Chapter 6

Applications: Learning Predictive, Generative
and Representation Models

Abstract In this chapter, we present applications of stochastic compositional opti-
mization and finite-sum coupled compositional optimization (FCCO) in both super-
vised and self-supervised learning settings. These include training predictive mod-
els, generative models, and representation models based on advanced objective func-
tions such as distributionally robust optimization (DRO), group DRO (GDRO), AUC
losses, NDCG loss, and contrastive losses. We also highlight applications of compo-
sitional optimization in solving multiple inequality-constrained optimization prob-
lems, optimizing data compositional neural networks, and a new paradigm of learn-
ing with a reference model called DRRHO risk minimization.

Unity of knowledge and action!

299



Contents

6.1 Stochastic Optimization Framework ....................... 301
6.1.1  Milestones of Stochastic Optimization ................ 303
6.1.2  Limitations of Existing Optimization Framework . ...... 306
6.2 DROand GroupDRO......cciiiiiiiiiiiiiiiiiiiiinnnnnn. 307
6.2.1  DRO for Imbalanced Classification. .................. 307
6.2.2  GDRO for Addressing Spurious Correlation ........... 313
6.3 Extreme Multi-class Classification .......................0. 315
6.4 Stochastic AUC and NDCG Maximization .................. 318
6.4.1  Stochastic AUC Maximization ...................... 319
6.4.2  Stochastic AP Maximization ........................ 323
6.4.3  Stochastic Partial AUC Maximization ................ 325
6.4.4  Stochastic NDCG Maximization..................... 331
6.4.5 The LibAUCLibrary ............ccoiviiiiiiineann.. 334
6.5 Discriminative Pretraining of Representation Models ........ 338
6.5.1  Mini-batch Contrastive Losses ...................... 338
6.5.2  Contrastive Learning without Large Batch Sizes........ 341
6.5.3  Contrastive Learning with Learnable Temperatures . . ... 344
6.6 Discriminative Fine-tuning of Large Language Models........ 350
6.6.1  Pipeline of LLM Training ..............c.ccoeioo.. 350
6.6.2  DFT for fine-tuning Large Language Models .......... 356
6.6.3  DisCO for Reinforcing Large Reasoning Models ....... 361
6.7 Constrained Learning ..........coovviiiiiiiiiiiiiiiinnnnns 367
6.7.1 A General Penalty-based Approach via FCCO ......... 368
6.7.2  Continual Learning with Zero-forgetting Constraints . ... 375
6.7.3  Constrained Learning with Fairness Constraints . ....... 379
6.8 Learning Data Compositional Networks ...............oo00n 381
6.8.1  Large-scale Graph Neural Networks . ................. 381
6.8.2  Multi-instance Learning with Attention ............... 384
6.9 DRRHO Risk Minimization..........cooiiiiiiiiiinnnnnnn. 387
6.10 History and Notes.......coviiieririiieeereiiiecerennnnnns 391

300



6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Algorithm 23 Stochastic Optimization Framework of DL

// The Meta Algorithm

1: Set the learning rate schedule 7,

2: fort=1,---,Tdo

3: Compute a vanilla gradient estimator z,

4: Update w,,; by calling the update of SGD, Momentum, Adam, or AdamW optimizer
5: end for

// The SGD optimizer update
1: Update W, = W; — 1,2,

// The Momentum optimizer update
1: Update v, = B1v,—1 + (1 — B1)z; o the MA gradient estimator
2: Update Wyyp = Wy — 17:V;

// The Adam optimizer update

1: Update v; = B1vi—1 + (1 — B1)z; o the MA gradient estimator
2: Update s, = Bose—1 + (1 — B2) (2,)?

3: Update ¥, = v,/(1 - B3])

4: Update 8; =, /(1 - 33)

5: Update w;1| = w; — n,ﬁ € is a small constant

// The AdamW optimizer update

1: Update v, = B1v,—1 + (1 — B1)zs o the MA gradient estimator
2: Update s, = Bosy—1 + (1 — B2) (2,)?

3: Update ¥, = v,/(1 - j3})

4: Update 8; =, /(1 - 3)
5 Se

: Update w1 = Wy — 17¢ (@ + /lW,) A is a weight-decay constant

6.1 Stochastic Optimization Framework

For practioners who may skip Chapter 3, Chapter 4, and Chapter 5, we first provide a
brief introduction to the stochastic optimization framework commonly used for deep
learning. We also highlight the challenges in solving advanced machine learning
problems introduced in Chapter 2 and summarize the key ideas behind the solution
methods presented in Chapters 4 and 5.

The standard procedure for implementing a stochastic optimization algorithm typ-
ically involves computing a vanilla gradient estimator, followed by updating the
model parameters using a step of an optimizer. We present a meta-algorithm in
Algorithm 23, along with four classical optimizers: SGD, Momentum, Adam, and
AdamW.
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Three forms of the Momentum Method

The Momentum method represents a key milestone (as further discussed in
the next subsection). The stochastic momentum method originates from the
Heavy-ball (HB) method, whose stochastic version (SHB) has the following
update for solving miny, F(w) :=E/[f(w;{)]:

Wirl = W =V (W3 &) + Br(We — wi1), (6.1)

where 81 € (0, 1) is the momentum parameter. While we utilize a single
stochastic gradient V f (w;; ;) for illustrative purposes, practical applications
generally rely on mini-batch estimation. In Section 4.3, we show it is equiv-
alent to the the following update with moving average gradient estimator:

Vi = B1Vve—1 + (1 = BV (Wes 1)

7
Wil = W — 17 Vg,

(6.2)

Update (6.1) is equivalent to (6.2) if ' (1 — 81) = n. In PyTorch, the Momen-
tum method is implemented by the following update:

Ve = Biveo1 + V(W &)
Wip1 = W — Vg,

(6.3)

which is equivalent to (6.1). One key insight from the convergence analysis of
the Momentum method (6.2) (cf. Theorem 4.3) is that it ensures the averaged
estimation error of the moving-average gradient estimators {v; } converge to
Zero.

Thanks to well-developed deep learning frameworks such as PyTorch, implement-
ing training code for deep neural networks has become relatively straightforward.
The standard training pipeline is shown in Figure 6.1. The Dataset module allows
us to get a training sample, which includes its input and output. The Data Sampler
module (typically wrapped within the DataLoader module) provides tools to sample
a mini-batch of examples for training at each iteration. The Model module allows us
to define different deep models. The Mini-batch Loss module defines a loss func-
tion on the selected mini-batch data for backpropagation. The Optimizer module
implements methods for updating the model parameter given the computed gradient
from backpropagation. Most essential functions are already available in PyTorch.
In practice, users often only need to define a function to compute their mini-batch
losses. By calling loss.backward(), a mini-batch stochastic gradient, serving as
a vanilla gradient estimator, is computed automatically.
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6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

[ Dataset HDataSamplerH Model H MlnleJsz:tch H Optimizer J

Fig. 6.1: Standard training pipeline for deep learning. Users typically only need to
implement the mini-batch loss function. It relies on a critical assumption that the
mini-batch stochastic gradient is an unbiased estimator of the true gradient

6.1.1 Milestones of Stochastic Optimization

While the Adam optimizer has become a standard in machine learning as of 2025, it
has deep roots in the innovations of stochastic optimization before deep learning era.
Below, we briefly discuss key milestones of stochastic optimization that have impact
on the Adam method.

Stochasticity. The fundamental concept of gradient descent (GD), dating back
to (Cauchy, 1847), uses the full dataset’s gradient to take a step in the steepest direc-
tion. Introduced by Robbins and Monro (1951), SGD improves upon GD by using
only a small batch of data (or even a single data point) to estimate the gradient, sig-
nificantly speeding up training on large datasets.

Acceleration. To improve the convergence rate of GD, Polyak (1964) proposed
the Heavy-ball (HB) method, which itself originates from the second-order Richard-
son method for solving a system of linear equations (Frankel, 1950). While Polyak
only proved a faster rate of local convergence than GD for smooth and strongly con-
vex problems, Nemirovski and Yudin (1977) proved the first nearly optimal rate
for general smooth and strongly convex problems. Their method was inspired by
the conjugate gradient method for solving quadratic problems and needs to solve
2-dimensional optimization problem using the method of centers of gravity every
step; cf. (Nemirovsky and Yudin, 1983)[Sec. 7.3]. Later, Nesterov (1983) derived
a simpler form of accelerated gradient method, which is now known as Nesterov’s
accelerated gradient (NAG) method.

Nesterov’s Accelerated Gradient (NAG) method

The original update form of the NAG method is given by:

Uy = w, —nVF(w,),

(6.4)
Wipl = Upgp + B (g1 — ).

It is equivalent to

Wil = W, = VE(W;) + B1((Ww = nVF (W) = (Wit = nVF(W;-1))).
(6.5)
Comparing with the HB method (6.1), the momentum term is changed from
B(w: —w;_1) to f(urg —uy).
If we let w1 = w; — nv,, then the NAG update is equivalent to
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Fig. 6.2: Evolution of Stochastic Optimization

v, = B1Vi—1 + VE (W) + B1(VF(w;) — VF(w;_1))

Wiil = We — 1JV;.

This is similar to (6.3) except that an error correction term B(VF(w;) —
VF(w;_1)) is added to the gradient estimator update.

We can also make the updates in (6.4) or (6.6) stochastic, leading to the
stochastic NAG (SNAG) method. In particular, if we use a stochastic gra-
dient estimator V f(w;; ;) in (6.4), we have the following update:

U =W, =V (Wi o),
Wesl = Upgp + 51 (g — 1),

If we use stochastic gradient estimators V f (w;; ¢;) and V f(w;_1; {;) in (6.6),

we have the following update:

(6.6)

6.7)
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6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Vi =B1Vic1 + V(Wi &) + Bi(VE(Wes &) = VE(Weo134r))

Wil = We —1]V;.

(6.8)

The difference between the two variants lies that (6.8) needs to compute two
stochastic gradient estimators at w; and w,_; per-iteration. However, inter-
ested readers can show that the update in (6.8) with a variable change is
equivalent to the STORM update as presented in Section 4.3.2 for optimizing

F(w) =E;[f(w;{)].

Lan (2012) pioneered the development and analysis of stochastic accelerated
gradient methods, achieving the optimal rates in both deterministic and stochastic
regimes. Its update is slightly different from the NAG update. (Yang et al., 2016) is
the first work to prove the convergence of stochastic NAG and stochastic HB methods
for non-convex optimization.

Adaptive step sizes. The technique of utilizing coordinate-wise adaptive step
sizes was pioneered by AdaGrad (Duchi et al., 2011), a method whose analysis is
rooted in the framework of Stochastic Mirror Descent (SMD) (Nemirovski et al.,
2009). Both AdaGrad and SMD are thoroughly examined in Chapter 3. RMSProp,
appeared in a course lecture (Tieleman and Hinton, 2012), moved from AdaGrad’s
simple average of the second moment (squared gradients) to a moving average of
the second moment. The moving average estimator has a long history in stochastic
optimization, see (Ermoliev and Wets, 1988)[Sec. 6.2.3]. Finally, RMSProp leads
to the current standard, the Adam method (Kingma and Ba, 2014), which combines
the moving average of the first moment (similar to SHB) with the moving average
of the second moment (similar to RMSProp). AdamW is a variant of Adam, which
decouples weight decay from gradient-based updates.

