show that, even in the noiseless setting, the dependence of the GD up-
date on |𝜈0 − 𝜈∗ | is unavoidable, whereas the PMD update does not exhibit such
dependence when 𝜈0 � 𝜈∗.

In the noiseless setting, where 𝑚 = E[𝑒𝑠 (𝜁 ) ] is known, the gradient descent (GD)
iteration becomes:

𝜈𝑡+1 = 𝜈𝑡 − 𝛼′∇𝐹 (𝜈𝑡 ) = 𝜈𝑡 − 𝛼′
(
1 − 𝑚𝑒−𝜈𝑡

)
, 𝑡 ≥ 0, (5.104)

where 𝛼′ > 0 is a step size. For deterministic PMD, its update is equivalent to (cf.
Lemma 5.26):

𝑦𝑡+1 =
𝑦𝑡 + 𝛼
1 + 𝛼𝑚 , (5.105)

where 𝑦𝑡 = 𝑒−𝜈𝑡 .

Lemma 5.39 (GD vs PMD) Assume 𝜈0 � 𝜈∗. Let {𝜈𝑡 }𝑡≥0 follow (5.104) with 𝛼′ ≤
1. Then in order to have |∇𝐹 (𝜈𝑡 ) | ≤ 𝜖 , then we need at least
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𝑡 ≥
𝜈0 − 𝜈∗ − log

( 1
1−𝜖

)
𝛼′

. (5.106)

In contrast, for deterministic PMD update (5.105), in order to ensure |∇𝐹 (𝜈𝑡 ) | ≤ 𝜖 .
it suffices that

𝑡 =

⌈ log
(
|1 − 𝑟0 |/𝜖

)
log(1 + 𝛼𝑚)

⌉
. (5.107)

Proof. Recall the definition 𝑟 (𝜈) := 𝑚𝑒−𝜈 = 𝑒𝜈∗−𝜈 . We have |∇𝐹 (𝜈) | = |1−𝑟 (𝜈) |.
From (5.104),

𝜈𝑡+1 = 𝜈𝑡 − 𝛼′
(
1 − 𝑒𝜈∗−𝜈𝑡

)
.

If 𝜈𝑡 ≥ 𝜈∗, then 𝜈𝑡+1 − 𝜈∗ = 𝜈𝑡 − 𝜈∗ − 𝛼′
(
1 − 𝑒𝜈∗−𝜈𝑡

)
≥ 0 provided 𝛼′ ≤ 1. Let

𝑟𝑡 = 𝑒𝜈∗−𝜈𝑡 > 0. Then, from GD update we have

𝑟𝑡+1 = 𝑟𝑡𝑒
𝛼′ (1−𝑟𝑡 ) ≤ 𝑟𝑡𝑒𝛼

′ ≤ 𝑟0𝑒
𝛼′ (𝑡+1) .

In order to have ‖∇𝐹 (𝜈𝑡 )‖2
2 ≤ 𝜖2, it is necessary to have 𝑟𝑡 ≥ 1− 𝜖 . Hence, we need

at least 𝑡 ≥
log 1−𝜖

𝑟0
𝛼′ =

𝜈0−𝜈∗−log
( 1

1−𝜀
)

𝛼′ .
For deterministic PMD update (5.105), since 𝑟𝑡 = 𝑚𝑦𝑡 we have

𝑟𝑡+1 − 1 =
𝑟𝑡 − 1
1 + 𝛼𝑚 .

Taking absolute value yields

|∇𝐹 (𝜈𝑡+1) | =
|∇𝐹 (𝜈𝑡 ) |
(1 + 𝛼𝑚) .

Solving |∇𝐹 (𝜈𝑡 ) | ≤ |∇𝐹 (𝜈0) |/(1 + 𝛼𝑚)𝑡 ≤ 𝜖 yields (5.107). ut

 Why it matters

Deterministic GD needs at least Ω((𝜈0 − 𝜈∗)/𝛼′) steps to enter a constant-
accuracy region, whereas PMD reduces |∇𝐹 (𝜈𝑡 ) | geometrically with rate (1 +
𝛼𝑚)−1, yielding a complexity of order𝑂

(
1

log(1+𝛼𝑚) log 1
𝜖

)
, which does not scale

with 𝜈0 due to |1 − 𝑟0 | = |1 − 𝑒𝜈∗−𝜈0 | ≤ 1.
Indeed, in the noiseless setting for PMD, taking the formal limit 𝛼 → ∞ yields
𝑦1 → 1/𝑚 thus 𝜈1 → 𝜈∗. This highlights that the PMD update is an implicit,
geometry-matched step.

5.5.2.4 An Optimal bound for SPMD

In fact, we can improve the convergence rate of SPMD to 𝑂
(
𝜅−1
𝑇

)
, which matches

a lower bound to be established. The key is just to use a specially designed learning
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rate scheme 𝛼𝑡 . Recall the SPMD update:

𝑦𝑡 =
𝑦𝑡−1 + 𝛼𝑡
1 + 𝛼𝑡 𝑧𝑡

, ∀𝑡 ≥ 1, (5.108)

where 𝑦𝑡−1 = 𝑒−𝜈𝑡−1 , 𝑧𝑡 = 𝑒𝑠 (𝜁𝑡 ) .

Lemma 5.40 Let 𝑆𝑡 :=
∑𝑡
𝑖=1 𝑧𝑖 and 𝑧𝑡 := 𝑆𝑡/𝑡. Initialize 𝑦1 = 1/𝑧1 (or equivalently

𝛼1 = ∞) and for 𝑡 ≥ 2 choose

𝛼𝑡 :=
𝑦𝑡−1

𝑡 − 1
=

1
𝑆𝑡−1

. (5.109)

Then for all 𝑡 ≥ 1,

𝑦𝑡 =
𝑡

𝑆𝑡
, 𝜈𝑡 = − log 𝑦𝑡 = log

( 𝑆𝑡
𝑡

)
= log 𝑧𝑡 . (5.110)

In particular, 𝜈𝑡 is the exact minimizer of the empirical objective

𝐹𝑡 (𝜈) := 𝑧𝑡𝑒
−𝜈 + 𝜈 since arg min

𝜈
𝐹𝑡 (𝜈) = log 𝑧𝑡 .

Proof. We prove (5.110) by induction. For 𝑡 = 1, 𝑦1 = 1/𝑧1 = 1/𝑆1 holds by ini-
tialization. Assume 𝑦𝑡−1 = (𝑡 − 1)/𝑆𝑡−1. Then (5.109) gives 𝛼𝑡 = 1/𝑆𝑡−1, and the
recursion (5.108) yields

𝑦𝑡 =
𝑡−1
𝑆𝑡−1

+ 1
𝑆𝑡−1

1 + 𝑧𝑡
𝑆𝑡−1

=
𝑡
𝑆𝑡−1
𝑆𝑡−1+𝑧𝑡
𝑆𝑡−1

=
𝑡

𝑆𝑡−1 + 𝑧𝑡
=
𝑡

𝑆𝑡
.

Thus 𝑦𝑡 = 𝑡/𝑆𝑡 and 𝜈𝑡 = − log 𝑦𝑡 = log(𝑆𝑡/𝑡) = log 𝑧𝑡 . ut

Assumption 5.20. Assume 𝑠(𝜁) is 𝜎2-subgaussian, i.e.,

E
[
𝑒𝜆(𝑠 (𝜁 )−E[𝑠 (𝜁 ) ] )

]
≤ 𝑒𝜆

2𝜎2/2 ∀𝜆 ∈ R.

This includes Bernoulli distribution (indeed, if 𝑠(𝜁) ∈ [𝑐0, 𝑐1] a.s., then 𝑠(𝜁) −
E[𝑠(𝜁)] is (𝑐1 − 𝑐0)2/4-subgaussian by Hoeffding’s lemma).

Since Var(𝑧)
(E[𝑧 ] )2 = 𝜅 − 1, we have

Var(𝑧𝑇 ) =
Var(𝑧)
𝑇

=
(𝜅 − 1)𝑚2

𝑇
.

Since Lemma 5.40 gives 𝜈𝑇 = log 𝑧𝑇 , in light of (5.94) we can write

𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗) =
𝑚

𝑧𝑇
− 1 + log

( 𝑧𝑇
𝑚

)
=

1
𝑄𝑇

+ log𝑄𝑇 − 1, 𝑄𝑇 :=
𝑧𝑇
𝑚
. (5.111)

Note that E[𝑄𝑇 ] = 1 and Var(𝑄𝑇 ) = (𝜅 − 1)/𝑇 .
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Let 𝑈𝑇 := 𝑄𝑇 − 1 = (𝑧𝑇 − 𝑚)/𝑚. Then E[𝑈𝑇 ] = 0 and E[𝑈2
𝑇 ] = (𝜅 − 1)/𝑇 .

Define
𝑔(𝑢) :=

1
1 + 𝑢 + log(1 + 𝑢) − 1,∀𝑢 > −1

so that by (5.111) we have 𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗) = 𝑔(𝑈𝑇 ).

Lemma 5.41 For all 𝑢 ≥ − 1
2 ,

𝑔(𝑢) ≤ 2𝑢2.

Proof. Define ℎ(𝑢) := 2𝑢2 − 𝑔(𝑢) for 𝑢 > −1. Since 𝑔′ (𝑢) = 𝑢
(1+𝑢)2 , we have

ℎ′ (𝑢) = 4𝑢 − 𝑢

(1 + 𝑢)2 = 𝑢
(
4 − 1

(1 + 𝑢)2

)
.

For 𝑢 ≥ − 1
2 , (1 + 𝑢)2 ≥ 1

4 , hence
1

(1+𝑢)2 ≤ 4. Therefore ℎ′ (𝑢) ≤ 0 for 𝑢 ∈ [− 1
2 , 0]

and ℎ′ (𝑢) ≥ 0 for 𝑢 ≥ 0. Thus ℎ attains its minimum over [− 1
2 ,∞) at 𝑢 = 0, where

ℎ(0) = 0. Hence ℎ(𝑢) ≥ 0 on [− 1
2 ,∞), i.e., 𝑔(𝑢) ≤ 2𝑢2 there. ut

Lemma 5.42 Let 𝑧𝑖 ≥ 0 i.i.d. with finite 𝜅. Then

P(𝑄𝑇 ≤ 1/2) = P(𝑧𝑇 ≤ 𝑚/2) ≤ exp
(
− 𝑇

8𝜅

)
.

Proof. For any 𝜆 > 0, by Chernoff bound,

P
( 𝑇∑
𝑖=1

𝑧𝑖 ≤ 𝑇𝑚
2

)
= P

(
𝑒−𝜆

∑𝑇
𝑖=1 𝑧𝑖 ≥ 𝑒−𝜆𝑇𝑚/2

)
≤ 𝑒𝜆𝑇𝑚/2

(
E[𝑒−𝜆𝑧]

)𝑇
.

Using 𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2/2 for 𝑥 ≥ 0,

E[𝑒−𝜆𝑧] ≤ 1 − 𝜆𝑚 + 𝜆
2

2
E[𝑧2] ≤ exp

(
− 𝜆𝑚 + 𝜆

2

2
E[𝑧2]

)
.

Therefore

P(𝑧𝑇 ≤ 𝑚/2) ≤ exp
(
𝑇
(
𝜆𝑚/2 − 𝜆𝑚 + 𝜆

2

2
E[𝑧2]

))
= exp

(
− 𝑇

(𝜆𝑚
2

− 𝜆2

2
E[𝑧2]

))
.

Choose 𝜆 = 𝑚/(2E[𝑧2]) to get the exponent −𝑇𝑚2/(8E[𝑧2]) = −𝑇/(8𝜅). ut

Lemma 5.43 If 𝑠 is 𝜎2-subgaussian, then

𝑚2 E[𝑧−2] = (E[𝑒𝑠])2 E[𝑒−2𝑠] ≤ 𝑒3𝜎2
.

Proof. Let 𝜇 = E[𝑠] and 𝑋 = 𝑠 − 𝜇. Then E[𝑋] = 0 and 𝑧 = 𝑒𝑠 = 𝑒𝜇𝑒𝑋. Thus

𝑚2E[𝑧−2] =
(
𝑒𝜇E[𝑒𝑋]

)2 ·
(
𝑒−2𝜇E[𝑒−2𝑋]

)
=

(
E[𝑒𝑋]

)2 E[𝑒−2𝑋] .
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By subgaussianity,

E[𝑒𝑋] ≤ 𝑒𝜎
2/2, E[𝑒−2𝑋] ≤ 𝑒 (2

2 )𝜎2/2 = 𝑒2𝜎2
.

Hence 𝑚2E[𝑧−2] ≤ 𝑒𝜎
2
𝑒2𝜎2

= 𝑒3𝜎2 . ut

Theorem 5.18 Under Assumption 5.20, the SPMD iterate 𝜈𝑇 produced by 𝛼𝑡 =
𝑦𝑡−1/(𝑡 − 1) satisfies

E
[
𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗)

]
≤ 2(𝜅 − 1)

𝑇
+ 𝑒

3
2 𝜎

2
exp

(
− 𝑇

16𝜅

)
. (5.112)

In particular, since the second term is exponentially small in 𝑇/𝜅,

E
[
𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗)

]
= 𝑂 (𝜅/𝑇),

for every 𝜎2-subgaussian 𝑠(𝜁).

Proof. Since 𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗) = 𝑔(𝑈𝑇 ), we split the expectation on the events {𝑈𝑇 ≥
−1/2} and {𝑈𝑇 < −1/2}:

E[𝑔(𝑈𝑇 )] = E[𝑔(𝑈𝑇 )1{𝑈𝑇 ≥ −1/2}] + E[𝑔(𝑈𝑇 )1{𝑈𝑇 < −1/2}] .

On {𝑈𝑇 ≥ −1/2}, Lemma 5.41 yields

E[𝑔(𝑈𝑇 )1{𝑈𝑇 ≥ −1/2}] ≤ 2E[𝑈2
𝑇 ] = 2 Var(𝑄𝑇 ) = 2

Var(𝑧)
𝑚2𝑇

=
2(𝜅 − 1)

𝑇
.

On {𝑈𝑇 < −1/2} we have 𝑄𝑇 ≤ 1/2, and since log𝑄𝑇 − 1 ≤ 0,

𝑔(𝑈𝑇 ) =
1
𝑄𝑇

+ log𝑄𝑇 − 1 ≤ 1
𝑄𝑇

.

Hence, by Cauchy–Schwarz,

E[𝑔(𝑈𝑇 )1{𝑈𝑇 < −1/2}] ≤ E[𝑄−1
𝑇 1{𝑄𝑇 ≤ 1/2}] ≤

(
E[𝑄−2

𝑇 ]
)1/2 P(𝑄𝑇 ≤ 1/2)1/2.

By Jensen inequality and Lemma 5.43,

E[𝑄−2
𝑇 ] = 𝑚2 E[𝑧−2

𝑇 ] ≤ 𝑚2 E[𝑧−2] ≤ 𝑒3𝜎2
.

By Lemma 5.42, P(𝑄𝑇 ≤ 1/2) ≤ exp(−𝑇/(8𝜅)). Therefore,

E[𝑔(𝑈𝑇 )1{𝑈𝑇 < −1/2}] ≤ 𝑒
3
2 𝜎

2
exp

(
− 𝑇

16𝜅

)
.

Combining the two pieces proves (5.112). ut
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A Distribution-free lower bound

Indeed, we can show that 𝑂
(
𝜅−1
𝑇

)
is an optimal bound by establishing matching a

lower bound for a black-box oracle model where the underlying distribution of 𝑧 is
unknown and for any query 𝜈 the oracle returns

Φ(𝜈; 𝜁) = 𝑧𝑒−𝜈 + 𝜈, 𝑔(𝜈; 𝜁) = ∇𝜈Φ(𝜈; 𝜁) = 1 − 𝑧𝑒−𝜈 .

Since

𝑧(𝜁) = 𝑒𝜈 (Φ(𝜈; 𝜁) − 𝜈) = 𝑒𝜈 (1 − 𝑔(𝜈; 𝜁)),

hence, any 𝑇-query algorithm can reconstruct 𝑇 i.i.d. samples 𝑧1, . . . , 𝑧𝑇 from 𝑃.
Thus, it suffices to prove the lower bound in the standard i.i.d. sampling model for 𝑧.

Let us define a distribution class. For 𝜅 ≥ 2, define

P𝜅 :=
{
𝑃 : 𝑧 ≥ 0, 0 < E𝑃 [𝑧] < ∞, E𝑃 [𝑧2]

(E𝑃 [𝑧])2 ≤ 𝜅

}
.

Equivalently, Var𝑃 (𝑧)/(E𝑃 [𝑧])2 ≤ 𝜅−1. For 𝑃 ∈ P𝜅 let𝑚(𝑃) = E𝑃 [𝑧] and 𝜈∗ (𝑃) =
log𝑚(𝑃).

Lemma 5.44 Let 𝜙(𝑢) := 𝑒−𝑢 + 𝑢 − 1. Then 𝜙(0) = 𝜙′ (0) = 0 and 𝜙′′ (𝑢) = 𝑒−𝑢. In
particular, for all |𝑢 | ≤ 1,

𝜙(𝑢) ≥ 𝑒−1

2
𝑢2. (5.113)

Proof. On the interval [−1, 1], 𝜙′′ (𝑢) = 𝑒−𝑢 ≥ 𝑒−1, so 𝜙 is 𝑒−1-strongly convex
on [−1, 1]. Since 𝜙(0) = 𝜙′ (0) = 0, strong convexity implies 𝜙(𝑢) ≥ 𝑒−1

2 𝑢
2 for all

|𝑢 | ≤ 1. ut

Lemma 5.45 Let 𝜙(𝑢) = 𝑒−𝑢 + 𝑢 − 1. Fix 𝜈0 < 𝜈1 and let Δ := 𝜈1 − 𝜈0. Define

𝐻 (𝜈) := 𝜙(𝜈 − 𝜈0) + 𝜙(𝜈 − 𝜈1).

Then 𝐻 is strictly convex and its unique minimizer 𝜈† lies in (𝜈0, 𝜈1). Moreover, if
Δ ≤ 1, then

inf
𝜈∈R

𝐻 (𝜈) ≥ 𝑒−1

4
Δ2. (5.114)

Proof. We have 𝜙′ (𝑢) = 1 − 𝑒−𝑢 and 𝜙′′ (𝑢) = 𝑒−𝑢 > 0, hence 𝐻 is strictly convex
with

𝐻′ (𝜈) = 𝜙′ (𝜈 − 𝜈0) + 𝜙′ (𝜈 − 𝜈1) = 2 − 𝑒−(𝜈−𝜈0 ) − 𝑒−(𝜈−𝜈1 ) .

At the endpoints,

𝐻′ (𝜈0) = 2−1−𝑒−(𝜈0−𝜈1 ) = 1−𝑒Δ < 0, 𝐻′ (𝜈1) = 2−𝑒−(𝜈1−𝜈0 )−1 = 1−𝑒−Δ > 0.
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Since 𝐻′ is strictly increasing (because 𝐻′′ > 0), there is a unique root 𝜈† ∈ (𝜈0, 𝜈1)
and thus inf𝜈∈R 𝐻 (𝜈) = inf𝜈∈[𝜈0 ,𝜈1 ] 𝐻 (𝜈).

Assume Δ ≤ 1. Then for all 𝜈 ∈ [𝜈0, 𝜈1] we have |𝜈 − 𝜈0 | ≤ Δ ≤ 1 and |𝜈 − 𝜈1 | ≤
Δ ≤ 1. On [−1, 1], 𝜙′′ (𝑢) = 𝑒−𝑢 ≥ 𝑒−1, so 𝜙(𝑢) ≥ 𝑒−1

2 𝑢
2 for all |𝑢 | ≤ 1. Therefore,

for all 𝜈 ∈ [𝜈0, 𝜈1],

𝐻 (𝜈) ≥ 𝑒−1

2
(
(𝜈 − 𝜈0)2 + (𝜈 − 𝜈1)2) .

Minimizing the RHS over 𝜈 yields inf𝜈
(
(𝜈 − 𝜈0)2 + (𝜈 − 𝜈1)2) = Δ2/2, hence

inf𝜈∈R 𝐻 (𝜈) ≥ 𝑒−1

4 Δ2. ut

Lemma 5.46 (Le Cam’s Two-point Method) Let 𝑃0, 𝑃1 be two distributions and
let 𝐿0 (·), 𝐿1 (·) be nonnegative loss functions. For any estimator 𝑎̂ measurable w.r.t.
the data,

max{E𝑃0 [𝐿0 (𝑎̂)], E𝑃1 [𝐿1 (𝑎̂)]} ≥ 1 − TV(𝑃0, 𝑃1)
2

inf
𝑎

(
𝐿0 (𝑎) + 𝐿1 (𝑎)

)
. (5.115)

Proof. Let 𝑀 := (𝑃0 +𝑃1)/2 and write 𝑑𝑃0 = (1+ 𝑓 ) 𝑑𝑀 , 𝑑𝑃1 = (1− 𝑓 ) 𝑑𝑀 where
| 𝑓 | ≤ 1 and

∫
| 𝑓 | 𝑑𝑀 = TV(𝑃0, 𝑃1). Then for any (possibly random) decision 𝐴,

E𝑃0 [𝐿0 (𝐴)] + E𝑃1 [𝐿1 (𝐴)] =
∫ (

𝐿0 (𝐴)(1 + 𝑓 ) + 𝐿1 (𝐴)(1 − 𝑓 )
)
𝑑𝑀

=
∫ (

(𝐿0 (𝐴) + 𝐿1 (𝐴)) + 𝑓 (𝐿0 (𝐴) − 𝐿1 (𝐴))
)
𝑑𝑀

≥
∫ (

(𝐿0 (𝐴) + 𝐿1 (𝐴)) − | 𝑓 | (𝐿0 (𝐴) + 𝐿1 (𝐴))
)
𝑑𝑀

=
∫

(𝐿0 (𝐴) + 𝐿1 (𝐴)) (1 − | 𝑓 |) 𝑑𝑀

≥ inf
𝑎
(𝐿0 (𝑎) + 𝐿1 (𝑎))

∫
(1 − | 𝑓 |) 𝑑𝑀

= (1 − TV(𝑃0, 𝑃1)) inf
𝑎
(𝐿0 (𝑎) + 𝐿1 (𝑎)).

Taking half and using max{𝑥, 𝑦} ≥ (𝑥 + 𝑦)/2 yields (5.115). ut

The final distribution-free suboptimality lower bound is stated in the following
theorem.

Theorem 5.19 Let 𝑧 = 𝑒𝑠 (𝜁 ) ≥ 0 with 𝑚(𝑃) = E𝑃 [𝑧] and 𝜈∗ (𝑃) = log𝑚(𝑃). For
𝜅 ≥ 2, define

P𝜅 :=
{
𝑃 : 𝑧 ≥ 0, 0 < E𝑃 [𝑧] < ∞, E𝑃 [𝑧2]

E𝑃 [𝑧]2 ≤ 𝜅

}
.

Let 𝐹𝑃 (𝜈) := 𝑚(𝑃)𝑒−𝜈 + 𝜈 and 𝜈∗ (𝑃) = arg min𝜈 𝐹𝑃 (𝜈). Then there exists an abso-
lute constant 𝑐 > 0 such that for all 𝑇 ≥ 𝜅, any (possibly adaptive) algorithm using
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𝑇 value/gradient oracle calls and outputting 𝜈̂ satisfies

sup
𝑃∈P𝜅

E𝑃 [𝐹𝑃 (𝜈̂) − 𝐹𝑃 (𝜈∗ (𝑃))] ≥ 𝑐
𝜅 − 1
𝑇

. (5.116)

Proof. We construct two strictly positive hard instances in P𝜅 . Fix 𝜀 ∈ (0, 1] and
define two distributions supported on {𝜀, 𝜅}:

𝑃𝜀𝑖 : P(𝑧 = 𝜅) = 𝑝𝑖 , P(𝑧 = 𝜀) = 1 − 𝑝𝑖 , 𝑖 ∈ {0, 1},

where
𝑝0 :=

1
𝜅
, 𝑝1 := 𝑝0 + ℎ, ℎ :=

1
8
√
𝜅𝑇
.

Since 𝑇 ≥ 𝜅, we have ℎ ≤ 1
8𝜅 so 𝑝1 ∈ (0, 1).

Next we show that 𝑃𝜀0 , 𝑃
𝜀
1 ∈ P𝜅 . For a generic 𝑝 ∈ (0, 1) and support {𝜀, 𝜅},

define
𝑅𝜀 (𝑝) :=

E[𝑧2]
E[𝑧]2 =

𝑝𝜅2 + (1 − 𝑝)𝜀2(
𝑝𝜅 + (1 − 𝑝)𝜀

)2 .

Let 𝑢 := 𝜀/𝜅 ∈ (0, 1/𝜅] ⊂ (0, 1]. Then

𝑅𝜀 (𝑝) =
𝑝 + (1 − 𝑝)𝑢2(
𝑝 + (1 − 𝑝)𝑢

)2 .

We claim 𝑅𝜀 (𝑝) ≤ 1
𝑝 for all 𝑢 ∈ [0, 1]. Indeed,(

𝑝 + (1 − 𝑝)𝑢
)2 − 𝑝

(
𝑝 + (1 − 𝑝)𝑢2)

= 𝑝2 + 2𝑝(1 − 𝑝)𝑢 + (1 − 𝑝)2𝑢2 − 𝑝2 − 𝑝(1 − 𝑝)𝑢2

= (1 − 𝑝)𝑢
(
2𝑝 + (1 − 2𝑝)𝑢

)
≥ 0,

because 𝑢 ∈ [0, 1] and 2𝑝 + (1 − 2𝑝)𝑢 ≥ min{2𝑝, 1} ≥ 0. Thus 𝑅𝜀 (𝑝) ≤ 1/𝑝.
Since 𝑝0 = 1/𝜅 and 𝑝1 ≥ 𝑝0, we have 1/𝑝𝑖 ≤ 𝜅, hence 𝑅𝜀 (𝑝𝑖) ≤ 𝜅 and therefore
𝑃𝜀0 , 𝑃

𝜀
1 ∈ P𝜅 .

Next, we compute the separationΔ between 𝜈∗’s. Let𝑚𝜀𝑖 = E𝑃𝜀𝑖 [𝑧] = 𝜀+𝑝𝑖 (𝜅−𝜀)
and 𝜈𝜀𝑖 = log𝑚𝜀𝑖 . Then

𝑚𝜀1 −𝑚𝜀0 = ℎ(𝜅 − 𝜀) ≥ ℎ(𝜅 − 1), 𝑚𝜀0 = 𝜀 + 𝑝0 (𝜅 − 𝜀) = 1 +
(
1 − 1

𝜅

)
𝜀 ∈ [1, 2] .

Hence

Δ := |𝜈𝜀1 − 𝜈𝜀0 | = log
(
1 +

𝑚𝜀1 − 𝑚𝜀0
𝑚𝜀0

)
≥ 1

2
· ℎ(𝜅 − 1)

2
=

𝜅 − 1
32

√
𝜅𝑇
,
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where we used log(1+𝑥) ≥ 𝑥/2 for 𝑥 ∈ [0, 1/2] and the fact that ℎ (𝜅−𝜀)𝑚𝜀0
≤ ℎ𝜅 ≤ 1/8.

In particular, Δ ≤ ℎ𝜅 ≤ 1/8 < 1.
Next, we show the lower bound of inf𝜈

(
(𝐹0 (𝜈) − 𝐹0 (𝜈𝜀0 )) + (𝐹1 (𝜈) − 𝐹1 (𝜈𝜀1 ))

)
.

Under 𝑃𝜀𝑖 the objective is 𝐹𝑖 (𝜈) = 𝑚𝜀𝑖 𝑒−𝜈+𝜈 and the optimal value is 𝐹𝑖 (𝜈𝜀𝑖 ) = 1+𝜈𝜀𝑖 .
Thus the suboptimality can be written as

𝐹𝑖 (𝜈) − 𝐹𝑖 (𝜈𝜀𝑖 ) = 𝑒𝜈
𝜀
𝑖 −𝜈 + (𝜈 − 𝜈𝜀𝑖 ) − 1 = 𝜙(𝜈 − 𝜈𝜀𝑖 ), 𝜙(𝑢) = 𝑒−𝑢 + 𝑢 − 1.

Let 𝜈𝜀0 < 𝜈
𝜀
1 and set 𝑢 = 𝜈 − 𝜈𝜀0 . Then

𝜙(𝜈 − 𝜈𝜀0 ) + 𝜙(𝜈 − 𝜈
𝜀
1 ) = 𝜙(𝑢) + 𝜙(𝑢 − Δ).

The function 𝑢 ↦→ 𝜙(𝑢) + 𝜙(𝑢 − Δ) is convex and its minimizer lies in [0,Δ]. Since
Δ ≤ 1, applying Lemma 5.45 gives

𝜙(𝑢) + 𝜙(𝑢 − Δ) ≥ 𝑒−1

4
Δ2.

Therefore,

inf
𝜈

(
(𝐹0 (𝜈) − 𝐹0 (𝜈𝜀0 )) + (𝐹1 (𝜈) − 𝐹1 (𝜈𝜀1 ))

)
≥ 𝑒−1

4
Δ2. (5.117)

Next, we show the total variation between 𝑃𝜀0 , and 𝑃
𝜀
1 is bounded. Because the

two distributions differ only in the Bernoulli parameter,

KL(𝑃𝜀0 , 𝑃
𝜀
1 ) = 𝑝0 log

𝑝0

𝑝1
+ (1 − 𝑝0) log

1 − 𝑝0

1 − 𝑝1
.

Using the bound KL(𝑃,𝑄) ≤ 𝜒2 (𝑃,𝑄) and the fact that for Bernoulli measures
𝜒2 (𝑃𝜀0 , 𝑃

𝜀
1 ) =

ℎ2

𝑝1 (1−𝑝1 ) , we get

KL(𝑃𝜀0 , 𝑃
𝜀
1 ) ≤

ℎ2

𝑝1 (1 − 𝑝1)
.

Since ℎ ≤ 1
2𝜅 , we have 𝑝1 ≤ 𝑝0 + ℎ ≤ 3

2𝜅 ≤ 3
4 , hence 1 − 𝑝1 ≥ 1/4, and also

𝑝1 ≥ 𝑝0 = 1/𝜅. Therefore 𝑝1 (1 − 𝑝1) ≥ 1
4𝜅 and

KL(𝑃𝜀0 , 𝑃
𝜀
1 ) ≤ 4𝜅ℎ2.

For 𝑇 i.i.d. samples, this gives

KL
(
(𝑃𝜀0 )

⊗𝑇 , (𝑃𝜀1 )
⊗𝑇 ) = 𝑇 KL(𝑃𝜀0 , 𝑃

𝜀
1 ) ≤ 4𝜅𝑇ℎ2 =

1
16
.

By Pinsker’s inequality,
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TV
(
(𝑃𝜀0 )

⊗𝑇 , (𝑃𝜀1 )
⊗𝑇 ) ≤ √

1
2

KL
(
(𝑃𝜀0 )⊗𝑇 , (𝑃

𝜀
1 )⊗𝑇

)
≤

√
1
32

≤ 1
4
.

Finally, we apply Lemma 5.46 to 𝑃0 = (𝑃𝜀0 )
⊗𝑇 , 𝑃1 = (𝑃𝜀1 )

⊗𝑇 and losses

𝐿𝑖 (𝜈) := 𝐹𝑖 (𝜈) − 𝐹𝑖 (𝜈𝜀𝑖 ) ≥ 0.

Using (5.117) and TV ≤ 1/4 yields for any estimator 𝜈̂,

max
𝑖∈{0,1}

E𝑃𝜀𝑖
[
𝐹𝑖 (𝜈̂) − 𝐹𝑖 (𝜈𝜀𝑖 )

]
≥ 1 − TV

2
· 𝑒

−1

4
Δ2 ≥ 3

8
· 𝑒

−1

4
Δ2 =

3𝑒−1

32
Δ2.

Substituting Δ2 ≥ (𝜅−1)2

1024 𝜅 𝑇 ≥ 𝜅−1
2048𝑇 (since 𝜅 ≥ 2) gives

max
𝑖∈{0,1}

E𝑃𝜀𝑖
[
𝐹𝑖 (𝜈̂) − 𝐹𝑖 (𝜈𝜀𝑖 )

]
≥ 3

65536 𝑒
· 𝜅 − 1
𝑇

.

Since 𝑃𝜀0 , 𝑃
𝜀
1 ∈ P𝜅 , this implies (5.116) with 𝑐 = 3

65536 𝑒 . ut

5.6 History and Notes

Finite-sum coupled compositional optimization (FCCO) was first formalized in our
work (Qi et al., 2021c) for optimizing average precision, an empirical estimator of
the area under the precision–recall curve. We proposed the SOAP algorithm for AP
maximization and established the first complexity bound of 𝑂

(
𝑛
𝜖 5

)
for finding an

𝜖-stationary solution. Their algorithm is closely related to SOX, but differs in that it
does not employ a moving-average gradient estimator. The framework was demon-
strated on applications including image classification andmolecular property predic-
tion for drug discovery. The analysis of SOAP draws inspiration from the original
SCGD analysis Wang et al. (2017a), while significantly improving upon its𝑂 (1/𝜖8)
complexity with the a better hyper-parameter setting, leading to Theorem 4.1.

To accelerate convergence, we subsequently adopted the moving average gradi-
ent estimator for FCCO (Wang et al., 2022). While this approach achieves a com-
plexity order of 𝑂

(
𝑛
𝐵𝜖 4

)
, it does not benefit from the variance reduction gained by

using mini-batches to estimate inner function values. The limitation arises because
we treat all inner functions as a single vector variable and compute a sparse unbiased
stochastic estimator for this vector; consequently, the estimator does not enjoy the
advantages of inner mini-batching. This improved rate and analysis was inspired by
the stochastic compositional momentum method (Ghadimi et al., 2020).