Recently, a new optimizer named Muon (Jordan et al., 2024) has emerged, specifi-
cally designed to optimize matrix-structured parameters, such as the weight matrices
between neural network layers. In contrast, conventional optimizers typically treat
these parameters as flattened vectors, potentially overlooking their inherent structural
properties.

The Muon method

Let W; denote a matrix-structured parameter at the ¢-th iteration. The Muon
update is given by:
M, = BiM;— +V f(W5 )
(Uy, S¢, Vi) = SVD(M;,) (6.9)
Wi =W, — UtUtVzT-

In practice, the Singular Value Decomposition (SVD) is often replaced by a
more computationally efficient Newton-Schulz matrix iteration. This process
produces an approximate matrix O, = U,S;V,”, where S/ is diagonal with
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Si[i,i]’ ~ Uniform(0.5, 1.5). The weight update is then applied as W;,; =
Wi —1:0;.

Summary: The evolution of stochastic optimization, which has had a major im-
pact on modern Al (see Figure 6.2), can be characterized by five key shifts in algo-
rithm design:

* From Full Gradient to Stochastic Gradient (Batch Size): Switched from using the
full dataset’s gradient (GD) to using noisy stochastic gradients (SGD) for faster
iteration speed.

* From Gradient Descent to Accelerated Gradient Methods (Momentum): The op-
timization technique was enhanced by introducing a momentum term (like HB
or NAG) to achieve an improved convergence rate for smooth convex functions,
while still using the full gradient.

e From Euclidean Distance to Bregman Divergence (Geometry): Switched the un-
derlying distance metric used for updates from the Euclidean distance to a Breg-
man divergence (SMD).

* From Static Step Size to Adaptive Step Size (Preconditioning): Switched from a
constant or manually decaying learning rate to one that is scaled by past gradient
magnitudes (AdaGrad).

e From a Mini-batch gradient estimator to a Moving Average gradient estimator
(Error reduction): Switched from a simple mini-batch gradient estimator to a
moving average gradient estimator (SHB, Adam).

6.1.2 Limitations of Existing Optimization Framework

The standard stochastic optimization algorithms and their analyses rest on a crit-
ical assumption: that the mini-batch stochastic gradient is an unbiased estimator
of the true gradient. As discussed in Chapter 4, this assumption breaks down in
the case of compositional functions of the form f(g(w)), where f is a determin-
istic non-linear function and g is a stochastic function. In such cases, the gradi-
ent of the mini-batch loss f(g(w; 8B)), where g(w; 8B) is an unbiased estimator of
g(w) with a mini-batch 8B, yields a biased estimate of the true gradient. Specifi-
cally, calling loss.backward() on the mini-batch loss will return a gradient of
Vf(g(w;B))Vg(w; B), which is inherently biased. The method that directly uses
this biased gradient estimator for SGD update is referred to as biased SGD (BSGD).
However, since the estimation error is inversely proportional to the batch size, small
batches can lead to large optimization errors. According to Lemma 2.1, such errors
can negatively impact the generalization performance of the learned model.

To address this challenge, Chapters 4 and 5 introduce solution methods tailored
to different families of compositional objectives. The key ideas underlying these al-
gorithms concern (i) how the vanilla gradient estimator z, is computed in Step 3 of
Algorithm 23, and (ii) how the estimator error is further reduced through the use
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6.2. DRO AND GROUP DRO
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Fig. 6.3: Histograms of class sizes of the iNaturalist2018 dataset, which contains
437,513 natural images of 8,142 species. The sizes of classes follow a long-tail dis-
tribution.

of moving-average (MA) estimators v, as in Step 1 of the Momentum optimizer
or more advanced variance-reduction techniques. In the following sections, we will
present their applications to various complex and advanced machine learning prob-
lems, with a focus on the presentation of the novel vanilla gradient estimators, which
allow us to integrate them into the standard optimization schemes such as Momen-
tum or AdamW for non-convex deep learning problems.

6.2 DRO and Group DRO

Let us consider supervised learning with a set of training data {(x, y)}, where x €
R denotes the input data and y € {1,...,K} denotes the output class label. Let
£(w; x, y) denote the pointwise loss function, e.g., the cross-entropy loss.

6.2.1 DRO for Imbalanced Classification

Imbalanced classification is prevalent in many areas, including medicine and cy-
bersecurity, where most training data may belong to one or a few classes. Mathe-
matically, it means that the marginal distribution of the class label is a non-uniform
distribution. An example of an imbalanced dataset is shown in Figure 6.3.

For imbalanced data, the conventional empirical risk minimization would focus
on minimizing the loss of data from those dominating classes, neglecting data from
the minority classes. DRO can address this issue by assigning larger weights to data
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with higher losses. Let us first consider the KL-divergence regularized DRO:

min max LW X, ) — T ilog(pin) +r(w), (6.10)
wpeAn;m vi) Z}p g(pin) +r(w)

where r(w) is a regularizer on w. A traditional way to solve this problem is to use
stochastic minimax optimization algorithms. However, there are several drawbacks
of this approach: (1) the variance of stochastic gradient for w depends on the sam-
pling distribution and the best sampling distribution depends on p; (2) the sampling
of data based on p incurs additional costs and is not friendly to practical implemen-
tation that uses random shuflling; (3) stochastic update of the dual variable p either
takes O (n) time complexity per iteration or requires maintaining a special tree struc-
ture to reduce the updating time to O (log(n)).

To circumvent these issues, we consider an alternative formulation that is equiv-
alent to the above minimax objective, i.e.,

n

rrgnflog(%ZeXp(M))w(w). 6.11)

i=1

For simplicity, we just consider the standard Euclidean norm regularization r(w) =
%lel%. As a result, the first term in the objective takes the form of a compositional
optimization problem, namely f(E [ g(w;{)]), where f(-) = tlog(-) and

B (gw 0] =1 ) e (M) |

i=1

The SCGD, SCMA, SCST, and SCENT algorithms can be applied to solve the
above problem. We now focus on the application of SCMA, whose key steps are
presented in Algorithm 24.

The vanilla gradient estimator z, of the first term in (6.11) at the ¢-th iteration is
computed by :

C(We3Xi,yi)
I exp(——=)
= > VX ). (6.12)

i€B;

It is motivated from (4.4) where the same mini-batch 5; is used for both updating u;,
and computing z;.

Let us compare this gradient estimator with that of stochastic optimization for
empirical risk minimization:

N 1 )
b= [EZB: VE(WXi, Vi) (6.13)

The difference between (6.12) and (6.13) lies in the blue term, which acts as a weight
for each data in the mini-batch. In the vanilla gradient estimator z, for DRO, the data
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6.2. DRO AND GROUP DRO

Algorithm 24 Attentional Biased Stochastic Methods

1: fort=1,--- ,T do
2: Sample a mini-batch of B samples B, C [n]

3 Compute g (w;, B;) = %Z[egr exp(€(We;Xi, yi)/T)
4 Compute u; = (1 = y)us—1 +vg(We, By)
LW xiyi)
5: Compute the vanilla gradient estimator z, = é > e e )V[(w,;x,, vi)
ieB, 4
6: Update w,, by an optimizer such as Momentum or Adam-W
7: end for

in the mini-batch with a larger loss £(w;; X;, y;) has a higher weight. This will facili-
tate the learning for data from the minority group. Due to this effect, we also refer to
Algorithm 24 as attentional biased stochastic method, named as AB-xx depending
on which optimizer is used.

The use of u; for normalization to compute the weight exp(£(w;X;, y;)/7)/u;
is also different from that using the heuristic mini-batch normalization where the
Ez(f’éf;?{f(:;rﬁ" ); ’_T)) Ty which does not ensure convergence if
the batch size is not significantly large. Let us consider a simple case such that only
one data is sampled for updating. In this case, the mini-batch normalization gives a
weight 1 for the selected data no matter whether it is from the majority or minority
class. However, if the sampled data denoted by (x;, y;) at the ¢-th iteration is from
a minority group and hence has a large loss, we would like to penalize more on
such an example. The estimator u; = (1 — y)u,—1 + y exp(£(W; Xy, y;)/7) is likely
to be smaller than exp(€£(w;;X;, y;)/7) asy < 1. As a result, normalization using
u, will give a larger weight to the sampled minority data compared with using the
mini-batch normalization, i.e., exp(£(w;;z,)/7) /u; > 1. Qi et al. (2020) empirically
demonstrated that using y < 1 outperforms the case y = 1, which corresponds to
using the standard mini-batch loss.

To illustrate the effect of AB-momentum on imbalanced data. We present an ex-
periment on synthetic data in Figure 6.4, which compares the result of using the Mo-
mentum method for ERM and AB-momentum for solving KL-divergence regular-
ized DRO. Figure 6.4(d) shows that AB-momentum learns a better decision bound-
ary than that of the Momentum method for ERM. Figure 6.4(b) shows that data from
the minority group that are close to the decision boundary get higher weights during
the training.

weight is computed by T

¢ Practical Tips

We discuss several practical tips for computing z, and other variants of DRO in the
context of deep learning.
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Fig. 6.4: (a): A synthetic data for imbalanced binary classification (green vs purple)
with a random linear decision boundary (black line). (c), (d): Learned linear models
optimized by the standard momentum method for ERM and AB-momentum for DRO
with logistic loss for 100 iterations, respectively. (b): The averaged weights of circled
samples in the training process of the standard momentum method for ERM and
AB-momentum method for DRO. Sample with indices in {1,..., 11} are from the
majority class and samples with indices in {12, 13, 14, 15, 16} are from the minority
class with sample 15, 16 close to the decision boundary.

Backpropagation.

In order to compute the vanilla gradient estimator z; using the PyTorch backward
function, we just need to have a slight change of computing the loss based on the
mini-batch data. Below we give the pseudo code in PyTorch for computing the gra-
dient estimator highlighted in Step 5 of Algorithm 24. It is worth noting that the line
of p=(exp_loss/u) .detach() calculates the blue part and detaches it from the
computational graph so that gradient is not computed again for it. With the gradient
estimator computed by loss.backward (), then we can use any existing optimizers,
including the Momentum method and AdamW.

310



6.2. DRO AND GROUP DRO

sur_loss=surrogate_loss(preds, labels)
exp_loss = torch.exp(sur_loss/tau)

u = (1 - gamma)*u + gammax*(exp_loss.mean())
p = (exp_loss/u).detach()

loss = torch.mean(p * sur_loss)
loss.backward()

Avoiding the numerical issue.

However, a numerical issue may arise during the running tied to the computation
of exp(£(wy; X;, ¥;)/7), especially when 7 is small and the loss function of selected
data is large so that overflow. As a result, the running of the algorithm may crash
due to a NaN error. To address this issue, we maintain v, = logu,. Specifically, we
denote by ¢q;; = exp(w), where {pax,; = max;es, {(W;;X;,y;). Then
Step 4 can be reformulated to:

exp(logu;) =exp(log(l —y) +logu;—)

1
+ exp (logy +log (E ZieB, qt,i) +

gmax,t
. .

For simplicity, let b, = log(1 — y) + logu,_; and ¢, = logy + log (é Dies, qz,i) +

gmax.t

-, we have

exp(logu,) =exp(b;) +exp(q;).

The update in equivalent to following:

exp(logu;) = exp(max{b;, q:}) (1 +exp(=|b; — q:|))
= exp(max{b,, qr})a‘l(lbr = q:),

where o () denotes the sigmoid function. Taking the log on both sides gives the
update for log u;. To summarize, we maintain and update v, = logu, as following:

by =log(1 =y) + v

f(wﬁ X, yi) - fmax,t )) n fmax,t (6.14)
T

1
q: =logy +log (E ZieBt exp ( =
ve = max{b;,q,;} —log o (|b; — q.l).

At the first iteration ¢ = 1, we can just set

_ 1 g(wl;xi,}’i) fmax,l gmax,l
vl—log(EZthexp( = = + =
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Fig. 6.5: t-SNE visualization of feature representations of training & testing set on CIFAR10-LT
(o = 100) with different strategies of setting 7. Right: Fixed 7 = 1. Left: Two-stage decay of 7:
first phase 7 = 100 and second phase 7 = 1. For more details, please refer to (Qi et al., 2020).

With v;, the effective weight M can be computed by

Xi,Yi 14
exp (f(Wti(u)’z) _ max( m:x,r’ Vt))

exp (vt — max( fm:‘” , v,))

Thus, all computation involving exp(-) will not incure any numerical issue.

The Temperature parameter.

The last point we discuss here is how to set the value of the temperature parame-
ter 7. A simple way is to treat it as a hyper-parameter and tune it based on cross-
validation. However, there is a trade-off in the performance. A deep neural network
is a hierarchical learner with lower layers for low-level feature extraction, middle lay-
ers for more abstract feature extraction and the last layer for classification. A larger
7 indicates a more uniform weight, which is not good for learning the last classifier
layer and minority class specific features. A smaller 7 indicates a more non-uniform
weight, which is not good for learning class agnostic lower level features.

One approach to mitigate this issue is to use a two-stage approach. In the first
stage, we can use a relatively larger temperature T for learning class agnostic lower
level features. The second stage, we decrease 7 to finetune the upper layers for learn-
ing robust minority-class specific features and classifier layer. An example is shown
in Figure 6.5 on a long-tailed version of the CIFAR10 dataset, where the data is in-
tentionally made imbalanced such that the number of samples per class follows a
long-tail distribution, the imbalance ratio p means the ratio between sample sizes of
the most frequent and least frequent classes.

Another approach is to treat 7 as a parameter to be optimized. To achieve this, we
can consider optimizing a KL-divergence constrained DRO:
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6.2. DRO AND GROUP DRO

min max Zplf(w Xi, Vi) — 10 Z pilog(pin) +r(w),

W peA,

(6.15)
Z pilog(pin) < p,
i=1

where the regularizer term with a small 7y is added to avoid ill conditioning, making
the resulting problem smooth in terms of losses. Using the dual form of the maxi-
mization problem (see (2.19)), the above problem is equivalent to

min ‘1'10g(1 Zexp(w))*ﬁp. (6.16)
T

W, T2>T) .
i=1

We can extend Algorithm 24 to optimize the above problem by treating (w, 7) as a
single variable to be optimized. The vanilla gradient estimator in terms of 7 at the
t-th iteration is given by :

g 1A )1
<w o )) f(Wan,)’z)

1 exp(
Zr, =log(us) +p — 3 Z

u T
i€B; t t

6.2.2 GDRO for Addressing Spurious Correlation

Data may exhibit imbalance not in the marginal distribution of class label but some
joint distribution of the class label and some attributes. Please see a discussion on
the example of classifying waterbird images from landbirds images in Section 2.2.3.
As a consequence, the model may learn spurious correlations between the labels
and some attributes. GDRO can be used to mitigate this issue by leveraging prior
knowledge of spurious correlations to define groups over the training data.

Formally, if there is spurious correlation between class label y € Y and some
attribute a € A, we can group the training data into | Y| X |A| groups according to
the value of (y,a). Let D; = {(xi,j,yi,j)};fil denote the data from the i-th group
fori € {1,...K}. Then we can define the averaged loss for data from each group i
as L;(w) = nL, Z;f;l t(w;x; j,yi j). Then, the GDRO formulation with CVaR diver-
gence corresponding to the top-k groups is equivalent to (cf. (2.26)):

K

1 A
ng LML —vlerave Slwl3, (6.17)

min
w,

where a = % If we define W = (w, v) and the inner functions as g(W) = L;(w) — v
and the outer function as f(g) = [g]+, then the problem becomes an instance of
non-smooth FCCO, where the outer function is non-smooth.
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Algorithm 25 SONEX for solving (6.18)

T
t=1’

1: Input: learning rate schedules {7,
2: fort=1,...,Tdo
3: Draw a batch of B; groups B, C [K]

{7t szl; starting points wy, ug

4: fori € B; do )
5: Draw B; samples {l:ft ~Di,j=1,...,B;
6: Update the inner function value estimators by

1 &

i = (1 =y Ui AR Zf(wz;xi,j, Yi.j)
j=1

7: end for
8: Set w41 = Uiz, 1 & B
9: Compute the vanilla gradient of v;: z,,, = —BLI Yies, Ve(Uin —ve) + %
10: Compute the vanilla gradient of w,:

B,
1 1 J
v =g Z Vfe(uis — Vt)B_2 JZ:; VE(Wes X j, Viij)

i€B;

11: update v using SGD
12: Update w;,; using Momentum or AdamW
13: end for

An alternative way is to formulate the problem into an equivalent min-max for-
mulation:

K

A 2
i E iLi W)+ —||W][5. 6.18
I%HPGA,IB;);UQ = piLi(w) 2 I ”2 ( )

However, solving this min-max problem has similar drawbacks as discussed in DRO,
especially when the number of groups K is large.

Let us discuss the applicability of algorithms presented in Chapter 4 for solv-
ing (6.17). The theory of SOX and MSVR requires the smoothness of the outer func-
tions, which is not applicable to GDRO. Both ALEXR and SONX are applicable as
their analysis does not require the smoothness of the outer functions. However, their
updates is SGD-type, which could make it slow or fail in practice for learning modern
deep neural networks such as Transformer.

For deep learning applications, we can leverage SONEX. Its key idea is to smooth
the outer hinge function. In particular, we define the smoothed hinge function as
fe(g) with a very small ¢ (cf. Example 5.1):

c gz—gings
felg) = max yg—3y"=y5 if0<g<e.
' 0 0.W.

As a result, we solve the following smoothed problem:
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6.3. EXTREME MULTI-CLASS CLASSIFICATION

Amazon

167 —— SONEX
SONX
—— PrimalDual

Training loss
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Fig. 6.6: An experimental comparison of different methods for solving GDRO (2.26) on the
Amazon-WILDS dataset. The dataset is a text classification benchmark derived from Amazon prod-
uct reviews, where the task is to predict binary sentiment (positive or negative) using TF-IDF fea-
tures extracted from review text. The data spans multiple product categories. We construct groups
based on the user attribute, resulting in 1,252 distinct groups. Only 4 groups and 64 data points
per-group are sampled per-iteration. SONEX uses the Adam optimizer, SONX uses the SGD opti-
mizer, and the PrimalDual is a stochastic primal-dual method for solving (6.18) that uses the Adam
optimizer for the primal variable (model weights) and uses the stochastic mirror descent update for
the dual variable p with a KL divergence. For more details, please refer to (Chen et al., 2025b).

K
. 1 /1 2
rg}gfj;fg@j(w) —v)+av+ Slwl3. (6.19)

We present a variant of SONEX in Algorithm 25. Figure 6.6 illustrates the effective-
ness of SONEX for solving GDRO comprising with SONX and a stochastic primal-
dual method.

6.3 Extreme Multi-class Classification

Multi-class classification is a cornerstone of machine learning. However, many mod-
ern applications involve an exceptionally large label space—ranging from millions to
even billions of categories—a challenge known as extreme multi-class classification
(XMCQ). For instance, for face recognition, the model learning is often formulated
as classifying images into unique identities. With millions of distinct individuals,
the model must navigate millions of corresponding classes. Similarly, when training
a language model to predict the next word, the problem is treated as a multi-class
classification task where each word in the vocabulary represents a category. Given
that the English language contains over one million words, the resulting number of
classes is immense.
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Algorithm 26 The SCENT Algorithm for solving XMC

1: Initialize Wy, vy, step sizes 1; and a;, ¢ (v) = e™".

2: fort=1...,T-1do
3: Sample a mini-batch data B, c {1,...,n} with |B,| = B

4: Let C; denote the set of unique labels in B;
5: for each (x;, y;) € B; do
6: Update v; ; by solving
. 1 T 1
Vig = argmin———r 3" exp((We,y, = Wiy,)TA(X:) = ¥) v+ —Dy (v, Vii-1)
v B -1 @y
yi€8B\yi
7 end for
8: Compute Z; [ C; ] = VL, (W;[C;]) by calling backprop on the mini-batch loss
1 1
L, (W:[C]) = B Z |Bt|——1 Z exp((Wr,y; — W,,y[)T/’l(Xi) - Vit)
ieB, V€8 \yi
9: Compute V,[C;] = (1 = B)Ve-1[Ce] + BeZi [ Ct ] (optional)
10: Update Wy,1[Cr] = Wi [Cr ] — 17,V [Cr ]
11: end for

A dominating approach of multi-class classification is logistic regression, which
minimizes the cross-entropy loss. Let us consider learning a linear model by solving
the following problem:

n T
minl Z—log ISxP(Wyihixl))
W n i=1 Zj:] CXP(WJ- h(xl))

where y; € {1, ..., K} denotes the true class label of x;, W = (W1, ..., Wg) € R¥*K
contains the weights for all classes, and 4(x) € R? denotes the feature vector of
each data. When K is huge, it is not efficient to compute the normalization term
Zf: h exp(ij.h(xl-)) for each data and loading all W into the memory might be pro-
hibited.

To solve this problem, we can use SCENT algorithm presented in Section 5.5.2.
To this end, we reformulate the problem into the following equivalent min-min op-
timization:

n K
mv‘i/nrrbin % ; % JZI exp(W} h(x;) = Wy h(X;) = vi) +vi — 1
We present an application of SCENT for solving this problem in Algorithm 26. At
each iteration, the algorithm begins by sampling a mini-batch B, (Step 3) to approx-
imate the outer summation over n data points. Following this, the algorithm updates
the dual variables v; for each i € B;. While the original SCENT algorithm requires
sampling from the full set of classes {j = 1, ..., K}, we observe that for all sampled
data, the weights corresponding to their true labels {w,, : i € B;} must already
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6.3. EXTREME MULTI-CLASS CLASSIFICATION

be accessed. Consequently, we utilize the ‘in-batch’ class labels to approximate the
inner summation, setting Y; = {{y;}ic5, be the multiset of labels and C; to the set
of unique labels in B;. To update v, and W;, the following calculations are imple-
mented.

e Computing Sampled and Shifted Logits. Given the mini-batch 8B, and the set of
sampled classes Y;, we first compute the inner products between the features A (x;)
and class weights w; for all i € B; and j € Y;. This is efficiently computed via
the matrix product Q = H[B,]TW[Y;] € REXI¥I where H[B,] = [h(x;)]ies,
represents the sampled feature matrix. We then derive the shifted logits matrix R,
defined by the entries R;; = WJT.h(Xi) - w;h(xi) foralli € B,,j € VY,.