Subsequently, we proposed the SOX algorithm-a significant advancement for
solving FCCO (Wang and Yang, 2022), encompassing new design, theoretical analy-
sis, and practical applications. In that work, we established a complexity of𝑂

(
𝑛𝜎2

0
𝐵𝜖 4

)
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for SOX to find an 𝜖-stationary solution in non-convex smooth FCCO problems. It
integrates the analysis of stochastic block coordinate update of the u sequences with
that of stochastic compositional momentum method.

Building on this, we developed a double-loop restarted algorithm that utilizes
SOX in the inner loop to address non-convex problems under the 𝜇-PL (Polyak-
Lojasiewicz) condition, i.e., ‖∇𝐹 (w)‖2

2 ≥ 𝜇(𝐹 (w) − minw 𝐹 (w)). This approach

yields an improved complexity of 𝑂
(
𝑛𝜎2

0
𝜇2𝐵𝜖

)
for finding an 𝜖-optimal solution. This

result further implies a complexity of 𝑂
(
𝑛𝜎2

0
𝜇2𝐵𝜖

)
for strongly convex FCCO prob-

lems and 𝑂
(
𝑛𝜎2

0
𝐵𝜖 3

)
for convex FCCO problems, requiring no assumptions on the in-

dividual convexity of inner and outer functions beyond the overall convexity of the
objective. The improved convergence analysis under the PL condition for the double-
loop restarted algorithm was inspired by our prior work on stochastic compositional
optimization for distributionally robust learning (Qi et al., 2021b). A comparable
complexity bound of𝑂 ( 1

𝜇2 𝜖
) for a single-loop algorithm in the context of Stochastic

Convex Optimization (SCO) under the PL condition was subsequently established in
(Jiang et al., 2023), which considers the application of SCO in training energy-based
models.

Furthermore, for convex FCCO instances where the outer function is both convex
and monotonically non-decreasing and the inner functions are convex, (Wang and
Yang, 2022) reformulated the problem as a convex-concave min-max optimization
problem and established a complexity of𝑂

(
𝑛𝜎2

0
𝐵𝜖 2

)
under a weak duality convergence

measure. Finally, when a 𝜇-strongly convex regularizer is present, the complexity is
further refined to 𝑂

(
𝑛𝜎2

0
𝜇2𝐵𝜖

)
for finding an 𝜖-optimal solution in terms of Euclidean

distance to the optimum. This analysis was mostly inspired by (Zhang and Lan,
2024), which is the first work that establishes the optimal complexity for solving con-
vex SCO where the outer function is both convex and monotonically non-decreasing
and the inner function is convex.

Later, Jiang et al. (2022) proposed theMulti-Block-Single-ProbeVariance Reduc-
tion (MSVR) algorithm for FCCO, establishing improved complexity bounds over
SOX by leveraging the mean squared smoothness of the inner functions. For non-
convex smooth FCCO problems, MSVR improves the complexity to 𝑂

(
𝑛𝜎0
𝐵𝜖 3

)
for

identifying an 𝜖-stationary solution.
For objectives satisfying the 𝜇-PL condition, a double-loop restarted MSVR al-

gorithm achieves an improved complexity of𝑂
(
𝑛𝜎0
𝜇𝐵𝜖

)
to find an 𝜖-optimal solution.

Consequently, this approach yields a complexity of 𝑂
(
𝑛𝜎0
𝜇𝐵𝜖

)
for strongly convex

FCCO problems and 𝑂
(
𝑛𝜎0
𝐵𝜖 2

)
for convex FCCO problems.

The analysis for non-smooth weakly convex FCCO and the SONX (v2) algorithm
was studied in our work (Hu et al., 2024b). This work established a complexity of
𝑂

(
𝑛𝜎0
𝐵𝜖 6

)
for finding a nearly 𝜖-stationary solution for weakly convex inner and outer
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functions. A similar analysis for a special case of weakly-convex SCOwas conducted
in (Zhu et al., 2023c).When the outer function is smooth, the complexity is improved
in this book to 𝑂

(
𝑛𝜎0
𝐵𝜖 4

)
. The SONEX algorithm for solving weakly convex FCCO

with non-smooth outer functions was proposed in our work (Chen et al., 2025b).
The ALEXR algorithm and its analysis for convex FCCO instances appeared in

our work (Wang and Yang, 2023), where the outer function is both convex andmono-
tonically non-decreasing and the inner functions are convex. For the first time, we
established a complexity of 𝑂

(
𝑛𝜎2

0
𝐵𝜖 2

)
for finding an 𝜖-optimal solution of convex

FCCO. Our analysis of the stochastic block coordinate update for the dual variables
is primarily informed by the framework in Alacaoglu et al. (2025), which addresses
convex-concaveminimax problemswith bilinear structures. The extrapolation for the
gradient of the dual variable is inspired by (Zhang et al., 2021). It is worth mention-
ing that for strongly convex FCCO with smooth outer functions, we only established
the convergence of ALEXR for the Euclidean distance to the optimum. However, it
is possible to establish the convergence for the objective gap and even the duality gap
following our work on strongly-convex strongly-concavemin-max optimization (Yan
et al., 2020b).

In (Wang andYang, 2023), we also established the lower bounds for convex FCCO
and strongly convex FCCO, which matches the upper bounds. Our derivation of the
lower bound for convex FCCO with non-smooth outer functions builds upon the
construction presented in (Zhang and Lan, 2024) for SCO.

The double-loopALEXRwas developed in Chen et al. (2025b), which wasmostly
inspired by a line of work on weakly-convex concave min-max problems (Rafique
et al., 2018; Yan et al., 2020b; Zhang et al., 2022). (Rafique et al., 2018) is the first
work that proves the convergence for weakly-convex (strongly)-concave problems.
Yan et al. (2020b) simplified the algorithm for weakly-convex strongly-concave prob-
lems with 𝜇-strong concavity on the dual variable and established a complexity of
𝑂 ( 1

𝜇2 𝜖 4 ) for finding an nearly 𝜖-stationary point. The later work (Zhang et al., 2022)
improved the complexity to𝑂 ( 1

𝜇𝜖 4 ) with a simple change on the number of iteration
for the inner loop.

The non-convex analysis of ASGD for compositional CVaRminimization first ap-
peared in (Zhu et al., 2022b) for one-way partial AUC optimization. The geometric-
aware algorithm SCENT for CERM and its analysis were developed in (Wei et al.,
2026). It remains an interesting problem to conduct fine-grained analysis of SCENT
for non-convex problems.

A more general framework than FCCO is the so-called conditional stochastic op-
timization (CSO), defined as:

min
w

E𝜉
[
𝑓𝜉

(
E𝜁 | 𝜉 [𝑔(w; 𝜁, 𝜉)]

) ]
.

This paradigm was formally introduced by Hu et al. (2020), who analyzed a biased
SGD (BSGD) algorithm employing a large inner mini-batch and a constant outer
mini-batch. For non-convex smooth problems, using an inner batch size of 𝑂 (𝜖−2)
results in an iteration complexity of 𝑂 (𝜖−4), which translates to a total sample com-
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plexity of𝑂 (𝜖−6). This performance is inferior to that of SOX when 𝑛/𝐵 < 𝜖−2. For
convex and 𝜇-strongly convex CSO problems, an inner batch size of 𝑂 (𝜖−1) yields
iteration complexities of 𝑂 (𝜖−2) and 𝑂 (𝜇−2𝜖−1), respectively. Notably, the latter
complexity is likewise worse than that of restarted SOX when 𝑛/𝐵 < 𝑂 (𝜖−1).
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Chapter 6
Applications: Learning Predictive, Generative
and Representation Models

Abstract In this chapter, we present applications of stochastic compositional opti-
mization and finite-sum coupled compositional optimization (FCCO) in both super-
vised and self-supervised learning settings. These include training predictive mod-
els, generative models, and representation models based on advanced objective func-
tions such as distributionally robust optimization (DRO), group DRO (GDRO), AUC
losses, NDCG loss, and contrastive losses. We also highlight applications of compo-
sitional optimization in solving multiple inequality-constrained optimization prob-
lems, optimizing data compositional neural networks, and a new paradigm of learn-
ing with a reference model called DRRHO risk minimization.

Unity of knowledge and action!
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6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Algorithm 23 Stochastic Optimization Framework of DL
// The Meta Algorithm
1: Set the learning rate schedule 𝜂𝑡
2: for 𝑡 = 1, · · · , 𝑇 do
3: Compute a vanilla gradient estimator z𝑡
4: Update w𝑡+1 by calling the update of SGD, Momentum, Adam, or AdamW optimizer
5: end for

// The SGD optimizer update
1: Update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡

// The Momentum optimizer update
1: Update v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1 )z𝑡 � the MA gradient estimator
2: Update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡

// The Adam optimizer update
1: Update v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1 )z𝑡 � the MA gradient estimator
2: Update s𝑡 = 𝛽2s𝑡−1 + (1 − 𝛽2 ) (z𝑡 )2

3: Update v̂𝑡 = v𝑡/(1 − 𝛽𝑡1 )
4: Update ŝ𝑡 = s𝑡/(1 − 𝛽𝑡2 )
5: Update w𝑡+1 = w𝑡 − 𝜂𝑡 v̂𝑡√

ŝ𝑡+𝜖
𝜖 is a small constant

// The AdamW optimizer update
1: Update v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1 )z𝑡 � the MA gradient estimator
2: Update s𝑡 = 𝛽2s𝑡−1 + (1 − 𝛽2 ) (z𝑡 )2

3: Update v̂𝑡 = v𝑡/(1 − 𝛽𝑡1 )
4: Update ŝ𝑡 = s𝑡/(1 − 𝛽𝑡2 )
5: Update w𝑡+1 = w𝑡 − 𝜂𝑡

(
v̂𝑡√
ŝ𝑡+𝜖

+ 𝜆w𝑡
)

𝜆 is a weight-decay constant

6.1 Stochastic Optimization Framework

For practioners who may skip Chapter 3, Chapter 4, and Chapter 5, we first provide a
brief introduction to the stochastic optimization framework commonly used for deep
learning. We also highlight the challenges in solving advanced machine learning
problems introduced in Chapter 2 and summarize the key ideas behind the solution
methods presented in Chapters 4 and 5.

The standard procedure for implementing a stochastic optimization algorithm typ-
ically involves computing a vanilla gradient estimator, followed by updating the
model parameters using a step of an optimizer. We present a meta-algorithm in
Algorithm 23, along with four classical optimizers: SGD, Momentum, Adam, and
AdamW.
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Three forms of the Momentum Method

The Momentum method represents a key milestone (as further discussed in
the next subsection). The stochastic momentum method originates from the
Heavy-ball (HB) method, whose stochastic version (SHB) has the following
update for solving minw 𝐹 (w) := E𝜁 [ 𝑓 (w; 𝜁)]:

w𝑡+1 = w𝑡 − 𝜂∇ 𝑓 (w𝑡 ; 𝜁𝑡 ) + 𝛽1 (w𝑡 − w𝑡−1), (6.1)

where 𝛽1 ∈ (0, 1) is the momentum parameter. While we utilize a single
stochastic gradient∇ 𝑓 (w𝑡 ; 𝜁𝑡 ) for illustrative purposes, practical applications
generally rely on mini-batch estimation. In Section 4.3, we show it is equiv-
alent to the the following update with moving average gradient estimator:

v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1)∇ 𝑓 (w𝑡 ; 𝜁𝑡 )
w𝑡+1 = w𝑡 − 𝜂′v𝑡 ,

(6.2)

Update (6.1) is equivalent to (6.2) if 𝜂′ (1− 𝛽1) = 𝜂. In PyTorch, the Momen-
tum method is implemented by the following update:

v𝑡 = 𝛽1v𝑡−1 + ∇ 𝑓 (w𝑡 ; 𝜁𝑡 )
w𝑡+1 = w𝑡 − 𝜂v𝑡 ,

(6.3)

which is equivalent to (6.1). One key insight from the convergence analysis of
the Momentum method (6.2) (cf. Theorem 4.3) is that it ensures the averaged
estimation error of the moving-average gradient estimators {v𝑡 } converge to
zero.

Thanks towell-developed deep learning frameworks such as PyTorch, implement-
ing training code for deep neural networks has become relatively straightforward.
The standard training pipeline is shown in Figure 6.1. The Dataset module allows
us to get a training sample, which includes its input and output. The Data Sampler
module (typically wrappedwithin the DataLoadermodule) provides tools to sample
a mini-batch of examples for training at each iteration. The Modelmodule allows us
to define different deep models. The Mini-batch Lossmodule defines a loss func-
tion on the selected mini-batch data for backpropagation. The Optimizer module
implements methods for updating the model parameter given the computed gradient
from backpropagation. Most essential functions are already available in PyTorch.
In practice, users often only need to define a function to compute their mini-batch
losses. By calling loss.backward(), a mini-batch stochastic gradient, serving as
a vanilla gradient estimator, is computed automatically.
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Dataset Data Sampler Model Mini-batch 
Loss Optimizer

Fig. 6.1: Standard training pipeline for deep learning. Users typically only need to
implement the mini-batch loss function. It relies on a critical assumption that the
mini-batch stochastic gradient is an unbiased estimator of the true gradient

6.1.1 Milestones of Stochastic Optimization

While the Adam optimizer has become a standard in machine learning as of 2025, it
has deep roots in the innovations of stochastic optimization before deep learning era.
Below, we briefly discuss key milestones of stochastic optimization that have impact
on the Adam method.

Stochasticity. The fundamental concept of gradient descent (GD), dating back
to (Cauchy, 1847), uses the full dataset’s gradient to take a step in the steepest direc-
tion. Introduced by Robbins and Monro (1951), SGD improves upon GD by using
only a small batch of data (or even a single data point) to estimate the gradient, sig-
nificantly speeding up training on large datasets.

Acceleration. To improve the convergence rate of GD, Polyak (1964) proposed
the Heavy-ball (HB) method, which itself originates from the second-order Richard-
son method for solving a system of linear equations (Frankel, 1950). While Polyak
only proved a faster rate of local convergence than GD for smooth and strongly con-
vex problems, Nemirovski and Yudin (1977) proved the first nearly optimal rate
for general smooth and strongly convex problems. Their method was inspired by
the conjugate gradient method for solving quadratic problems and needs to solve
2-dimensional optimization problem using the method of centers of gravity every
step; cf. (Nemirovsky and Yudin, 1983)[Sec. 7.3]. Later, Nesterov (1983) derived
a simpler form of accelerated gradient method, which is now known as Nesterov’s
accelerated gradient (NAG) method.

Nesterov’s Accelerated Gradient (NAG) method

The original update form of the NAG method is given by:

u𝑡+1 = w𝑡 − 𝜂∇𝐹 (w𝑡 ),
w𝑡+1 = u𝑡+1 + 𝛽1 (u𝑡+1 − u𝑡 ).

(6.4)

It is equivalent to

w𝑡+1 = w𝑡 − 𝜂∇𝐹 (w𝑡 ) + 𝛽1 ((w𝑡 − 𝜂∇𝐹 (w𝑡 )) − (w𝑡−1 − 𝜂∇𝐹 (w𝑡−1))).
(6.5)

Comparing with the HB method (6.1), the momentum term is changed from
𝛽(w𝑡 − w𝑡−1) to 𝛽(u𝑡+1 − u𝑡 ).
If we let w𝑡+1 = w𝑡 − 𝜂v𝑡 , then the NAG update is equivalent to
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Gradient Descent (GD)
(Cauchy, 1847)

Stochastic Gradient Descent (SGD)
(Robin and Monro, 1950)

Stochasticity

Stochastic Mirror Descent (SMD)
(Nemiorvski et al., 2009)

From Euclidean distance
to Bregman divergence

AdaGrad
(Duchi et al., 2011)

Use time-varying Bregman 
divergence (adaptive step size)

RMSProp
(Tieleman & Hinto., 2012)

From simple average to 
moving average of 2nd moment

Adam
(Kingma & Ba, 2014)

adaptive step size

Accelerated Gradient (AG)

Heavy ball (HB)
(Polyak, 1964)

Nesterov’s Accelerated Gradient (NAG)
(Nesterov, 1983)

Stochastic Accelerated Methods
(Lan, 2012)
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Improved rate for smooth & 
strongly convex functions
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Use moving average 
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Polyak Momentum

Nesterov Momentum
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(Joran et al, 2024)

Momentum Orthogonalized 

by Newton-Schulz

Fig. 6.2: Evolution of Stochastic Optimization

v𝑡 = 𝛽1v𝑡−1 + ∇𝐹 (w𝑡 ) + 𝛽1 (∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡−1))
w𝑡+1 = w𝑡 − 𝜂v𝑡 .

(6.6)

This is similar to (6.3) except that an error correction term 𝛽(∇𝐹 (w𝑡 ) −
∇𝐹 (w𝑡−1)) is added to the gradient estimator update.
We can also make the updates in (6.4) or (6.6) stochastic, leading to the
stochastic NAG (SNAG) method. In particular, if we use a stochastic gra-
dient estimator ∇ 𝑓 (w𝑡 ; 𝜁𝑡 ) in (6.4), we have the following update:

u𝑡+1 = w𝑡 − 𝜂∇ 𝑓 (w𝑡 ; 𝜁𝑡 ),
w𝑡+1 = u𝑡+1 + 𝛽1 (u𝑡+1 − u𝑡 ).

(6.7)

If we use stochastic gradient estimators∇ 𝑓 (w𝑡 ; 𝜁𝑡 ) and∇ 𝑓 (w𝑡−1; 𝜁𝑡 ) in (6.6),
we have the following update:
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v𝑡 = 𝛽1v𝑡−1 + ∇ 𝑓 (w𝑡 ; 𝜁𝑡 ) + 𝛽1 (∇ 𝑓 (w𝑡 ; 𝜁𝑡 ) − ∇ 𝑓 (w𝑡−1; 𝜁𝑡 ))
w𝑡+1 = w𝑡 − 𝜂v𝑡 .

(6.8)

The difference between the two variants lies that (6.8) needs to compute two
stochastic gradient estimators at w𝑡 and w𝑡−1 per-iteration. However, inter-
ested readers can show that the update in (6.8) with a variable change is
equivalent to the STORM update as presented in Section 4.3.2 for optimizing
𝐹 (w) = E𝜁 [ 𝑓 (w; 𝜁)].

Lan (2012) pioneered the development and analysis of stochastic accelerated
gradient methods, achieving the optimal rates in both deterministic and stochastic
regimes. Its update is slightly different from the NAG update. (Yang et al., 2016) is
the first work to prove the convergence of stochastic NAG and stochastic HBmethods
for non-convex optimization.

Adaptive step sizes. The technique of utilizing coordinate-wise adaptive step
sizes was pioneered by AdaGrad (Duchi et al., 2011), a method whose analysis is
rooted in the framework of Stochastic Mirror Descent (SMD) (Nemirovski et al.,
2009). Both AdaGrad and SMD are thoroughly examined in Chapter 3. RMSProp,
appeared in a course lecture (Tieleman and Hinton, 2012), moved from AdaGrad’s
simple average of the second moment (squared gradients) to a moving average of
the second moment. The moving average estimator has a long history in stochastic
optimization, see (Ermoliev and Wets, 1988)[Sec. 6.2.3]. Finally, RMSProp leads
to the current standard, the Adam method (Kingma and Ba, 2014), which combines
the moving average of the first moment (similar to SHB) with the moving average
of the second moment (similar to RMSProp). AdamW is a variant of Adam, which
decouples weight decay from gradient-based updates.

Recently, a new optimizer namedMuon (Jordan et al., 2024) has emerged, specifi-
cally designed to optimize matrix-structured parameters, such as the weight matrices
between neural network layers. In contrast, conventional optimizers typically treat
these parameters as flattened vectors, potentially overlooking their inherent structural
properties.

The Muon method

Let𝑊𝑡 denote a matrix-structured parameter at the 𝑡-th iteration. The Muon
update is given by:

𝑀𝑡 = 𝛽1𝑀𝑡−1 + ∇ 𝑓 (𝑊𝑡 ; 𝜁𝑡 )
(𝑈𝑡 , 𝑆𝑡 , 𝑉𝑡 ) = SVD(𝑀𝑡 )
𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡𝑈𝑡𝑉>

𝑡 .

(6.9)

In practice, the Singular Value Decomposition (SVD) is often replaced by a
more computationally efficient Newton-Schulz matrix iteration. This process
produces an approximate matrix 𝑂𝑡 = 𝑈𝑡𝑆

′
𝑡𝑉

>
𝑡 , where 𝑆′𝑡 is diagonal with
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𝑆′𝑡 [𝑖, 𝑖]′ ∼ Uniform(0.5, 1.5). The weight update is then applied as 𝑊𝑡+1 =
𝑊𝑡 − 𝜂𝑡𝑂𝑡 .

Summary: The evolution of stochastic optimization, which has had a major im-
pact on modern AI (see Figure 6.2), can be characterized by five key shifts in algo-
rithm design:

• From Full Gradient to Stochastic Gradient (Batch Size): Switched from using the
full dataset’s gradient (GD) to using noisy stochastic gradients (SGD) for faster
iteration speed.

• From Gradient Descent to Accelerated Gradient Methods (Momentum): The op-
timization technique was enhanced by introducing a momentum term (like HB
or NAG) to achieve an improved convergence rate for smooth convex functions,
while still using the full gradient.

• From Euclidean Distance to Bregman Divergence (Geometry): Switched the un-
derlying distance metric used for updates from the Euclidean distance to a Breg-
man divergence (SMD).

• From Static Step Size to Adaptive Step Size (Preconditioning): Switched from a
constant or manually decaying learning rate to one that is scaled by past gradient
magnitudes (AdaGrad).

• From a Mini-batch gradient estimator to a Moving Average gradient estimator
(Error reduction): Switched from a simple mini-batch gradient estimator to a
moving average gradient estimator (SHB, Adam).

6.1.2 Limitations of Existing Optimization Framework

The standard stochastic optimization algorithms and their analyses rest on a crit-
ical assumption: that the mini-batch stochastic gradient is an unbiased estimator
of the true gradient. As discussed in Chapter 4, this assumption breaks down in
the case of compositional functions of the form 𝑓 (𝑔(w)), where 𝑓 is a determin-
istic non-linear function and 𝑔 is a stochastic function. In such cases, the gradi-
ent of the mini-batch loss 𝑓 (𝑔(w;B)), where 𝑔(w;B) is an unbiased estimator of
𝑔(w) with a mini-batch B, yields a biased estimate of the true gradient. Specifi-
cally, calling loss.backward() on the mini-batch loss will return a gradient of
∇ 𝑓 (𝑔(w;B))∇𝑔(w;B), which is inherently biased. The method that directly uses
this biased gradient estimator for SGD update is referred to as biased SGD (BSGD).
However, since the estimation error is inversely proportional to the batch size, small
batches can lead to large optimization errors. According to Lemma 2.1, such errors
can negatively impact the generalization performance of the learned model.

To address this challenge, Chapters 4 and 5 introduce solution methods tailored
to different families of compositional objectives. The key ideas underlying these al-
gorithms concern (i) how the vanilla gradient estimator z𝑡 is computed in Step 3 of
Algorithm 23, and (ii) how the estimator error is further reduced through the use
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Fig. 6.3: Histograms of class sizes of the iNaturalist2018 dataset, which contains
437,513 natural images of 8,142 species. The sizes of classes follow a long-tail dis-
tribution.

of moving-average (MA) estimators v𝑡 as in Step 1 of the Momentum optimizer
or more advanced variance-reduction techniques. In the following sections, we will
present their applications to various complex and advanced machine learning prob-
lems, with a focus on the presentation of the novel vanilla gradient estimators, which
allow us to integrate them into the standard optimization schemes such as Momen-
tum or AdamW for non-convex deep learning problems.

6.2 DRO and Group DRO

Let us consider supervised learning with a set of training data {(x, 𝑦)}, where x ∈
R𝑑 denotes the input data and 𝑦 ∈ {1, . . . , 𝐾} denotes the output class label. Let
ℓ(w; x, 𝑦) denote the pointwise loss function, e.g., the cross-entropy loss.

6.2.1 DRO for Imbalanced Classification

Imbalanced classification is prevalent in many areas, including medicine and cy-
bersecurity, where most training data may belong to one or a few classes. Mathe-
matically, it means that the marginal distribution of the class label is a non-uniform
distribution. An example of an imbalanced dataset is shown in Figure 6.3.

For imbalanced data, the conventional empirical risk minimization would focus
on minimizing the loss of data from those dominating classes, neglecting data from
the minority classes. DRO can address this issue by assigning larger weights to data
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with higher losses. Let us first consider the KL-divergence regularized DRO:

min
w

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; x𝑖 , 𝑦𝑖) − 𝜏
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑛) + 𝑟 (w), (6.10)

where 𝑟 (w) is a regularizer on w. A traditional way to solve this problem is to use
stochastic minimax optimization algorithms. However, there are several drawbacks
of this approach: (1) the variance of stochastic gradient for w depends on the sam-
pling distribution and the best sampling distribution depends on p; (2) the sampling
of data based on p incurs additional costs and is not friendly to practical implemen-
tation that uses random shuffling; (3) stochastic update of the dual variable p either
takes𝑂 (𝑛) time complexity per iteration or requires maintaining a special tree struc-
ture to reduce the updating time to 𝑂 (log(𝑛)).

To circumvent these issues, we consider an alternative formulation that is equiv-
alent to the above minimax objective, i.e.,

min
w
𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; x𝑖 , 𝑦𝑖)

𝜏

))
+ 𝑟 (w). (6.11)

For simplicity, we just consider the standard Euclidean norm regularization 𝑟 (w) =
𝜆
2 ‖w‖2

2. As a result, the first term in the objective takes the form of a compositional
optimization problem, namely 𝑓

(
E𝜁 [ 𝑔(w; 𝜁) ]

)
, where 𝑓 (·) = 𝜏 log(·) and

E𝜁 [(𝑔(w; 𝜁)] = 1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; x𝑖 , 𝑦𝑖)

𝜏

)
.

The SCGD, SCMA, SCST, and SCENT algorithms can be applied to solve the
above problem. We now focus on the application of SCMA, whose key steps are
presented in Algorithm 24.

The vanilla gradient estimator z𝑡 of the first term in (6.11) at the 𝑡-th iteration is
computed by :

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

exp( ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )𝜏 )
𝑢𝑡

∇ℓ(w𝑡 ; x𝑖 , 𝑦𝑖). (6.12)

It is motivated from (4.4) where the same mini-batch B𝑡 is used for both updating 𝑢𝑡
and computing z𝑡 .

Let us compare this gradient estimator with that of stochastic optimization for
empirical risk minimization:

ẑ𝑡 =
1
𝐵

∑
𝑖∈B𝑡

∇ℓ(w𝑡 ; x𝑖 , 𝑦𝑖). (6.13)

The difference between (6.12) and (6.13) lies in the blue term, which acts as a weight
for each data in the mini-batch. In the vanilla gradient estimator z𝑡 for DRO, the data
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Algorithm 24 Attentional Biased Stochastic Methods
1: for 𝑡 = 1, · · · , 𝑇 do
2: Sample a mini-batch of 𝐵 samples B𝑡 ⊂ [𝑛]
3: Compute 𝑔 (w𝑡 , B𝑡 ) = 1

𝐵

∑
𝑖∈B𝑡 exp(ℓ (w𝑡 ; x𝑖 , 𝑦𝑖 )/𝜏 )

4: Compute 𝑢𝑡 = (1 − 𝛾)𝑢𝑡−1 + 𝛾𝑔 (w𝑡 , B𝑡 )
5: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B𝑡

exp( ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )𝜏 )
𝑢𝑡

∇ℓ (w𝑡 ; x𝑖 , 𝑦𝑖 )

6: Update w𝑡+1 by an optimizer such as Momentum or Adam-W
7: end for

in the mini-batch with a larger loss ℓ(w𝑡 ; x𝑖 , 𝑦𝑖) has a higher weight. This will facili-
tate the learning for data from the minority group. Due to this effect, we also refer to
Algorithm 24 as attentional biased stochastic method, named as AB-xx depending
on which optimizer is used.

The use of 𝑢𝑡 for normalization to compute the weight exp(ℓ(w𝑡 ; x𝑖 , 𝑦𝑖)/𝜏)/𝑢𝑡
is also different from that using the heuristic mini-batch normalization where the
weight is computed by exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )/𝜏 )∑

𝑖∈B𝑡 exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )/𝜏 ) , which does not ensure convergence if
the batch size is not significantly large. Let us consider a simple case such that only
one data is sampled for updating. In this case, the mini-batch normalization gives a
weight 1 for the selected data no matter whether it is from the majority or minority
class. However, if the sampled data denoted by (x𝑡 , 𝑦𝑡 ) at the 𝑡-th iteration is from
a minority group and hence has a large loss, we would like to penalize more on
such an example. The estimator 𝑢𝑡 = (1 − 𝛾)𝑢𝑡−1 + 𝛾 exp(ℓ(w𝑡 ; x𝑡 , 𝑦𝑡 )/𝜏) is likely
to be smaller than exp(ℓ(w𝑡 ; x𝑡 , 𝑦𝑡 )/𝜏) as 𝛾 < 1. As a result, normalization using
𝑢𝑡 will give a larger weight to the sampled minority data compared with using the
mini-batch normalization, i.e., exp(ℓ(w𝑡 ; z𝑡 )/𝜏)/𝑢𝑡 > 1. Qi et al. (2020) empirically
demonstrated that using 𝛾 < 1 outperforms the case 𝛾 = 1, which corresponds to
using the standard mini-batch loss.

To illustrate the effect of AB-momentum on imbalanced data. We present an ex-
periment on synthetic data in Figure 6.4, which compares the result of using the Mo-
mentum method for ERM and AB-momentum for solving KL-divergence regular-
ized DRO. Figure 6.4(d) shows that AB-momentum learns a better decision bound-
ary than that of the Momentum method for ERM. Figure 6.4(b) shows that data from
the minority group that are close to the decision boundary get higher weights during
the training.

 Practical Tips

We discuss several practical tips for computing z𝑡 and other variants of DRO in the
context of deep learning.
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Fig. 6.4: (a): A synthetic data for imbalanced binary classification (green vs purple)
with a random linear decision boundary (black line). (c), (d): Learned linear models
optimized by the standardmomentummethod for ERM andAB-momentum for DRO
with logistic loss for 100 iterations, respectively. (b): The averaged weights of circled
samples in the training process of the standard momentum method for ERM and
AB-momentum method for DRO. Sample with indices in {1, . . . , 11} are from the
majority class and samples with indices in {12, 13, 14, 15, 16} are from the minority
class with sample 15, 16 close to the decision boundary.

Backpropagation.

In order to compute the vanilla gradient estimator z𝑡 using the PyTorch backward
function, we just need to have a slight change of computing the loss based on the
mini-batch data. Below we give the pseudo code in PyTorch for computing the gra-
dient estimator highlighted in Step 5 of Algorithm 24. It is worth noting that the line
of p=(exp_loss/u).detach() calculates the blue part and detaches it from the
computational graph so that gradient is not computed again for it. With the gradient
estimator computed by loss.backward(), then we can use any existing optimizers,
including the Momentum method and AdamW.
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sur_loss=surrogate_loss(preds, labels)
exp_loss = torch.exp(sur_loss/tau)
u = (1 - gamma)*u + gamma*(exp_loss.mean())
p = (exp_loss/u).detach()
loss = torch.mean(p * sur_loss)
loss.backward()

Avoiding the numerical issue.

However, a numerical issue may arise during the running tied to the computation
of exp(ℓ(w𝑡 ; x𝑖 , 𝑦𝑖)/𝜏), especially when 𝜏 is small and the loss function of selected
data is large so that overflow. As a result, the running of the algorithm may crash
due to a NaN error. To address this issue, we maintain 𝜈𝑡 = log 𝑢𝑡 . Specifically, we
denote by 𝑞𝑡 ,𝑖 = exp( ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )−ℓmax,𝑡

𝜏 ), where ℓmax,𝑡 = max𝑖∈B𝑡 ℓ(w𝑡 ; x𝑖 , 𝑦𝑖). Then
Step 4 can be reformulated to:

exp(log 𝑢𝑡 ) = exp(log(1 − 𝛾) + log 𝑢𝑡−1)

+ exp
(
log 𝛾 + log

(
1
𝐵

∑
𝑖∈B𝑡

𝑞𝑡 ,𝑖

)
+ ℓmax,𝑡

𝜏

)
.

For simplicity, let 𝑏𝑡 = log(1 − 𝛾) + log 𝑢𝑡−1 and 𝑞𝑡 = log 𝛾 + log
(

1
𝐵

∑
𝑖∈B𝑡 𝑞𝑡 ,𝑖

)
+

ℓmax,𝑡
𝜏 , we have

exp(log 𝑢𝑡 ) = exp(𝑏𝑡 ) + exp(𝑞𝑡 ).

The update in equivalent to following:

exp(log 𝑢𝑡 ) = exp(max{𝑏𝑡 , 𝑞𝑡 })(1 + exp(−|𝑏𝑡 − 𝑞𝑡 |))
= exp(max{𝑏𝑡 , 𝑞𝑡 })𝜎−1 ( |𝑏𝑡 − 𝑞𝑡 |),

where 𝜎(·) denotes the sigmoid function. Taking the log on both sides gives the
update for log 𝑢𝑡 . To summarize, we maintain and update 𝜈𝑡 = log 𝑢𝑡 as following:

𝑏𝑡 = log(1 − 𝛾) + 𝜈𝑡−1

𝑞𝑡 = log 𝛾 + log
(

1
𝐵

∑
𝑖∈B𝑡

exp
(
ℓ(w𝑡 ; x𝑖 , 𝑦𝑖) − ℓmax,𝑡

𝜏

))
+ ℓmax,𝑡

𝜏

𝜈𝑡 = max{𝑏𝑡 , 𝑞𝑡 } − log𝜎( |𝑏𝑡 − 𝑞𝑡 |).

(6.14)

At the first iteration 𝑡 = 1, we can just set

𝜈1 = log
(

1
𝐵

∑
𝑖∈B𝑡

exp
(
ℓ(w1; x𝑖 , 𝑦𝑖)

𝜏
− ℓmax,1

𝜏

))
+ ℓmax,1

𝜏
.
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Fig. 6.5: t-SNE visualization of feature representations of training & testing set on CIFAR10-LT
(𝜌 = 100) with different strategies of setting 𝜏. Right: Fixed 𝜏 = 1. Left: Two-stage decay of 𝜏:
first phase 𝜏 = 100 and second phase 𝜏 = 1. For more details, please refer to (Qi et al., 2020).

With 𝜈𝑡 , the effective weight exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )/𝜏 )
𝑢𝑡

can be computed by

exp
(
ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )

𝜏 − max( ℓmax,𝑡
𝜏 , 𝜈𝑡 )

)
exp

(
𝜈𝑡 − max( ℓmax,𝑡

𝜏 , 𝜈𝑡 )
) .

Thus, all computation involving exp(·) will not incure any numerical issue.

The Temperature parameter.

The last point we discuss here is how to set the value of the temperature parame-
ter 𝜏. A simple way is to treat it as a hyper-parameter and tune it based on cross-
validation. However, there is a trade-off in the performance. A deep neural network
is a hierarchical learner with lower layers for low-level feature extraction, middle lay-
ers for more abstract feature extraction and the last layer for classification. A larger
𝜏 indicates a more uniform weight, which is not good for learning the last classifier
layer and minority class specific features. A smaller 𝜏 indicates a more non-uniform
weight, which is not good for learning class agnostic lower level features.

One approach to mitigate this issue is to use a two-stage approach. In the first
stage, we can use a relatively larger temperature 𝜏 for learning class agnostic lower
level features. The second stage, we decrease 𝜏 to finetune the upper layers for learn-
ing robust minority-class specific features and classifier layer. An example is shown
in Figure 6.5 on a long-tailed version of the CIFAR10 dataset, where the data is in-
tentionally made imbalanced such that the number of samples per class follows a
long-tail distribution, the imbalance ratio 𝜌 means the ratio between sample sizes of
the most frequent and least frequent classes.

Another approach is to treat 𝜏 as a parameter to be optimized. To achieve this, we
can consider optimizing a KL-divergence constrained DRO:
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min
w

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; x𝑖 , 𝑦𝑖) − 𝜏0
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑛) + 𝑟 (w),

s.t.
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑛) ≤ 𝜌,

(6.15)

where the regularizer term with a small 𝜏0 is added to avoid ill conditioning, making
the resulting problem smooth in terms of losses. Using the dual form of the maxi-
mization problem (see (2.19)), the above problem is equivalent to

min
w,𝜏≥𝜏0

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; x𝑖 , 𝑦𝑖)

𝜏

))
+ 𝜏𝜌. (6.16)

We can extend Algorithm 24 to optimize the above problem by treating (w, 𝜏) as a
single variable to be optimized. The vanilla gradient estimator in terms of 𝜏 at the
𝑡-th iteration is given by :

z𝜏,𝑡 = log(𝑢𝑡 ) + 𝜌 −
1
𝐵

∑
𝑖∈B𝑡

exp( ℓ (w𝑡 ;x𝑖 ,𝑦𝑖 )𝜏𝑡
)

𝑢𝑡

ℓ(w𝑡 ; x𝑖 , 𝑦𝑖)
𝜏𝑡

.

6.2.2 GDRO for Addressing Spurious Correlation

Data may exhibit imbalance not in the marginal distribution of class label but some
joint distribution of the class label and some attributes. Please see a discussion on
the example of classifying waterbird images from landbirds images in Section 2.2.3.
As a consequence, the model may learn spurious correlations between the labels
and some attributes. GDRO can be used to mitigate this issue by leveraging prior
knowledge of spurious correlations to define groups over the training data.

Formally, if there is spurious correlation between class label 𝑦 ∈ Y and some
attribute 𝑎 ∈ A, we can group the training data into |Y| × |A| groups according to
the value of (𝑦, 𝑎). Let D𝑖 = {(x𝑖, 𝑗 , 𝑦𝑖, 𝑗 )}𝑛𝑖𝑗=1 denote the data from the 𝑖-th group
for 𝑖 ∈ {1, . . . 𝐾}. Then we can define the averaged loss for data from each group 𝑖
as 𝐿𝑖 (w) = 1

𝑛𝑖

∑𝑛𝑖
𝑗=1 ℓ(w; x𝑖, 𝑗 , 𝑦𝑖, 𝑗 ). Then, the GDRO formulation with CVaR diver-

gence corresponding to the top-𝑘 groups is equivalent to (cf. (2.26)):

min
w,𝜈

1
𝐾

𝐾∑
𝑖=1

[𝐿𝑖 (w) − 𝜈]+ + 𝛼𝜈 +
𝜆

2
‖w‖2

2, (6.17)

where 𝛼 = 𝑘
𝐾 . If we define w̄ = (w, 𝜈) and the inner functions as 𝑔(w̄) = 𝐿 𝑗 (w) − 𝜈

and the outer function as 𝑓 (𝑔) = [𝑔]+, then the problem becomes an instance of
non-smooth FCCO, where the outer function is non-smooth.
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Algorithm 25 SONEX for solving (6.18)
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw a batch of 𝐵1 groups B𝑡 ⊂ [𝐾 ]
4: for 𝑖 ∈ B𝑡 do
5: Draw 𝐵2 samples 𝜁 𝑗𝑖,𝑡 ∼ D𝑖 , 𝑗 = 1, . . . , 𝐵2
6: Update the inner function value estimators by

𝑢𝑖,𝑡 = (1 − 𝛾𝑡 )𝑢𝑖,𝑡−1 + 𝛾𝑡
1
𝐵2

𝐵2∑
𝑗=1
ℓ (w𝑡 ; x𝑖, 𝑗 , 𝑦𝑖, 𝑗 )

7: end for
8: Set 𝑢𝑖,𝑡+1 = 𝑢𝑖,𝑡 , 𝑖 ∉ B𝑡
9: Compute the vanilla gradient of 𝜈𝑡 : z𝑡,𝜈 = − 1

𝐵1

∑
𝑖∈B𝑡 ∇ 𝑓𝜀 (𝑢𝑖,𝑡 − 𝜈𝑡 ) +

𝑘
𝐾

10: Compute the vanilla gradient of w𝑡 :

z𝑡,w =
1
𝐵1

∑
𝑖∈B𝑡

©­«∇ 𝑓𝜀 (𝑢𝑖,𝑡 − 𝜈𝑡 ) 1
𝐵2

𝐵2∑
𝑗=1

∇ℓ (w𝑡 ; x𝑖, 𝑗 , 𝑦𝑖, 𝑗 )ª®¬
11: update 𝜈𝑡+1 using SGD
12: Update w𝑡+1 using Momentum or AdamW
13: end for

An alternative way is to formulate the problem into an equivalent min-max for-
mulation:

min
w

max
p∈Δ,𝑛𝑝𝑖≤1/𝛼

𝐾∑
𝑖=1

𝑝𝑖𝐿𝑖 (w) + 𝜆
2
‖w‖2

2. (6.18)

However, solving this min-max problem has similar drawbacks as discussed in DRO,
especially when the number of groups 𝐾 is large.

Let us discuss the applicability of algorithms presented in Chapter 4 for solv-
ing (6.17). The theory of SOX andMSVR requires the smoothness of the outer func-
tions, which is not applicable to GDRO. Both ALEXR and SONX are applicable as
their analysis does not require the smoothness of the outer functions. However, their
updates is SGD-type, which couldmake it slow or fail in practice for learningmodern
deep neural networks such as Transformer.

For deep learning applications, we can leverage SONEX. Its key idea is to smooth
the outer hinge function. In particular, we define the smoothed hinge function as
𝑓𝜀 (𝑔) with a very small 𝜀 (cf. Example 5.1):

𝑓𝜀 (𝑔) = max
𝑦∈[0,1]

𝑦𝑔 − 𝜀

2
𝑦2 =


𝑔 − 𝜀

2 if 𝑔 ≥ 𝜀
𝑔2

2𝜀 if 0 < 𝑔 < 𝜀
0 o.w.

.

As a result, we solve the following smoothed problem:
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Fig. 6.6: An experimental comparison of different methods for solving GDRO (2.26) on the
Amazon-WILDS dataset. The dataset is a text classification benchmark derived fromAmazon prod-
uct reviews, where the task is to predict binary sentiment (positive or negative) using TF–IDF fea-
tures extracted from review text. The data spans multiple product categories. We construct groups
based on the user attribute, resulting in 1,252 distinct groups. Only 4 groups and 64 data points
per-group are sampled per-iteration. SONEX uses the Adam optimizer, SONX uses the SGD opti-
mizer, and the PrimalDual is a stochastic primal-dual method for solving (6.18) that uses the Adam
optimizer for the primal variable (model weights) and uses the stochastic mirror descent update for
the dual variable p with a KL divergence. For more details, please refer to (Chen et al., 2025b).

min
w,𝜈

1
𝐾

𝐾∑
𝑗=1

𝑓𝜀 (𝐿 𝑗 (w) − 𝜈) + 𝛼𝜈 + 𝜆
2
‖w‖2

2. (6.19)

We present a variant of SONEX in Algorithm 25. Figure 6.6 illustrates the effective-
ness of SONEX for solving GDRO comprising with SONX and a stochastic primal-
dual method.

6.3 Extreme Multi-class Classification

Multi-class classification is a cornerstone of machine learning. However, many mod-
ern applications involve an exceptionally large label space—ranging frommillions to
even billions of categories—a challenge known as extreme multi-class classification
(XMC). For instance, for face recognition, the model learning is often formulated
as classifying images into unique identities. With millions of distinct individuals,
the model must navigate millions of corresponding classes. Similarly, when training
a language model to predict the next word, the problem is treated as a multi-class
classification task where each word in the vocabulary represents a category. Given
that the English language contains over one million words, the resulting number of
classes is immense.
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Algorithm 26 The SCENT Algorithm for solving XMC
1: Initialize𝑊1, 𝝂0, step sizes 𝜂𝑡 and 𝛼𝑡 , 𝜑 (𝜈) = 𝑒−𝜈 .
2: for 𝑡 = 1 . . . , 𝑇 − 1 do
3: Sample a mini-batch data B𝑡 ⊂ {1, . . . , 𝑛} with | B𝑡 | = 𝐵
4: Let C𝑡 denote the set of unique labels in B𝑡
5: for each (x𝑖 , 𝑦𝑖 ) ∈ B𝑡 do
6: Update 𝜈𝑖,𝑡 by solving

𝜈𝑖,𝑡 = arg min
𝜈

1
| B𝑡 | − 1

∑
𝑦 𝑗 ∈B𝑡\𝑦𝑖

exp( (w𝑡,𝑦 𝑗 − w𝑡,𝑦𝑖 )>ℎ (x𝑖 ) − 𝜈) + 𝜈 +
1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑖,𝑡−1 )

7: end for
8: Compute Z𝑡 [C𝑡 ] = ∇𝐿𝑡 (𝑊𝑡 [C𝑡 ] ) by calling backprop on the mini-batch loss

𝐿𝑡 (𝑊𝑡 [C𝑡 ] ) =
1
𝐵

∑
𝑖∈B𝑡

1
| B𝑡 | − 1

∑
𝑦 𝑗 ∈B𝑡\𝑦𝑖

exp( (w𝑡,𝑦 𝑗 − w𝑡,𝑦𝑖 )>ℎ (x𝑖 ) − 𝜈𝑖,𝑡 )

9: Compute V𝑡 [C𝑡 ] = (1 − 𝛽𝑡 )V𝑡−1 [C𝑡 ] + 𝛽𝑡Z𝑡 [C𝑡 ] (optional)
10: Update𝑊𝑡+1 [C𝑡 ] =𝑊𝑡 [C𝑡 ] − 𝜂𝑡V𝑡 [C𝑡 ]
11: end for

A dominating approach of multi-class classification is logistic regression, which
minimizes the cross-entropy loss. Let us consider learning a linear model by solving
the following problem:

min
𝑊

1
𝑛

𝑛∑
𝑖=1

− log
exp(w>

𝑦𝑖 ℎ(x𝑖))∑𝐾
𝑗=1 exp(w>

𝑗 ℎ(x𝑖))

where 𝑦𝑖 ∈ {1, . . . , 𝐾} denotes the true class label of x𝑖 ,𝑊 = (w1, . . . ,w𝐾 ) ∈ R𝑑×𝐾

contains the weights for all classes, and ℎ(x) ∈ R𝑑 denotes the feature vector of
each data. When 𝐾 is huge, it is not efficient to compute the normalization term∑𝐾
𝑗=1 exp(w>

𝑗 ℎ(x𝑖)) for each data and loading all𝑊 into the memory might be pro-
hibited.

To solve this problem, we can use SCENT algorithm presented in Section 5.5.2.
To this end, we reformulate the problem into the following equivalent min-min op-
timization:

min
𝑊

min
𝝂

1
𝑛

𝑛∑
𝑖=1


1
𝐾

𝐾∑
𝑗=1

exp(w>
𝑗 ℎ(x𝑖) − w>

𝑦𝑖 ℎ(x𝑖) − 𝜈𝑖) + 𝜈𝑖 − 1
 .

We present an application of SCENT for solving this problem in Algorithm 26. At
each iteration, the algorithm begins by sampling a mini-batch B𝑡 (Step 3) to approx-
imate the outer summation over 𝑛 data points. Following this, the algorithm updates
the dual variables 𝜈𝑖 for each 𝑖 ∈ B𝑡 . While the original SCENT algorithm requires
sampling from the full set of classes { 𝑗 = 1, . . . , 𝐾}, we observe that for all sampled
data, the weights corresponding to their true labels {w𝑦𝑖 : 𝑖 ∈ B𝑡 } must already
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be accessed. Consequently, we utilize the ‘in-batch’ class labels to approximate the
inner summation, setting Y𝑡 = {{𝑦𝑖}}𝑖∈B𝑡 be the multiset of labels and C𝑡 to the set
of unique labels in B𝑡 . To update 𝝂𝑡 and 𝑊𝑡 , the following calculations are imple-
mented.

• Computing Sampled and Shifted Logits.Given the mini-batchB𝑡 and the set of
sampled classesY𝑡 , we first compute the inner products between the features ℎ(x𝑖)
and class weights w 𝑗 for all 𝑖 ∈ B𝑡 and 𝑗 ∈ Y𝑡 . This is efficiently computed via
the matrix product 𝑄 = 𝐻 [B𝑡 ]>𝑊 [Y𝑡 ] ∈ R𝐵×|Y𝑡 | , where 𝐻 [B𝑡 ] = [ℎ(x𝑖)]𝑖∈B𝑡
represents the sampled feature matrix. We then derive the shifted logits matrix 𝑅,
defined by the entries 𝑅𝑖 𝑗 = w>

𝑗 ℎ(x𝑖) − w>
𝑦𝑖 ℎ(x𝑖) for all 𝑖 ∈ B𝑡 , 𝑗 ∈ Y𝑡 .

• Closed-form update for 𝜈𝑖,𝑡 . Given the shifted logits matrix 𝑅, we update the
state variable 𝜈𝑖,𝑡 according to Lemma 5.26:

𝜈𝑖,𝑡 = 𝜈𝑖,𝑡−1 + log ©­«1 + 𝛼𝑡
1

|Y𝑡 | − 1

∑
𝑗∈Y𝑡\𝑦𝑖

exp(𝑅𝑖 𝑗 )ª®¬ − log(1 + 𝛼𝑡𝑒𝜈𝑖,𝑡−1 ),

where we treat the labels in Y𝑡 \ 𝑦𝑖 as independent samples from {1, . . . , 𝐾}.
To ensure numerical stability when 𝜈𝑖,𝑡−1 or 𝑅𝑖 𝑗 are large, we apply standard
logarithmic identities. Specifically, while 𝜈𝑖,𝑡−1 typically remains within a sta-
ble range, the term log(1+𝛼𝑡𝑒𝜈𝑖,𝑡−1 ) can be computed as 𝜈𝑖,𝑡−1+ log(𝑒−𝜈𝑖,𝑡−1 +𝛼𝑡 )
for large positive values of 𝜈𝑖,𝑡−1. Furthermore, we stabilize the second term using
the Log-Sum-Exp trick by shifting the exponents by 𝑅𝑖,max = max 𝑗∈Y𝑡\𝑦𝑖 𝑅𝑖 𝑗 :

log ©­«1 + 𝛼𝑡
|Y𝑡 | − 1

∑
𝑗∈Y𝑡\𝑦𝑖

exp(𝑅𝑖 𝑗 )ª®¬
= log ©­«exp(−𝑅𝑖,max) +

𝛼𝑡
|Y𝑡 | − 1

∑
𝑗∈Y𝑡\𝑦𝑖

exp(𝑅𝑖 𝑗 − 𝑅𝑖,max)ª®¬ + 𝑅𝑖,max.

• Updating 𝑊𝑡 [C𝑡 ]. Finally, the gradient of 𝑊𝑡 [C𝑡 ] is computed by performing
backpropagation on the mini-batch loss 𝐿𝑡 (𝑊𝑡 [C𝑡 ]). Because the loss function is
defined only over the sampled classes, the gradient updates are sparse and operate
exclusively on the sampled subset𝑊𝑡 [C𝑡 ]. This approach eliminates the need to
load the entire weight matrix𝑊 into the main memory, significantly reducing the
memory overhead in hardware-constrained environments.

 Empirical Comparison with baselines

An empirical study demonstrating the effectiveness of SCENT for XMC is presented
in Figure 6.7, which compares Algorithm 26 with ASGD, BSGD, and the SOX
method. The key differences between these methods and Algorithm 26 are as fol-
lows: (i) SOX is closely related to SCENT, but uses a step size 𝛼𝑖,𝑡 = 𝛾𝑒−𝜈𝑖,𝑡−1 when
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updating 𝜈𝑖,𝑡 ; (ii) ASGD employs a standard stochastic coordinate update for the
dual variables 𝝂; and (iii) BSGD simply computes the gradient of𝑊𝑡 [C𝑡 ] using the
following mini-batch loss:

1
𝐵

∑
𝑖∈B𝑡

− log
exp(w>

𝑦𝑖 ℎ(x𝑖))∑
𝑗∈Y𝑡\𝑦𝑖 exp(w>

𝑗 ℎ(x𝑖))
.
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Fig. 6.7: Left: training curve on Glint360K dataset. Right: accuracy curve on the
validation data. The Glint360K dataset (An et al., 2021) is a face recognition dataset
consisting of 17 million images of 360 thousand individuals (i.e., 360K classes).
To obtain the features for linear classification, we leverage a pretrained ResNet-50
model. For all the methods, we use a batch size of 1024 and update the model weights
for 50 epochs using the SGD optimizer (no momentum). We tune the learning rate
of𝑊 for all methods and decrease it in a cosine manner during training. For ASGD,
SOX and SCENT, the learning rate of the 𝝂 update is also tuned. For more details,
please refer to (Wei et al., 2026).

6.4 Stochastic AUC and NDCGMaximization

In many domains such as radiology and drug discovery, areas under the curves are
commonly used to assess the performance of a predictive model. In domains that in-
volve ranking or recommendation, normalized discounted cumulative gain (NDCG)
is commonly used as a performance metric. We present applications of SCO and
FCCO algorithms for optimizing these metrics directly.
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

6.4.1 Stochastic AUC Maximization

In this section, we focus on optimizing the area under ROC curve (AUC) for binary
classification as depicted in Figure 2.3.

Method 1: Pairwise Loss Minimization

The training data consists of {x𝑖 , 𝑦𝑖}𝑛𝑖=1, where x ∈ R𝑑 is the input and 𝑦 ∈ {1,−1}
is the binary label. The traditional surrogate objective for AUC maximization is the
pairwise loss given in (2.31). To optimize the pairwise surrogate objective, we just
need to sample positive and negative data and then define a mini-batch pairwise loss:

1
|B+ |

∑
x𝑖∈B+

1
|B− |

∑
x 𝑗 ∈B−

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)).

Calling backpropagation on this mini-batch pairwise loss gives an unbiased stochas-
tic gradient estimator. Then any appropriate optimizer can be leveraged to update the
model. This is same as the conventional algorithm except for that the data sampler
needs to sample both positive and negative data (see Section 6.4.5).

A limitation of this approach is that it increases the communication costs of dis-
tributed training when data are distributed across different machines as it requires to
form positive-negative pairs across different machines.

Method 2: Minimax Optimization

The second approach is to solve the formulation as in (2.32). To illustrate the algo-
rithm, we give its formulation below:

min
w∈R𝑑 , (𝑎,𝑏) ∈R2

1
|S+ |

∑
x𝑖∈S+

(ℎ(w; x𝑖) − 𝑎)2 + 1
|S− |

∑
x 𝑗 ∈S−

(ℎ(w; x 𝑗 ) − 𝑏)2

+ 𝑓
©­« 1
|S− |

∑
x 𝑗 ∈S−

ℎ(w; x 𝑗 ) −
1

|S+ |
∑

x𝑖∈S+

ℎ(w; x𝑖)ª®¬ ,
(6.20)

where ℎ(w; ·) ∈ R is the prediction output of the model for any input, S+ is the set of
positive data and S− is the set of negative data and 𝑓 is a non-decreasing surrogate
function.

Let us illustrate the algorithm for a squared-hinge surrogate function 𝑓 (𝑠) =
max(𝑚 + 𝑠, 0)2, where 𝑚 > 0 is a margin parameter. Since 𝑓 is non-linear, the
last term of the above objective function is a compositional function of the form
𝑓 (𝑔), where 𝑔(w) = 1

|S− |
∑

x 𝑗 ∈S− ℎ(w; x 𝑗 ) − 1
|S+ |

∑
x𝑖∈S+ ℎ(w; x𝑖). We consider the

minimax reformulation similar to (5.27). In particular, using the conjugate of 𝑓 (·)
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Fig. 6.8: Comparison between
PDMA/PDAdam and SGDA
for solving (6.21) of AUC
maximization. The dataset is
BBBP whose task is to predict
whether a drug can penetrate
the blood-brain barrier to ar-
rive the targeted central ner-
vous system or not. For more
details, please refer to (Guo
et al., 2021b).

(see Example 1.12), we convert the above minimization problem into a minimax
optimization problem:

min
w,𝑎,𝑏

max
𝛼≥0

𝐹 (w, 𝑎, 𝑏;𝛼) :=
1

|S+ |
∑

x𝑖∈S+

(ℎ(w; x𝑖) − 𝑎)2 + 1
|S− |

∑
x 𝑗 ∈S−

(ℎ(w; x 𝑗 ) − 𝑏)2

+ 𝛼 ©­«𝑚 + 1
|S− |

∑
x 𝑗 ∈S−

ℎ(w; x 𝑗 ) −
1

|S+ |
∑

x𝑖∈S+

ℎ(w; x𝑖)ª®¬ − 𝛼2

4
,

(6.21)
Compared to pairwise loss minimization, the advantage of the above minimax for-
mulation is that its objective is decomposable over individual data points, making it
well-suited for distributed training.

We present a practical framework in Algorithm 27 built from SMDA for solving
the above problem, where the primal-dual Momentum method (PDMA) employs
the momentum update for the primal variable w̄ or a primal-dual Adam method
(PDAdam) employs the Adam update for the primal variable. The effectiveness of
PDMA/PDAdam over SGDA for solving (6.21) on a real-world dataset is shown in
Figure 6.8.

Squared-hinge surrogate vs Square surrogate function
The minimax optimization framework (6.20) and PDMA/PDAdam algorithms with
a small modification on the dual variable update can handle any smooth surrogate
function 𝑓 . When 𝑓 (𝑠) = (𝑚 + 𝑠)2 is a square surrogate, the minimax formulation
is equivalent to the pairwise loss minimization with a square surrogate loss (AUC
square loss). Nevertheless, the minimax AUC margin loss with the squared-hinge
surrogate is more robust than the AUC square loss. Figure 6.9 illustrates the robust-
ness of the minimax AUC margin loss.
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Algorithm 27 PDMA or PDAdam for solving (6.21)
1: Input: learning rate schedules 𝜂𝑡 , 𝜏𝑡 ; starting points w̄1 = (w1, 𝑎1, 𝑏1 ) , 𝛼1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: Update 𝛼𝑡+1 =

[
(1 − 𝜏𝑡/2)𝛼𝑡 + 𝜏𝑡

(
𝑚 + 1

𝐵2

∑
x 𝑗 ∈B−

𝑡
ℎ (w; x 𝑗 ) − 1

𝐵1

∑
x𝑖 ∈B+

𝑡
ℎ (w𝑡 ; x𝑖 )

) ]
+

5: Compute the vanilla gradient estimator

z𝑡 =
1
𝐵1

∑
𝑖∈B+

𝑡

∇w̄ (ℎw𝑡 (x𝑖 ) − 𝑎𝑡 )2 + 1
𝐵2

∑
x 𝑗 ∈B−

𝑡

∇w̄ (ℎ (w𝑡 ; x 𝑗 ) − 𝑏𝑡 )2

+ 𝛼𝑡∇w̄
©­« 1
𝐵2

∑
x 𝑗 ∈B−

𝑡

ℎ(w; x 𝑗 ) −
1
𝐵1

∑
x𝑖 ∈B+

𝑡

ℎ (w𝑡 ; x𝑖 )ª®¬
6: Update w̄𝑡+1 by Momentum or AdamW
7: end for

Fig. 6.9: An illustrative example for optimizing different AUC losses on a toy data for
learning a two-layer neural network with ELU activation. The top row is optimizing
the AUC square loss and the bottom row is optimizing the new AUC margin loss as
in (6.21). The first column depicts the initial decision boundary (dashed line) pre-
trained on a set of examples. In the middle column, we add some easy examples to
the training set and retrain the model by optimizing the AUC loss. In the last column,
we add some noisily labeled data (blue circled data) to the training set and retrain the
model by optimizing the AUC loss. The results demonstrate the AUC margin loss is
more robust than the AUC square loss.
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Fig. 6.10: t-SNE visualization of feature representations of an imbalanced training
set for the Cat vs Dog visualized by t-SNE learned by different methods (from left to
right): optimizing CE loss, anAUC loss, and a compositional training (CT) objective.
For more details, please refer to (Yuan et al., 2022a).

 Feature Learning
Feature learning is an important capability of deep learning. However, like the DRO
objective, the end-to-end training based on the AUC surrogate objective does not
favor feature learning as compared with traditional ERM. The reason is that AUC
surrogate objective gives unequal weights to different data points due to the imbal-
ance of training data. To address this challenge, one way is to employ a two-stage
approach, where the first stage pretrains the encoder network on the training data
by traditional supervised learning (e.g., ERM with the CE loss) or self-supervised
representation learning and the second stage fine-tunes the feature extration layers
and a random initialized classifier layer by optimizing an AUC surrogate objective.

An approach for performing effective feature learning and AUC maximization in
a unified framework is to optimize a compositional objective (Yuan et al., 2022a):

min
w,𝑎,𝑏

max
𝛼≥0

𝐹 (w − 𝜏∇𝐿CE (w), 𝑎, 𝑏;𝛼),

where 𝐿CE (w) is the empirical risk based on the CE loss and 𝜏 > 0 is a hyper-
parameter.

To understand this compositional objective intuitively, let us take a thought exper-
iment by using a gradient descent method to optimize the compositional objective. To
this end, we denote the objective by 𝐿AUC(w− 𝜏∇𝐿CE (w)), where 𝐿AUC denotes the
AUC surrogate objective. First, we evaluate the inner function by u = w−𝛼∇𝐿CE (w).
We can see that u is computed by a gradient descent step for minimizing the empir-
ical risk 𝐿CE (w), which facilitates the learning of lower layers for feature extraction
due to equal weights of all examples. Then, we take a gradient descent step to update
w for minimizing the outer function 𝐿AUC (·) by using the gradient∇𝐿AUC (u) instead
of ∇𝐿AUC (w). Because u is better than w in terms of feature extraction layers, taking
a gradient descent step using ∇𝐿AUC (u) would be better than using ∇𝐿AUC (w). In
addition, taking a gradient descent step for the outer function 𝐿AUC (·) will make the
classifier more robust to the minority class due to use of the AUC surrogate loss.
Overall, we have two alternating conceptual steps, i.e., the inner gradient descent
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step u = w − 𝜏∇𝐿CE (w) acts as a feature purification step, and the outer gradient
descent step w−𝜂(𝐼−𝜏∇2𝐿CE (w))∇𝐿AUC(u) acts as a classifier robustification step,
where 𝜂 is a step size.

For practical implementation, the intermediate model w − 𝜏∇𝐿CE (w) can be
tracked by the MA estimator u𝑡 = (1 − 𝛾)u𝑡−1 + 𝛾(w𝑡 − 𝜏∇𝐿̂CE (w𝑡 )), where 𝐿̂CE is
a mini-batch CE loss. Then, u𝑡 is used to update the primal variables (w; 𝑎; 𝑏) and
the dual variable 𝛼.

Finally, we remark that the data sampler is different from traditional one because
it needs to sample both positive and negative examples. It also has great impact on
the performance. We defer the discussion to section 6.4.5.

6.4.2 Stochastic AP Maximization

Using a surrogate loss, AP maximization can be formulated as an FCCO prob-
lem (2.36), i.e.,

min
w

1
𝑛

∑
x𝑖∈S+

𝑓 (g(w; x𝑖 ,S)), (6.22)

where S+ denotes the set of 𝑛 positive examples, S is the set of all examples, and

𝑓 (g) = − [g]1

[g]2
,

g(w; x𝑖 ,S) = [𝑔1 (w; x𝑖 ,S), 𝑔2 (w; x𝑖 ,S)],

𝑔1 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

𝑔2 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

where ℓ(·) is a non-decreasing surrogate pairwise loss (see examples in Table 2.3).
We present an application of SOX to solving the above problem in Algorithm 28,

which is referred to as SOAP.

 Initialization of u

Unlike traditional algorithms, Algorithm 28 for AP maximization requires initial-
izing an additional set of auxiliary variables u1, . . . , u𝑛. In contrast to the model
parameter w, which is randomly initialized, these auxiliary variables can be initial-
ized upon their first update. Specifically, when index 𝑖 is first sampled, we set u𝑖,𝑡−1
to the corresponding mini-batch estimator of the inner function value. As a result,
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Algorithm 28 The SOAP algorithm for AP maximization (6.22)
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: for x𝑖 ∈ B+
𝑡 do

5: Update the inner function value estimators

𝑢(1)𝑖,𝑡 = (1 − 𝛾𝑡 )𝑢(1)𝑖,𝑡−1 + 𝛾𝑡
1

𝐵1 + 𝐵2

∑
x 𝑗 ∈|B+

𝑡 ∪B−
𝑡 |
I(𝑦 𝑗 = 1)ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) ) ,

𝑢(2)𝑖,𝑡 = (1 − 𝛾𝑡 )𝑢(2)𝑖,𝑡−1 + 𝛾𝑡
1

𝐵1 + 𝐵2

∑
x 𝑗 ∈|B+

𝑡 ∪B−
𝑡 |
ℓ (ℎ(w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) ) ,

6: end for
7: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B+

𝑡

8: Compute the vanilla gradient estimator

z𝑡 =
1
𝐵1

∑
x𝑖 ∈B+

𝑡

1
𝐵1 + 𝐵2

∑
x 𝑗 ∈|B+

𝑡 ∪B−
𝑡 |

𝑢(1)𝑖,𝑡 − 𝑢(2)𝑖,𝑡 I(𝑦 𝑗 = 1)

(𝑢(2)𝑖,𝑡 )2
∇ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) )

9: Update w𝑡+1 by Momentum or AdamW
10: end for

the initial update of u𝑖,𝑡 coincides with the mini-batch estimate of the inner function
at that point. This technique will be used in other FCCO applications.

 Feature Learning

Similar to AUC maximization, the end-to-end training based on the AP surrogate
objective does not favor feature learning. To mitigate this issue, one can first pretrain
the encoder network on the training data by traditional supervised learning (e.g. ERM
with the CE loss) or self-supervised representation learning and then fine-tune the
feature extraction layers and a random initialized classifier layer by optimizing an AP
surrogate objective. The compositional training could be also employed for unified
feature learning and AP maximization.

 Moving-average parameter 𝛾𝑡

In practice, we can set 𝛾𝑡 = 𝛾 and tune 𝛾 in the range (0, 1) to optimize the validation
performance.
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Fig. 6.11: Comparison of different methods for AP maximization. TFCO refers to
the constrained optimization algorithm implemented in the Google TensorFlowCon-
strained Optimization library. The experiment was conducted on a constructed im-
balanced binary classification task of CIFAR10, which originally contains 10 classes.
These classes are partitioned into two equal groups to form the positive and negative
classes based on their class IDs. The test data is unchanged (i.e., the testing data is
still balanced). For more details, please refer to (Yuan et al., 2023b).

6.4.3 Stochastic Partial AUC Maximization

Stochastic OPAUC Maximization

We focus on maximizing the OPAUC with the false positive rate (FPR) restricted to
the range [0, 𝛽]. As shown in Section 2.3.3, OPAUCmaximization can be formulated
as minimizing a surrogate objective:

min
w

1
𝑛+

1
𝑘

∑
x𝑖∈S+

∑
x 𝑗 ∈S↓

− [1,𝑘 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), (6.23)

where 𝑘 = b𝑛−𝛽c,S↓ [1, 𝑘] ⊆ S denotes the subset of examples whose rank in terms
of their prediction scores in the descending order are in the range of [1, 𝑘], and ℓ(·)
denotes a continuous surrogate pairwise loss such as in Table 2.3.