* Closed-form update for v; ;. Given the shifted logits matrix R, we update the
state variable v; ; according to Lemma 5.26:

1 )
Vit =Vig—1 +log| 1 +a; —|~V| 1 E exp(R;;) | —log(1+ a;e’ 1),
tl— .
JEY\yi

where we treat the labels in ; \ y; as independent samples from {1,..., K}.
To ensure numerical stability when v; ;_; or R;; are large, we apply standard
logarithmic identities. Specifically, while v; ;_; typically remains within a sta-
ble range, the term log(1+a,e”"-!) can be computed as v; ;1 +log(e™ "~ + ;)
for large positive values of v; ;1. Furthermore, we stabilize the second term using
the Log-Sum-Exp trick by shifting the exponents by R; max = maxjey,\y, Rij:

Q¢
log|1+ exp(R;;
JeY\yi

a
= log exp(_Ri,maX) + —L exp(Rij - Ri,max) + Ri,max~
=T |
]e%\yl

¢ Updating W;[C;]. Finally, the gradient of W;[C;] is computed by performing
backpropagation on the mini-batch loss L, (W, [C;]). Because the loss function is
defined only over the sampled classes, the gradient updates are sparse and operate
exclusively on the sampled subset W, [C;]. This approach eliminates the need to
load the entire weight matrix W into the main memory, significantly reducing the
memory overhead in hardware-constrained environments.

¢ Empirical Comparison with baselines
An empirical study demonstrating the effectiveness of SCENT for XMC is presented
in Figure 6.7, which compares Algorithm 26 with ASGD, BSGD, and the SOX

method. The key differences between these methods and Algorithm 26 are as fol-
lows: (i) SOX is closely related to SCENT, but uses a step size «; ; = ye™">*~! when
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updating v; ; (ii)) ASGD employs a standard stochastic coordinate update for the
dual variables v; and (iii) BSGD simply computes the gradient of W, [C;] using the
following mini-batch loss:

1 Z log exp(wy, h(x;))
Yjey\y eXP(Wih(x;))”

—— BSGD ASGD —— SOX  —— SCENT
w10 10
2 2
= S
£ -
© ©
S 5 > 5
0 20 40 0 20 40
Epoch Epoch

Fig. 6.7: Left: training curve on Glint360K dataset. Right: accuracy curve on the
validation data. The Glint360K dataset (An et al., 2021) is a face recognition dataset
consisting of 17 million images of 360 thousand individuals (i.e., 360K classes).
To obtain the features for linear classification, we leverage a pretrained ResNet-50
model. For all the methods, we use a batch size of 1024 and update the model weights
for 50 epochs using the SGD optimizer (no momentum). We tune the learning rate
of W for all methods and decrease it in a cosine manner during training. For ASGD,
SOX and SCENT, the learning rate of the v update is also tuned. For more details,
please refer to (Wei et al., 2026).

6.4 Stochastic AUC and NDCG Maximization

In many domains such as radiology and drug discovery, areas under the curves are
commonly used to assess the performance of a predictive model. In domains that in-
volve ranking or recommendation, normalized discounted cumulative gain (NDCG)
is commonly used as a performance metric. We present applications of SCO and
FCCO algorithms for optimizing these metrics directly.
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

6.4.1 Stochastic AUC Maximization

In this section, we focus on optimizing the area under ROC curve (AUC) for binary
classification as depicted in Figure 2.3.

Method 1: Pairwise Loss Minimization

The training data consists of {x;, y;}!" , where x € R4 is the input and y € {1,-1}
is the binary label. The traditional surrogate objective for AUC maximization is the
pairwise loss given in (2.31). To optimize the pairwise surrogate objective, we just

need to sample positive and negative data and then define a mini-batch pairwise loss:

1 1
— C(h(W;X;) — h(W;X;)).
|B| % |B-| ;9

Calling backpropagation on this mini-batch pairwise loss gives an unbiased stochas-
tic gradient estimator. Then any appropriate optimizer can be leveraged to update the
model. This is same as the conventional algorithm except for that the data sampler
needs to sample both positive and negative data (see Section 6.4.5).

A limitation of this approach is that it increases the communication costs of dis-
tributed training when data are distributed across different machines as it requires to
form positive-negative pairs across different machines.

Method 2: Minimax Optimization

The second approach is to solve the formulation as in (2.32). To illustrate the algo-
rithm, we give its formulation below:

! 1
min hW;X'—a2+—Z hw;x-—b2
weRd (ab)eR? |54 x,-EZS+( ( ) : |S-| Xjesf( ( j) :
(6.20)
1 1
e E h(W;Xj) — —— E h(w:x;) |,
151 Xj€S- S+l X €Sy

where h(w;-) € R is the prediction output of the model for any input, S is the set of
positive data and S_ is the set of negative data and f is a non-decreasing surrogate
function.

Let us illustrate the algorithm for a squared-hinge surrogate function f(s) =
max(m + s,0)%, where m > 0 is a margin parameter. Since f is non-linear, the
last term of the above objective function is a compositional function of the form
f(g), where g(w) = L;T 2ixjes. h(w;x;) — |Sl—+| 2xes, h(w:x;). We consider the
minimax reformulation similar to (5.27). In particular, using the conjugate of f(-)
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(see Example 1.12), we convert the above minimization problem into a minimax
optimization problem:

. 1 ) 1 )
vinérz I(I;IEZ%( F(w,a,b;a) = m Z (h(w;x;) —a)” + |S__| Z (h(w;x;) — b)
X; €S, X; €S-
+a|lm+ — (w;x;) — h(w;X;) ,
|S-| x;S TS ng;g 4
] - 1 +

(6.21)
Compared to pairwise loss minimization, the advantage of the above minimax for-
mulation is that its objective is decomposable over individual data points, making it
well-suited for distributed training.

We present a practical framework in Algorithm 27 built from SMDA for solving
the above problem, where the primal-dual Momentum method (PDMA) employs
the momentum update for the primal variable w or a primal-dual Adam method
(PDAdam) employs the Adam update for the primal variable. The effectiveness of
PDMA/PDAdam over SGDA for solving (6.21) on a real-world dataset is shown in
Figure 6.8.

Squared-hinge surrogate vs Square surrogate function

The minimax optimization framework (6.20) and PDMA/PDAdam algorithms with
a small modification on the dual variable update can handle any smooth surrogate
function f. When f(s) = (m + s)? is a square surrogate, the minimax formulation
is equivalent to the pairwise loss minimization with a square surrogate loss (AUC
square loss). Nevertheless, the minimax AUC margin loss with the squared-hinge
surrogate is more robust than the AUC square loss. Figure 6.9 illustrates the robust-
ness of the minimax AUC margin loss.
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Algorithm 27 PDMA or PDAdam for solving (6.21)

Input: learning rate schedules 77;, 7;; starting points W, = (W, aj, by), @)

1:
2: fort=1,...,Tdo
3: Draw B positive data 8] c S, and B, negative data B; c S-
4 Update a1 = |(1 - 71/2) ay + 74 (m+ A Sy en h(W:x)) = 3= Sy em h(w,;xi)) ]
+
5 Compute the vanilla gradient estimator
1 2, 1 2
u =5 Z Vo, (xi) = @)” + 5 Z Ve (h(We3X;) = by)
ieB} X;j€B;
l . 1 .
vaVs| g Dy hwixg) - g D) h(wex)
X;E€B; x; €8}
6: Update w;,; by Momentum or AdamW
7: end for
Pretrained + Easy Samples + Noisy Samples
/’l /’/ :l >
/ O ,Q’ O O v
? ¢ =
Qo
/ ]
/0 e (% 5
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>
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Fig. 6.9: Anillustrative example for optimizing different AUC losses on a toy data for
learning a two-layer neural network with ELU activation. The top row is optimizing
the AUC square loss and the bottom row is optimizing the new AUC margin loss as
in (6.21). The first column depicts the initial decision boundary (dashed line) pre-
trained on a set of examples. In the middle column, we add some easy examples to
the training set and retrain the model by optimizing the AUC loss. In the last column,
we add some noisily labeled data (blue circled data) to the training set and retrain the
model by optimizing the AUC loss. The results demonstrate the AUC margin loss is

more robust than the AUC square loss.
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CE (scratch) AUC (scratch) CcT

Fig. 6.10: t-SNE visualization of feature representations of an imbalanced training
set for the Cat vs Dog visualized by t-SNE learned by different methods (from left to
right): optimizing CE loss, an AUC loss, and a compositional training (CT) objective.
For more details, please refer to (Yuan et al., 2022a).

@ Feature Learning

Feature learning is an important capability of deep learning. However, like the DRO
objective, the end-to-end training based on the AUC surrogate objective does not
favor feature learning as compared with traditional ERM. The reason is that AUC
surrogate objective gives unequal weights to different data points due to the imbal-
ance of training data. To address this challenge, one way is to employ a two-stage
approach, where the first stage pretrains the encoder network on the training data
by traditional supervised learning (e.g., ERM with the CE loss) or self-supervised
representation learning and the second stage fine-tunes the feature extration layers
and a random initialized classifier layer by optimizing an AUC surrogate objective.
An approach for performing effective feature learning and AUC maximization in
a unified framework is to optimize a compositional objective (Yuan et al., 2022a):

min max F(w — tVLcg(Ww),a, b;a),

w,a,b a>0
where Lcg(w) is the empirical risk based on the CE loss and 7 > 0 is a hyper-
parameter.

To understand this compositional objective intuitively, let us take a thought exper-
iment by using a gradient descent method to optimize the compositional objective. To
this end, we denote the objective by Layc (W —7VLcg(Ww)), where Layc denotes the
AUC surrogate objective. First, we evaluate the inner function by u = w—a'V Lcg(W).
We can see that u is computed by a gradient descent step for minimizing the empir-
ical risk Lcg(w), which facilitates the learning of lower layers for feature extraction
due to equal weights of all examples. Then, we take a gradient descent step to update
w for minimizing the outer function Layc (+) by using the gradient VL ayc (u) instead
of VLauc(w). Because u is better than w in terms of feature extraction layers, taking
a gradient descent step using VLayc(u) would be better than using VLayc(w). In
addition, taking a gradient descent step for the outer function Layc(-) will make the
classifier more robust to the minority class due to use of the AUC surrogate loss.
Overall, we have two alternating conceptual steps, i.e., the inner gradient descent
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6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

stepu = w — 7VLcg(W) acts as a feature purification step, and the outer gradient
descent step w—1(I —7V>Lcg (W) VLauc () acts as a classifier robustification step,
where 77 is a step size.