The challenge lies at how to tackle the top-𝑘 selection x 𝑗 ∈ S↓
− [1, 𝑘]. Below, we

present two approaches: a direct approach that leverages the dual form of CVaR and
an indirect approach that replaces the top-𝑘 selection by soft weighting.

A Direct Approach

This approach will be restricted to a non-decreasing pairwise loss function ℓ(𝑠).
Under this assumption, the ranking over negative samples by their prediction scores
ℎ(w; x 𝑗 ) is equivalent to that by the pairwise loss ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), x 𝑗 ∈ S𝑖 .
Hence, the average of pairwise losses over top-𝑘 negatives
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Algorithm 29 SOPA for solving (6.26) of direct OPAUC maximization
1: Initialize w and 𝝂1 = 0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: Compute 𝑝𝑖 𝑗 = I(ℓ (ℎ(w𝑡 , x 𝑗 ) − ℎ (w𝑡 , x𝑖 ) ) − 𝜈𝑖,𝑡 > 0) for x𝑖 ∈ B+
𝑡 , x 𝑗 ∈ B−

𝑡

5: for 𝑖 ∈ B+
𝑡 do

6: Update 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 − 𝜂2 ( 𝑘𝑛− − 1
𝐵2

∑
x 𝑗 ∈B−

𝑡
𝑝𝑖 𝑗 )

7: end for
8: Set 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 , 𝑖 ∉ B+

𝑡

9: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗∇wℓ (ℎ(w𝑡 , x 𝑗 ) − ℎ (w𝑡 , x𝑖 ) )

10: Update w𝑡+1 by SGD or Momentum or AdamW
11: end for

𝐿𝑖 (w) = 1
𝑘

∑
x 𝑗 ∈S↓

− [1,𝑘 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)) (6.24)

is equivalent to the average of top-𝑘 pairwise losses over negative data, i.e., an em-
pirical CVaR estimator. Then leveraging the dual form of CVaR (2.15), we transform
the above loss into a minimization problem, i.e.,

𝐿𝑖 (w) = min
𝜈𝑖

1
𝑘

∑
x 𝑗 ∈S−

[ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)) − 𝜈𝑖]+ + 𝜈𝑖 . (6.25)

As a result, we have the following equivalent reformulation.

Lemma 6.1 (Reformulation ofOPAUCmaximization.)When ℓ(·) is non-decreasing,
then the problem (6.23) for OPAUC maximization is equivalent to

min
w,𝝂∈R𝑛+

𝐹 (w, 𝝂) = 1
𝑛+

∑
x𝑖∈S+


𝑘

𝑛−
𝜈𝑖 +

1
𝑛−

∑
x 𝑗 ∈S−

(ℓ(ℎ(w, x 𝑗 ) − ℎ(w, x𝑖)) − 𝜈𝑖)+
 ,
(6.26)

The above problem is a special case of compositional OCE studied in Section 5.5.
A benefit for solving (6.26) is that an unbiased stochastic subgradient can be com-

puted in terms of (w, 𝝂). We present a method in Algorithm 29, which is an appli-
cation of the ASGD and is referred to as SOPA. A key feature of SOPA is that the
stochastic gradient estimator for w (Step 9) is a weighted average gradient of the pair-
wise losses for all pairs in the mini-batch. The weights 𝑝𝑖 𝑗 (either 0 or 1) are dynami-
cally computed by Step 4, which compares the pairwise loss (ℓ(ℎ(w𝑡 , x𝑖)−ℎ(w𝑡 , x 𝑗 ))
with the threshold variable 𝜈𝑖,𝑡 , which is also updated by an SGD step.
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Algorithm 30 SOPA-s for solving (6.28) of indirect OPAUC maximization

1: Initialize w, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: for 𝑖 ∈ B+
𝑡 do

5: Update 𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾 1
𝐵2

∑
x 𝑗 ∈B−

𝑡
exp

(
ℓ (ℎ(w𝑡 ;x 𝑗 )−ℎ (w𝑡 ;x𝑖 ) )

𝜏

)
6: end for
7: Set 𝑢𝑖,𝑡 = 𝑢𝑖,𝑡−1, 𝑖 ∉ B+

𝑡

8: Compute 𝑝𝑖 𝑗 = exp(ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) )/𝜏 )/𝑢𝑖,𝑡 for x𝑖 ∈ B+
𝑡 , x 𝑗 ∈ B−

𝑡

9: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗∇ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ(w𝑡 ; x𝑖 ) )

10: Update w𝑡+1 by Momentum or AdamW method.
11: end for

The convergence guarantee of SOPA using the SGD update for w𝑡 has been es-
tablished in Section 5.5. In practice, the convergence speed of SOPA may be further
accelerated by integrating Momentum or Adam updates for the model parameter w.

An indirect approach by FCCO

Due to the connection between CVaR and DRO (2.13), an alternative approach is to
replace the top-𝑘 pairwise loss 𝐿𝑖 (w) by a KL-regularized DRO, i.e.,

𝐿̂𝑖 (w) = max
p∈Δ𝑛

∑
x 𝑗 ∈S− 𝑝 𝑗ℓ (ℎ (w;x 𝑗 )−ℎ (w;x𝑖 ) )−𝜏KL(p,1/𝑛− )

= 𝜏 log ©­« 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝜏

)ª®¬ .
(6.27)

As a result, an indirect approach for OPAUC maximization is to solve the following
FCCO problem:

min
w

1
𝑛+

𝑛+∑
𝑖=1

𝜏 log ©­« 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝜏

)ª®¬ . (6.28)

An application of the SOX algorithm is given in Algorithm 30, which is referred
to as SOPA-s. The key difference between SOPA-s and SOPA lies at the pairwise
weights 𝑝𝑖 𝑗 in SOPA-s (Step 8) are soft weights between 0 and 1, in contrast to the
hard weights 𝑝𝑖 𝑗 ∈ {0, 1} in SOPA.
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Fig. 6.12: Comparison of different methods for OPAUCmaximization with FPR less
than 𝛽 = 0.3 (left) and 𝛽 = 0.5 (right). The dataset is Melanoma classification from
Kaggle competition. The training set has only 1.76% positive (malignant) samples.
MB refers to the BSGD approach that computes gradients using only the top 𝛽% of
negative examples within each mini-batch; AW-Poly is a heuristic weighted method
that assigns weights to negative samples in the mini-batch using a manually designed
weighting function. For more details, please refer to (Zhu et al., 2022b).

Stochastic TPAUC Maximization

As shown in Section 2.3.3, empirical maximization of TPAUCwith FPR ≤ 𝛽,TPR ≥
𝛼 can be formulated as:

min
w

1
𝑘1

1
𝑘2

∑
x𝑖∈S↑

+ [1,𝑘1 ]

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), (6.29)

where 𝑘1 = b𝑛+ (1 − 𝛼)c, 𝑘2 = b𝑛−𝛽c. If we define

𝐿𝑖 (w) = 1
𝑘2

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), (6.30)

then, the problem in (6.29) can be written as:

min
w

1
𝑘1

∑
x𝑖∈S↑

+ [1,𝑘1 ]

𝐿𝑖 (w). (6.31)

Similar to OPAUC maximization, we will present a direct approach and an indi-
rect approach.

A Direct Approach

The first approach is based on the following reformulation of TPAUCmaximization.
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Algorithm 31 STACO for solving (6.32) of direct TPAUC maximization
1: Initialize w and 𝜈1 = 0, 𝜈′ = 0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: Compute 𝑝𝑖 𝑗 = I(ℓ (ℎ(w𝑡 , x𝑖 ) − ℎ (w𝑡 , x 𝑗 ) ) − 𝜈𝑖,𝑡 > 0) for x𝑖 ∈ B+
𝑡 , x 𝑗 ∈ B−

𝑡

5: for 𝑖 ∈ B+
𝑡 do

6: Update 𝑦𝑖,𝑡+1 and 𝜈𝑖,𝑡+1 by

𝑦𝑖,𝑡+1 =𝑦𝑖,𝑡 − 𝜂2


1
𝐵2

∑
x 𝑗 ∈B−

𝑡

(ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) ) − 𝜈𝑖,𝑡 )+ +
𝑘2

𝑛−
(𝜈𝑖,𝑡 − 𝜈′𝑡 )


 [0,1]

𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 − 𝜂1𝑦𝑖,𝑡+1
©­« 𝑘2

𝑛−
− 1
𝐵2

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗
ª®¬

7: end for
8: Set 𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 , 𝑖 ∉ B+

𝑡 and 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 , 𝑡 ∉ B+
𝑡

9: Update 𝜈′𝑡+1 = 𝜈′𝑡 − 𝜂1 ( 𝑘1𝑘2
𝑛+𝑛−

− 𝑘2
𝑛−

1
𝐵1

∑
x𝑖 ∈B+

𝑡
𝑦𝑖,𝑡+1 )

10: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑦𝑖,𝑡+1𝑝𝑖 𝑗∇wℓ (ℎ (w𝑡 , x 𝑗 ) − ℎ (w𝑡 , x𝑖 ) )

11: Update w𝑡+1 by SGD, Momentum or AdamW
12: end for

Lemma 6.2 (Reformulation of TPAUCmaximization.)When ℓ(·) is non-decreasing,
the problem (6.29) for TPAUC maximization is equivalent to

min
w,𝝂,𝜈′

1
𝑛+

∑
x𝑖∈S+

𝑓 (𝑔𝑖 (w, 𝝂, 𝜈′)) +
𝑘1𝑘2

𝑛+𝑛−
𝜈′, (6.32)

where 𝝂 = (𝜈1, . . . , 𝜈𝑛+ )>, 𝑓 (·) = [·]+ and

𝑔𝑖 (w, 𝝂, 𝜈′) =
1
𝑛−

∑
x 𝑗 ∈S−

(ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)) − 𝜈𝑖)+ +
𝑘2

𝑛−
(𝜈𝑖 − 𝜈′).

We leave the proof as an excise for the reader.
It is clear that the problem (6.32) is an instance of FCCO, where the outer func-

tion is non-smooth and monotonically non-decreasing. Hence, SONX, SONEX, and
ALEXR can be applied. We present an application of ALEXR for solving the above
problem in Algorithm 31 (referred to as STACO) based on its min-max reformula-
tion:
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Algorithm 32 SOTA-s for solving (6.33) of Indirect TPAUC Maximization

1: Initialize w1, u1, 𝑣1,
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: for 𝑖 ∈ B+
𝑡 do

5: Update 𝑢𝑖,𝑡 = (1 − 𝛾0 )𝑢𝑖,𝑡−1 + 𝛾0
1
𝐵2

∑
x 𝑗 ∈B𝑡− exp

(
ℓ (ℎ (w𝑡 ;x 𝑗 )−ℎ (w𝑡 ;x𝑖 ) )

𝜏2

)
6: end for
7: Set 𝑢𝑖,𝑡 = 𝑢𝑖,𝑡−1, 𝑖 ∉ B+

𝑡

8: Let 𝑣𝑡 = (1 − 𝛾1 )𝑣𝑡−1 + 𝛾1
1
𝐵1

∑
x𝑖 ∈B+

𝑡
(𝑢𝑖,𝑡 ) 𝜏2/𝜏1

9: Compute

𝑝𝑖 𝑗 =
exp(ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) )/𝜏2 ) (𝑢𝑖,𝑡 ) 𝜏2/𝜏1−1

𝑣𝑡
, ∀x𝑖 ∈ B+

𝑡 , x 𝑗 ∈ B−
𝑡

10: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗∇ℓ (ℎ (w𝑡 ; x 𝑗 ) − ℎ (w𝑡 ; x𝑖 ) )

11: Update w𝑡+1 by Momentum or AdamW
12: end for

min
w,𝝂,𝜈′

max
y∈[0,1]𝑛+

1
𝑛+

∑
x𝑖∈S+

𝑦𝑖

[
1
𝑛−

∑
x 𝑗 ∈S−

(ℓ(w; x𝑖 , x 𝑗 ) − 𝜈𝑖)+ +
𝑘2

𝑛−
(𝜈𝑖 − 𝜈′)

]
+ 𝑘1𝑘2

𝑛+𝑛−
𝜈′.

An Indirect Approach

Following the strategy used in OPAUCmaximization, we adopt an indirect approach
by replacing top-𝑘 estimators with their KL-regularized DRO counterparts, which
yield smooth surrogate objectives.

With a non-decreasing pairwise surrogate loss ℓ(·), 𝐿𝑖 (w) is a non-increasing
function of ℎ(w; x𝑖), the average of 𝐿𝑖 (w) over bottom-𝑘1 positive examples in (6.31)
is equivalent to the average of top-𝑘1 losses 𝐿𝑖 (w) over all positive data. Hence, we
approximate the resulting top-𝑘1 estimator by a KL-regularized objective:

𝜏1 log

(
1
𝑛+

∑
x𝑖∈S+

exp
(
𝐿𝑖 (w)
𝜏1

))
.

Then, we substitute 𝐿𝑖 (w) with 𝐿̂𝑖 (w) as defined in (6.27), leading to the following
smoothed objective:
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𝐹 (w) = 𝜏1 log

(
1
𝑛+

∑
x𝑖∈S+

exp
(
𝐿̂𝑖 (w)
𝜏1

))

= 𝜏1 log
©­­«

1
𝑛+

∑
x𝑖∈S+

exp
©­­«
𝜏2 log

(
1
𝑛−

∑
x 𝑗 ∈S− exp

(
ℓ (ℎ (w;x 𝑗 )−ℎ (w;x𝑖 ) )

𝜏2

))
𝜏1

ª®®¬
ª®®¬

= 𝜏1 log
©­­«

1
𝑛+

∑
x𝑖∈S+

©­« 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝜏2

)ª®¬
𝜏2
𝜏1 ª®®¬ .

To minimize this objective, we formulate the problem as a three-level composi-
tional stochastic optimization:

min
w

𝑓1

(
1
𝑛+

∑
x𝑖∈S+

𝑓2 (𝑔𝑖 (w))
)
, (6.33)

where 𝑓1 (𝑠) = 𝜏1 log(𝑠), 𝑓2 (𝑔) = 𝑔𝜏2/𝜏1 , and

𝑔𝑖 (w) = 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝜏2

)
.

The inner function of 𝑓1 exhibits a finite-sum coupled compositional optimiza-
tion (FCCO) structure. To accurately estimate ∇ 𝑓1 (·) at the inner function value, we
maintain a moving average estimator 𝑣𝑡 to track 1

𝑛+

∑
x𝑖∈S+ 𝑓2 (𝑔𝑖 (w𝑡 )).

We present a stochastic optimization algorithm—referred to as SOTA-s—for solv-
ing this problem in Algorithm 32. We update 𝑢𝑖,𝑡 to track 𝑔𝑖 (w𝑡 ) in Step 5 and main-
tain 𝑣𝑡 to estimate 1

𝑛+

∑
x𝑖∈S+ 𝑓2 (𝑔𝑖 (w𝑡 )) in Step 8. The gradient estimator in Step 9

is given by:
∇ 𝑓1 (𝑣𝑡 ) ·

1
|B+ |

∑
x𝑖∈B+

𝑡

∇ 𝑓2 (𝑢𝑖,𝑡 ) · ∇𝑔̂𝑖 (w𝑡 ),

where 𝑔̂𝑖 (w𝑡 ) = 1
𝐵2

∑
x 𝑗∼B−

𝑡
exp

(
ℓ (ℎ (w𝑡 ;x 𝑗 )−ℎ (w𝑡 ;x𝑖 ) )

𝜏2

)
.

6.4.4 Stochastic NDCGMaximization

In Section 2.3.4, we have formulatedNDCGmaximization as the following empirical
X-risk minimization problem:

min
w

1
𝑁

𝑁∑
𝑞=1

1
𝑍𝑞

∑
x𝑞,𝑖∈S+

𝑞

1 − 2𝑦𝑞,𝑖
log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1) , (6.34)
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Algorithm 33 SONG
1: Initialize w1, u0
2: for 𝑡 = 1, ...𝑇 do
3: Draw some relevant Q-I pairs B𝑡 = { (𝑞, x𝑞,𝑖 ) } ⊂ S
4: For each sampled 𝑞 draw a batch of items B𝑡𝑞 ⊂ S𝑞
5: for each sampled Q-I pair (𝑞, x𝑞,𝑖 ) ∈ B𝑡 do
6: Compute 𝑢𝑞,𝑖,𝑡 = (1 − 𝛾)𝑢𝑞,𝑖,𝑡−1 + 𝛾 1

|B𝑡𝑞 |
∑

x′∈B𝑡𝑞 ℓ (𝑠 (w𝑡 ; x′, 𝑞) − 𝑠 (w𝑡 ; x𝑞,𝑖 , 𝑞) )
7: Compute

𝑝𝑞,𝑖 = ∇ 𝑓𝑞,𝑖 (𝑢𝑞,𝑖,𝑡 ) =
(2𝑦𝑞,𝑖 − 1)𝑁𝑞

𝑍𝑞 (𝑁𝑞𝑢𝑞,𝑖,𝑡 + 1) log2
2 (𝑁𝑞𝑢𝑞,𝑖,𝑡 + 1) ln(2)

8: end for
9: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

| B𝑡 |
∑

(𝑞,x𝑞,𝑖 ) ∈B𝑡
𝑝𝑞,𝑖

1
| B𝑡𝑞 |

∑
x′∈B𝑡𝑞

ℓ (𝑠 (w; x′, 𝑞) − 𝑠 (w; x, 𝑞) )

10: update w𝑡+1 by Momentum and AdamW optimizer
11: end for

where 𝑁𝑞𝑔(w; x,S𝑞) =
∑

x′∈S𝑞 ℓ(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞)) is a surrogate of the rank
function 𝑟 (w; x, 𝑆𝑞) =

∑
x′∈S𝑞 I(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞) ≥ 0), and 𝑠(w; x, 𝑞) denotes

the predicted relevance score for item x with respect to query 𝑞, parameterized by
w ∈ R𝑑 (e.g., a deep neural network).

As a result, NDCG maximization can be rewritten as an instance of FCCO:

min
w∈R𝑑

1
|S|

∑
(𝑞,x𝑞,𝑖 ) ∈S

𝑓𝑞,𝑖 (𝑔(w; x𝑞,𝑖 ,S𝑞)), (6.35)

where S = {(𝑞, x𝑞,𝑖) | 𝑞 ∈ Q, x𝑞,𝑖 ∈ S+
𝑞 } represent the collection of all relevant

query-item (Q-I) pairs, and

𝑓𝑞,𝑖 (𝑔) =
1
𝑍𝑞

1 − 2𝑦𝑞,𝑖
log2 (𝑁𝑞𝑔 + 1) .

We apply the SOX method to this problem as shown in Algorithm 33, which we
call SONG.

Top-𝐾 NDCGMaximization

In practice, top-𝐾 NDCG is the preferred metric for information retrieval and recom-
mender systems, as users primarily focus on the highest-ranked items. It is defined
as:
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1
𝑁

𝑁∑
𝑞=1

1
𝑍 (𝐾 )
𝑞

∑
x𝑞,𝑖∈S+

𝑞

I(x𝑞,𝑖 ∈ S (𝐾 )
𝑞 ) · 2𝑦𝑞,𝑖 − 1

log2 (𝑟 (w; x𝑞,𝑖 ,S𝑞) + 1) ,

where S (𝐾 )
𝑞 is the set of top-𝐾 items based on predicted scores, and 𝑍 (𝐾 )

𝑞 is the ideal
DCG in the top-𝐾 positions.

Optimizing top-𝐾 NDCG introduces an added complexity: selecting the top-𝐾
items is non-differentiable. Unlike pAUC, where a top-𝐾 estimator exists, the surro-
gate function

2𝑦𝑞,𝑖 − 1
log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1)

is not generally monotonic in the score 𝑠(w; x𝑞,𝑖 , 𝑞) unless all 𝑦𝑞,𝑖 values are iden-
tical. We consider two approaches to handle this problem.

Approach 1: Surrogate for Top-𝐾 Inclusion

We use the identity I(x𝑞,𝑖 ∈ S (𝐾 )
𝑞 ) = I(𝐾 − 𝑟 (w; x𝑞,𝑖 ,S𝑞) ≥ 0) and approximate it

by a non-decreasing surrogate 𝜓(𝐾 − 𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞)), e.g., the sigmoid function.
The resulting objective becomes:

min
w∈R𝑑

1
|S|

𝑁∑
𝑞=1

∑
x𝑞,𝑖∈S+

𝑞

𝜓(𝐾 − 𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞)) ·
1 − 2𝑦𝑞,𝑖

𝑍 (𝐾 )
𝑞 log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1)

.

(6.36)

This can be optimized using FCCO techniques.

Approach 2: Threshold Estimation via Bilevel Optimization

Denote by 𝜆𝑞 (w) the the (𝐾 + 1)-th largest score among all x′ ∈ S𝑞 . We use
the identity I(x𝑞,𝑖 ∈ S (𝐾 )

𝑞 ) = I(𝑠(w; x𝑞,𝑖 , 𝑞) > 𝜆𝑞 (w)) and approximate it by
𝜓(𝑠(w; x𝑞,𝑖 , 𝑞)−𝜆𝑞 (w)). The threshold 𝜆𝑞 (w) can be computed by solving a convex
optimization problem as shown in the lemma below.

Lemma 6.3 Let 𝜆𝑞 (w) = arg min𝜆 (𝐾 + 𝜀)𝜆 + ∑
x′∈S𝑞 (𝑠(w; x′, 𝑞) − 𝜆)+ for any

𝜀 ∈ (0, 1), then 𝜆𝑞 (w) is the (𝐾 + 1)-th largest value among {𝑠(w; x′, 𝑞) |x′ ∈ S𝑞}.

As a result, we formulate the following bilevel optimization problem for top-𝐾
NDCG maximization:

min
w

1
|S|

𝑁∑
𝑞=1

∑
x𝑞,𝑖∈S+

𝑞

𝜓(𝑠(w; x𝑞,𝑖 , 𝑞) − 𝜆𝑞 (w)) · (1 − 2𝑦𝑞,𝑖 )
𝑍 (𝐾 )
𝑞 log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1)

s.t. 𝜆𝑞 (w) = arg min
𝜆

𝐾 + 𝜀
𝑁𝑞

𝜆 + 1
𝑁𝑞

∑
x′∈S𝑞

(𝑠(w; x′, 𝑞) − 𝜆)+, ∀𝑞.
(6.37)
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This bilevel formulation is challenging due to the non-smooth and non-strongly-
convex lower-level problem. One remedy is to apply Nesterov smoothing to the hinge
loss (see Example 5.1) and add a small quadratic regularization term of 𝜆 to the lower
level objective. This allows employing the Approach 1 of using moving-average es-
timators from Section 4.5.3.

In practice, we can ignore the gradient of 𝜓 and adapt the SONG algorithm by
updating 𝜆𝑞 iteratively and modifying 𝑝𝑞,𝑖 as:

𝜆𝑞,𝑡+1 = 𝜆𝑞,𝑡 − 𝜂′ ©­«𝐾 + 𝜀
𝑁𝑞

+ 1
|B𝑞 |

∑
x′∈B𝑡𝑞

I(𝑠(w𝑡 ; x′, 𝑞) > 𝜆)ª®¬ , ∀𝑞 ∈ B𝑡 ,

𝑝𝑞,𝑖 = 𝜓(𝑠(w𝑡 ; x𝑞,𝑖 , 𝑞) − 𝜆𝑞,𝑡+1) · ∇ 𝑓𝑞,𝑖 (𝑢𝑞,𝑖,𝑡 ).

Aswith other non-decomposablemetrics, it is beneficial to first pretrain themodel
by optimizing the listwise cross-entropy loss, which itself is an FCCO problem, as
defined in (2.47).

6.4.5 The LibAUC Library

The algorithms presented in Section 6.4 for various X-risk minimization tasks share
several common features: (1) they all require sampling both positive and negative ex-
amples; (2) their vanilla gradient updates involve a weighted sum of gradients from
pairwise losses computed on the sampled data; and (3) they utilize moving-average
estimators to track inner function values. These shared characteristics motivate the
design of a unified implementation pipeline. To this end, the LibAUC library was de-
veloped to encapsulate these principles within a modular and extensible framework,
built on top of the PyTorch ecosystem. Below, we highlight several key components
of LibAUC. For tutorials and source code, we refer interested readers to the GitHub
repository:

LibAUC GitHub Repository

https://github.com/Optimization-AI/LibAUC

Pipeline

The training pipeline of a deep neural network in the LibAUC library is illus-
trated in Figure 6.13. It consists of five core modules: Dataset, Controlled
Data Sampler, Model, Dynamic Mini-batch Loss, and Optimizer. While the
Dataset, Model, and Optimizermodules align closely with those in standard train-
ing frameworks, the key innovations lie in the Dynamic Mini-batch Loss and
Controlled Data Sampler modules.
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Dataset Controlled 
Data Sampler Model

Dynamic 
Mini-batch 

Loss
Optimizer

Fig. 6.13: Training pipeline of the LibAUAC library for deep learning.

Fig. 6.14: Illustration of DualSampler for an imbalanced dataset with 4 positives •
and 9 negatives •.

The Dynamic Mini-batch Loss module defines the loss using dynamically
updated variables, which are computed and refined with forward propagation re-
sults. This design ensures that compositional gradients can be correctly estimated
frommini-batch samples using backpropagation. The Controlled Data Sampler
module, in contrast to standard random sampling strategies, allows fine-grained con-
trol over the ratio of positive to negative samples. This control can be tuned to im-
prove learning effectiveness and overall performance.

Controlled Data Sampler

Unlike traditional ERM, EXM requires sampling to estimate the outer average and
the inner average. In algorithms for AUC, AP, OPAUC and TPAUC optimization,
we need to sample two mini-batches B𝑡+ ⊂ S+ and B𝑡− ⊂ S− at each iteration 𝑡.
When the total batch size is fixed, balancing the mini-batch size for outer average and
that for the inner average could be beneficial for accelerating convergence according
to our theoretical analysis in Chapter 5. Hence, the Controlled Data Sampler
module can help ensure that both positive and negative samples will be sampled and
the proportion of positive samples in the mini-batch can be controlled by a hyper-
parameter.

DualSampler. For binary classification problems, DualSampler takes as input
hyper-parameters such as batch_size and sampling_rate, and generates the cus-
tomizedmini-batch samples, where sampling_rate controls the number of positive
samples in the mini-batch according to the formula:

#positives = batch_size ∗ sampling_rate.
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Fig. 6.15: The training curves
of AP for different number
of positive examples per
mini-batch in DualSampler
when the total batch size is
fixed to 64. The algorithm
is SOPA - a variant of SOX.
Experiments were conducted
on a constructed imbalanced
binary classification task
derived from CIFAR-10,
identical to the setting used in
Figure 6.11.

Figure 6.14 shows an example of DualSampler for constructing mini-batch data
with even positive and negative samples on an imbalanced dataset with 4 positives
and 9 negatives. To improve the sampling speed, two lists of indices are maintained
for the positive data and negative data, respectively. At the beginning, we shuffle
the two lists and then take the first 4 positives and 4 negatives to form a mini-batch.
Once the positive list is used up, we only reshuffle the positive list and take 4 shuffled
positives to pair with next 4 negatives in the negative list as a mini-batch. Once the
negative list is used up, we re-shuffle both lists and repeat the same process as above.
An illustration of the impact of the DualSampler on the convergence is shown in
Figure 6.15.

TriSampler. For multi-label classification problems with many labels and rank-
ing problems, TriSampler first samples a set of tasks controlled by a hyperparam-
eter sampled_tasks, and then sample positive and negative data for each task.

The following code snippet shows how to define DualSampler and TriSampler.

from libauc.sampler import DualSampler , TriSampler
dualsampler = DualSampler(trainSet ,

batch_size=32,
sampling_rate=0.1)

trisampler = TriSampler(trainSet,
batch_size_per_task=32,
sampled_tasks=5,
sampling_rate_per_task=0.1)

Dynamic Mini-batch Loss

To compute the vanilla gradient estimator, we invoke backpropagation using the Py-
Torch function loss.backward() on a defined loss. The vanilla gradient estimators
for pAUC, AP, and NDCG maximization share a common structure of the form
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1
|B1 |

∑
x𝑖∈B1

1
|B2 |

∑
x 𝑗 ∈B2

𝑝𝑖 𝑗∇ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

where the weights 𝑝𝑖 𝑗 are computed from dynamic variables within the algorithm.
To enable the use of loss.backward(), it suffices to define a mini-batch loss as

1
| B1 |

∑
x𝑖∈B1

1
| B2 |

∑
x 𝑗 ∈B2 𝑝𝑖 𝑗ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), where 𝑝𝑖 𝑗 is detached from the

computation graph to avoid unnecessary backpropagation through these variables.
Since 𝑝𝑖 𝑗 is evolving across iterations, the mini-batch loss is called dynamic mini-
batch loss. A high-level pseudocode example for SOPAs is provided in Figure 6.16.

# define dynamic mini-batch loss
def pAUCLoss(**kwargs): # dynamic mini-batch loss

sur_loss = surrogate_loss(neg_logits - pos_logits)
exp_loss = torch.exp(sur_loss / Lambda)
u[index] = (1 - gamma) * u[index] + gamma * (exp_loss.mean(1)

)
p = (exp_loss / u[index]).detach()
loss = torch.mean(p * sur_loss)
return loss

# optimization
for data, targets, index in dataloader:

logits = model(data)
loss = pAUCLoss(logits, targets, index)
optimizer.zero_grad()
loss.backward()
optimizer.step()

Fig. 6.16: High-level pseudocode for SOPAs.

Comparison with Existing Libraries

We present some benchmark results of LibAUC in comparison with other state-of-
the-art training libraries.

Comparison with the TFCO Library. We compare LibAUC (SOAP) with
Google’s TensorFlow Constrained Optimization (TFCO) library for optimizing av-
erage precision (AP). Both methods are trained for 100 epochs using a batch size of
128, the Adam optimizer with a learning rate of 1e-3, and a weight decay of 1e-4 on
a binary classification task derived from CIFAR-10 with imratio ∈ {1%, 2%}. The
training and testing learning curves, shown in Figure 6.11, demonstrate that LibAUC
consistently outperforms TFCO.

Comparisonwith the TF-Ranking Library.We evaluate LibAUC, using SONG
for NDCG maximization, against Google’s TF-Ranking library, which implements
ApproxNDCG and GumbelNDCG. Experiments are conducted on two large-scale datasets
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Fig. 6.17: Left: Benchmarks of NDCG optimization on MovieLens (ML) 20M and
25M datasets, @𝐾 means NDCG at top 𝐾 . Right: Runtime Comparison between
LibAUC and TF-ranking for NDCG maximization. For more details, please refer
to (Yuan et al., 2023b).

—MovieLens20M andMovieLens25M—from theMovieLens platform. As shown in
Figure 6.17, LibAUC achieves superior performance on both datasets. Furthermore,
the runtime comparison shows that LibAUC’s NDCG maximization algorithm is
more efficient than the corresponding implementations in TF-Ranking.

6.5 Discriminative Pretraining of Representation Models

In Chapter 2, we briefly introduced the core concepts of representation learning and
highlighted its growing significance in modern AI systems. In contemporary AI,
representationmodels are learned through Self-supervised learning (SSL), which has
emerged as a powerful paradigm for learning representation models without the need
for labeled data. Among the most prominent frameworks within SSL is contrastive
learning, which forms positive pairs by applying different augmentations to the same
data sample or taking different views of the same data, while treating different data
as negatives. In this section, we delve deeper into contrastive learning, with a focus
on its applications to both unimodal and multimodal representation learning.

6.5.1 Mini-batch Contrastive Losses

A contrastive loss is used to pull the representations of positive pairs closer together,
while pushing apart those of negative pairs in the embedding space. One of the most
widely used contrastive losses is the so-called InfoNCE loss, which operates over
samples within a mini-batch. Below, we illustrate its use in two well-known con-
trastive learning methods and discuss its limitations.

338



6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Projector Projector Projector

repelattract

<latexit sha1_base64="sNg3N4KacJub3hs8rHRdDPpYh5M=">AAAB8XicbVDLSgMxFL1TX3V8VV26CRbBVZkRUZdFNy4r2Ae2Q8mkmTY0kwxJRixD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695NwTJpxp43nfTmlldW19o7zpbm3v7O5V9g9aWqaK0CaRXKpOiDXlTNCmYYbTTqIojkNO2+H4Jvfbj1RpJsW9mSQ0iPFQsIgRbKz04PZibEZhhJ76lapX82ZAy8QvSBUKNPqVr95AkjSmwhCOte76XmKCDCvDCKdTt5dqmmAyxkPatVTgmOogmyWeohOrDFAklX3CoJn6eyPDsdaTOLSTeUC96OXif143NdFVkDGRpIYKMv8oSjkyEuXnowFTlBg+sQQTxWxWREZYYWJsSa4twV88eZm0zmr+Re387rxavy7qKMMRHMMp+HAJdbiFBjSBgIBneIU3RzsvzrvzMR8tOcXOIfyB8/kDxB6QVw==</latexit>x
<latexit sha1_base64="Hm3pVc3roveCfk9W4mZjLQbSGZo=">AAAB83icbVDLSsNAFL2prxpfVZduBosgCCWRoi6LblxWsA9oYplMJ+3QySTMTMQS+htuXCji1p9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZVWVtfWN8qb9tb2zu5eZf+greJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJP7nUcqFYvFvZ4k1I/wULCQEayN5NlehPUoCNHTw1m/UnVqzgxombgFqUKBZr/y5Q1ikkZUaMKxUj3XSbSfYakZ4XRqe6miCSZjPKQ9QwWOqPKzWeYpOjHKAIWxNE9oNFN/b2Q4UmoSBWYyj6gWvVz8z+ulOrzyMyaSVFNB5ofClCMdo7wANGCSEs0nhmAimcmKyAhLTLSpyTYluItfXibt85p7Uavf1auN66KOMhzBMZyCC5fQgFtoQgsIJPAMr/BmpdaL9W59zEdLVrFzCH9gff4A5P2Q9A==</latexit>

x+
<latexit sha1_base64="dm0b3GHU4XGYR8ubloSVySekHHk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBIp6rLoxmUF+4Amlsl00g6dTMLMpFhC/8SNC0Xc+ifu/BsnbRbaemDgcM693DMnSDhT2nG+rZXVtfWNzdJWeXtnd2/fPjhsqTiVhDZJzGPZCbCinAna1Exz2kkkxVHAaTsY3eZ+e0ylYrF40JOE+hEeCBYygrWRerZd9jIvwnoYhOjp8dyb9uyKU3VmQMvELUgFCjR69pfXj0kaUaEJx0p1XSfRfoalZoTTadlLFU0wGeEB7RoqcESVn82ST9GpUfoojKV5QqOZ+nsjw5FSkygwk3lItejl4n9eN9XhtZ8xkaSaCjI/FKYc6RjlNaA+k5RoPjEEE8lMVkSGWGKiTVllU4K7+OVl0rqoupfV2n2tUr8p6ijBMZzAGbhwBXW4gwY0gcAYnuEV3qzMerHerY/56IpV7BzBH1ifP5Z2kv8=</latexit>

{x�}

Fig. 6.18: Illustration of SimCLR for Contrastive Visual Representation Learning.
(x, x+) are augmentations of the same image, {x−} is a set of other images. An image
encoder is a deep neural network and a projector is a lightweight multi-layer percep-
tron.