For practical implementation, the intermediate model w — TVLcg(w) can be
tracked by the MA estimator u; = (1 —y)u,_1 +y(W, — TVLcE(W,)), where Lcg is
a mini-batch CE loss. Then, u, is used to update the primal variables (w; a; b) and
the dual variable a.

Finally, we remark that the data sampler is different from traditional one because
it needs to sample both positive and negative examples. It also has great impact on
the performance. We defer the discussion to section 6.4.5.

6.4.2 Stochastic AP Maximization

Using a surrogate loss, AP maximization can be formulated as an FCCO prob-
lem (2.36), i.e.,

1 .
min~ > f(g(wix;. ), (6.22)

X; €S,
where S, denotes the set of n positive examples, S is the set of all examples, and

__leh
f(g = el

g(w;x;,S) = [g1(w;x;,S5), 82(w; x;, S)],
@1 wixie8) = o D 10 = DUHOWEx;) = h(wix),

Xj€S

(wixi,S) = 5 D h(wix,) = h(wix),

XJ'ES

where £(-) is a non-decreasing surrogate pairwise loss (see examples in Table 2.3).
We present an application of SOX to solving the above problem in Algorithm 28,
which is referred to as SOAP.

Q Initialization of u

Unlike traditional algorithms, Algorithm 28 for AP maximization requires initial-
izing an additional set of auxiliary variables uy,...,u,. In contrast to the model
parameter w, which is randomly initialized, these auxiliary variables can be initial-
ized upon their first update. Specifically, when index i is first sampled, we set u; ;—;
to the corresponding mini-batch estimator of the inner function value. As a result,
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Algorithm 28 The SOAP algorithm for AP maximization (6.22)

T
t=1’

1: Input: learning rate schedules {7,
2: fort=1,...,Tdo

3: Draw B positive data 8] c S, and B; negative data 8, c S_
4: for x; € B/ do

5 Update the inner function value estimators

{7t szl; starting points wy, ug

ul) = (1 —yul)  +y D1y = DEh(wix;) = h(Wisx:),

Bi+B, x; €|BTUSB; |
1
(2) _ (2) . .
w = (= yup tyvigmp ), COwexy) = h(wexi),
x;€|87UB; |
6: end for
7 Setw;; =w;,-1,i ¢ B
8: Compute the vanilla gradient estimator
(1 (2)
1 1 upp —u; Ay =1)
Zr =7 Z Z +V[(h(wt;xj)—h(w,;x,¢))
Bi (G BBy s (ME,,))2

9: Update w;,; by Momentum or AdamW
10: end for

the initial update of u; ; coincides with the mini-batch estimate of the inner function
at that point. This technique will be used in other FCCO applications.

@ Feature Learning

Similar to AUC maximization, the end-to-end training based on the AP surrogate
objective does not favor feature learning. To mitigate this issue, one can first pretrain
the encoder network on the training data by traditional supervised learning (e.g. ERM
with the CE loss) or self-supervised representation learning and then fine-tune the
feature extraction layers and a random initialized classifier layer by optimizing an AP
surrogate objective. The compositional training could be also employed for unified
feature learning and AP maximization.

¢ Moving-average parameter y,

In practice, we can set y; = y and tune 7y in the range (0, 1) to optimize the validation
performance.
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Fig. 6.11: Comparison of different methods for AP maximization. TFCO refers to
the constrained optimization algorithm implemented in the Google TensorFlow Con-
strained Optimization library. The experiment was conducted on a constructed im-
balanced binary classification task of CIFAR 10, which originally contains 10 classes.
These classes are partitioned into two equal groups to form the positive and negative
classes based on their class IDs. The test data is unchanged (i.e., the testing data is
still balanced). For more details, please refer to (Yuan et al., 2023b).

6.4.3 Stochastic Partial AUC Maximization

Stochastic OPAUC Maximization

We focus on maximizing the OPAUC with the false positive rate (FPR) restricted to
the range [0, 8]. As shown in Section 2.3.3, OPAUC maximization can be formulated
as minimizing a surrogate objective:

min il Z Z t(h(w;x;) — h(W;X;)), (6.23)

wong
X €S+ x;eS[1,k]

where k = [n_B], S*[1, k] € S denotes the subset of examples whose rank in terms
of their prediction scores in the descending order are in the range of [1, k], and £(-)
denotes a continuous surrogate pairwise loss such as in Table 2.3.

The challenge lies at how to tackle the top-k selection x; € St [1, k]. Below, we
present two approaches: a direct approach that leverages the dual form of CVaR and
an indirect approach that replaces the top-k selection by soft weighting.

A Direct Approach

This approach will be restricted to a non-decreasing pairwise loss function £(s).
Under this assumption, the ranking over negative samples by their prediction scores
h(w;X;) is equivalent to that by the pairwise loss £(h(W;X;) — h(W;X;)),X; € S;.
Hence, the average of pairwise losses over top-k negatives
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Algorithm 29 SOPA for solving (6.26) of direct OPAUC maximization

1: Initialize wandv; =0

2: fort=1,...,Tdo

3: Draw B positive data 8/ C S, and B, negative data 8, c S_
Compute p;j = I(£(h(W;,X;) — h(W;,X;)) —vi, > 0) forx; € B},x; € B
fori € B/ do

Update v; 141 = vi,, — 12(E - BLZ Yxje8; Pij)

end for
Set vi 41 = Vig,i & Bf
Compute a vanilla gradient estimator z; by

LR R

1
z, =
BB,

Z Z Dij Vwl(h(we, x;) — h(We, X))

X; €8/ x; €8,

10: Update w,,; by SGD or Momentum or AdamW
11: end for

Lw=1 S fhwix)) - h(wix) (624)
kx,-e:s%[l,k]

is equivalent to the average of top-k pairwise losses over negative data, i.e., an em-
pirical CVaR estimator. Then leveraging the dual form of CVaR (2.15), we transform
the above loss into a minimization problem, i.e.,

Liw) =min > [€hw:x)) = hwx) = vily v (629)

X eS_

As a result, we have the following equivalent reformulation.

Lemma 6.1 (Reformulation of OPAUC maximization.) When {(-) is non-decreasing,
then the problem (6.23) for OPAUC maximization is equivalent to

1 k 1
min F(w,v) = — Z Sy — Z (L(h(W, X;) = h(W, X)) = vi)s ¢ »
n XiES+ n n XjES_

(6.26)

The above problem is a special case of compositional OCE studied in Section 5.5.

A benefit for solving (6.26) is that an unbiased stochastic subgradient can be com-
puted in terms of (w, v). We present a method in Algorithm 29, which is an appli-
cation of the ASGD and is referred to as SOPA. A key feature of SOPA is that the
stochastic gradient estimator for w (Step 9) is a weighted average gradient of the pair-
wise losses for all pairs in the mini-batch. The weights p;; (either O or 1) are dynami-
cally computed by Step 4, which compares the pairwise loss (£(h(w;, X;)—h(w;,X;))
with the threshold variable v, ;, which is also updated by an SGD step.
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Algorithm 30 SOPA-s for solving (6.28) of indirect OPAUC maximization

1: Initialize w, ug

3: Draw B positive data 8] c S, and B; negative data 8, c S_
: fori € B/ do

£(h(WiiX)) —h(Wexi
Update u; ; = (1 — y)u; ;-1 + 73% DixjeB; €XP (M)

4
5
6: end for

7: Setuir =ui 1,0 ¢ Bf
8: Compute p;; = exp(£(h(Ws;Xj) — h(We3X;))/7T)/ui; forx; € Bf,x; € B
9 Compute a vanilla gradient estimator z; by

1
" BB,

z;

DD piVe(h(wix;) = (W)

X; €8] x;€8;

10: Update w;,; by Momentum or AdamW method.
11: end for

The convergence guarantee of SOPA using the SGD update for w, has been es-
tablished in Section 5.5. In practice, the convergence speed of SOPA may be further
accelerated by integrating Momentum or Adam updates for the model parameter w.

An indirect approach by FCCO

Due to the connection between CVaR and DRO (2.13), an alternative approach is to
replace the top-k pairwise loss L;(w) by a KL-regularized DRO, i.e.,

Li(w) = max
PeAn Txjes. pjt(h(Wx;)—h(w:x;))-7KL(p,1/n-)
! (f(h(w; X)) = hw: xi>>) ©27
=r1log| — Z exp .
- X_,’ES_ T

As a result, an indirect approach for OPAUC maximization is to solve the following
FCCO problem:

1
min — » tlog| — Z exp (6.28)
v - x;€S- T

n | (f(h(w; X;) — h(w; Xz’)))

An application of the SOX algorithm is given in Algorithm 30, which is referred
to as SOPA-s. The key difference between SOPA-s and SOPA lies at the pairwise
weights p;; in SOPA-s (Step 8) are soft weights between 0 and 1, in contrast to the
hard weights p;; € {0, 1} in SOPA.
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Fig. 6.12: Comparison of different methods for OPAUC maximization with FPR less
than 8 = 0.3 (left) and B8 = 0.5 (right). The dataset is Melanoma classification from
Kaggle competition. The training set has only 1.76% positive (malignant) samples.
MB refers to the BSGD approach that computes gradients using only the top 8% of
negative examples within each mini-batch; AW-Poly is a heuristic weighted method
that assigns weights to negative samples in the mini-batch using a manually designed
weighting function. For more details, please refer to (Zhu et al., 2022b).

Stochastic TPAUC Maximization

As shown in Section 2.3.3, empirical maximization of TPAUC with FPR < g, TPR >
a can be formulated as:

11

in —— t(h(w;x;) — h(w;X;)), 6.29

min - - Z Z (h(W: X)) = h(W;X;) (6.29)
X[ES+[1,k1]Xj€S_[1,k2]

where k| = |[n.(1 — @), ko = |n_B]. If we define
1
Li(w) = - DT Eh(wix)) = h(wixy), (6.30)
x;€S[ 1,k ]
then, the problem in (6.29) can be written as:
1
min - Z Li(w). 6.31)
x; €SI [1,k]

Similar to OPAUC maximization, we will present a direct approach and an indi-

rect approach.

A Direct Approach

The first approach is based on the following reformulation of TPAUC maximization.
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Algorithm 31 STACO for solving (6.32) of direct TPAUC maximization
1: Initialize wand v; =0,v' =0
2: fort=1,...,Tdo
3: Draw B positive data 8] c S, and B; negative data 8, c S_

4 Compute p;; = I(€(h(W;,X;) — h(W;,X;)) — vi, > 0) forx; € Bf,x; € B
5: fori € B/ do
6: Update y; ;+1 and v; ;41 by
Yit+1 =
1 k2 ’
yie=my g D CRWeX;) = h(WeXa)) = Via)s + == (Vi = ])
2 - n_
X;j€B; [0,1]
k> 1
Vijt+l = Vit — M Yi,t+1 (Z - B—2 Z_ Pij)
X; €8,
7: end for
8: Set yir41 = iy, 0 € Bf and v s = vy, t ¢ Bf
9: Update vt’+] =v,—-1m (i‘% - ,lf—fBLl inez;; Vi,r+1)
10: Compute a vanilla gradient estimator z, by

1
;=
BB,

DD Vi Pi Vnl (h(We, X)) = h(We, X))

X; €8/ x; €8/

11: Update w,4; by SGD, Momentum or AdamW
12: end for

Lemma 6.2 (Reformulation of TPAUC maximization.) When £(-) is non-decreasing,
the problem (6.29) for TPAUC maximization is equivalent to

kiko

nyn_

v, (6.32)

min > flei(wv,v) +

wy,v' Ny
. Xi€S+

wherev = (vi,...,vn,)", f(-) =[]+ and

GOy = 3 (Ewixg) = RO X)) = v+ 22 (= V).