SimCLR

We now illustrate the contrastive loss in the context of visual representation learning
by the well-knownmethod SimCLR. The framework is illustrated in Figure 6.18. The
model typically consists of a deep encoder backbone followed by a small projector,
often implemented as a multi-layer perceptron (MLP). During downstream tasks, the
projector is discarded, and the encoder’s output is used as the final representation.
The inclusion of the projector during training improves the quality and transferability
of the learned embeddings by helping disentangle the contrastive learning objective
from the representation space.

Let (x, x+) ∼ P+ denote a positive pair, which are different augmented copies
from the same data. For a mini-batch B = {x1, . . . , x𝐵}, each anchor x𝑖 is paired
with an augmented positive sample x+𝑖 . The resulting mini-batch-based contrastive
loss (commonly referred to as the InfoNCE loss) for anchor x𝑖 is given by:

𝐿B (w; x𝑖 , x+𝑖 ) = − log
exp

(
ℎ (w;x𝑖 )>ℎ (w;x+𝑖 )

𝜏

)
exp

(
ℎ (w;x𝑖 )>ℎ (w;x+𝑖 )

𝜏

)
+ ∑

x 𝑗 ∈B−
𝑖

exp
(
ℎ (w;x𝑖 )>ℎ (w;x 𝑗 )

𝜏

) ,
(6.38)

where ℎ(w; x) denotes the normalized embedding of input x, i.e., ‖ℎ(w; x)‖2 = 1,
and 𝜏 > 0 is the temperature parameter. The set B−

𝑖 includes all negative samples in
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Fig. 6.19: Illustration of Contrastive Language-Image Pretraining (CLIP). A projec-
tor is usually a single linear layer.

the mini-batch excluding x𝑖 and its augmentations. The positive pair can be removed
from the denominator.

CLIP (Contrastive Language–Image Pretraining)

CLIP is amultimodal representationmodel that aligns images and text via contrastive
learning on large-scale image–caption datasets. It comprises an image encoder and a
text encoder, each followed by a corresponding projector, all jointly trained through
contrastive learning (see Figure 6.19). CLIP models are typically trained on mil-
lions to billions of image–caption pairs, denoted as S = {(x1, t1), . . . , (x𝑛, t𝑛)}. Let
ℎ1 (w; ·) denote the image encoder and ℎ2 (w; ·) denote the text encoder, which out-
puts normalized embedding vectors.

With a mini-batch B = {(x1, t1), . . . , (x𝐵, t𝐵)}, a mini-batch-based contrastive
loss for each image x𝑖 is given by:

𝐿B (w; x𝑖) = − log
exp

(
ℎ1 (w;x𝑖 )>ℎ2 (w;t𝑖 )

𝜏

)
exp

(
ℎ1 (w;x𝑖 )>ℎ2 (w;t𝑖 )

𝜏

)
+ ∑

t 𝑗 ∈B−
2𝑖

exp
(
ℎ1 (w;x𝑖 )>ℎ2 (w;t 𝑗 )

𝜏

) , (6.39)

where the set B−
2𝑖 includes all negative texts in the mini-batch excluding t𝑖 . Similarly,

a mini-batch-based contrastive loss for each caption t𝑖 is given by:

𝐿B (w; t𝑖) = − log
exp

(
ℎ1 (w;x𝑖 )>ℎ2 (w;t𝑖 )

𝜏

)
exp

(
ℎ1 (w;x𝑖 )>ℎ2 (w;t𝑖 )

𝜏

)
+ ∑

x 𝑗 ∈B−
1𝑖

exp
(
ℎ1 (w;x 𝑗 )>ℎ2 (w;t𝑖 )

𝜏

) . (6.40)
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where the set B−
1𝑖 includes all negative images in the mini-batch excluding x𝑖 . Back-

propagation is then performed on the two mini-batch contrastive losses to compute
gradient estimators, which are summed to update the model parameters.

CLIP enables zero-shot image classification, cross-modality retrieval and plays a
crucial role in text-to-image generation by guiding models to synthesize images that
semantically align with textual prompts.

What is zero-shot classification?

Zero-shot classification means classifying data without any labeled data
for learning a classifier. In a multi-class classification task with 𝐾 classes
{𝐶1, . . . , 𝐶𝐾 }, where each class corresponds to a specific label (e.g., ‘dog’),
we apply the CLIP model by first constructing a natural language prompt for
each category (e.g., ‘a photo of a dog’). We then compute text embeddings
for these prompts and calculate their cosine similarity with the image embed-
ding generated by CLIP. Finally, the model predicts the class that yields the
highest similarity score.

The Challenge of Large Batch Size

While efficient, the InfoNCE loss is known to heavily rely on large batch sizes to
ensure a rich and diverse set of negatives. For example, SimCLR requires a batch
size of 8192 to achieve state-of-the-art performance for training on the ImageNet-1K
dataset. This dependence on large batches imposes significant memory and compu-
tational burdens, especially when using large network backbones or processing high-
dimensional inputs such as videos. Indeed, optimizing the InfoNCE loss is equivalent
to using the BSGD method for optimizing the global contrastive loss as discussed in
next subsection, which sufffers from non-convergence if the batch size is not signif-
icantly large.

6.5.2 Contrastive Learning without Large Batch Sizes

While the mini-batch contrastive loss offers computational convenience, it contra-
dicts to the standard optimization principle where the objective is typically defined
over the full dataset, followed by the development of efficient optimization algo-
rithms. Themini-batch contrastive loss emerged naturally from the prevalent training
pipeline (see Figure 6.1) that practitioners are familiar with. However, as previously
discussed, this pipeline originating from ERM assumes that the loss for each data
instance is independent of others, which does not hold for contrastive objectives. To
resolve this, it is essential to decouple the design of the objective function from the
optimization procedure.
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Global Contrastive Loss: Separating Objective from Optimization

A global contrastive loss contrasts each anchor data point against all other examples
in the training set. For a given positive pair (x𝑖 , x+𝑖 ), the global contrastive loss is
defined as:

𝐿 (w; x𝑖 , x+𝑖 ) = 𝜏 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)>ℎ(w; x+𝑖 )

𝜏

)ª®¬ ,
(6.41)

whereS−
𝑖 is the set of all negative samples excluding x𝑖 and its positive counterparts.

The full global contrastive objective over S = {x1, . . . , x𝑛} is then given by:

min
w
𝐹 (w) = 1

𝑛

∑
x𝑖∈S

1
|S+
𝑖 |

∑
x+𝑖 ∈S+

𝑖

𝐿 (w; x𝑖 , x+𝑖 ), (6.42)

where S+
𝑖 denotes the set of all positive samples corresponding to x𝑖 .

SogCLR: The Optimization Algorithm

To optimize the global contrastive objective, we cast it into the following:

min
w

− 1
𝑛

∑
x𝑖∈S

1
|S+
𝑖 |

∑
x+𝑖 ∈S+

𝑖

ℎ(w; x𝑖)>ℎ(w; x+𝑖 )

+ 1
𝑛

∑
x𝑖∈S

log ©­«
∑

x 𝑗 ∈S−
𝑖

exp
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗 )

𝜏

)ª®¬ .
(6.43)

The first term is a standard average and the second term is an objective of FCCO,
where the outer function is 𝑓 (·) = 𝜏 log(·) and the inner function is 𝑔𝑖 (w) =

1
|S−
𝑖 |

∑
z∈S−

𝑖
exp

(
ℎ (w;x𝑖 )>ℎ (w;z)

𝜏

)
. For readers who are familiar with Chapter 4 and 5,

it is easy to understand the challenge of optimizing the above objective. It lies at the
compositional structure of the second term with both summations over many data
outside and inside the log function. As a result, the using the mini-batch-based In-
foNCE loss will suffer from a biased gradient estimator whose error depends on the
batch size.

To address this challenge, we can extend the SOX algorithm to solving (6.43) as
shown in Algorithm 34, which is referred to as SogCLR. The estimators 𝑢𝑖,𝑡+1,∀𝑖
are for tracking the inner function values 𝑔𝑖 (w𝑡 ) and 𝑝𝑖,𝑡 = 1

𝜀+𝑢𝑖,𝑡+1
is for estimating

∇ log(𝑔𝑖 (w𝑡 )), where 𝜀 is small positive value added to avoid numerical issue and
facilitate the learning.
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Algorithm 34 SogCLR for optimizing the global contrastive objective (6.43)
1: Input: Initial model w1, u0 ∈ R𝑛

2: for 𝑡 = 1 to 𝑇 do
3: Sample a mini-batch B = {x𝑖 }𝐵𝑖=1 with augmentations
4: for each x𝑖 ∈ B do
5: Construct the positive and negative set within mini-batch B+

𝑖 , B−
𝑖

6: Update 𝑢𝑖,𝑡 via:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾
1

| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℎ (w𝑡 ; x𝑖 )>ℎ (w𝑡 ; z)

𝜏

)
7: end for
8: Compute the vanilla gradient estimator z𝑡 :

z𝑡 = − 1
| B |

∑
x𝑖 ∈B

1
| B+
𝑖 |

∑
x+𝑖 ∈B+

𝑖

∇(ℎ (w𝑡 ; x𝑖 )>ℎ (w𝑡 ; x+𝑖 ) )

+ 1
| B |

∑
x𝑖 ∈B

1
| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℎ (w𝑡 ;x𝑖 )>ℎ(w𝑡 ;z)

𝜏

)
𝜀 + 𝑢𝑖,𝑡

∇(ℎ (w; x𝑖 )>ℎ (w; z) ) ,

9: Update w𝑡+1 by Momentum, Adam or AdamW
10: end for

 Initialization and Update of u

Unlike the model parameter w, which is typically initialized randomly, the auxiliary
variables u can be initialized upon their first update. Specifically, when an index 𝑖 is
sampled for the first time, we set u𝑖,𝑡 to the corresponding mini-batch estimate of the
inner function value.

As with the practical considerations discussed for distributionally robust opti-
mization (DRO), the vanilla update of u can suffer from numerical instability due
to the use of exp(·), particularly when the temperature 𝜏 is small. To address this,
we can instead maintain a log-transformed variable 𝜈𝑖,𝑡 = log 𝑢𝑖,𝑡 , following the
technique in Equation (6.14).

 PyTorch Implementation

A PyTorch implementation of SogCLR for self-supervised visual representation
learning is shown in Figure 6.21. Each image in the dataset is augmented twice.
To facilitate the computation of the vanilla gradient estimator, we define a dynamic
contrastive loss function. For each augmented instance, we call this loss function to
update its associated 𝑢 variable and compute the dynamic loss using the updated 𝑢.
These individual dynamic losses are then aggregated over the mini-batch, and the 𝑢
variables for the two augmentations of each image are averaged.
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Fig. 6.20: Impact of batch size
for different methods. The x-
axis represents the batch size,
and the y-axis shows the linear
evaluation accuracy on the Im-
ageNet validation set. Models
were pretrained for 800 epochs
using a ResNet-50 backbone on
ImageNet-1K. For more details,
please refer to (Yuan et al.,
2022c).

Finally, we invoke loss.backward() to compute the gradient, followed by an
optimizer step to update model parameters.

 Comparison with SimCLR

The effectiveness of SogCLR is illustrated in Figure 6.20 with comparison with Sim-
CLR for self-supervised visual representation learning on ImageNet-1K dataset with
1.2 million of images. With a standard mini-batch size 256 and the same other set-
tings as SimCLR, by running 800 epochs, SogCLR achieves a performance of 69.4%
for top 1 linear evaluation accuracy, which is better than 69.3% of SimCLR using a
large batch size 8,192. Linear evaluation accuracy is measured by training a linear
classifier atop a frozen encoder and subsequently assessing its performance on the
validation set.

6.5.3 Contrastive Learning with Learnable Temperatures

The temperature parameter 𝜏 plays a critical role in controlling the penalty strength
on negative samples. Specifically, a small 𝜏 penalizes much more on hard negative
samples (i.e., the degree of hardness-awareness is high), causing separable embed-
ding space. However, the excessive pursuit to the separability may break the under-
lying semantic structures because some negative samples with high similarity scores
to the anchor data might indeed contain similar semantics, to which we refer as false
negatives. In contrast, a large 𝜏 tends to treat all negative pairs equally (i.e., the de-
gree of hardness-awareness is low) and is more tolerant to false negative samples,
which is beneficial for keeping local semantic structures.

Existing approaches based on the InfoNCE loss often treat the temperature param-
eter 𝜏 as a learnable scalar to be optimized. However, this strategy lacks theoretical
justification and may not yield optimal performance. Moreover, real-world data dis-
tributions typically exhibit long-tail characteristics, with substantial variation in the
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# Note: This is a simplified version of SogCLR, we compute u
# from each augmentation separately for computing the dynamic

contrastive loss
# and then aggregated them from all augmentations.
# model: encoder + mlp projectors
# aug: a set of augmentation functions
# tau: temperature
# N: data size
# ind: indices for images in mini-batch
# u: 1d tensor with shape (N,1) by zero initialization
# g: parameter for maintaining moving averages of u

for ind, img in dataloader:
x1, x2 = aug(img), aug(img) # augmentations
h1, h2 = model(x1), model(x2) # forward pass
h1, h2 = h1.norm(dim=1, p=2), h2.norm(dim=1, p=2)
loss1, u1 = dcl(h1, h2, ind) # dcl for h1, h2
loss2, u2 = dcl(h2, h1, ind) # dcl for h2, h1
u[ind] = (u1 + u2)/2 # update u
loss = (loss1 + loss2).mean() # symmetrized
loss.backward()
update(model.params) # momentum or adam-style

# dynamic contrastive loss (mini-batch)
def dcl(h1, h2, ind):

B = h1.shape[0]
labels = cat([one_hot(range(B)), one_hot(range(B))], dim=1)
logits = cat([dot(h1, h2.T), dot(h1, h1.T)], dim=1)
neg_logits = exp(logits/tau)*(1-labels)
u_ = (1-g) * u[ind] + g*sum(neg_logits , dim=1)/(2(B-1))
p = (neg_logits/u_).detach()
sum_neg_logits = sum(p*logits, dim=1)/(2(B-1))
normalized_logits = logits - sum_neg_logits
loss = -sum(labels * normalized_logits , dim=1)
return loss, u_

Fig. 6.21: PyTorch-style implementation of SogCLR for global contrastive learning.

frequency of samples across different semantic categories. This diversity suggests
the need for individualized temperature parameters that better adapt to the inherent
heterogeneity of the data.

To improve feature qualities, samples with frequent semantics should be assigned
with a large 𝜏 to better capture the local semantic structure, while using a small 𝜏
will push semantically consistent samples away. On the other hand, samples with
rare semantics should have a small 𝜏 to make their features more discriminative and
separable.
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Robust Global Contrastive Loss with a Learnable Temperature

Owing to the equivalence between the global contrastive loss and KL-regularized
DRO (see Eq. (2.14)), the loss in Eq. (6.41) can be rewritten as:

𝐿 (w; x𝑖 , x+𝑖 ) =
max
p∈Δ

∑
x 𝑗 ∈S−

𝑖

𝑝 𝑗
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)>ℎ(w; x+𝑖 )

)
− 𝜏KL(p, 1/|S−

𝑖 |),

(6.44)
where Δ is the probability simplex over S−

𝑖 and 𝜏 serves as the regularization param-
eter in the KL-regularized DRO.

To enable learning of the temperature parameter, we formulate a robust global
contrastive loss using a KL-constrained DRO framework:

𝐿̂ (w; x𝑖 , x+𝑖 ) =
max
p∈Δ

∑
x 𝑗 ∈S−

𝑖

𝑝 𝑗
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)>ℎ(w; x+𝑖 )

)
− 𝜏0 KL(p, 1/|S−

𝑖 |)

subject to KL(p, 1/|S−
𝑖 |) ≤ 𝜌,

(6.45)
where 𝜏0 is a small constant to ensure smoothness of 𝐿̂ (w; x𝑖 , x+𝑖 ). Using the dual
formulation (cf. Eq. (2.19)), this can be equivalently expressed as:

𝐿̂ (w; x𝑖 , x+𝑖 ) = (6.46)

min
𝜏≥𝜏0

𝜏 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)>ℎ(w; x+𝑖 )

𝜏

)ª®¬ + 𝜏𝜌.
Let ℓ𝑖 (w; x 𝑗 ) = ℎ(w; x𝑖)>ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)>ℎ(w; x+𝑖 ). The above loss simplifies
further to:

𝐿̂ (w; x𝑖 , x+𝑖 ) = min
𝜏≥𝜏0

𝜏 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℓ𝑖 (w; x 𝑗 )

𝜏

)ª®¬ + 𝜏𝜌.
Minimizing the average of these robust global contrastive losses yields the fol-

lowing objective, which learns individualized temperatures:

min
w

1
𝑛

∑
x𝑖∈S

 min
𝜏𝑖≥𝜏0

𝜏𝑖 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℓ𝑖 (w; x 𝑗 )

𝜏𝑖

)ª®¬ + 𝜏𝑖𝜌
 . (6.47)

The SogCLR algorithm can be modified to solve this problem. We present the
resulting algorithm, referred to as iSogCLR, in Algorithm 35. The vanilla gradient
estimator with respect to w𝑡 is computed as in SogCLR, except that the temperature
𝜏 is replaced with the individualized 𝜏𝑖,𝑡 at iteration 𝑡. The gradient estimator with
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Algorithm 35 iSogCLR for optimizing the robust global contrastive objective (6.47)
1: Input: Initial model w1, u0 ∈ R𝑛

2: for 𝑡 = 1 to 𝑇 do
3: Sample a mini-batch B = {x𝑖 }𝐵𝑖=1 with augmentations
4: for each x𝑖 ∈ B do
5: Construct the positive and negative set within mini-batch 𝐵+

𝑖 , 𝐵
−
𝑖

6: Update 𝑢𝑖,𝑡 via:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾
1

| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℓ𝑖 (w; z)
𝜏𝑖,𝑡

)
7: Compute the vanilla gradient estimator z𝑖,𝑡 of 𝜏𝑖,𝑡

z𝑖,𝑡 = − 1
| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℓ𝑖 (w;z)
𝜏𝑖,𝑡

)
𝜀 + 𝑢𝑖,𝑡

ℓ𝑖 (w; z)
𝜏𝑖,𝑡

+ log(𝑢𝑖,𝑡 ) + 𝜌

8: end for
9: Compute the vanilla gradient estimators z𝑡 :

z𝑡 =
1
| B |

∑
x𝑖 ∈B

1
| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℓ𝑖 (w𝑡 ;z)
𝜏

)
𝜀 + 𝑢𝑖,𝑡

∇ℓ𝑖 (w𝑡 ; z) ,

10: Update 𝜏𝑖,𝑡+1, ∀x𝑖 ∈ B by the Momentum method
11: Update w𝑡+1 by the Momentum or AdamW method
12: end for

respect to 𝜏𝑖,𝑡 is computed in Step 7 and it can be updated using the Momentum
method.

An application of iSogCLR to CIFAR-10 dataset yields more discriminative fea-
tures than SimCLR and SogCLR as shown in Figure 6.22.

CLIP Training with Learnable Temperatures

CLIP with Individualized Learnable Temperatures

We can integrate the robust global contrastive loss for temperature learning into the
contrastive language-image pretraining (CLIP), yielding the following objective:
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SimCLR SogCLR iSogCLR

Fig. 6.22: The learned embeddings (projected onto 2D space using t-SNE) for CI-
FAR10 samples learned by self-supervised learning algorithms SimCLR, SogCLR
and iSogCLR. For more details, please refer to (Qiu et al., 2023).

min
w,𝝉1≥𝜏0 ,𝝉2≥𝜏0

1
𝑛

𝑛∑
𝑖=1

𝜏𝑖,1 log ©­« 1
|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖)

𝜏𝑖,1

)ª®¬ + 𝜏𝑖,1𝜌
+ 1
𝑛

𝑛∑
𝑖=1

𝜏𝑖,2 log ©­« 1
|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖))

𝜏𝑖,2

)ª®¬ + 𝜏𝑖,2𝜌,
(6.48)

where T −
𝑖 denotes the set of all negative data of an image x𝑖 and I−

𝑖 denotes the set
of all negative data of the corresponding text t𝑖 , and 𝑠(w; x, t) = ℎ1 (w; x)>ℎ2 (w; t)
is the similarity score of the image and text embeddings.

While optimizing robust contrastive losses enables the learning of temperature pa-
rameters, it may compromise generalizability in downstream tasks by introducing a
large number of additional parameters, which can lead to overfitting—particularly in
noisy real-world datasets where mismatched samples are common. Two approaches
can be used to tackle this issue.

CLIP with a Global Learnable Temperature

A straightforward approach to reduce the number of temperature parameters is to
learn a single global temperature parameter for images and texts, respectively. This
is formulated as the following optimization problem:

min
w,𝜏1≥𝜏0 ,𝜏2≥𝜏0

1
𝑛

𝑛∑
𝑖=1

𝜏1 log ©­« 1
|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖)

𝜏1

)ª®¬ + 𝜏1𝜌


+ 1
𝑛

𝑛∑
𝑖=1

𝜏2 log ©­« 1
|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖)

𝜏2

)ª®¬ + 𝜏2𝜌
 .

(6.49)
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CLIP with a Temperature Prediction Network

An alternative strategy is to learn a temperature prediction network (TempNet) that
outputs an instance-dependent temperature for each image and text. The correspond-
ing optimization problem is defined as:

min
w,w′

1 ,w
′
2

1
𝑛

𝑛∑
𝑖=1

𝜏(w′
1; x𝑖) log ©­« 1

|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖)

𝜏(w′
1; x𝑖)

)ª®¬ + 𝜏(w′
1; x𝑖)𝜌

+ 1
𝑛

𝑛∑
𝑖=1

𝜏(w′
2; t𝑖) log ©­« 1

|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖)

𝜏(w′
2; t𝑖)

)ª®¬ + 𝜏(w′
2; t𝑖)𝜌.

(6.50)
The temperature prediction network 𝜏(w′

1; ·) for images can share the encoder
layers of the image encoder ℎ1 (w; ·), followed by a lightweight MLP. Similarly, the
text-side temperature prediction network 𝜏(w′

2; ·) can share the encoder layers of
the text encoder ℎ2 (w; ·), also followed by a small MLP. Again this problem can be
optimized by modifying SogCLR to account for the update of TempNet.

 Scheduler of 𝛾

Like the standard learning rate 𝜂 in the update of w𝑡+1, the hyper-parameter 𝛾 can be
also interpreted as a learning rate of SGD (4.3). The theoretical analysis shows that
𝛾 should be set to a very small value close to 0 in order to guarantee convergence.
Ideally, 𝛾 should be large to rely more on the current mini-batch at earlier iterations
and be smaller to rely more on history in later iterations. To achieve this, we can use
a decreasing scheduler, e.g., a cosine schedule for 𝛾𝑡 : Let 𝑡 be the current iteration,
𝑡0 be the number of iterations per epoch and 𝐸 be the number of decay epochs, then
we set 𝛾𝑡 = 0.5 · (1+ cos(𝜋b𝑡/𝑡0c/𝐸)) · (1− 𝛾min) + 𝛾min. With this schedule, 𝛾𝑡 will
decrease from 1.0 to 𝛾min. Note that b𝑡/𝑡0c denotes the current epoch, which means
the value of 𝛾𝑡 stays unchanged within one epoch. Also, The number of decay epochs
𝐸 is a hyperparameter, and it is not necessarily equal to the total number of training
epochs. If the current epoch exceeds 𝐸 , 𝛾𝑡 will be set to 𝛾min.

 PyTorch Implementations

PyTorch implementations of SogCLR and iSogCLR are available in the LibAUC
library. Their distributed versions, including support for solving (6.49) with a cosine
scheduler for 𝛾, are provided in the FastCLIP GitHub repository:

https://github.com/Optimization-AI/FastCLIP

Three versions are available: FastCLIP-v1 implements SogCLR with a tuned global
temperature, FastCLIP-v2 implements iSogCLR with individualized temperatures,

349

https://github.com/Optimization-AI/FastCLIP


Fig. 6.23: FastCLIP-v3 vs
OpenCLIP. The training was
conducted on LAION315M
with 315M image-text pairs for
learning ViT-B/16 using a total
of 5120 batch size on 8 A100.
Y-axis is the zero-shot accuracy
on ImageNet validation data. For
more details, please refer to (Wei
et al., 2024).

and FastCLIP-v3 implements SogCLR for solving the global temperature optimiza-
tion in (6.49).

A distributed implementation of iSogCLR for CLIP trainingwith the Temperature
Prediction Network (TempNet) is available at:

https://github.com/Optimization-AI/DistTempNet

Figure 6.23 presents a comparison between FastCLIP-v3 and the prior state-of-
the-art distributed implementation of optimizing themini-batch-based InfoNCE loss,
known as OpenCLIP (Ilharco et al., 2021). This highlights the effectiveness of the
advanced compositional optimization algorithm, demonstrating clear improvements
in both convergence speed and representation quality.

6.6 Discriminative Fine-tuning of Large Language Models

Large Language Models (LLMs) have revolutionized modern AI. Their training typ-
ically consists of three stages: self-supervised pretraining on internet-scale text cor-
pora, supervised fine-tuning (SFT) on question–answer datasets, and learning with
human preference for alignment. An improved paradigm, reinforcement learning
with verifiable rewards (RLVR), further advances large reasoning models by lever-
aging automatically verifiable signals from synthesized outputs.

6.6.1 Pipeline of LLM Training

Figure 6.24 illustrates the pipeline of LLMTraining.We briefly introduce these com-
ponents below.
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Fig. 6.24: Different Phases of training LLMs.

Self-supervised Pretraining

Self-supervised pretraining is formulated as next-token prediction. Let x = (𝑥1, . . . , 𝑥𝑚)
be a sequence of tokenswhere 𝑥 𝑗 belongs to a vocabulary of tokensV = {𝑣1, . . . , 𝑣𝐾 }.
The probability of x is modeled auto-regressively by

𝑝(x) =
𝑚∏
𝑗=1

𝑝(𝑥 𝑗 |𝑥< 𝑗 ),

where 𝑥< 𝑗 denotes the prefix (𝑥1, . . . , 𝑥 𝑗−1). The conditional probability is modeled
via a softmax over a Transformer representation:

𝑝(𝑥 𝑗 |𝑥< 𝑗 ) = 𝜋w (𝑥 𝑗 |𝑥< 𝑗 ) =
exp(ℎ(w0; 𝑥< 𝑗 )>w𝑥 𝑗 )∑𝐾
𝑘=1 exp(ℎ(w0; 𝑥< 𝑗 )>w𝑘)

, (6.51)

where ℎ(w0; 𝑥< 𝑗 ) ∈ R𝑑 is produced by a Transformer network and w𝑥 𝑗 ∈ R𝑑 is the
token embedding. The full model parameters w = (w0,w1, . . . ,w𝐾 ) are learned by
minimizing the negative log-likelihood over a dataset S = {x1, . . . , x𝑛}:

min
w

−1
𝑛

𝑛∑
𝑖=1

log 𝑝(x𝑖). (6.52)

Supervised Fine-tuning (SFT)

In SFT, a dataset S = {(x𝑖 , y𝑖)} is used, where x𝑖 is an input prompt and y𝑖 is the
desired output. Let x = (𝑥1, . . . , 𝑥𝑘) and y = (𝑦1, . . . , 𝑦𝑚′ ) be token sequences from
the vocabularyV. SFTmodels the next-token prediction of tokens in y given x using
the autoregressive factorization:

𝑝(y|x) =
𝑚′∏
𝑗=1

𝜋w (𝑦 𝑗 |x, 𝑦< 𝑗 ),
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where each term is computed using the same Transformer-based model as in pre-
training. SFT minimizes:

min
w

−1
𝑛

𝑛∑
𝑖=1

log 𝑝(y𝑖 |x𝑖). (6.53)

Learning with Human Preference

SFT does not penalize poor responses. Hence, it does not necessarily guarantee that
the likelihood of tokens in a poor answer is low. Let us consider a simple example:

Motivation Example

(x) What is the bigger number between 9.11 and 9.9?
(y) The bigger number between 9.11 and 9.9 is 9.9.
(y′) The bigger number between 9.11 and 9.9 is 9.11.

The good answer y and the bad answer y′ only differ in the last token. The like-
lihood of all preceding tokens are the same. Even though the likelihood of the last
token “9” in y conditioned on preceding tokens is increased during the fine-tuning
with this data, the likelihood of the token “11” as the last one might still be high,
making generating the bad answer y′ likely.

To address this issue, learning with human feedback fine-tunes the model using
preference tuples (x, y+, y−), where y+ is preferred over y− . Two main approaches
are reinforcement learning from human feedback (RLHF) and direct preference op-
timization (DPO).

RLHF

A reward model 𝑟𝜃 (x, y) is first trained to match human preferences by modeling the
preference probability Pr(y+ � y− |x) as

𝑝(y+ � y− |x) =
exp(𝑟𝜃 (x, y+))

exp(𝑟𝜃 (x, y+)) + exp(𝑟𝜃 (x, y−))
, (6.54)

and minimizing the following:

min
𝜃

Ex,y+ ,y− − log 𝑝(y+ � y− |x). (6.55)

The policy model (i.e, the target LLM) is then optimized by solving the following
problem with some RL algorithms:

max
w

Ex,y∼𝜋w

[
𝑟𝜃∗ (x, y) − 𝛽KL(𝜋w (·|x), 𝜋ref (·|x))

]
. (6.56)

where the KL divergence is defined as:
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KL(𝜋w (·|x), 𝜋ref (·|x)) = Ey∼𝜋w ( · |x)

[
log

𝜋w (y|x)
𝜋ref (y|x)

]
, (6.57)

where 𝜋ref denotes a base model. If we decompose y = (𝑦1, . . . , 𝑦𝑘) as a sequence
of tokens, then using the autoregressive factorization the KL divergence can be ex-
pressed as a sum over tokens:

KL(𝜋w (·|x), 𝜋ref (·|x)) = Ey∼𝜋w

[
𝑘∑
𝑡=1

log
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋ref (𝑦𝑡 |x, 𝑦<𝑡 )

]
. (6.58)

Direct Preference Optimization (DPO)

DPO directly optimizes the policy without a separate reward model. A closed-form
non-parameterized solution of 𝜋 by solving (6.56) for any reward model 𝑟 (x, 𝑦),
gives:

𝜋(y|x) = 1
𝑍 (x) 𝜋ref (y|x) exp(𝛽𝑟 (x, y)), (6.59)

where 𝑍 (x) is the normalization factor. Substituting into Eq. (6.55) leads to:

min
w

Ex,y+ ,y− log
(
1 + exp

(
𝛽 log

𝜋w (y− |x)
𝜋ref (y− |x)

− 𝛽 log
𝜋w (y+ |x)
𝜋ref (y+ |x)

))
. (6.60)

In practice, a set of tuples {(x𝑖 , y𝑖+, y𝑖−}𝑛𝑖=1 is constructed and used for learning.

Connections with Discriminative Learning and AUC Maximization

DPO can be also motivated from discriminative learning, particularly AUC
maximization.We view generating the answers of x as a task, and y+ denotes a
positive data and y− denotes a negative data. Let 𝑠(w, x, y) denote a scoring
function, which indicates the likelihood of generating y given x. By AUC
maximization with a continuous surrogate loss ℓ(𝑠(w, x, y−) − 𝑠(w, x, y+)),
we have the following problem:

min
𝜃

Ex,y+ ,y−ℓ(𝑠(w, x, y−) − 𝑠(w, x, y+)). (6.61)

DPO can be recovered by setting 𝑠(w, x, y) = log 𝜋 (y |x)
𝜋ref (y |x) and ℓ(𝑠) = log(1+

exp(𝛽𝑠)).

Reinforcement Learning with Verifiable Rewards (RLVR)

RLVR is an emerging paradigm for training reasoning models, particularly suited
for tasks like mathematical problem solving, where models are expected to gener-
ate step-by-step solutions followed by a final answer. Unlike RLHF, which relies on
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Fig. 6.25: The one-step iteration of RL for reinforcing Large Reasoning Model. For
each question x𝑖 , the model generates 𝑚 outputs y𝑖,1, . . . , y𝑖,𝑚 and each of them
receives a reward 𝑟𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑚 from a verifier. Then an algorithm will leverage
the inputs, their outputs and the reward information to update the model.

subjective preference labels, RLVR leverages verifiable signals such as whether the
final answer is correct.

What is a Large Reasoning Model?

A large reasoningmodel is a type of LLM that is specifically designed or fine-
tuned to perform multi-step logical reasoning, such as solving math prob-
lems, answering complex questions, or generating structured arguments. It
generates intermediate reasoning tokens before producing the final answer,
mimicking System 2 reasoning in humans, which is deliberate, logical, and
slow.

RLVR is illustrated in Figure 6.25. The old model in one step of learning is de-
noted by 𝜋old. It is used to generate multiple answers for a set of input questions.
Given a question x (with prompt included), one generated output y follows the dis-
tribution 𝜋old (·|x), which includes reasoning traces and the final answer. Specifically,
output y is generated token by token, i.e., 𝑦𝑡 ∼ 𝜋old (·|x, 𝑦<𝑡 ), for 𝑡 = 1, · · · , |y|.

A key to RLVR is to assume that there exists a verifier, which can automatically
verifies the quality of the generated answer, giving a reward. Let us consider a binary
reward setting where the verifier returns a binary value for a given question x and
its corresponding answer in the output y. For answering mathematical questions,
this can be achieved by comparing the generated answer with the true answer. For
generating mathematical proofs, we can use a formal verification tool such as LEAN
to verify if the proof is correct.

Proximal Policy Optimization (PPO)

PPO is a classical RL algorithm. Let

𝜌w (x, y) =
𝜋w (y|x)
𝜋old (y|x)
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denote the likelihood ratio between the new policy 𝜋w and the old policy 𝜋old. Let
𝐴(x, y) be an advantage function for taking action y given input x, which measures
how much better a specific action is compared to the policy’s average behavior in a
given state. The PPO objective is given by:

LPPO (w) =Ex,y∼𝜋old [min (𝜌w (x, y) · 𝐴(x, y), clip(𝜌w (x, y), 1 − 𝜖, 1 + 𝜖) · 𝐴(x, y))] ,
− 𝛽KL(𝜋w, 𝜋ref), (6.62)

where 𝜖 > 0 is a small hyperparameter (typically around 0.1 or 0.2), and the clip
function restricts the likelihood ratio 𝜌w (x, y) to the range [1 − 𝜖, 1 + 𝜖], defined as:

clip(𝜌w (x, y), 1 − 𝜖, 1 + 𝜖) =


1 − 𝜖 if 𝜌w (x, y) < 1 − 𝜖,
𝜌w (x, y) if 1 − 𝜖 ≤ 𝜌w (x, y) ≤ 1 + 𝜖,
1 + 𝜖 if 𝜌w (x, y) > 1 + 𝜖 .

The intuition of using clipping mechanism is that

• When 𝐴(x, y) > 0 (the action is better than expected), the clip operation prevents
𝜋w from increasing its probability too aggressively.

• When 𝐴(x, y) < 0 (the action is worse than expected), the clip operation prevents
𝜋w from decreasing its probability too drastically.

This clippingmechanismwas used to reduce variance andmaintain stable training
dynamics for reinforcement learning. However, it also suffers from zero gradient
when 𝜌w (x, y) is out of the range [1− 𝜖, 1+ 𝜖], which might slow down the learning
process.

Trust Region Policy Optimization (TRPO)

TRPO is a principled policy optimization method that improves stability and effi-
ciency by restricting each policy update to stay within a small trust region. It max-
imizes a surrogate objective function based on the advantage estimates under the
old policy, while constraining the average Kullback–Leibler (KL) divergence be-
tween the old and new policies. Formally, TRPO solves the following constrained
optimization problem:

max
𝜃

Ex,y∼𝜋old [𝜌w (x, y)𝐴(x, y)]

subject to Ex [KL (𝜋old (·|x), 𝜋w (·|x))] ≤ 𝛿, (6.63)

where 𝛿 is a predefined trust region threshold. The KL divergence is taken in the
reverse direction to ensure that the updated policy does not deviate too much from
the old policy on average across the state distribution.
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Group Relative Policy Optimization (GRPO).

GRPO is a reinforcement learning algorithm designed to optimize policies by lever-
aging group-wise relative reward information.

For inputs {x𝑖}𝑚𝑖=1, let {y𝑖 𝑗 }
𝐾
𝑗=1 denote the corresponding set of 𝐾 generated an-

swers for each x𝑖 . the objective of GRPO for maximization is defined by:

JGRPO (w) = 1
𝑚

𝑚∑
𝑖=1

1
𝑘

𝑘∑
𝑗=1

[
1

|y𝑖 𝑗 |

|y𝑖 𝑗 |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑖 𝑗 ,𝑡 |x, 𝑦𝑖 𝑗 ,<𝑡 )
𝜋old (𝑦𝑖 𝑗 ,𝑡 |x, 𝑦𝑖 𝑗 ,<𝑡 )

, 𝐴(x𝑖 , y𝑖 𝑗 )
) ]

− 𝛽KL(𝜋𝜃 , 𝜋ref), (6.64)

where 𝑦𝑖 𝑗 ,𝑡 denotes its 𝑡-th token and 𝑦𝑖 𝑗 ,<𝑡 denotes the prefix of the 𝑡-th token of
y𝑖 𝑗 , 𝑓 (𝑠, 𝑡) = min(𝑠𝑡, clip(𝑠, 1 − 𝜖, 1 + 𝜖)𝑡), 𝜋ref is a frozen reference model, and
𝐴(x𝑖 , y𝑖 𝑗 ) is the group-wise advantage function defined as

𝐴(x, y) =
𝑟 (y|x) − 𝑟𝑞

𝜎𝑞

with 𝑟𝑞 being the average reward of outputs for x and 𝜎𝑞 being its standard deviation.
This advantage function quantifies how much better the reward of an output y is
compared to average reward in the group. For analysis, we consider the expected
version:

JGRPO (w) = ExEy∼𝜋old ( · |x)

[
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 𝐴(x, y)
) ]

− 𝛽KL(𝜋𝜃 , 𝜋ref),

(6.65)

where

𝐴(x, y) =
𝑟 (y|x) − Ey′∼𝜋old ( · |x)𝑟 (y′ |x)√

Vary′∼𝜋old ( · |x)𝑟 (y′ |x)
. (6.66)

6.6.2 DFT for fine-tuning Large Language Models

While learning with human feedback addresses the limitation of SFT, traditional
supervised learning methods never use human preference data. For example, in im-
age classification, training data (x, 𝑦) denote an input image and its true class label
𝑦 ∈ {1, . . . , 𝐾}. We do not need the preference optimization step on preference data
saying that a dog class is preferred to a cat class for an image of a dog. So what is
the difference between traditional supervised learning and supervised finetuning of
LLMs that makes SFT not enough? The answer lies in the fact that traditional su-
pervised learning methods are usually discriminative approaches, while the SFT
method is not discriminative.
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By casting the supervised fine-tuning of LLMs into data prediction, we can lever-
age discriminative learning approaches, e.g., the discriminative probabilistic model-
ing (DPM) approach and the robust optimization approach.

DPM over an Infinite Data Space

Let X and Y be infinite data spaces. Let us consider X as an anchor space and Y
as the target space with a Lebesgue measure 𝜇. When Y is countably infinite, the
Lebesgue measure 𝜇 is replaced by the counting measure. We model the probability
density Pr(y | x) of an object y ∈ Y given an anchor object x ∈ X by a parameterized
scoring function 𝑠(w; x, y):

𝑃w (y | x) = exp(𝑠(w; x, y)/𝜏)∫
Y exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)

, (6.67)

where 𝜏 > 0 is a temperature parameter. We assume that exp(𝑠(w; x, y)/𝜏) is
Lebesgue-integrable for w ∈ W, W ⊂ R𝑑 . Here 𝑃w (y | x) is a valid probabil-
ity density function because

∫
Y 𝑃w (y | x)𝑑𝜇(y) = 1. Given {(x1, y1), . . . , (x𝑛, y𝑛)}

sampled from the joint distribution 𝑝x,y, the maximum likelihood estimation (MLE)
can be formulated as the following:

min
w

{
−1
𝑛

𝑛∑
𝑖=1

𝜏 log
exp(𝑠(w; x, y)/𝜏)∫

Y exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)

}
= −1

𝑛

𝑛∑
𝑖=1

𝑠(w; x, y) + 𝜏 log
(∫

Y
exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)

)
. (6.68)

If Y is finite, the above DPM framework recovers the traditional multi-class classi-
fication and learning to rank. In particular, ifY denotes the label set {1, . . . , 𝐾} and
𝑠(w; x, 𝑦) denotes the classification score for the 𝑦-th class, then the above approach
recovers logistic regression. If Y denotes the set of items Y = {x𝑞,1, . . . , x𝑞,𝑁𝑞 }
and the anchor data x denotes a query, then the above approach recovers the List-
Net (2.47).

Optimization via FCCO

The main challenge for solving the DPM problem over an infinite data space lies
in computing the integral 𝑔(w; x𝑖 ,Y) :=

∫
Y exp (𝑠(w; x𝑖 , y′)/𝜏) 𝑑𝜇(y′) for each 𝑖 ∈

[𝑛], which is infeasible unlessY is finite. Below, we discuss two general approaches
for tackling the challenge.
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Sample and Optimize

The first approach is to introduce a sampling distribution 𝑃𝑖 (·), satisfying that (1) it
is easy to sample data from 𝑃𝑖; (2) it is possible to compute the probability value of
a sample y′. Then we write∫

Y
exp

(
𝑠(w; x𝑖 , y′)

𝜏

)
𝑑𝜇(y′) = Ey′∼𝑃𝑖 ( ·)

exp(𝑠(w; x𝑖 , y′)/𝜏)
𝑃𝑖 (y′)

.

The optimization problem becomes an instance of FCCO:

min
w

− 1
𝑛

𝑛∑
𝑖=1

𝑠(w; y𝑖 , x𝑖)

+ 1
𝑛

𝑛∑
𝑖=1

𝜏 log
(
Ey′∼𝑃𝑖 ( ·)

exp(𝑠(w; y′, x𝑖)/𝜏)
𝑃𝑖 (y′)

)
. (6.69)

Approximate and Optimize

In some cases, we may only have sampled data from 𝑃𝑖 (·) without access to 𝑃𝑖 (·).
Let S𝑖 = {y′𝑖,1, . . . , y′𝑖,𝑚} denote a set of outputs sampled for each data x𝑖 following
some 𝑃𝑖 . Then we approximate 𝑔(w; x𝑖 ,Y) by

𝑔(w; x𝑖 ,Y) ≈ 1
𝑚

∑
y′∈S−

𝑖

exp(𝑠(w; y′, x)/𝜏)
𝑃𝑖 (y′)

∝ 1
𝑚

∑
y′∈S𝑖

exp( 𝑠(w; y′, x)
𝜏

), (6.70)

where the last step assumes 𝑃𝑖 (y′) are approximately equal. Then the optimization
problem becomes an instance of FCCO:

min
𝜃

−1
𝑛

𝑛∑
𝑖=1

𝑠(w; y𝑖 , x𝑖)

+ 1
𝑛

𝑛∑
𝑖=1

𝜏 log
(

1
𝑚

∑
y′∈S𝑖

exp(𝑠(w; y′, x𝑖)/𝜏)
)
. (6.71)

DFT for fine-tuning LLMs

Let us apply the DPM approach to fine-tuning LLMs, which is referred to as dis-
criminative fine-tuning (DFT).

Discriminative Likelihood

Unlike SFT that maximizes the generative likelihood of tokens, DFT will maximize
the discriminative likelihood of data as defined in (6.67). By maximizing the dis-
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Fig. 6.26: (a) Log-likelihoods of (annotated) positive examples during training for
different methods. (b) Log-likelihoods of “negative” examples (generated from the
base model) during training for different methods. For more details, please refer
to (Guo et al., 2025).

Algorithm 36 The DFT Algorithm
1: Initialize w1 as the base LLM, and u0 = 1
2: for 𝑡 = 1, . . . , 𝑇 − 1 do
3: Sample a mini-batch B𝑡 ⊂ {x1, . . . , x𝑛 }
4: for each x𝑖 ∈ B𝑡 do
5: Sample a mini-batch B−

𝑖,𝑡 from 𝜋ref ( · |x̄𝑖 ) via an offline pool
6: Update 𝑢𝑖,𝑡+1 according to

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾
1
𝐵

∑
y′∈B0

𝑖,𝑡

exp( 𝑠 (w𝑡 ;y
′ ,x𝑖 )
𝜏 )

𝜋ref (y′ |x̄𝑖 )
, (6.72)

7: end for
8: Compute a vanilla gradient estimator z𝑡 according to

z𝑡 = − 1
| B𝑡 |

∑
x𝑖 ∈B𝑡

∇𝑠 (w𝑡 ; y𝑖 , x𝑖 )+

1
| B𝑡 |

∑
x𝑖 ∈B𝑡

1
𝑢𝑖,𝑡+1 | B−

𝑖,𝑡 |
∑

y′∈B−
𝑖,𝑡

exp( 𝑠 (w𝑡 ;y
′ ,x𝑖 )
𝜏 )∇𝑠 (w𝑡 ; y′, x𝑖 )
𝜋ref (y′ |x̄𝑖 )

. (6.73)

9: Update w𝑡+1 using Momentum or AdamW
10: end for

criminative log-likelihood of the training data, we not only increase the score of the
true output y𝑖 for each input x𝑖 , corresponding to the numerator of the discriminative
likelihood, but also decrease the scores of other potentially bad answers inY, which
correspond to the denominator of the discriminative likelihood; see Figure 6.26.
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Fig. 6.27: Using moving average estimators with 𝛾 < 1 is important for improving
the performance. For more details, please refer to (Guo et al., 2025).

The Scoring Function

For fine-tuning LLMs, the scoring function can be defined based on the generative
log-likelihood log 𝜋w (y|x), as it measures the likeliness of generating y given x by
the model 𝜋w. For a good model, we expect that a high value of the generative log-
likelihood log 𝜋w (y|x) would indicate a high fitness score of y to answer x. With
such correspondence, the above discriminative learning framework would increase
the chance of generating a good output y given x and decrease the chance of generat-
ing possibly bad outputs given x. Common choices for the scoring function include
the raw log-likelihood 𝑠(w; y, x) = log 𝜋w (y|x) and a length-normalized version
𝑠(w; y, x) = 1

|y | log 𝜋w (y|x). Using the unnormalized version 𝑠w (y, x) = log 𝜋w (y|x)
leads to the following DFT objective:

min
w

−1
𝑛

𝑛∑
𝑖=1

log 𝜋w (y𝑖 |x𝑖)

+ 𝜏 1
𝑛

𝑛∑
𝑖=1

log
(∑

y′∈Y
exp

(
log 𝜋w (y′ |x𝑖)

𝜏

))
. (6.74)

Comparing the DFT objective of to that of SFT in (6.53), we observe that the first
term in (6.74) is identical to the objective of SFT. The key difference lies in the
second term, which penalizes the possibly poor outputs inY for each x𝑖 by reducing
their generative log-likelihood, thereby discouraging their generation.

Sampling Distribution

The optimization analysis reveals that the variance bound 𝜎0 of the mini-batch es-
timator for the inner function 𝑔(w; x𝑖 ,Y) significantly impacts convergence speed
(cf. Theorem 5.1). Ideally, the variance-minimizing distribution is 𝑃w (·|x𝑖). How-
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6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

ever, this distribution is impractical to evaluate and difficult to sample from directly.
Moreover, we aim for the sampled outputs y′ ∼ 𝑃𝑖 (·) to represent likely poor re-
sponses to x𝑖 . A practical approach is to define 𝑃𝑖 (·) = 𝜋ref (·|x̄𝑖), where 𝜋ref denotes
the base LLM to be fine-tuned and x̄𝑖 is an augmented version of x𝑖 with added sys-
tem prompts to encourage the generation of suboptimal outputs. This relies on the
assumption that the base model is unlikely to generate high-quality answers in this
context.

The Optimization Algorithm

An application of the SOX algorithm for solving (6.69) is presented in Algorithm 36.
The sequence {𝑢} plays a critical role in effectively penalizing the sampled“negative
data,”as illustrated in Figure 6.27. A PyTorch implementation of DFT is at

https://github.com/Optimization-AI/DFT.

6.6.3 DisCO for Reinforcing Large Reasoning Models

DisCO, short for Discriminative Constrained Optimization, is a recent approach for
reinforcing large reasoning models. It is motivated by the connection between the
GRPO objective and discriminative learning objectives, and is designed to overcome
key limitations of GRPO and its variants.

Limitation of GRPO and Connection with Discriminative Learning

Let 𝑟 (y|x) ∈ {1, 0} denote the reward assigned to an output ywith respect to the input
x. A quantity that is important to the analysis is 𝑝(x) = Ey∼𝜋old ( · |x) [𝑟 (y|x)] ∈ [0, 1],
which quantifies the difficulty of the question x under the model 𝜋old. We denote by
𝜋+old (·|x) the conditional distribution of outputs when the reward is one (i.e., positive
answers) and by 𝜋−old (·|x) the conditional distribution of outputs when the reward is
zero (i.e., negative answers).

In the following analysis we assume 𝑝(x) = Ey∼𝜋old ( · |x)𝑟 (y|x) ∈ (0, 1); otherwise
we can remove them from consideration as done in practice.

Proposition 6.1. Let us consider the objective of GRPO and its variants with the
following form:

J0 (w) = ExEy∼𝜋old ( · |x)

[
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 𝐴(x, y)
) ]
, (6.75)

where 𝐴(x, y) is given in (6.66). Assume that 𝑓 (𝑥, 𝑦) is non-decreasing function of 𝑥
such that 𝑓 (𝑥, 𝑦) = I(𝑦 > 0)𝑦 𝑓 + (𝑥, 1) − I(𝑦 ≤ 0)𝑦 𝑓 − (𝑥, 1), where both 𝑓 +, 𝑓 − are
non-decreasing functions of 𝑥, then we have
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J0 (w) = Ex
√
𝑝(x) (1 − 𝑝(x))Ey∼𝜋+old ( · |x) ,y′∼𝜋

−
old ( · |x) [𝑠

+ (w; y, x) − 𝑠− (w; y′, x)],
(6.76)

where

𝑠+ (w; y, x) = 1
|y|

|y |∑
𝑡=1

𝑓 +
(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 1
)

𝑠− (w; y, x) = 1
|y|

|y |∑
𝑡=1

𝑓 −
(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 1
)
.

In particular, for GRPO we have

𝑠+ (w; y, x) = 1
|y|

|y |∑
𝑡=1

min( 𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 1 + 𝜖), (6.77)

𝑠− (w; y, x) = 1
|y|

|y |∑
𝑡=1

max( 𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 1 − 𝜖). (6.78)

Proof. Since Ey∼𝜋old ( · |x)𝑟 (y|x) = 𝑝(x),Vary∼𝜋old ( · |x)𝑟 (y|x) = 𝑝(x)(1 − 𝑝(x)), we
have

𝐴(x, y) =

√

1−𝑝 (x)
𝑝 (x) , if 𝑟 (y|x) = 1,

−
√

𝑝 (x)
1−𝑝 (x) , if 𝑟 (y|x) = 0.

(6.79)

By the law of total expectation, we have
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ExEy∼𝜋old ( · |x)

[
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 𝐴(x, y)
)]

= Ex

[
𝑝(x)Ey∼𝜋+old ( · |x)

1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 𝐴(x, y)
)

+ (1 − 𝑝(x))Ey∼𝜋−
old ( · |x)

1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 𝐴(x, y)
)]

= Ex

[
𝑝(x)Ey∼𝜋+old ( · |x)

1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

,

√
1 − 𝑝(x)
𝑝(x)

)
+ (1 − 𝑝(x))Ey∼𝜋−

old ( · |x)
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

,−

√
𝑝(x)

1 − 𝑝(x)

)]
= Ex

√
𝑝(x)(1 − 𝑝(x))

[
Ey∼𝜋+old ( · |x)

1
|y|

|y |∑
𝑡=1

𝑓 + ( 𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 1)

− Ey∼𝜋−
old ( · |x)

1
|y|

|y |∑
𝑡=1

𝑓 − ( 𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

, 1)
]
,

(6.80)

where the last equality follows from the assumption about 𝑓 (𝑥, 𝑦). For GPRO, we
have 𝑓 + (𝑥, 1) = min(𝑥, clip(𝑥, 1 − 𝜖, 1 + 𝜖)) = min(𝑥, 1 + 𝜖) and 𝑓 − (𝑥, 1) =
max(𝑥, clip(𝑥, 1 − 𝜖, 1 + 𝜖)) = max(𝑥, 1 − 𝜖). ut

 Why it matters

We derive two insights from Proposition 6.1 regarding the two components
of J0. First, let us consider the component Ey∼𝜋+old ( · |x) ,y′∼𝜋

−
old ( · |x) , [𝑠

+ (w; y, x) −
𝑠− (w; y′, x)]. Since both 𝑓 + and 𝑓 − are non-decreasing functions of the first ar-
gument, then both 𝑠+ (w; y, x) and 𝑠− (w; y, x) are non-decreasing functions of
𝜋𝜃 (𝑦𝑡 |x, 𝑦<𝑡 ). Hence, maximizing J0 would increase the likelihood of tokens
in the positive answers and decrease the likelihood of tokens in the negative
answers. This makes sense as we would like the new model to have a high like-
lihood of generating a positive (correct) answer and a low likelihood of generat-
ing a negative (incorrect) answer. Thismechanism is closely related to traditional
discriminative methods of supervised learning in the context of AUCmaximiza-
tion, which aims to maximize the scores of positive samples y ∼ 𝜋+old (·|x) while
minimizing scores of negative samples y′ ∼ 𝜋−old (·|x), where the x acts like the
classification task in the AUC maximization. Hence, in the context of discrimi-
native learning, we refer to 𝑠+ (y, x) and 𝑠− (y, x) as scoring functions. Therefore,
Ey∼𝜋+old ( · |x) ,y′∼𝜋

−
old ( · |x) , [𝑠

+ (y, x) − 𝑠− (y′, x)] is a discriminative objective.
Second, let us consider the component𝜔(x) =

√
𝑝(x) (1 − 𝑝(x)), which acts like

a weight scaling the discriminative objective for each individual input question.
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Fig. 6.28: (a) Weight on questions based on correctness probability 𝑝; (b) Histogram
of per-question accuracy evaluated in the GRPO learning.

It is this component that leads to difficulty bias. As shown in Figure 6.28(a),
questions with very high 𝑝(x) values (close to 1) or very low 𝑝(x) values (close
to 0) receive small weights for their discriminative objectives, causing the opti-
mization to focus primarily on questions of intermediate difficulty while paying
little attention to hard questions (𝑝(x) ≈ 0) and easy questions (𝑝(x) ≈ 1). This
mechanism may significantly hinder the learning efficiency. Intuitively, if the
generated answers have only one correct solution out of 10 trials, i.e. 𝑝(x) = 0.1,
we should grasp this chance to enhance the model instead of overlooking it. On
the other hand, even when we encounter an easy question with a probability of
𝑝(x) = 0.9, we should keep improving the model rather than being satisfied
because it still makes mistakes with respect to this question.

DisCO: A Discriminative Constrained Optimization Framework

Motivated by the analysis of GRPO and its connection with discriminative learning,
discriminative objectives can be borrowed directly for learning the reasoning model.
Below, we introduce two approaches.

Discriminative Objectives

For a given question x, let 𝑠(w; y, x) denote a scoring function that measures how
likely the model 𝜋w “predicts” the output y for a given input x 1. Then the AUC score
for the “task” x is equivalent to Ey∼𝜋+old ,y′∼𝜋

−
old
[I(𝑠(w; y, x) > 𝑠(w; y′x))]. Using a

non-decreasing continuous surrogate function ℓ, we form the following objective (in
expectation form) for minimization:

L1 (w) := ExEy∼𝜋+old ( · |x) ,y′∼𝜋
−
old ( · |x)ℓ(𝑠(w; y′x) − 𝑠(w; y, x)). (6.81)

1 in the context of generative models, “predicts” is like “generates”.
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One difference from the objective of GRPO is that we use a single scoring function
𝑠(w; y, x) for both positive outputs y and negative outputs y′. The different scoring
functions for positive and negative outputs in GRPO actually arise from the clipping
operations. The clipping could cause the vanishing gradient, which may also slow
down the learning process. To avoid these issues, we consider non-clipping scoring
functions.

One advantage of designing the objective based on the principle of discrimina-
tive learning is the ability to leverage a wide range of advanced objectives to im-
prove training. A key challenge in RL fine-tuning for reasoning models is the sparse
rewards, which leads to imbalance in generated outputs. Specifically, for some ques-
tions where 𝑝(x) � 1, the number of negative outputs can significantly exceed
the number of positive ones. The objective function L1 is motivated by maximizing
AUC for each question x, i.e., Ey∼𝜋+old ,y′∼𝜋

−
old
[I(𝑠(w; y, x) > 𝑠(w; y′x))]. However,

when there is much more negative data than positive data, AUC is not a good mea-
sure. For example, let us consider a scenario that there are 1 positive y+ and 100
negatives {y1

− , . . . , y100
− }. If the scores of these data are 𝑠(y1

− , x) = 0.9, 𝑠(y+, x) =
0.5, 𝑠(y2

− , x) = 𝑠(y3
− , x) . . . = 𝑠(y100

− , x) = 0.001, then the AUC score is 99
100 = 0.99.

The AUC score is high but is not informative as the model still generates the negative
data y1

− more likely than the positive data y+.
To address this issue, we leverage the pAUC objective (6.28), leading to the fol-

lowing objective for minimization:

L2 (w) := ExEy∼𝜋+old ( · |x)𝜏 log
(
Ey′∼𝜋−

old ( · |x) exp
(
ℓ(𝑠(w; y′, x) − 𝑠(w; y, x))

𝜏

))
.

(6.82)

Lemma 2.4 indicates that L2 (w) ≥ L1 (w) by Jensen’s inequality for the concave
function log. Hence, minimizingL2 (w) will automatically decreasingL1 (w). How-
ever, the reverse is not true. This also explains whyminimizingL2 (w) could be more
effective than maximizing L1 (w).

Scoring functions

Different scoring functions can be considered. Two examples are given below.

• The log-likelihood (log-L) scoring function is defined by

𝑠(w; y, x) = 1
|y|

|y |∑
𝑡=1

log 𝜋w (𝑦𝑡 |x, 𝑦<𝑡 ).

• The likelihood ratio (L-ratio) scoring function is computed by

𝑠(w; y, x) = 1
|y|

|y |∑
𝑡=1

𝜋w (𝑦𝑡 |x, 𝑦<𝑡 )
𝜋old (𝑦𝑡 |x, 𝑦<𝑡 )

.
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Stabilize the training with Constrained Optimization

Training instability is a long-standing issue in RL. Instead of using the clipping op-
eration of PPO, an effective approach is to use the idea of trust region constraint of
TRPO, which restricts the updated model w in the trust region using the reverse KL:

KL(𝜋old, 𝜋w) ≤ 𝛿.

Putting It All Together

DisCO formulates policy learning as a discriminative constrained optimization prob-
lem that combines discriminative objectives with a trust-region constraint. Specifi-
cally, it solves one of the following two formulations:

min
w

L1 (w)

s.t. KL(𝜋old, 𝜋w) ≤ 𝛿,
(6.83)

or alternatively,
min

w
L2 (w)

s.t. KL(𝜋old, 𝜋w) ≤ 𝛿.
(6.84)

Optimization Algorithm

To tackle the constrained optimization, we can use the penalty method presented
in next section, which converts the constrained problem into an unconstrained one
with an appropriate penalty parameter 𝛽. For example, with a squared hinge penalty
function, we solve

min
w

L(w) + 𝛽[KL(𝜋old, 𝜋w) − 𝛿]2
+, (6.85)

where [·]+ = max{·, 0}. We will show that under an appropriate assumption regard-
ing the constraint function and 𝛽, solving the above squared-hinge penalized objec-
tive (6.85) can return a KKT solution of the original constrained problem (6.83).

We discuss the difference between using the squared-hinge penalty function and
the regular KL divergence regularization 𝛽KL(𝜋old, 𝜋𝜃 ). The squared-hinge penalty
function has a dynamic weighting impact for the gradient, ∇𝛽[KL(𝜋old, 𝜋w) − 𝛿]2

+ =
2𝛽[KL(𝜋old, 𝜋w) − 𝛿]+∇KL(𝜋old, 𝜋w), such that if the constraint is satisfied then
the weight 2𝛽[KL(𝜋old, 𝜋w) − 𝛿]+ before the gradient of the regularization term
KL(𝜋old, 𝜋w) becomes zero. This means the KL divergence is only effective when
the constraint is violated. In contrast, the regular KL divergence regularization
𝛽KL(𝜋old, 𝜋w) always contributes a gradient 𝛽∇KL(𝜋old, 𝜋w) no matter whether the
constraint is satisfied or not, which could harm the learning.

The effectiveness of DisCO over GRPO and other methods has been demonstrated
in (Li et al., 2025) for fine-tuning distilled Qwen and LLaMA models on a mathe-
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Fig. 6.29: Comparison of DisCO and GRPO for finetuning a 1.5B distilled Qwen model: left
plots the training reward (averaged over generated outputs for questions used in each step) vs the
number of training steps; right plots the generation entropy vs training steps. Each training step uses
128 questions sampled from the dataset, each associated with 8 generated responses to define the
objective, and a mini-batch size of 32 is used for updates for a epoch. For more details, please refer
to (Li et al., 2025).

matical reasoning data with approximately 40.3k unique problem-answer pairs. A
comparison of the training dynamics for different methods is shown in Figure 6.29.

A PyTorch implementation of DisCO is included in the following Github reposi-
tory:

https://github.com/Optimization-AI/DisCO.

6.7 Constrained Learning

Constrained learning is a machine learning framework in which the model is trained
not only to minimize a specified risk but also to satisfy additional constraints. These
constraints can encode domain knowledge, prior information, regularization terms,
or other application-specific requirements. Unlike simple domain constraints w ∈
W, we consider complicated functional constraints in the form:

min
w∈R𝑑

𝐹 (w)

𝑠.𝑡. 𝑔𝑖 (w) ≤ 0, 𝑖 = 1, . . . , 𝑚.
(6.86)

In many cases, 𝑔𝑖 (w) also depends on the data, making its evaluation and gradient
computation expensive.

Traditional works for constrained optimization include three primary categories:
(1) primal methods, e.g., cooperative subgradient methods and level-set methods; (2)
primal-dual methods that reformulate constrained optimization problems as saddle
point problems; (3) penalty-based approaches that incorporate constraints by adding
a penalty term to the objective function. In this section, we demonstrate how FCCO
enables penalty-based approaches to be both efficient and practically effective.
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6.7.1 A General Penalty-based Approach via FCCO

To tackle the constraints, a penalty-based approach uses a penalty function 𝑓 (·) to
convert the constrained problem into an unconstrained one:

min
w
𝐹 (w) + 𝜌

𝑚

𝑚∑
𝑖=1

𝑓 (𝑔𝑖 (w)), (6.87)

where 𝜌 > 0 is called the penalty parameter. Commonly used penalty functions in-
clude:

• Squared hinge penalty:
𝑓 (𝑔) = 1

2
[𝑔]2

+,

• Hinge penalty:
𝑓 (𝑔) = [𝑔]+,

• Smoothed hinge penalty:

𝑓 (𝑔) =

𝑔 − 𝜖

2 if 𝑔 ≥ 𝜖,
𝑔2

2𝜖 if 0 < 𝑔 < 𝜖,
0 otherwise,

where 𝜖 � 1 is a small constant.

Different penalty functions yield different convergence rates. However, they share
a common property: when the constraints are satisfied at a point w, no penalty is
incurred; otherwise, the greater the violation, the larger the penalty.

We can see that the added second term in (6.87) is a form of FCCO. Hence, the
algorithms developed in Chapter 5 can be applied to solving the resulting uncon-
strained problem. Nevertheless, we need to answer several important questions: (1)
What is an appropriate value for 𝜌? (2) What convergence guarantees can be estab-
lished for the original constrained problem?

Equivalent min-max formulation

By using the conjugate of 𝑓 , the unconstrained problem is equivalent to:

min
w

max
y∈dom𝑚 ( 𝑓 ∗ )

𝐹 (w) + 𝜌 1
𝑚

𝑚∑
𝑖=1

(𝑦𝑖𝑔𝑖 (w) − 𝑓 ∗ (𝑦𝑖)) , (6.88)

For the three penalty functions, we have

• Squared hinge penalty: 𝑓 ∗ (𝑦) = 1
2 𝑦

2, dom( 𝑓 ∗) = {𝑦 : 𝑦 ≥ 0};
• Hinge penalty: 𝑓 ∗ (𝑦) = I0,∞ [𝑦 ∈ dom( 𝑓 ∗)], dom( 𝑓 ∗) = {𝑦 : 𝑦 ∈ [0, 1]};
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6.7. CONSTRAINED LEARNING

• Smoothed hinge penalty: 𝑓 ∗ (𝑦) = 𝜖
2 𝑦

2, dom( 𝑓 ∗) = {𝑦 : 𝑦 ∈ [0, 1]};

KKT solutions

Let us focus on non-convex optimization problemswith a non-convex objective 𝐹 (w)
and non-convex constraints 𝑔𝑘 (w),∀𝑘 . For a non-convex optimization problem, find-
ing a globally optimal solution is intractable. Instead, a Karush-Kuhn-Tucker (KKT)
solution is of interest, which is an extension of a stationary solution of an uncon-
strained non-convex optimization problem.