T xjeS. -

We leave the proof as an excise for the reader.

It is clear that the problem (6.32) is an instance of FCCO, where the outer func-
tion is non-smooth and monotonically non-decreasing. Hence, SONX, SONEX, and
ALEXR can be applied. We present an application of ALEXR for solving the above
problem in Algorithm 31 (referred to as STACO) based on its min-max reformula-
tion:
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Algorithm 32 SOTA-s for solving (6.33) of Indirect TPAUC Maximization

1: Initialize wy, u;, vy,
2: fort=1,...,Tdo
3: Draw B positive data 8] c S, and B; negative data 8, c S_

4: fori € B/ do
5: Update u; ;= (1 = yo)ui -1 + Y0 g; Zx,csr €XP (%W)
6: end for
7 Setuir =ui 1,0 ¢ Bf
8 Letvr = (1= y)v1 + 715 Sy e (i)™
9: Compute
exp(£(h(WeX;) — h(We3 X))/ 72) (g ) /71
pis = p(£(h(W:;X;) (vz i)/ 72) (uir) Vxi € B.x; € By
t
10: Compute a vanilla gradient estimator z, by
1

= BB, Z Z pijVE(h(Wiix;) = h(WeiXi))

X;€B/ x; €8,

11: Update w,,; by Momentum or AdamW

12: end for
e e yl’[_ Z (E(W; X, X)) = vi)s + — (v = V) | + ==/
w,v,v’ ye[0,1]™ ny XS, n_ <cs n_ nyn_
1 J —

An Indirect Approach

Following the strategy used in OPAUC maximization, we adopt an indirect approach
by replacing top-k estimators with their KL-regularized DRO counterparts, which
yield smooth surrogate objectives.

With a non-decreasing pairwise surrogate loss £(-), L;(w) is a non-increasing
function of 1(w; X;), the average of L; (W) over bottom-k positive examples in (6.31)
is equivalent to the average of top-k; losses L;(w) over all positive data. Hence, we
approximate the resulting top-k; estimator by a KL-regularized objective:

71 log (ni Z exp (LiT(lw))) )

+ X; €S,

Then, we substitute L;(w) with L;(w) as defined in (6.27), leading to the following
smoothed objective:
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F(w) =1 log (ni Z exp (%IW)))

X,'ES+

T2log (i1 By . exp (LA ))

1
= 1 —_
T1 log . E exp T

X,‘ES+

V3

((h(w;x)) = h(w:x)) | |
L I P EE e

X;€S; T xjeS.

To minimize this objective, we formulate the problem as a three-level composi-
tional stochastic optimization:

1
min f; (n— D f2<gi<w>>), (633)
+ Xi€S+

where fi(s) = 71 log(s), f2(g) = g™/™, and

gr(w) = ni Z eXp(é’(h(W;Xj) —h(w;xi)))_

- XJ'ES_ n

The inner function of f; exhibits a finite-sum coupled compositional optimiza-
tion (FCCO) structure. To accurately estimate V fl( ) at the inner function value, we
maintain a moving average estimator v; to track - lee s, J(gi(wy)).

We present a stochastic optimization al gorlthm—referred to as SOTA-s—for solv-
ing this problem in Algorithm 32. We update u; ; to track g; (w;) in Step 5 and main-
tain v; to estimate —- le es, J2(gi(w;)) in Step 8. The gradient estimator in Step 9
is given by:

Vi) 1z D, Vhuin) - VEi(w),
|B+| xie B}
0 C(h(WeXj)—h(Wex;
where &;(w;) = BLZZXI"B; exP( (h(w x_,)T2 (Weix ))).

6.4.4 Stochastic NDCG Maximization

In Section 2.3.4, we have formulated NDCG maximization as the following empirical
X-risk minimization problem:

N .
1 1 - 2%
e Zz_ Z logz(ng(w Xy, Sg) + 1) (6.34)

331



Algorithm 33 SONG

1: Initialize wy, ug

2: fort=1,...T do
3 Draw some relevant Q-I pairs 8, = {(¢,X4,;)} € S
4: For each sampled g draw a batch of items B; c Sy
5.
6
7

for each sampled Q-I pair (g,x4,;) € B; do
Compute ug i r = (1 = y)ug.ii-1+ 7@ Ywes, L(s(We3X', q) — s(Wi3Xq.i,q))
Compute
(2Ya1 — 1) Ny
Zy(Ngug ir+1)10g3(Nyug i +1)In(2)

pz/,i = qu,i(uq,i,t) =

8: end for
9: Compute a vanilla gradient estimator z, by
1 1 ,
weig 2, Paitgm 2 CGNXL@) - s(wixq)
g (q-Xq,i)€B; 4" xes,
10: update w1 by Momentum and AdamW optimizer
11: end for

where N,g(W;x,S;) = Zx’esq L(s(w; X', q) — s(W; X, q)) is a surrogate of the rank
function r (w; x, S;) = Zx'esq I(s(w;x’, q) —s(w;x, q) > 0), and s(W; X, ¢) denotes
the predicted relevance score for item x with respect to query ¢, parameterized by
w € R? (e.g., a deep neural network).

As a result, NDCG maximization can be rewritten as an instance of FCCO:

1
min 5 Do fai(g(Wixgi, Sy)), (6.35)
(9.%q,i)€S

where S = {(¢,x4.0) | ¢ € Q,x4; € S;} represent the collection of all relevant
query-item (Q-I) pairs, and

1- 2)’(1,1'

1
fa.i(®) = 5-T—— -
! Zglogy(Ngg +1)

We apply the SOX method to this problem as shown in Algorithm 33, which we
call SONG.

Top-K NDCG Maximization
In practice, top-K NDCG is the preferred metric for information retrieval and recom-

mender systems, as users primarily focus on the highest-ranked items. It is defined
as:
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1 ) 2vai — 1
- S I . € S( . s
- Z (Xqi €Sq77) log, (r(w;x4,i,Sg) + 1)

where SéK) is the set of top-K items based on predicted scores, and Z;K) is the ideal
DCG in the top-K positions.

Optimizing top-K NDCG introduces an added complexity: selecting the top-K
items is non-differentiable. Unlike pAUC, where a top-K estimator exists, the surro-
gate function

2Yai — ]
log, (Ngg(W;Xq,i,Sy) +1)

is not generally monotonic in the score s(W; X, ;, ¢) unless all y, ; values are iden-
tical. We consider two approaches to handle this problem.

Approach 1: Surrogate for Top-K Inclusion

We use the identity I(x, ; € S;K)) =I(K —r(w;xg4,;,Sg) > 0) and approximate it
by a non-decreasing surrogate ¥ (K — Ny g(W; X4 i, Sy)), €.g., the sigmoid function.
The resulting objective becomes:

N .
1 1 — 2%

min — Z Z (K - Ngg(w;Xg.i,Sy)) - :

weRrd |S] xS Z;IO log,(Ngg(w;X4.:,Sy) + 1)

(6.36)

This can be optimized using FCCO techniques.

Approach 2: Threshold Estimation via Bilevel Optimization

Denote by A,(w) the the (K + 1)-th largest score among all X’ € S,;. We use
the identity I(x,,; € SéK)) = I(s(W;Xg4,i,q9) > A4(W)) and approximate it by
W (s(W;Xg.i, q) —Aqg(W)). The threshold A, (w) can be computed by solving a convex
optimization problem as shown in the lemma below.

Lemma 6.3 Let 1,(w) = argminy (K + £)A + Zx’esq (s(w; X', q) — A)4 for any
g € (0,1), then A,(w) is the (K + 1)-th largest value among {s(w; X', q)|x’ € Sy }.

As a result, we formulate the following bilevel optimization problem for top-K
NDCG maximization:

L i Z Y(s(W;Xg,i,q) — Ag(W)) - (1 = 2%47)
S|

min )
v q=1x4,€S} Zq logz(ng(W; Xq,i’Sq) +1) 6.37)
. K+¢ 1 , -
st Ag(w) = arg min N, A+ N_q Z (s(w;x’,q) — )+, Vq.

’
X' €S,

333



This bilevel formulation is challenging due to the non-smooth and non-strongly-
convex lower-level problem. One remedy is to apply Nesterov smoothing to the hinge
loss (see Example 5.1) and add a small quadratic regularization term of A to the lower
level objective. This allows employing the Approach 1 of using moving-average es-
timators from Section 4.5.3.

In practice, we can ignore the gradient of  and adapt the SONG algorithm by
updating A, iteratively and modifying p, ; as:

K+¢ N 1
Ny |8y |

’

D Uswix,q) > )|, VYge8B,

t
x'e€B,

/lq,t+l = Aq,t -n

Pq.i = ‘//(S(Wt;xq,i’ q) - /lq,t+l) : qu,i(”q,i,t)-

As with other non-decomposable metrics, it is beneficial to first pretrain the model
by optimizing the listwise cross-entropy loss, which itself is an FCCO problem, as
defined in (2.47).

6.4.5 The LibAUC Library

The algorithms presented in Section 6.4 for various X-risk minimization tasks share
several common features: (1) they all require sampling both positive and negative ex-
amples; (2) their vanilla gradient updates involve a weighted sum of gradients from
pairwise losses computed on the sampled data; and (3) they utilize moving-average
estimators to track inner function values. These shared characteristics motivate the
design of a unified implementation pipeline. To this end, the LibAUC library was de-
veloped to encapsulate these principles within a modular and extensible framework,
built on top of the PyTorch ecosystem. Below, we highlight several key components
of LibAUC. For tutorials and source code, we refer interested readers to the GitHub
repository:

LibAUC GitHub Repository

https://github.com/Optimization-AI/LibAUC

Pipeline

The training pipeline of a deep neural network in the LibAUC library is illus-
trated in Figure 6.13. It consists of five core modules: Dataset, Controlled
Data Sampler, Model, Dynamic Mini-batch Loss, and Optimizer. While the
Dataset, Model, and Optimizer modules align closely with those in standard train-
ing frameworks, the key innovations lie in the Dynamic Mini-batch Loss and
Controlled Data Sampler modules.
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Dynamic
Dataset CTLCE Model Mini-batch Optimizer
Data Sampler Loss

Fig. 6.13: Training pipeline of the LibAUAC library for deep learning.
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Fig. 6.14: Tllustration of DualSampiér for an imbalanced dataset with 4 positives e
and 9 negatives e.

The Dynamic Mini-batch Loss module defines the loss using dynamically
updated variables, which are computed and refined with forward propagation re-
sults. This design ensures that compositional gradients can be correctly estimated
from mini-batch samples using backpropagation. The Controlled Data Sampler
module, in contrast to standard random sampling strategies, allows fine-grained con-
trol over the ratio of positive to negative samples. This control can be tuned to im-
prove learning effectiveness and overall performance.