Definition 6.1 (KKT solution) A solution w is a KKT solution to (6.86) if there
exists 𝝀 = (𝜆1, . . . , 𝜆𝑚)> ∈ R𝑚+ such that (i) 0 ∈ 𝜕𝐹 (w) + ∑𝑚

𝑘=1 𝜆𝑘𝜕𝑔(w), (ii)
𝑔𝑘 (w) ≤ 0,∀𝑘 and (iii) 𝜆𝑘𝑔𝑘 (w) = 0, ∀𝑘 .

For non-asymptotic analysis, we consider finding an 𝜖-KKT solution as defined
below.

Definition 6.2 A solution w is an 𝜖-KKT solution to (6.86) if there exists 𝝀 =
(𝜆1, . . . , 𝜆𝑚)> ∈ R𝑚+ such that (i): dist(0, 𝜕𝐹 (w) + ∑𝑚

𝑘=1 𝜆𝑘𝜕𝑔𝑘 (w)) ≤ 𝜖 , (ii):
[𝑔𝑘 (w)]+ ≤ 𝜖,∀𝑘 , and (iii): |𝜆𝑘𝑔𝑘 (w) | ≤ 𝜖,∀𝑘 .

If the objective and the constraint functions are non-smooth, finding an 𝜖-KKT
solution is not tractable, even the constraint functions are absent. For example, if
𝐹 (𝑥) = |𝑥 | finding 𝜖-stationary solution is infeasible unless we find the optimal so-
lution 𝑥 = 0. To address this challenge, we consider finding a nearly 𝜖-KKT solution
defined below.

Definition 6.3 A solution w is a nearly 𝜖-KKT solution to (6.86) if there exist w̄
and 𝝀 = (𝜆1, . . . , 𝜆𝑚)> ∈ R𝑚+ such that (i): ‖w − w̄‖2 ≤ 𝑂 (𝜖), dist(0, 𝜕𝐹 (w̄) +∑𝑚
𝑘=1 𝜆𝑘𝜕𝑔𝑘 (w̄)) ≤ 𝜖 , (ii): [𝑔𝑘 (w̄)]+ ≤ 𝜖,∀𝑘 , and (iii): |𝜆𝑘𝑔𝑘 (w̄) | ≤ 𝜖,∀𝑘 .

Theory

Solving the unconstrained problem (6.87) can yield a (nearly) stationary solution.
But is this solution close to satisfying the KKT conditions of the original con-
strained problem? We answer this question for the three penalty functions below.
Let 𝒈(w) = (𝑔1 (w), . . . , 𝑔𝑚 (w))> ∈ R𝑚 denote the vector of constraint functions,
and let ∇𝒈(w) ∈ R𝑚×𝑑 denote its Jacobian matrix.

Squared Hinge Penalty

Let us assume 𝐹 and 𝑔𝑘 are differentiable. We make the following assumption re-
garding the regularity of the constraint functions.
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Assumption 6.1. There exists a constant 𝛿 > 0 such that 𝜎min (∇𝒈(w)) ≥ 𝛿 for any
w satisfying max𝑘=1,...,𝐾 𝑔𝑘 (w) > 0, where 𝜎min (·) denotes the minimum singular
value of a matrix.

This assumption implies that when any constraint is violated, its gradient direction
can be used to effectively reduce the constraint value. To illustrate this, consider a
single constraint defined by a 𝐿𝑔-smooth function 𝑔(·). Suppose w is a point where
the constraint is violated, i.e., 𝑔(w) > 0. Taking a gradient descent step w′ = w −
𝜂∇𝑔(w) yields:

𝑔(w′) ≤ 𝑔(w) + ∇𝑔(w)> (w′ − w) +
𝐿𝑔

2
‖w′ − w‖2

2

= 𝑔(w) −
(
𝜂 −

𝐿𝑔𝜂
2

2

)
‖∇𝑔(w)‖2

2.

If Assumption 6.1 holds, then ‖∇𝑔(w)‖2 ≥ 𝛿, which implies:

𝑔(w′) ≤ 𝑔(w) −
(
𝜂 −

𝐿𝑔𝜂
2

2

)
𝛿2,

ensuring a sufficient decrease in the constraint function value.
In addition, we need to assume the objective function is Lipschitz continuous.

Assumption 6.2. There exists a constant 𝐶 > 0 such that ‖∇𝐹 (w)‖2 ≤ 𝐶,∀w.

Under these assumptions, we establish the following theorem.

Theorem 6.1 Suppose Assumption 6.1 and 6.2 hold. Let w be an 𝜖-stationary so-
lution to the unconstrained penalized problem (6.87) with a squared hinge penalty
such that

E
[


∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w)> [𝒈(w)]+




2

2

]
≤ 𝜖2. (6.89)

If 𝜌 ≥ max( 2𝑚(𝐶2+1)
𝜖 𝛿2 ,

𝑚
√

2(𝐶2+1)
𝜖 𝛿 ), then w is also an 𝜖-KKT solution to the original

problem (6.86).

Proof. Let 𝜆𝑘 = 𝜌
𝑚 [𝑔𝑘 (w)]+,∀𝑘 . If max𝑘 𝑔𝑘 (w) ≤ 0, then 𝜆𝑘 = 0. As a result, w is

an 𝜖-KKT solution to the original problem.
Below, let us focus on the case max𝑘 𝑔𝑘 (w) > 0, i.e., there exists one constraint

that is violated at w. Then, under Assumption 6.1, we have
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‖ [𝒈(w)]+‖2
2 ≤ 1

𝛿2 ‖∇𝒈(w)> [𝒈(w)]+‖2
2

=
𝑚2

𝜌2𝛿2




∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w)> [𝒈(w)]+ − ∇𝐹 (w)




2

2

≤ 2𝑚2

𝜌2𝛿2

[
‖∇𝐹 (w)‖2

2 +



∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w) [𝒈(w)]+




2

2

]
≤ 2𝑚2

𝜌2𝛿2

[
𝐶2 + 𝜖2] ≤ 𝜖2,

(6.90)

where the last inequality follows from 𝜌 ≥ 𝑚
√

2(𝐶2+𝜖 2 )
𝛿𝜖 . Hence [𝑔𝑘 (w)]+ ≤ 𝜖,∀𝑘 .

Then, let us bound |𝜆𝑘𝑔𝑘 (w) |. If 𝑔𝑘 (w) < 0, then 𝜆𝑘 = 0, we have |𝜆𝑘𝑔𝑘 (w) | = 0.
If 𝑔𝑘 (w) ≥ 0, then

E|𝜆𝑘𝑔𝑘 (w)] | = E| 𝜌
𝑚
𝑔𝑘 (w)𝑔𝑘 (w)] | ≤ 𝜌

𝑚
E‖[𝒈(w)]+‖2

2

≤ 𝜌

𝑚
· 2𝑚2

𝜌2𝛿2

[
‖∇𝐹 (w)‖2

2 +



∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w) [𝒈(w)]+




2

2

]
≤ 2𝑚
𝜌𝛿2

[
𝐶2 + 𝜖2] ≤ 𝜖

(6.91)

where the last inequality uses 𝜌 ≥ 2𝑚(𝐶2+𝜖 2 )
𝜖 𝛿2 . ut

Hinge Penalty

Since the hinge function is non-smooth, let us consider non-smooth 𝐹 and 𝑔𝑘 . We
make the following assumption regarding the regularity of the constraint functions.

Assumption 6.3. There exists a constant 𝛿 > 0 such that

dist
(
0,

1
𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w)]+

)
≥ 𝛿

𝑚
,∀w ∈ V (6.92)

where V = {w : max𝑘 𝑔𝑘 (w) > 0} and 𝜕 [𝑔𝑘 (w)] denotes the subgradient in terms
of w.

The above assumption is implied by Assumption 6.1 when 𝑔 is differentiable and
hence is weaker. To see this, we have

dist

(
0,

1
𝑚

𝑚∑
𝑘=1

∇[𝑔𝑘 (w]+

)
=






 1
𝑚

𝑚∑
𝑘=1

∇[𝑔𝑘 (w]+







2

= ‖∇𝑔(w)>a‖2 ≥ 𝛿‖a‖2 ≥ 𝛿

𝑚
,

where a = 1
𝑚 (𝜉1, . . . , 𝜉𝑚), and 𝜉𝑘 ∈ ([𝑔𝑘 (w)]+)′ ∈ [0, 1].

Theorem 6.2 Suppose Assumption 6.3 and Assumption 6.2 hold. Let w be a nearly
𝜖-stationary solution to the unconstrained penalized problem (6.87) with a hinge
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penalty such that there exists w̄ satisfying ‖w − w̄‖2 ≤ 𝑂 (𝜖), and

dist
(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
≤ 𝜖 .

If 𝜌 > 𝑚(𝐶+1)
𝛿 , then w is a nearly 𝜖-KKT solution to the original problem (6.86).

Proof. By the definition of w, there exists w̄ such that ‖w − w̄‖2 ≤ 𝑂 (𝜖), and

dist

(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
≤ 𝜖 .

Since 𝜕 [𝑔𝑘 (w̄)]+ = 𝜉𝑘𝜕𝑔𝑘 (w̄), where

𝜉𝑘 =


1 if 𝑔𝑘 (w̄) > 0,
[0, 1] if 𝑔𝑘 (w̄) = 0,
0 if 𝑔𝑘 (w̄) < 0,

∈ [𝑔𝑘 (w̄)]′+,

there exists 𝜆𝑘 ∈ 𝜌𝜉𝑘
𝑚 ≥ 0,∀𝑘 such that

dist

(
0, 𝜕𝐹 (w̄) +

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)
≤ 𝜖 .

Thus, we prove condition (i) in Definition 6.3. Next, let us prove condition (ii). We
argue that max𝑘 𝑔𝑘 (w̄) ≤ 0. Suppose this does not hold, i.e., max𝑘 𝑔𝑘 (w̄) > 0, we
will derive a contradiction. Since ∃v ∈ 𝜕𝐹 (w̄) we have

𝜖 ≥ dist

(
0, v + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
≥ dist

(
0,
𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
− ‖v‖2 ≥ 𝜌𝛿

𝑚
− 𝐶,

which is a contradiction to the assumption that 𝜌 > 𝑚(𝜖 +𝐶 )
𝛿 . Thus, max𝑘 𝑔𝑘 (x̄) ≤ 0.

This proves condition (ii). The last condition (iii) holds because: 𝜆𝑘 = 𝜌𝜉𝑘
𝑚 , which is

zero if 𝑔𝑘 (w̄) < 0. Hence, 𝜆𝑘𝑔𝑘 (w̄) = 0. ut

Smoothed Hinge Penalty

We make the following assumption regarding the regularity of the constraint func-
tions.

Assumption 6.4. There exists a constant 𝛿 > 0 such that

dist
(
0, 𝜕𝑔(w)>v

)
≥ 𝛿‖v‖2,∀w ∈ V,∀v ∈ R𝑚 (6.93)
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whereV = {w : max𝑘 𝑔𝑘 (w) > 0}.

Theorem 6.3 Suppose Assumption 6.1 and Assumption 6.2 hold. Let w be a nearly
𝜖-stationary solution to the unconstrained penalized problem (6.87) with a smoothned
hinge penalty such that there exists w̄ satisfying ‖w − w̄‖2 ≤ 𝑂 (𝜖), and

dist
(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 𝑓 (𝑔𝑘 (w̄))
)
≤ 𝜖 .

If 𝜌 > 𝑚(𝐶+1)
𝛿 , then there exists 𝝀 ∈ R𝑚+ it holds (i) ‖w−w̄‖ ≤ 𝑂 (𝜖), dist(0, 𝜕𝐹 (w̄)+∑𝑚

𝑘=1 𝜆𝑘𝜕𝑔𝑘 (w̄)) ≤ 𝜖 , (ii) [𝑔𝑘 (w̄)]+ ≤ 𝜖,∀𝑘 , and (iii) 𝜆𝑘 [𝑔𝑘 (w̄)]+ ≤ 𝜌𝜖/𝑚,∀𝑘 .

Proof. By the definition of 𝑓 (·), we have

∇ 𝑓 (·) = 1
𝜖

min{[·]+, 𝜖}.

According to the definition of w, there exists w̄ such that ‖w − w̄‖2 ≤ 𝑂 (𝜖) and

dist

(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

∇ 𝑓 [𝑔𝑘 (w̄)]𝜕𝑔𝑘 (w̄)
)
≤ 𝜖 .

Let 𝜆𝑘 = 𝜌
𝑚∇ 𝑓 (𝑔𝑖 (w̄)) = 𝜌

𝜖𝑚 min{[𝑔𝑘 (w̄)]+, 𝜖}. Then,

dist

(
0, 𝜕𝐹 (w̄) +

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)
≤ 𝜖 .

Suppose max𝑖=1,...,𝑚 𝑔𝑖 (w̄) > 𝜖 . Then there exists 𝑘 ′ such that [𝑔𝑘 (w̄)]+ > 𝜖 .
Hence

𝜆𝑘′ =
𝜌

𝜖𝑚
min{[𝑔𝑘′ (w̄)]+, 𝜖} =

𝜌

𝜖𝑚
𝜖 =

𝜌

𝑚
.

Hence ‖𝝀‖2 ≥ 𝜌
𝑚 . As a result, there exists v ∈ 𝜕𝐹 (w̄) such that

𝜖 ≥ dist

(
0, v +

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)

≥ dist

(
0,

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)
− ‖v‖2 ≥ 𝜌𝛿

𝑚
− 𝐶, (6.94)

which contradicts with 𝜌 > 𝑚(𝐶+𝜖 )
𝛿 . Therefore, we must have

max
𝑘=1,...,𝑚

𝑔𝑘 (w̄) ≤ 𝜖 . (6.95)

Finally, let us prove |𝜆𝑘𝑔𝑘 (w̄) | ≤ 𝑂 (𝜖). If 𝑔𝑘 (w̄) < 0, we have 𝜆𝑘 = 0, then it holds
trivially. If 0 ≤ 𝑔𝑘 (w̄) ≤ 𝜖 , we have
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Algorithm Penalty 𝐹 𝑔𝑖 Complexity Loop

SOX sqH/smH SM SM 𝑂 (𝜖 −7 ) Single
MSVR sqH/smH MSS MSS 𝑂 (𝜖 −5 ) Single
SONX H WC WC 𝑂 (𝜖 −6 ) Single
SONEX H SM SM 𝑂 (𝜖 −5 ) Single
ALEXR-DL smH WC WC 𝑂 (𝜖 −5 ) Double

Table 6.1: Summary of different algorithms for penalty-based constrained opti-
mization. ‘WC” means weakly convex, “SM” means smooth, MSS mean “mean
squared smoothness, ‘H’ denotes the hinge penalty, ‘smH’ denotes the smoothed
hinge penalty and ‘sqH’ denotes the squared hinge penalty.

|𝜆𝑘𝑔𝑘 (w̄) | ≤ 𝜌

𝑚
[𝑔𝑘 (w̄)]+ ≤ 𝜌𝜖

𝑚
. (6.96)

ut

Critical: One important difference among the three penalty functions lies in
the required order of the penalty parameter 𝜌. For the squared hinge penalty,
it is necessary to set 𝜌 = 𝑂 (1/𝜖), whereas for the hinge and smoothed hinge
penalties, it suffices to take 𝜌 = 𝑂 (1). This lead to different complexities of
algorithms based on these penalty functions.

Optimization Algorithms

The SOX algorithm and the MSVR algorithm can be used to optimize the squared
hinge penalty function and smoothed hinge penalty function with smooth objective
function and constraints. SONX and SONEX can be used to optimize the hinge
penalty based objective, where the latter is equivalent to a variant for optimizing the
smoothed hinge penalty using the MSVR estimator for the inner functions and the
MA gradient estimator. ALEXR-DL (the double-loop ALEXR, see Section 5.4.5)
can be used to optimize the problem with a weakly convex objective and weakly
convex constraint functions. The computational complexities of these algorithms for
obtaining a (nearly) 𝜖-KKT solution are summarized in Table 6.1. The complexity
results for SONX and SONEX follow directly from their original theorems. The com-
plexities of SOX and MSVR are obtained by substituting 𝐿𝐹 = 𝑂 (𝜌), 𝐿1 = 𝑂 (𝜌),
𝐺1 = 𝑂 (𝜌), and 𝜌 = 𝑂 (1/𝜖) into Theorem 5.1 and Theorem 5.2, respectively. The
complexity of ALEXR-DL follows the argument in Section 5.4.5.

Finally, we note that the value of the parameter 𝛿 in Assumptions 6.1, 6.3, and 6.4
has a significant impact on the complexity. In particular, smaller values of 𝛿 lead to
higher complexities.
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6.7. CONSTRAINED LEARNING

6.7.2 Continual Learning with Zero-forgetting Constraints

Continual learning usually refers to learning a sequence of tasks one by one and
accumulating knowledge like human instead of substituting knowledge. The core is-
sue in continual learning is known as catastrophic forgetting, i.e., the learning of the
later tasks may significantly degrade the performance of the model for the earlier
tasks. Different approaches have been investigated to mitigate catastrophic forget-
ting, including regularization based approaches, memory based approaches, network
expansion based approaches, and constrained optimization based approaches.

Regularization based approaches

These methods aim to preserve previously learned knowledge by penalizing changes
to important model parameters. These approaches usually solve the following objec-
tive:

min
w

Lnew (w,Snew) + 𝜆𝑅(w,wold), (6.97)

where Lnew denotes the loss on the new task with a data set Snew, and 𝑅(w,wold) is
the regularization of the new model with respect to the old model. It could regular-
ize directly in the weight parameters or regularize through functions of the weight
parameters (e.g., intermediate layers of the neural networks)

Memory based approaches

These techniques store a subset of past data or representations and replay them during
training on new tasks. This allows the model to rehearse old knowledge, effectively
mimicking how humans review what they’ve previously learned. Strategies include
storing raw data, or using generative models to simulate past experiences. These
replay data will be used in training as simple as a regularization approach:

min
w

Lnew (w,Snew) + 𝜆Lold (w,Sold) (6.98)

where Lold (w,Sold) denotes the loss of the model old tasks using their data Sold.

Network Expansion based approaches

Network expansion based methods address forgetting by dynamically growing the
model’s architecture as new tasks are introduced. This can involve adding new neu-
rons, layers, or modules for each task while keeping older components fixed or par-
tially shared. By allocating new capacity, the model can learn new tasks without
overwriting old knowledge.
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A Constrained Optimization Approach

A key limitation of the replay and regularization approach in (6.98) is that it does
not necessarily preserve the model’s performance on all previous tasks, even with a
large regularization weight. Moreover, overly large weights can suppress learning on
the new task. This arises because not all prior tasks are equally challenging—some
may be inherently easier than others.

A straightforward remedy is to formulate a constrained optimization problem:

min
w

Lnew (w,Snew)

s.t. L𝑘 (w,S𝑘) − L𝑘 (wold,S𝑘) ≤ 0, ∀𝑘 = 1, . . . , 𝑚,
(6.99)

where S𝑘 denotes the dataset for the 𝑘-th previous task and L𝑘 is its corresponding
loss function. These constraints ensure that the new model does not degrade perfor-
mance on any individual old task as measured on replayed data, which are referred
to as the zero-forgetting constraints.

Although this constrained optimization problem was traditionally considered dif-
ficult due to the number of constraints and data dependencies, the algorithms in-
troduced in the previous subsection make it tractable. Notably, this constrained for-
mulation serves as a unifying framework that connects all three major approaches:
regularization-based, expansion-based, and memory-based continual learning.

With a penalty function 𝑓 (e.g., smoothed hinge penalty), we solve the following
problem:

min
w

Lnew (w,Snew) +
𝜌

𝑚

𝑚∑
𝑘=1

𝑓 (L𝑘 (w,S𝑘) − L𝑘 (wold,S𝑘)).

Then the algorithms can be easily applied to solving this problem.

Connection with the Three Categories of Approaches

First, the above constrained optimization method falls under memory based ap-
proaches, as it requires access to data S𝑘 from each previous task to define the zero-
forgetting constraints.

Second, the penalty term introduces a regularization perspective, establishing a
connection with regularization based approaches. However, it differs from standard
regularization as in (6.98). The penalty function adaptively weights the gradients of
each prior task. For example, consider the hinge penalty. The gradient of the penalty
term is given by

𝜌

𝑚

𝑚∑
𝑘=1

𝜉𝑘∇L𝑘 (w;S𝑘), (6.100)

where 𝜉𝑘 = 1 if L𝑘 (w;S𝑘) − L𝑘 (wold;S𝑘) > 0; otherwise, 𝜉𝑘 = 0. Using
the FCCO technique, an estimator 𝑢𝑘 is used to track the quantity L𝑘 (w;S𝑘) −
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Fig. 6.30: Performance comparison with the standard regularization method (RM).
The new task is to improve the performance on classifying the classDresssing Room
on Places365 Dataset, and other 354 classes serve as previous tasks each with 2k
samples. Red line denotes the old model’s performance, green diamonds denote the
performance on the target class. The RM baseline shown is for the regularization
parameter 𝜆 = 10000. For more details, please refer to (Li et al., 2024)

L𝑘 (wold;S𝑘), based on which 𝜉𝑘 is computed. Consequently, the algorithm assigns
adaptive weights to the gradients of prior tasks: if task 𝑘 shows no performance
degradation (i.e., 𝑢𝑘 ≤ 0), the corresponding gradient receives zero weight. This
effect makes the constrained optimization approach more attractive than the regular-
ization approach for enforcing the constraints; see Figure 6.30.

Third, although the connection to network expansion based approaches is less
direct, it is suggested by the convergence analysis of the constrained optimization
algorithms. Specifically, the regularity assumptions in Assumptions 6.1 and 6.3 pro-
vide insight into the benefits of network expansion. Expanding the network from the
old model wold can make it easier to find a new model that maintains or improves
performance on previous tasks, effectively increasing the regularity constant 𝛿. This,
in turn, allows for a smaller penalty parameter 𝜌 and potentially accelerates conver-
gence—an effect formalized in what follows.

Without causing confusion, we denote by w the parameter of the old neural net-
work, which consists of two components w0 and 𝑊 such that the output ℎ(w, x) ∈
R𝑑2 can be represented as ℎ(w, x) = 𝑊 · ℎ0 (w0, x), where ℎ0 (w0, ·) ∈ R𝑑1 is a back-
bone network and 𝑊 ∈ R𝑑2×𝑑1 is the head. Given the old model w = (w0,𝑊), we
expand the network by allowing task-dependent heads, which is to let each task 𝑘
have its own head𝑊𝑘 = 𝑊 +𝑈𝑘 where𝑈𝑘 ∈ R𝑑2×𝑟 . The output of this expanded net-
work for task 𝑘 is ℎ(ŵ; x) = (𝑊 +𝑈𝑘) · ℎ0 (w0, x), where ŵ = (w0,𝑊,𝑈1, . . . ,𝑈𝑚).
For simplicity, let us assume each task has only one example S𝑘 = {x𝑘} and let
L𝑘 (w; S𝑘) = ℓ(ℎ(w, x)). Without the expansion, the Jacobian of the constraint func-
tions at w is ∇𝒈(w) = [∇ℎ(w, x1), · · · ,∇ℎ(w, x𝑚)]𝐴, where 𝐴 ∈ R𝑚×𝑚 a diagonal
matrix with 𝐴𝑘𝑘 = ℓ′ (ℎ(w; x𝑘)). With the expansion, the Jacobian of the constraint
functions at ŵ is ∇ 𝒈̂(w) = [∇ℎ(ŵ, x1), · · · ,∇ℎ(ŵ, x𝑚)]𝐴′, where 𝐴′ ∈ R𝑚×𝑚 a di-
agonal matrix with 𝐴′

𝑘𝑘 = ℓ′ (ℎ(ŵ; x𝑘)). If we initialize 𝑈1 = 𝑈2 . . . = 𝑈𝑚 = 0,
then 𝐴 = 𝐴′. Next, we quantify the increase of the minimum singular value of
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the matrix ∇ĥ(ŵ) = [∇ℎ(ŵ, x1), · · · ,∇ℎ(ŵ, x𝑚)] compared with that of ∇h(w) =
[∇ℎ(w, x1), · · · ,∇ℎ(w, x𝑚)].

Lemma 6.4 Suppose𝑈𝑘 = 0 for all 𝑘 . We have

𝜆min

(
∇ĥ(ŵ)>∇ĥ(ŵ)

)
≥ 𝜆min

(
∇h(w)>∇h(w)

)
+ min

𝑘
‖∇𝑊ℎ𝑘 (w)‖2

2 ,

where 𝜆min (·) denotes the minimum eigen-value of a matrix and ℎ𝑘 (w) = ℎ(w; x𝑘).

 Why it matters

This lemma indicates that expanding the network can increase the minimum sin-
gular value of the Jacobianmatrix of the constraint functions, which in turn leads
to a lower complexity in finding a KKT solution, i.e., making the constraints eas-
ier to satisfy.

Proof. Let ℎ̂𝑘 (ŵ) = ℎ(ŵ; x𝑘). We consider w,𝑊,𝑈 as flattend vectors. Recall that
w has two component w0 and 𝑊 . The gradient of ℎ𝑘 (w) with respect to 𝑊 and w0
are denoted by ∇𝑊ℎ𝑘 (w) and ∇w0ℎ𝑘 (w), respectively. Hence,

∇ℎ𝑘 (w)> =
(
∇w0ℎ𝑘 (w)>,∇𝑊ℎ𝑘 (w)>

)
for 𝑘 = 1, . . . , 𝑚. Similarly, after adding the task-dependent heads, ŵ has three com-
ponent w0, 𝑊 , U = (𝑈1, . . . ,𝑈𝑚). The gradients ∇w0 ℎ̂𝑘 (ŵ), ∇𝑊 ℎ̂𝑘 (ŵ) ∇U ℎ̂𝑘 (ŵ)
are defined correspondingly, and

∇ℎ̂𝑘 (ŵ)> =
(
∇w0 ℎ̂𝑘 (ŵ)>,∇𝑊 ℎ̂𝑘 (ŵ)>,∇U ℎ̂𝑘 (ŵ)>

)
.

Recall that
ℎ̂𝑘 (ŵ) = ℎ𝑘 ((w0,𝑊 +𝑈𝑘)) for 𝑘 = 1, . . . , 𝑚.

Therefore,

∇w0 ℎ̂𝑘 (ŵ) = ∇w0ℎ𝑘 ((w0,𝑊 +𝑈𝑘)),
∇𝑊 ℎ̂𝑘 (ŵ) = ∇𝑊ℎ𝑘 ((w0,𝑊 +𝑈𝑘)),

and

∇U ℎ̂𝑘 (ŵ)> =

(
0, . . . , 0,∇𝑊ℎ𝑘 ((w0,W +𝑈𝑘))>︸                        ︷︷                        ︸

The 𝑘th block

, 0, . . . , 0
)
,

where the sparsity pattern of ∇U ℎ̂𝑘 (ŵ) is because ℎ̂𝑘 does not depend on𝑈 𝑗 , 𝑗 ≠ 𝑘 .
Since𝑈𝑘 = 0 for all 𝑘 . It holds that ℎ𝑘 (w) = ℎ̂𝑘 (ŵ) and

∇ℎ𝑘 (w)> =
(
∇w0ℎ𝑘 (w)>,∇𝑊ℎ𝑘 (w)>

)
=

(
∇w0 ℎ̂𝑘 (ŵ)>,∇𝑊 ℎ̂𝑘 (ŵ)>

)
.
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6.7. CONSTRAINED LEARNING

Consider any 𝜶 = (𝛼1, . . . , 𝛼𝑚) ∈ R𝑚. We have

𝜆min

( [
∇ℎ̂1 (ŵ), . . . ,∇ℎ̂𝑚 (ŵ)

]> [
∇ℎ̂1 (ŵ), . . . ,∇ℎ̂𝑚 (ŵ)

] )
= min

𝜶,s.t.‖𝜶‖=1






 𝑚∑
𝑘=1

𝛼𝑘∇ℎ̂𝑘 (ŵ)





2

2

= min
𝜶,s.t.‖𝜶‖=1

©­«





 𝑚∑
𝑘=1

𝛼𝑘∇w0 ℎ̂𝑘 (ŵ)





2

2

+





 𝑚∑
𝑘=1

𝛼𝑘∇𝑊 ℎ̂𝑘 (ŵ)





2

2

+





 𝑚∑
𝑘=1

𝛼𝑘∇U ℎ̂𝑘 (ŵ)





2

2

ª®¬
= min

𝜶,s.t.‖𝜶‖=1

©­«





 𝑚∑
𝑘=1

𝛼𝑘∇ℎ𝑘 (w)





2

2

+
𝑚∑
𝑘=1

𝛼2
𝑘 ‖∇𝑊ℎ𝑘 (w)‖2

2
ª®¬

≥𝜆min
(
[∇ℎ1 (w), . . . ,∇ℎ𝑚 (w)]> [∇ℎ1 (w), . . . ,∇ℎ𝑚 (w)]

)
+ min

𝑘
‖∇𝑊ℎ𝑘 (w)‖2

2 ,

where the first two equalities are by definitions and the third equality is because
𝑈𝑘 = 0 for all 𝑘 . ut

 Practice: Squared Hinge Penalty vs. Smoothed Hinge Penalty

Both the squared hinge penalty and the smoothed hinge penalty are smooth functions,
but they have different practical implications. The squared hinge penalty typically
requires a much larger penalty parameter, on the order of 𝜌 = 𝑂 (1/𝜖) as indicated
by the theory, to enforce the constraints effectively. In contrast, the smoothed hinge
penalty achieves similar constraint satisfaction with a significantly smaller 𝜌. This
difference is illustrated in Figure 6.31 (right), which shows that a large penalty pa-
rameter 𝜌 = 800 is needed for the squared hinge penalty, whereas the smoothed
hinge penalty achieves comparable results with just 𝜌 = 20. As a result, optimiza-
tion of the objective function tends to be more effective when using the smoothed
hinge penalty as seen in Figure 6.31 (left).

6.7.3 Constrained Learning with Fairness Constraints

Machine learning models are increasingly used in high-stakes domains such as hir-
ing, finance, and healthcare, where biased predictions can lead to unfair outcomes
for individuals from protected groups (e.g., based on race, gender, or age). Learn-
ing with fairness constraints is a framework that aims to train models that are both
accurate and equitable by incorporating formal definitions of fairness directly into
the training objective. Various notions of fairness have been proposed, including de-
mographic parity, equalized odds, equal opportunity, AUC fairness, ROC fairness,
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Fig. 6.31: Training curves of Target ΔACC values (left) and constraint violation
(right) of different methods. The format of label is ”Algorithm(penalty function,
𝜌)”, and SH, smH mean square hinge and smoothed hinge, respectively. For more
details, please refer to (Chen et al., 2025b).

and ranking fairness. Below, we present an application of constrained optimization
to learning under ROC fairness constraints.

Constrained Learning with ROC Fairness

We consider a binary classification setting. Let ℎ(w; ·) ∈ R denote a predic-
tive model. Suppose the data are divided into two demographic groups D𝑝 =
{(x𝑝𝑖 , 𝑦

𝑝
𝑖 )}

𝑛𝑝
𝑖=1 and D𝑢 = {(x𝑢𝑖 , 𝑦𝑢𝑖 )}

𝑛𝑢
𝑖=1, where x denotes the input data and 𝑦 ∈

{1,−1} denotes the class label. Traditional fairness measures usually assume the pre-
diction is given by I(ℎ(w; x) > 𝑡) with a specific threshold. However, the threshold
may be dynamically changed in practice to achieve a balance between true positive
and false positive rate.

To accommodate this, a ROC fairness is introduced to ensure the ROC curves for
classification of the two groups are the same, which indicates the false positive rate
(FPR) and true positive rate (TPR) at all possible thresholds are equal across the two
groups. Since the ROC curve is constructed with all possible thresholds, we use a set
of thresholds Γ = {𝜏1, · · · , 𝜏𝑚} to define the ROC fairness. For each threshold 𝜏, we
impose a constraint that the TPR and FPR of the two groups are close, formulated
as the following:

𝑔+𝜏 (w) =��� 1
𝑛+𝑝

𝑛𝑝∑
𝑖=1

I(𝑦𝑝𝑖 = 1)𝜎(ℎ(w; x𝑝𝑖 ) − 𝜏) −
1
𝑛+𝑢

𝑛𝑢∑
𝑖=1

I(𝑦𝑢𝑖 = 1)𝜎(ℎ(w; x𝑢𝑖 ) − 𝜏)
��� − 𝜅 ≤ 0,

and

𝑔−𝜏 (w) =��� 1
𝑛−𝑝

𝑛𝑝∑
𝑖=1

I(𝑦𝑝𝑖 = −1)𝜎(ℎ(w; x𝑝𝑖 ) − 𝜏) −
1
𝑛−𝑢

𝑛𝑢∑
𝑖=1

I(𝑦𝑢𝑖 = −1)𝜎(ℎ(w; x𝑢𝑖 ) − 𝜏)
��� − 𝜅 ≤ 0,
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6.8. LEARNING DATA COMPOSITIONAL NETWORKS

where 𝜎(𝑠) is a surrogate of the indicator function I(𝑠 > 0), e.g., the sigmoid func-
tion, and 𝜅 > 0 is a tolerance parameter.

Then the learning problem can be imposed as:

min
w

𝐹 (w),

𝑠.𝑡. 𝑔+𝜏 (w) ≤ 0, 𝑔−𝜏 (w) ≤ 0,∀𝜏 ∈ Γ.

where 𝐹 (w) is an appropriate risk function.
By utilizing the penalty method, we solve the following problem:

min
w
𝐹 (w) + 𝜌

2|Γ|
∑
𝜏∈Γ

( 𝑓 (𝑔+𝜏 (w)) + 𝑓 (𝑔−𝜏 (w))). (6.101)

Let us define

𝑔1 (w; 𝜏) = 1
𝑛+𝑝

𝑛𝑝∑
𝑖=1

I(𝑦𝑝𝑖 = 1)𝜎(ℎ(w; x𝑝𝑖 ) − 𝜏)

𝑔2 (w; 𝜏) = 1
𝑛+𝑢

𝑛𝑢∑
𝑖=1

I(𝑦𝑢𝑖 = 1)𝜎(ℎ(w; x𝑢𝑖 ) − 𝜏).