Controlled Data Sampler

Unlike traditional ERM, EXM requires sampling to estimate the outer average and
the inner average. In algorithms for AUC, AP, OPAUC and TPAUC optimization,
we need to sample two mini-batches 8, c S, and 8. C S_ at each iteration .
When the total batch size is fixed, balancing the mini-batch size for outer average and
that for the inner average could be beneficial for accelerating convergence according
to our theoretical analysis in Chapter 5. Hence, the Controlled Data Sampler
module can help ensure that both positive and negative samples will be sampled and
the proportion of positive samples in the mini-batch can be controlled by a hyper-
parameter.

DualSampler. For binary classification problems, DualSampler takes as input
hyper-parameters such as batch_size and sampling_rate, and generates the cus-
tomized mini-batch samples, where sampling_rate controls the number of positive
samples in the mini-batch according to the formula:

#positives = batch_size * sampling_rate.
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Figure 6.11.

Figure 6.14 shows an example of DualSampler for constructing mini-batch data
with even positive and negative samples on an imbalanced dataset with 4 positives
and 9 negatives. To improve the sampling speed, two lists of indices are maintained
for the positive data and negative data, respectively. At the beginning, we shuffle
the two lists and then take the first 4 positives and 4 negatives to form a mini-batch.
Once the positive list is used up, we only reshuffie the positive list and take 4 shuffled
positives to pair with next 4 negatives in the negative list as a mini-batch. Once the
negative list is used up, we re-shuffle both lists and repeat the same process as above.
An illustration of the impact of the DualSampler on the convergence is shown in
Figure 6.15.

TriSampler. For multi-label classification problems with many labels and rank-
ing problems, TriSampler first samples a set of tasks controlled by a hyperparam-
eter sampled_tasks, and then sample positive and negative data for each task.

The following code snippet shows how to define DualSampler and TriSampler.

from libauc.sampler import DualSampler, TriSampler
dualsampler = DualSampler (trainSet,
batch_size=32,
sampling_rate=0.1)
trisampler = TriSampler(trainSet,
batch_size_per_task=32,
sampled_tasks=5,
sampling_rate_per_task=0.1)

Dynamic Mini-batch Loss
To compute the vanilla gradient estimator, we invoke backpropagation using the Py-

Torch function 1loss . backward () on a defined loss. The vanilla gradient estimators
for pAUC, AP, and NDCG maximization share a common structure of the form
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1

18] Z é Z piiVE(h(w;x;) — h(W;X;)),

x; €8 XjEBZ

where the weights p;; are computed from dynamic variables within the algorithm.
To enable the use of loss.backward(), it suffices to define a mini-batch loss as
ﬁ Dxie B @ ijegz pijt(h(w;x;) — h(w;X;)), where p;; is detached from the
computation graph to avoid unnecessary backpropagation through these variables.
Since p;; is evolving across iterations, the mini-batch loss is called dynamic mini-
batch loss. A high-level pseudocode example for SOPAs is provided in Figure 6.16.

# define dynamic mini-batch loss
def pAUCLoss (**xkwargs): # dynamic mini-batch loss

sur_loss = surrogate_loss(neg_logits - pos_logits)
exp_loss = torch.exp(sur_loss / Lambda)
ulindex] = (1 - gamma) * ul[index] + gamma * (exp_loss.mean(1)

)
p = (exp_loss / ulindex]) .detach()
loss = torch.mean(p * sur_loss)
return loss

# optimization

for data, targets, index in dataloader:
logits = model(data)
loss = pAUCLoss(logits, targets, index)
optimizer.zero_grad ()
loss.backward ()
optimizer.step ()

Fig. 6.16: High-level pseudocode for SOPAs.

Comparison with Existing Libraries

We present some benchmark results of LibAUC in comparison with other state-of-
the-art training libraries.

Comparison with the TFCO Library. We compare LibAUC (SOAP) with
Google’s TensorFlow Constrained Optimization (TFCO) library for optimizing av-
erage precision (AP). Both methods are trained for 100 epochs using a batch size of
128, the Adam optimizer with a learning rate of 1e-3, and a weight decay of le-4 on
a binary classification task derived from CIFAR-10 with imratio € {1%,2%}. The
training and testing learning curves, shown in Figure 6.11, demonstrate that LibAUC
consistently outperforms TFCO.

Comparison with the TF-Ranking Library. We evaluate LibAUC, using SONG
for NDCG maximization, against Google’s TF-Ranking library, which implements
ApproxNDCG and Gumbe1NDCG. Experiments are conducted on two large-scale datasets
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Fig. 6.17: Left: Benchmarks of NDCG optimization on MovieLens (ML) 20M and
25M datasets, @K means NDCG at top K. Right: Runtime Comparison between
LibAUC and TF-ranking for NDCG maximization. For more details, please refer
to (Yuan et al., 2023b).

—MovieLens20M and MovieLens25M—from the MovieLens platform. As shown in
Figure 6.17, LibAUC achieves superior performance on both datasets. Furthermore,
the runtime comparison shows that LibAUC’s NDCG maximization algorithm is
more efficient than the corresponding implementations in TF-Ranking.

6.5 Discriminative Pretraining of Representation Models

In Chapter 2, we briefly introduced the core concepts of representation learning and
highlighted its growing significance in modern Al systems. In contemporary Al,
representation models are learned through Self-supervised learning (SSL), which has
emerged as a powerful paradigm for learning representation models without the need
for labeled data. Among the most prominent frameworks within SSL is contrastive
learning, which forms positive pairs by applying different augmentations to the same
data sample or taking different views of the same data, while treating different data
as negatives. In this section, we delve deeper into contrastive learning, with a focus
on its applications to both unimodal and multimodal representation learning.

6.5.1 Mini-batch Contrastive Losses

A contrastive loss is used to pull the representations of positive pairs closer together,
while pushing apart those of negative pairs in the embedding space. One of the most
widely used contrastive losses is the so-called InfoNCE loss, which operates over
samples within a mini-batch. Below, we illustrate its use in two well-known con-
trastive learning methods and discuss its limitations.
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Fig. 6.18: Illustration of SimCLR for Contrastive Visual Representation Learning.
(x, x*) are augmentations of the same image, {x~ } is a set of other images. An image
encoder is a deep neural network and a projector is a lightweight multi-layer percep-
tron.

SimCLR

We now illustrate the contrastive loss in the context of visual representation learning
by the well-known method SimCLR. The framework is illustrated in Figure 6.18. The
model typically consists of a deep encoder backbone followed by a small projector,
often implemented as a multi-layer perceptron (MLP). During downstream tasks, the
projector is discarded, and the encoder’s output is used as the final representation.
The inclusion of the projector during training improves the quality and transferability
of the learned embeddings by helping disentangle the contrastive learning objective
from the representation space.

Let (x,x") ~ P, denote a positive pair, which are different augmented copies
from the same data. For a mini-batch 8 = {xi,...,Xg}, each anchor x; is paired
with an augmented positive sample x!. The resulting mini-batch-based contrastive
loss (commonly referred to as the InfoNCE loss) for anchor x; is given by:
exp (h(w;Xi)Th(w;X,f) )

T

exp (h(w;x,-)Th(w;x,f)) + ijegli exp (h(WZXi)Th(WZXj))

(6.38)

Lg(w;x;,x}) = —log

where 2(w;x) denotes the normalized embedding of input x, i.e., [|A(W;X)|]2 = 1,
and 7 > 0 is the temperature parameter. The set $B;” includes all negative samples in
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attract

“pup in a blanket”

Fig. 6.19: Illustration of Contrastive Language-Image Pretraining (CLIP). A projec-
tor is usually a single linear layer.

the mini-batch excluding x; and its augmentations. The positive pair can be removed
from the denominator.

CLIP (Contrastive Language-Image Pretraining)

CLIP is a multimodal representation model that aligns images and text via contrastive
learning on large-scale image—caption datasets. It comprises an image encoder and a
text encoder, each followed by a corresponding projector, all jointly trained through
contrastive learning (see Figure 6.19). CLIP models are typically trained on mil-
lions to billions of image—caption pairs, denoted as S = {(x1, t1), ..., (X, t,)}. Let
h1(w;-) denote the image encoder and /,(w; -) denote the text encoder, which out-
puts normalized embedding vectors.

With a mini-batch 8 = {(xi,t;),...,(Xp,tp)}, a mini-batch-based contrastive
loss for each image x; is given by:

exp ( hy <w;xi)1h2<w;ti) )
Lg(w:x;) = - log . (639)
hi (wixi) Tho (Wit; hi (Wx;) Tho (Wst;
exp( L (wix )‘r 2 (wit )) +2tjeBZ’i exp( 1(wix )T 2(w ./))

where the set 8, includes all negative texts in the mini-batch excluding t;. Similarly,
a mini-batch-based contrastive loss for each caption t; is given by:

exp ( hy (W;Xi); hy (witi) )

Lg(w:t;) = ~log Ry (wix;)Thy (wit;) hi(wix;) Tha(witi) ) (6.40)

exp (f) + ijeBl‘i €xp (f)
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where the set B, includes all negative images in the mini-batch excluding x;. Back-
propagation is then performed on the two mini-batch contrastive losses to compute
gradient estimators, which are summed to update the model parameters.

CLIP enables zero-shot image classification, cross-modality retrieval and plays a
crucial role in text-to-image generation by guiding models to synthesize images that

semantically align with textual prompts.

What is zero-shot classification?

Zero-shot classification means classifying data without any labeled data
for learning a classifier. In a multi-class classification task with K classes
{Cy,...,Ck}, where each class corresponds to a specific label (e.g., ‘dog’),
we apply the CLIP model by first constructing a natural language prompt for
each category (e.g., ‘a photo of a dog’). We then compute text embeddings
for these prompts and calculate their cosine similarity with the image embed-
ding generated by CLIP. Finally, the model predicts the class that yields the
highest similarity score.

The Challenge of Large Batch Size

While efficient, the InfoNCE loss is known to heavily rely on large batch sizes to
ensure a rich and diverse set of negatives. For example, SimCLR requires a batch
size of 8192 to achieve state-of-the-art performance for training on the ImageNet-1K
dataset. This dependence on large batches imposes significant memory and compu-
tational burdens, especially when using large network backbones or processing high-
dimensional inputs such as videos. Indeed, optimizing the InfoNCE loss is equivalent
to using the BSGD method for optimizing the global contrastive loss as discussed in
next subsection, which sufffers from non-convergence if the batch size is not signif-
icantly large.

6.5.2 Contrastive Learning without Large Batch Sizes

While the mini-batch contrastive loss offers computational convenience, it contra-
dicts to the standard optimization principle where the objective is typically defined
over the full dataset, followed by the development of efficient optimization algo-
rithms. The mini-batch contrastive loss emerged naturally from the prevalent training
pipeline (see Figure 6.1) that practitioners are familiar with. However, as previously
discussed, this pipeline originating from ERM assumes that the loss for each data
instance is independent of others, which does not hold for contrastive objectives. To
resolve this, it is essential to decouple the design of the objective function from the
optimization procedure.
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Global Contrastive Loss: Separating Objective from Optimization

A global contrastive loss contrasts each anchor data point against all other examples
in the training set. For a given positive pair (x;,X), the global contrastive loss is
defined as:

h(w;x;) Th(w; X;) = h(w;X;) "h(W; X])

1
L(w;x;,x}) =7log| —— Z exp( ,

|Sl | Xj 65,7 T
(6.41)
where S/ is the set of all negative samples excluding x; and its positive counterparts.
The full global contrastive objective over S = {xi, ..., X,} is then given by:
. 1 1
n&nF(w) = Z 5 Z L(w;x;,X]), (6.42)
x; €S xteSt

where S denotes the set of all positive samples corresponding to x;.