Since 𝑓 (·) is a non-decreasing convex function, hence 𝑓 (|𝑥 |) is a convex func-
tion. Then the penalty term 𝑓 (𝑔+𝜏 (w)) = 𝑓 ( |𝑔1 (w; 𝜏) − 𝑔2 (w; 𝜏) | − 𝜅) is a com-
positional of a convex function 𝑓 (𝒈) = 𝑓 ( |𝑔1 − 𝑔2 | − 𝜅) and a smooth mapping
𝑔(w) = [𝑔1 (w; 𝜏), 𝑔2 (w; 𝜏)]. Hence, SONX, SONEX,ALEXR-DL can be employed
to solve the above problem.

6.8 Learning Data Compositional Networks

So far, we have considered the compositional loss function, which involves compar-
ing the output of one data ℎ(w; x) with that of many other data. In this section, we
consider compositional networks, where the computation of ℎ(w; x) for one data x
depends on many other data.

6.8.1 Large-scale Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful class of models designed to learn
representations from graph-structured data, where information is distributed across
nodes and edges. Unlike traditional neural networks that operate on grid-like inputs,
GNNs leverage the connectivity structure of graphs to propagate and aggregate in-
formation from a node’s neighborhood, capturing both local and global patterns.
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GNNs have been successfully applied to tasks such as node classification, link pre-
diction, and graph-level classification in domains including social networks, molec-
ular chemistry, and recommendation systems.

A key distinction in GNN-based learning lies between transductive and inductive
settings. In transductive learning, the model is trained and tested on the same fixed
graph, meaning all nodes (including test nodes) are present during training. Classic
GNN models such as Graph Convolutional Neural (GCN) Network in this setting.
In contrast, inductive methods aim to generalize to unseen nodes or entirely new
graphs not available during training. GraphSAGE (Graph Sample and Aggregate)
is a method that is designed for inductive learning, enabling flexible deployment in
dynamic environments where new nodes or graphs continuously emerge.

Let G = (V, E) denote a graph, where V is the set of nodes and E is the set of
edges. Each node 𝑣 ∈ V is associated with a feature vector x𝑣. Given a node 𝑣 with
neighborsN(𝑣), a general scheme fo updating the node’s representation in layer 𝑘 is
following:

h(𝑘 )
N(𝑣) = Aggregate

({
h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
,

h(𝑘 )
𝑣 = Update

(
h(𝑘−1)
𝑣 , h(𝑘 )

N(𝑣)

)
,

where the first step aggregates the representations of the nodes in the immediate
neighborhood of node 𝑣 into a single vector, and the second step updates the node’s
current representation h(𝑘−1)

𝑣 , with the aggregated neighborhood vector to generate
a new embedding h(𝑘 )

𝑣 .

GraphSAGE (Graph Sample and Aggregate)

GraphSAGE is a scalable inductive framework for learning node representations in
large graphs. Let us consider a particular implementation of the above framework:

A({h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣) ∪ {𝑣}}) = 1

|N𝑣 | + 1

∑
𝑢∈N(𝑣)∪{𝑣}

h(𝑘−1)
𝑢 (6.102)

h(𝑘 )
𝑣 = 𝜎

(
W(𝑘 ) · A({h(𝑘−1)

𝑢 : 𝑢 ∈ N𝑣 ∪ {𝑣}})
)
, (6.103)

where A(·) denotes the mean operator and 𝜎(·) is an activation function.
When working with large-scale graphs, GraphSAGE employs node sampling to

ensure scalability. At each layer, a node samples a fixed number of neighbors and
aggregates their features. However, as the number of layers increases, the number
of nodes involved in computing a single node’s embedding can grow exponentially.
Specifically, if each node samples 𝐾 neighbors and the model has 𝐿 layers, then
computing the embedding for a single node may involve up to 𝐾𝐿 nodes. This ex-
ponential growth is known as the neighborhood explosion problem, which can lead
to significant computational and memory overhead, especially in deep models or
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Fig. 6.32: Comparison between
standard GraphSAGE and Graph-
SAGE with Feature Momentum
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For more details, please refer
to (Yu et al., 2022).

large graphs. While reducing 𝐾 (e.g., to 1) can mitigate neighborhood explosion, it
may also introduce high variance in the estimation of the mean operator potentially
degrading model performance.

GraphSAGE with Feature Momentum

The challenge discussed earlier arises from the compositional structure of h(𝑘 )
𝑣 . To

address this, we leverage a moving average estimator. Let B𝑣 ⊂ N(𝑣) be a sub-
sampled neighborhood of node 𝑣, and define B̄𝑣 = B𝑣 ∪ {𝑣}. At the 𝑡-th iteration, we
estimate the aggregated feature vector as follows:

h̃(𝑘,𝑡 )
𝑣 =

{
h̃(𝑘,𝑡−1)
𝑣 if 𝑣 ∉ D𝑘 ,

(1 − 𝛾)h̃(𝑘,𝑡−1)
𝑣 + 𝛾Â

({
ĥ(𝑘−1,𝑡 )
𝑢 : 𝑢 ∈ B̄𝑣

})
otherwise,

(6.104)

where D𝑘 is the sub-sampled set of nodes updated at the 𝑘-th layer, 𝛾 ∈ (0, 1) is the
momentum parameter, and Â(·) is an unbiased estimator of the aggregation function
A(·) over the neighborhood N𝑣 ∪ {𝑣}. The estimator is computed as:

Â
({

ĥ(𝑘−1,𝑡 )
𝑢 : 𝑢 ∈ B̄𝑣

})
=

1
|N𝑣 | + 1

ĥ(𝑘−1,𝑡 )
𝑣 + |N𝑣 |

|N𝑣 | + 1
· 1
|B𝑣 |

∑
𝑢∈B𝑣

ĥ(𝑘−1,𝑡 )
𝑢 .

Next, we update the feature representation at the 𝑘-th layer:

ĥ(𝑘,𝑡 )
𝑣 = 𝜎

(
W(𝑘 )
𝑡 · h̃(𝑘,𝑡 )

𝑣

)
. (6.105)

This process is repeated for 𝐿 layers to compute the output representation ĥ(𝐿,𝑡 )
𝑣 for

sub-sampled nodes 𝑣 ∈ D𝐿 , which are then used to compute the mini-batch loss. We
refer to this approach as GraphSAGE with Feature Momentum.

This method effectively reduces the required number of sampled neighbors per
node while maintaining the performance of using full neighborhoods; see Fig-
ure 6.32.
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6.8.2 Multi-instance Learning with Attention

Multi-instance learning (MIL) refers to a setting where a bag of instances are ob-
served for an object of interest and only one label is given to describe that ob-
ject. Many real-life applications can be formulated as MIL. For example, the med-
ical imaging data for diagnosing a patient usually consists of a series of 2D high-
resolution images (e.g., CT scan), and only a single label (containing a tumor or not)
is assigned to the patient.

A standard assumption for MIL is that a bag is labeled positive if at least one of
its instances has a positive label, and negative if all of its instances have negative
labels. The assumption implies that a MIL model must be permutation-invariant for
the prediction function ℎ(X), whereX = {x1, . . . , x𝑚} denotes a bag of instances. To
achieve permutation invariant property, fundamental theorems of symmetric func-
tions have been developed. In particular, a scoring function for a set of instances X
denoted by ℎ(X) ∈ R, is a symmetric function if and only if it can be decomposed as
ℎ(X) = 𝑔(∑x∈X 𝜓(x)) (Zaheer et al., 2017), where 𝑔 and 𝜓 are suitable transforma-
tions. Another theory is that a Hausdorff continuous symmetric function ℎ(X) ∈ R
can be arbitrarily approximated by a function in the form 𝑔(maxx∈X 𝜓(x)) (Qi et al.,
2016), where max is the element-wise vector maximum operator and 𝜓 and 𝑔 are
continuous functions. These theories provide support for several widely used pool-
ing operators used for MIL.

Deep learning with different pooling operations

Let 𝑒(w𝑒; x) ∈ R𝑑𝑜 be the instance-level representation encoded by a neural network
w𝑒, 𝜙(w; x) ∈ [0, 1] be the instance-level prediction score (after some activation
function), and ℎ(w;X𝑖) ∈ [0, 1] be the pooled prediction score of the bag 𝑖 over all
its instances. Besides, 𝜎(·) denotes the sigmoid activation.

Softmax pooling of predictions

The simplest approach is to take the maximum of predictions of all instances in the
bag, i.e., ℎ(w;X) = maxx∈X 𝜙(w; x). However, the max operation is non-smooth,
which usually causes difficulty in optimization. In practice, a smoothed-max (aka.
log-sum-exp) pooling operator is used instead:

ℎ(w;X) = 𝜏 log

(
1
|X|

∑
x∈X

exp(𝜙(w; x)/𝜏)
)
, (6.106)

where 𝜏 > 0 is a hyperparameter and 𝜙(w; x) is the prediction score for instance x.
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Mean pooling of predictions

The mean pooling operator just takes the average of predictions of individual in-
stances, i.e., ℎ(w;X) = 1

|X |
∑

x∈X 𝜙(w; x). Indeed, smoothed-max pooling interpo-
lates between the max pooling (with 𝜏 = 0) and the mean pooling (with 𝜏 = ∞).

Attention-based Pooling of features

Attention-based pooling aggregates the feature representations using attention, i.e.,

𝐸 (w;X) =
∑
x∈X

exp(𝑔(w; x))∑
x′∈X exp(𝑔(w; x′)) 𝑒(w𝑒; x), (6.107)

where 𝑔(w; x) is a parametric function, e.g., 𝑔(w; x) = w>
𝑎 tanh(𝑉𝑒(w𝑒; x)), where

𝑉 ∈ R𝑚×𝑑𝑜 and w𝑎 ∈ R𝑚. Based on the aggregated feature representation, the bag
level prediction can be computed by

ℎ(w;X) = 𝜎(w>
𝑐 𝐸 (w;X)) = 𝜎

(∑
x∈X

exp(𝑔(w; x))𝑠(w; x)∑
x′∈X exp(𝑔(w; x′))

)
, (6.108)

where 𝑠(w; x) = w>
𝑐 𝑒(w𝑒; x).

Optimization Algorithms

Given the pooled prediction ℎ(w;X), the empirical risk minimization (ERM) prob-
lem is defined as:

min
w

1
𝑛

𝑁∑
𝑖=1

ℓ𝑖 (ℎ(w;X𝑖)).

The main challenge in solving this problem lies in the computational cost of evalu-
ating ℎ(w;X𝑖), as it involves aggregating over potentially many instances.

To address this, we employ techniques from compositional optimization. Specifi-
cally, we express the smoothed-max pooling in (6.106) as a composition ℎ(w;X𝑖) =
𝑓2 ( 𝑓1 (w;X𝑖)), where the functions 𝑓1 and 𝑓2 are defined as:

𝑓1 (w;X𝑖) =
1
|X𝑖 |

∑
x𝑖, 𝑗 ∈X𝑖

exp(𝜙(w; x𝑖, 𝑗 )/𝜏),

𝑓2 (𝑠𝑖) = 𝜏 log(𝑠𝑖).

Similarly, we express the attention-based pooling in (6.108) as a compositional func-
tion ℎ(w;X𝑖) = 𝑓2 ( 𝑓1 (w;X𝑖)), with:
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𝑓1 (w;X𝑖) =
[

1
|X𝑖 |

∑
x𝑖, 𝑗 ∈X𝑖 exp(𝑔(w; x𝑖, 𝑗 ))w>

𝑐 𝑒(w𝑒; x𝑖, 𝑗 )
1

|X𝑖 |
∑

x𝑖, 𝑗 ∈X𝑖 exp(𝑔(w; x𝑖, 𝑗 ))

]
, 𝑓2 (u𝑖) = 𝜎

(
[u𝑖]1

[u𝑖]2

)
.

The key difference between the two pooling mechanisms is that the inner function 𝑓1
in attention-based pooling is a vector-valued function with two components. In both
cases, the computational bottleneck lies in computing 𝑓1 (w;X𝑖).

To reduce this cost, we maintain a dynamic estimator 𝑢𝑖,𝑡 for each bag X𝑖 . At
iteration 𝑡, for any X𝑖 ∈ B𝑜,𝑡 (a mini-batch of bags), we update the estimator as:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾 𝑓1 (w𝑡 ;B𝑖,𝑡 ), (6.109)

where B𝑖,𝑡 ⊂ X𝑖 is a mini-batch of instances sampled from X𝑖 , and 𝛾 ∈ [0, 1] is a
smoothing parameter. For smoothed-max pooling, this becomes:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 +
𝛾

|B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡
exp(𝜙(w𝑡 ; x𝑖, 𝑗 )/𝜏), (6.110)

and for attention-based pooling, we update:

u𝑖,𝑡 = (1 − 𝛾)u𝑖,𝑡−1 + 𝛾
[

1
| B𝑖,𝑡 |

∑
x𝑖, 𝑗 ∈B𝑖,𝑡 exp(𝑔(w𝑡 ; x𝑖, 𝑗 ))𝛿(w𝑡 ; x𝑖, 𝑗 )
1

| B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡 exp(𝑔(w𝑡 ; x𝑖, 𝑗 ))

]
. (6.111)

The corresponding vanilla gradient estimator for softmax pooling is:

z𝑡 =
1
|B|

∑
X𝑖∈B

ℓ′𝑖 ( 𝑓2 (𝑢𝑖,𝑡 ))∇ 𝑓2 (𝑢𝑖,𝑡 )
1

|B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡
∇ exp(𝜙(w𝑡 ; x𝑖, 𝑗 )/𝜏), (6.112)

and for attention-based pooling:

z𝑡 = (6.113)

1
|B|

∑
X𝑖∈B

ℓ′𝑖 ( 𝑓2 (u𝑖,𝑡 ))
[

1
| B𝑖,𝑡 |

∑
x𝑖, 𝑗 ∈B𝑖,𝑡 ∇

(
exp(𝑔(w𝑡 ; x𝑖, 𝑗 ))𝑠(w𝑡 ; x𝑖, 𝑗 )

)
1

| B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡 ∇ exp(𝑔(w𝑡 ; x𝑖, 𝑗 ))

]>
∇ 𝑓2 (u𝑖,𝑡 ).

Then we can update the model parameter w𝑡+1 by Momentum, Adam, or Adam-W
methods.

As established in Chapter 5, the theory of compositional optimization guarantees
that the moving average estimators u𝑖,𝑡 ensure the average estimation error,

1
𝑇

𝑇∑
𝑡=1

‖u𝑖,𝑡 − 𝑓1 (w𝑡 ;X𝑖)‖2
2,

converges to zero as 𝑇 → ∞, provided that the model parameters and hyperparam-
eters are properly updated.
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6.9 DRRHO Risk Minimization

As a last application of compositional optimization, we consider an emerging prob-
lems in AI. With the success of large foundation models, numerous companies and
research groups have entered the race to develop state-of-the-art models. While the
data and code are often proprietary, the resultingmodels are sometimes released pub-
licly, such as the CLIPmodels fromOpenAI. How canwe leverage these open-weight
models? We discuss three commonly used strategies and then present an emerging
paradigm.

Using the Model As-Is

A straightforward strategy for leveraging open-weight foundation models is to use
them as-is. This approach requires no additional training and can be deployed im-
mediately, making it highly convenient and cost-effective. It is particularly attractive
when computational resources or labeled data are limited. However, the downside is
that the pretrained model may not perform well on specialized tasks or under distri-
bution shifts, where its generic knowledge does not fully align with the requirements
of the target application.

Fine-Tuning the Model

An alternative strategy is to use the pretrained model as a starting point for fine-
tuning. By performing minimal task-specific training, the model can be adapted to
new domains with relatively low computational and data costs. Fine-tuning gener-
ally yields better performance than using the model out-of-the-box. Nevertheless,
since the model architecture remains unchanged and the updates are typically mod-
est, the improvements in performance may be limited, particularly when the pre-
trained model is already near-optimal for its design.

Knowledge Distillation from the Model

A more flexible approach involves using the pretrained model as a teacher in a
knowledge distillation framework. Here, a smaller or more efficient student model is
trained to mimic the teacher’s outputs, enabling knowledge transfer that can improve
training efficiency and generalization. This strategy is particularly useful for deploy-
ing models in resource-constrained environments. The main drawback, however, is
that the student model is usually less expressive than the teacher, which can cap its
performance despite potential gains in speed and efficiency.
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Reference Model Steering for training from scratch

An emerging learning paradigm has recently surfaced that leverages a pre-trained ref-
erence model to guide and enhance training via strategic data weighting—a process
we term reference model steering. Unlike the knowledge distillation framework, ref-
erence model steering does not assume that the reference model is a stronger teacher;
in fact, it can lead to the training of a model that ultimately surpasses the reference
model in performance, i.e., enabling weak to strong generalization.

DRRHO Risk Minimization

Let z ∼ P denote a random data point drawn from distribution P, and let w ∈ W rep-
resent model parameters from a parameter space W. Given a loss function ℓ(w, z),
the expected risk is defined as:

R(w) = Ez∼P [ℓ(w, z)] .

Given a pretrained reference model wref , we define a new loss ℓ̂(w, ·) = ℓ(w, ·) −
ℓ(wref , ·), which is termed as RHO loss. Incorporating this into the distributionally
robust optimization (DRO) framework (2.12), we define DRRHO risk minimization
as:

min
w∈W

sup
p∈Δ

𝐷𝜙 (p ‖ 1/𝑛) ≤𝜌/𝑛

𝑛∑
𝑖=1

𝑝𝑖 (ℓ(w, z𝑖) − ℓ(wref , z𝑖)) . (6.114)

Theoretical guarantees for DRRHO have been developed with the 𝜒2 divergence,

i.e., 𝐷𝜙 (p ‖ q) =
∑𝑛
𝑖=1

1
2𝑞𝑖

(
𝑝𝑖
𝑞𝑖

− 1
)2
. Under mild conditions, it can be shown that

with high probability:

R(w̃∗) ≤ inf
w∈W

(
R(w) +

√
2𝜌
𝑛

Var(ℓ(w, ·) − ℓ(wref , ·))
)
+ O

(
1
𝑛

)
. (6.115)

where w̃∗ is an optimal solution to DRRHO risk minimization.
In particular, plugging in w∗ = arg minw∈W R(w) yields:

R(w̃∗) ≤ R(w∗) +
√

2𝜌
𝑛

Var(ℓ(w∗, ·) − ℓ(wref , ·)) + O
(
1
𝑛

)
.

This result provides valuable insight: if the reference model wref is well-trained such
that ℓ(wref , ·) closely matches ℓ(w∗, ·) in distribution, then the variance term be-
comes small. As a result, DRRHO achieves better generalization than the standard
O(

√
1/𝑛) bound of ERM.

Furthermore, if wref ∈ W, we obtain a comparison in terms of excess risk:

R(w̃∗) − R(w∗) ≤ R(wref) − R(w∗) + O
(
1
𝑛

)
.
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This enables a direct comparison between the DRRHO minimizer w̃∗ and the refer-
ence model wref from the same hypothesis class. Suppose wref was trained via ERM
on a dataset with 𝑚 samples. Then standard generalization theory gives an excess
risk of order O(1/√𝑚). In contrast, to match this level of generalization error, DR-
RHO requires only 𝑛 = O(√𝑚) samples—significantly improving over the O(𝑚)
sample complexity required by ERM without a reference model.

Optimization Algorithms
When the CVaR is used defined by 𝜙(𝑡) = 1 if 𝑡 ≤ 𝑛/𝑘 and 𝜙(𝑡) = ∞ otherwise, the
DRRHO risk reduces to the average of the top-𝑘 RHO losses:

min
w
𝐹 (w) :=

1
𝑘

𝑘∑
𝑖=1

(
ℓ(w, z[𝑖 ]) − ℓ(wref , z[𝑖 ])

)
, (6.116)

where z[𝑖 ] denotes the data point ranked 𝑖-th in descending order based on its RHO
loss. This problem can be equivalently reformulated as:

min
w,𝜈

1
𝑘

𝑛∑
𝑖=1

[ℓ(w, z𝑖) − ℓ(wref , z𝑖) − 𝜈]+ + 𝜈, (6.117)

which is more amenable to gradient-based optimization techniques.
When DRRHO risk is defined using KL divergence regularization, the objective

becomes:

min
w

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w, z𝑖) − ℓ(wref , z𝑖)

𝜏

))
. (6.118)

This formulation can be optimized by simply replacing the loss in Algorithm 24 with
the RHO loss. The vanilla gradient at iteration 𝑡 is estimated by:

1
𝐵

∑
𝑖∈B𝑡

exp
(
ℓ (w𝑡 ,z𝑖 )−ℓ (wref ,z𝑖 )

𝜏

)
𝑢𝑡

∇ℓ(w𝑡 , z𝑖), (6.119)

where 𝑢𝑡 is the MA estimator of the inner function value. This gradient estimator
naturally assigns higher weights to data points with larger RHO losses, thereby pri-
oritizing samples with high learnability during training.

Finally, when DRRHO is formulated with a KL-divergence constraint, the opti-
mization problem becomes:

min
w

min
𝜏≥0

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w, z𝑖) − ℓ(wref , z𝑖)

𝜏

))
+ 𝜏𝜌
𝑛
. (6.120)
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This formulation can be optimized using techniques similar to those introduced in
the first section of this chapter.

DRRHO-CLIP with a Reference Model

We now consider applying the DRRHO risk minimization framework to CLIP. Given
the established connection between robust global contrastive loss andDRO, as shown
in (6.44) and (6.45), it is straightforward to incorporate the RHO loss into the training
objective. Define the following loss components:

ℓ1 (w; x𝑖 , t𝑖 , t) = 𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖),
ℓ2 (w; x𝑖 , t𝑖 , x) = 𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖),
ℓ1 (wref; x𝑖 , t𝑖 , t) = 𝑠(wref; x𝑖 , t) − 𝑠(wref; x𝑖 , t𝑖),
ℓ2 (wref; x𝑖 , t𝑖 , x) = 𝑠(wref; x, t𝑖) − 𝑠(wref; x𝑖 , t𝑖),

where 𝑠(·; ·, ·) denotes the similarity function, and wref is a pretrained reference
model.

Using these definitions, we modify the original objective in (6.49) to incorporate
the RHO loss:

min
w,𝜏1 ,𝜏2

1
𝑛

𝑛∑
𝑖=1

𝜏1 log ©­« 1
|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
ℓ1 (w; x𝑖 , t𝑖 , t) − ℓ1 (wref; x𝑖 , t𝑖 , t)

𝜏1

)ª®¬ + 𝜏1𝜌
+ 1
𝑛

𝑛∑
𝑖=1

𝜏2 log ©­« 1
|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
ℓ2 (w; x𝑖 , t𝑖 , x) − ℓ2 (wref; x𝑖 , t𝑖 , x)

𝜏2

)ª®¬ + 𝜏2𝜌.
(6.121)

This objective can be optimized using an algorithm similar to that used in the
CLIP training. Empirical results show that this approach significantly reduces sample
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Fig. 6.34: Comparison between a target model (ViT-B/16) trained by DRRRHO-
CLIP and the reference model it leverages. OpenAI CLIP (ViT-B/32) was trained
on a private 400M dataset with 12.8B samples seen and 32768 batch size. DRRho-
CLIP model was trained on DFN-192M with 1.28B samples seen and 5120 batch
size, and using OpenAI CLIP as a reference model. DRRHO-CLIP training took
376 GPU hours on 8 H100 (2 days), OpenAI CLIP (ViT-L/14) model was trained
on 256 V100 with 12 days, which gives an estimate of 256*12*24/11.6=6356 GPU
hours for training ViT-B/32 as its FLOPs is 11.6 smaller. For more details, please
refer to (Wei et al., 2025).

complexity and improves the empirical scaling law (see Figure 6.33), while also
achieving weak to strong generalization (see Figure 6.34).

6.10 History and Notes

DRO and GDRO.

We first formulated KL-regularized Distributionally Robust Optimization (DRO) as
a stochastic compositional optimization (SCO) problem in (Qi et al., 2021b), uti-
lizing STORM-based estimators. This line of research was further developed in (Qi
et al., 2020), which introduced an attentional biased stochastic momentum method
for KL-regularized DROwith specific applications in imbalanced data classification.
Subsequently, we extended both the algorithmic framework and theoretical analysis
to address KL-constrained DRO (Qi et al., 2023). Collectively, these works demon-
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strate the advantages of employing compositional optimization techniques over tra-
ditional primal-dual methods for solving DRO problems.

The formulation of FCCO for group DRO (GDRO) was initially identified in
(Hu et al., 2024b). Building on this, Wang and Yang (2023) applied the ALEXR
algorithm to convex group DRO, demonstrating significant improvements over tra-
ditional stochastic primal-dual methods. Most recently, the application of SONEX
to non-convex group DRO within the context of deep learning was investigated by
Chen et al. (2025b).

Stochastic AUC and NDCG Optimization.

Stochastic AUC maximization has a long-standing history in machine learning, as
detailed in our survey (Yang and Ying, 2023). The formulation of AUC maximiza-
tion with a square surrogate loss as a minimax optimization problem was first in-
troduced by Ying et al. (2016b). Building on this foundation, we developed the first
convergence analysis for stochastic non-convex minimax optimization in the context
of deep AUC maximization (Liu et al., 2020). While this work was inspired by our
previous work on weakly-convex strongly-concave minimax optimization (Rafique
et al., 2022), it established a superior complexity bound by leveraging the PL condi-
tion. These theoretical results were subsequently strengthened in (Guo et al., 2023).

This line of research eventually facilitated our winning entry in the CheXpert
competition for X-ray image classification (Yuan et al., 2021), which also introduced
the AUC-margin minimax objective. Notably, all of these proposed methods utilize
a double-loop algorithmic structure. The single-loop PDMA and PDAdam methods
for deep AUCmaximization was first proposed and analyzed in our work (Guo et al.,
2021b). The compositional training method for deep AUC maximization that facili-
tates the feature learning and classifier learning in a unified framework was proposed
in our work (Yuan et al., 2022b).

The SOAP algorithm represents the first method of its kind to offer a convergence
guarantee that does not rely on the use of large batch sizes, which has challenged the
computer vision and machine learning communities for many years (see references
in (Qi et al., 2021c)). The SOPA and SOPAs algorithms for one-way partial AUC
maximization and STOAs for two-way partial AUC maximization were developed
and analyzed in (Zhu et al., 2022b). The STACO algorithm for two-way partial AUC
maximization was proposed in (Zhou et al., 2025). These stdudies have addressed
long-standing open problems for efficient partial AUC maximization with conver-
gence guarantee (Kar et al., 2014; Narasimhan and Agarwal, 2013).

The formulation of stochastic NDCG optimization as FCCO was proposed in our
work (Qiu et al., 2022), which also developed a multi-block bilevel optimization
formulation and algorithm for optimizing top-𝐾 NDCG. The complexity for multi-
block bilevel optimization was improved in (Hu et al., 2023) by using the MSVR
estimators.

The design and benchmark of LibAUC library was presented in (Yuan et al.,
2023a).
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6.10. HISTORY AND NOTES

Discriminative Learning of Foundation models.

The SogCLR algorithm was inspired by the SOX framework for FCCO; its advan-
tages over SimCLR, particularly regarding efficiency with small batch sizes in uni-
modal contrastive learning, were demonstrated in (Yuan et al., 2022c). Building on
this, we introduced iSogCLR in (Qiu et al., 2023) to optimize individualized tem-
peratures. This advancement was also informed by our previous research on KL-
constrained DRO (Qi et al., 2023).

Subsequently, we proposed TempNet (Qiu et al., 2024), which has been success-
fully applied to CLIP training and the pretraining of large language models (LLMs).
Furthermore, a comprehensive evaluation of FCCO-based techniques for distributed
CLIP training was recently provided in (Wei et al., 2024).

The discriminative fine-tuning approach of LLMswas proposed in our work (Guo
et al., 2025). The DisCO method for fine-tuning large reasoning models was devel-
oped in our work (Li et al., 2025).

FCCO for Constrained Learning.

The application of compositional optimization techniques to penalty methods for
constrained learning dates back to (Ermoliev andWets, 1988). The first non-asymptotic
analysis of the penalty method with a squared hinge penalty function for non-convex
inequality constrained optimization based on FCCO was conducted in our work (Li
et al., 2024). This work investigated the problem within the context of continual
learning under zero-forgetting constraints and established a complexity of 𝑂 (1/𝜖7)
for finding an 𝜖-KKT solution. Additionally, we developed a theoretical framework
to characterize the benefits of network expansion in facilitating constrained learning
with non-forgetting constraints. The ROC fairness constraint was first considered
in (Vogel et al., 2020).

Subsequent advancements have further improved the complexity of penalty based
methods based on FCCO. By employing SONX for the hinge penalty, the complex-
ity was reduced to 𝑂 (1/𝜖6) (Yang et al., 2025). More recently, the introduction of
SONEX and a double-loop ALEXR method for the squared hinge penalty achieved
a complexity of𝑂 (1/𝜖5) (Chen et al., 2025b). This currently represents the state-of-
the-art complexity for penalty methods in non-convex constrained optimization.

Learning with data compositional networks.

Graph convolutional neural network was proposed by Kipf and Welling (2017).
GraphSAGE was developed in (Hamilton et al., 2017). The use of compositional op-
timization techniques, specifically incorporating feature momentum for large-scale
Graph Neural Network (GNN) learning, was introduced in our previous work (Yu
et al., 2022). Furthermore, the application of compositional optimization to multi-
instance learning, utilizing compositional pooling operations, was first proposed
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in (Zhu et al., 2023a). Attention-based pooling for multi-instance learning was pro-
posed by Ilse et al. (2018).

DRRHO risk minimization.

The development of DRRHO risk minimization framework and its application to
CLIP training was introduced in our work (Wei et al., 2025). The theoretical analysis
of this method is largely built upon the foundations of DRO (Namkoong and Duchi,
2017), while the conceptual idea of using the RHO loss for data selection in a mini-
batch was originally proposed in (Mindermann et al., 2022).
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Chapter 7
Afterword

Dear Readers:
Congratulations on making it this far in the book. Even if you haven’t read every

chapter in full, I hope you’ve found parts of it useful and inspiring. If you are a
practitioner, I hope this book convince you that theory can, at times, be genuinely
useful in practice.

Before concluding this book, I would like to reflect on my journey into compo-
sitional optimization for advanced machine learning, which began in 2019. Before
that, I was primarily focused on traditional stochastic optimization theory. During
that time, we developed a stochastic algorithm for solving non-convex minimax op-
timization problems. In 2019, I spent a year in industry, where conversations with
young professionals made me realize the importance of practicability. After combing
back from the leave, I started to think about how to make the theory more practical.
The first project was to apply our non-convex minimax optimization to AUC max-
imization for learning deep neural networks, leading us to achieve first place in the
Stanford CheXpert competition for classifying X-ray images organized by Andrew
Ng’s ML group in 2020. In late 2020, my friend Shuiwang Ji at Texas A&M Uni-
versity introduced me to the MIT AICures challenge, which aimed to identify few
molecules with properties suitable for COVID-19 drug development among many.
Motivated by this challenge, I formulated the optimization problem of maximizing
the empirical estimator of areas under precision-recall curves, known as average pre-
cision. This led me to define the novel finite-sum coupled compositional optimiza-
tion (FCCO) framework. We developed the first algorithm for FCCO in 2021, which
ultimately helped us win the MIT AICures Challenge.

As I explored further, I discovered broad applications of this framework inML and
AI, specifically in addressing the computational challenges inherent in contrastive
learning, learning to rank, discriminative learning and continual learning. This series
of work eventually led to the development of the LibAUC library for empirical X-risk
minimization, which has since been downloaded over 100,000 times by researchers
and developers across more than 85 countries. It also helped us to develop CLIP
models better than OpenAI’s models with 15 times less compute budget.
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As I reflect on the journey that led to this book, I am reminded of the principle
of ‘知行合一’ (Zhi Xing He Yi) by Wang, Yangming (a legendary sage of ancient
China), cited in the preface. It is often translated as ‘unity of knowledge and action’,
which I interpret as the idea that theory should guide practice, and practice can, in
turn, inspire theory.

For decades, the field of machine learning has largely been framed through the
lens of Empirical Risk Minimization (ERM). This book argues that such a view is
increasingly insufficient for modern AI systems. As we have seen throughout these
chapters, the “X” in EXM represents a diverse class of often non-decomposable ob-
jectives, such as AUC, ranking measures, cross-entropy loss with expensive normal-
ization, and contrastive losses, which define the frontier of modern AI. The develop-
ment of the LibAUC library and the success of the EXM framework in AI challenges
have shown us that when we move beyond standard stochastic optimization, we un-
lock new levels of performance in critical domains like medical imaging and drug
discovery. Yet, despite these successes, the systematic study of EXM is just begin-
ning.

During my years as a graduate student, I immersed myself in many books on op-
timization and machine learning, which were instrumental in shaping my mathemat-
ical foundation. Now, after more than a decade of study and research, I am humbled
to synthesize these insights—together with my own findings—into this book. I hope
that the methods and theories presented here are not viewed as a final destination,
but rather as a starting point. My hope is that this work encourages researchers to
look beyond standard training loops and to explore new forms of “X-risks” that bet-
ter capture the complexity of modern learning systems and the nuances of human
intelligence and societal needs. Ultimately, I look forward to seeing how the next
generation of researchers will build upon these ideas to bridge elegant mathematical
theory with transformative real-world applications.

Finally, I should note that this book may contain typographical errors and may
inevitably omit some important related works. I would be deeply grateful to readers
who are willing to share corrections, suggestions, or feedback to help improve future
revisions.
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