SogCLR: The Optimization Algorithm

To optimize the global contrastive objective, we cast it into the following:

eS T xteSt
" ™ (6.43)
1 W; X; W, X;
+—Zlog Zexp( ( ) h(w:x;) .
n _ T
X; €S X;€S;

The first term is a standard average and the second term is an objective of FCCO,
where the outer function is f(-) = tlog(:) and the inner function is g;(w) =

ﬁ Y zes- €Xp (M) For readers who are familiar with Chapter 4 and 5,

it is easy to understand the challenge of optimizing the above objective. It lies at the
compositional structure of the second term with both summations over many data
outside and inside the log function. As a result, the using the mini-batch-based In-
foNCE loss will suffer from a biased gradient estimator whose error depends on the
batch size.

To address this challenge, we can extend the SOX algorithm to solving (6.43) as
shown in Algorithm 34, which is referred to as SogCLR. The estimators u; ;41, Vi
are for tracking the inner function values g;(w;) and p; ; = - v— is for estimating
Vlog(g;(w;)), where ¢ is small positive value added to avoid numerical issue and
facilitate the learning.
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Algorithm 34 SogCLR for optimizing the global contrastive objective (6.43)

1: Input: Initial model w;, uy € R”

2: fort =1toT do

3 Sample a mini-batch 8 = {x;};>, with augmentations

4. for each x; € B do

5: Construct the positive and negative set within mini-batch B/, 8
6 Update u; , via:

wig ==Y 1 +ym=

1 (h(wt;X.-)Th(wt;Z)
Z exp| ———

|B;| 2€B; T
7: end for
8: Compute the vanilla gradient estimator z,:
1 1 T
w= g ZB ] ZB V(Wi x0) Th(wi X))
exp (h(wt ;X;);h(Wz i) )

V(h(w;x;)Th(w;2)),

1
+@Z

1
x;€B |Bl_| 2B Et Uiy

9: Update w,,; by Momentum, Adam or AdamW
10: end for

Q Initialization and Update of u

Unlike the model parameter w, which is typically initialized randomly, the auxiliary
variables u can be initialized upon their first update. Specifically, when an index i is
sampled for the first time, we set u; ; to the corresponding mini-batch estimate of the
inner function value.

As with the practical considerations discussed for distributionally robust opti-
mization (DRO), the vanilla update of u can suffer from numerical instability due
to the use of exp(-), particularly when the temperature 7 is small. To address this,
we can instead maintain a log-transformed variable v; ; = logu; ,, following the
technique in Equation (6.14).

¢ PyTorch Implementation

A PyTorch implementation of SogCLR for self-supervised visual representation
learning is shown in Figure 6.21. Each image in the dataset is augmented twice.
To facilitate the computation of the vanilla gradient estimator, we define a dynamic
contrastive loss function. For each augmented instance, we call this loss function to
update its associated u variable and compute the dynamic loss using the updated u.
These individual dynamic losses are then aggregated over the mini-batch, and the u
variables for the two augmentations of each image are averaged.
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Finally, we invoke loss.backward() to compute the gradient, followed by an
optimizer step to update model parameters.

@ Comparison with SimCLR

The effectiveness of SogCLR is illustrated in Figure 6.20 with comparison with Sim-
CLR for self-supervised visual representation learning on ImageNet-1K dataset with
1.2 million of images. With a standard mini-batch size 256 and the same other set-
tings as SIimCLR, by running 800 epochs, SogCLR achieves a performance of 69.4%
for top 1 linear evaluation accuracy, which is better than 69.3% of SimCLR using a
large batch size 8,192. Linear evaluation accuracy is measured by training a linear
classifier atop a frozen encoder and subsequently assessing its performance on the
validation set.

6.5.3 Contrastive Learning with Learnable Temperatures

The temperature parameter 7 plays a critical role in controlling the penalty strength
on negative samples. Specifically, a small 7 penalizes much more on hard negative
samples (i.e., the degree of hardness-awareness is high), causing separable embed-
ding space. However, the excessive pursuit to the separability may break the under-
lying semantic structures because some negative samples with high similarity scores
to the anchor data might indeed contain similar semantics, to which we refer as false
negatives. In contrast, a large 7 tends to treat all negative pairs equally (i.e., the de-
gree of hardness-awareness is low) and is more tolerant to false negative samples,
which is beneficial for keeping local semantic structures.

Existing approaches based on the InfoNCE loss often treat the temperature param-
eter T as a learnable scalar to be optimized. However, this strategy lacks theoretical
justification and may not yield optimal performance. Moreover, real-world data dis-
tributions typically exhibit long-tail characteristics, with substantial variation in the
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# Note: This is a simplified version of SogCLR, we compute u

from each augmentation separately for computing the dynamic
contrastive loss

and then aggregated them from all augmentations.

model: encoder + mlp projectors

aug: a set of augmentation functions

tau: temperature

N: data size

ind: indices for images in mini-batch

u: 1d tensor with shape (N,1) by zero initialization

g: parameter for maintaining moving averages of u

+*

HOH O O HH HH

for ind, img in dataloader:
x1, x2 = aug(img), aug(img) # augmentations
hl, h2 = model(x1l), model(x2) # forward pass
hi, h2 = hl.norm(dim=1, p=2), h2.norm(dim=1, p=2)
lossl, ul = dcl(hl, h2, ind) # dcl for hil, h2
loss2, u2 = dcl(h2, hil, ind) # dcl for h2, hi
#
#

ulind] = (ul + u2)/2 update u
loss = (lossl + loss2).mean() symmetrized
loss.backward ()

update (model.params) # momentum or adam-style

# dynamic contrastive loss (mini-batch)

def dcl(hil, h2, ind):
B = hil.shape[0]
labels = cat([one_hot(range(B)), one_hot(range(B))], dim=1)
logits = cat([dot(hl, h2.T), dot(hl, h1.T)], dim=1)
neg_logits = exp(logits/tau)*(1-labels)
u_ = (1-g) * ulind] + g*sum(neg_logits, dim=1)/(2(B-1))
p = (neg_logits/u_).detach()
sum_neg_logits = sum(p*logits, dim=1)/(2(B-1))
normalized_logits = logits - sum_neg_logits
loss = -sum(labels * normalized_logits, dim=1)
return loss, u_

Fig. 6.21: PyTorch-style implementation of SogCLR for global contrastive learning.

frequency of samples across different semantic categories. This diversity suggests
the need for individualized temperature parameters that better adapt to the inherent
heterogeneity of the data.

To improve feature qualities, samples with frequent semantics should be assigned
with a large T to better capture the local semantic structure, while using a small 7
will push semantically consistent samples away. On the other hand, samples with
rare semantics should have a small T to make their features more discriminative and
separable.
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Robust Global Contrastive Loss with a Learnable Temperature

Owing to the equivalence between the global contrastive loss and KL-regularized
DRO (see Eq. (2.14)), the loss in Eq. (6.41) can be rewritten as:

L(w;x;,X]) =

max " pj (h(w;xi) Th(Wx;) = h(wix) Th(ws X)) = TKL(p, 1/1S7 1),
pea X; €S
(6.44)
where A is the probability simplex over S;” and 7 serves as the regularization param-
eter in the KL-regularized DRO.
To enable learning of the temperature parameter, we formulate a robust global
contrastive loss using a KL-constrained DRO framework:

L(w;x;,x}) =

max " p; (h(wsx)Th(wix;) = h(wsx) Th(w X)) = 70 KL(p, 1/1S; )
peA X,‘EST

subjectto  KL(p, 1/|S7]) < p,
(6.45)
where 7 is a small constant to ensure smoothness of L(w;x;, x). Using the dual
formulation (cf. Eq. (2.19)), this can be equivalently expressed as:

L(w;x;,x}) = (6.46)

. 1 (h(w;xi)Th(W§Xj) —h(W;Xi)Th(W;x;'))
min 7log| —— Z ex +7p
T

T27) | i |X_/'ES;
Let £;(w;X;) = h(w;x;)Th(w;X;) — h(W;x;) "h(w;x}). The above loss simplifies
further to:

. 1 i (w;x;)
L(w;x;,x") = min 7lo exp [ ——L | |+ 7p.
(w: %3, x7) ram S |Si_|x;9- P( T ) w
J i
Minimizing the average of these robust global contrastive losses yields the fol-
lowing objective, which learns individualized temperatures:

Ci(W; X
ngn % Z Tr'nZnTlo 7; log |Sl.‘| Z_ exp (%) +T0¢.- 6.47)
X;€S Ll xjeS§;

The SogCLR algorithm can be modified to solve this problem. We present the
resulting algorithm, referred to as iSogCLR, in Algorithm 35. The vanilla gradient
estimator with respect to w, is computed as in SogCLR, except that the temperature
7 is replaced with the individualized 7;, at iteration ¢. The gradient estimator with

346



6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Algorithm 35 iSogCLR for optimizing the robust global contrastive objective (6.47)

1: Input: Initial model w;, uyp € R"

2: fort =1toT do

3 Sample a mini-batch 8 = {x;};>, with augmentations

4. for each x; € B do

5: Construct the positive and negative set within mini-batch B}, B;
6 Update u; , via:

1 ti(w;z
u,-,,:(l —y)ui’,_1+7ﬁ Z exp( l( ))
i

ZGB,T Tit
7: Compute the vanilla gradient estimator z; ; of 7; ;
£i(wiz)
1 P\ " ) €i(w;z)
Zip = =T +log(ui) +p
|Bl~ | rep- EtUig Ti,t
8: end for
9: Compute the vanilla gradient estimators z;:
exp ( Ci (We32) )
1 1 T
zZ, = — Vi (w;z),
S TE L TE A e, A0

x;€B szi’

10: Update 7; ¢+1, VX; € B by the Momentum method
11: Update w,,; by the Momentum or AdamW method
12: end for

respect to 7; , is computed in Step 7 and it can be updated using the Momentum
method.

An application of iSogCLR to CIFAR-10 dataset yields more discriminative fea-
tures than SimCLR and SogCLR as shown in Figure 6.22.

CLIP Training with Learnable Temperatures

CLIP with Individualized Learnable Temperatures

We can integrate the robust global contrastive loss for temperature learning into the
contrastive language-image pretraining (CLIP), yielding the following objective:
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SimCLR SogCLR iSogCLR

Fig. 6.22: The learned embeddings (projected onto 2D space using t-SNE) for CI-
FAR10 samples learned by self-supervised learning algorithms SimCLR, SogCLR
and iSogCLR. For more details, please refer to (Qiu et al., 2023).

“ s(w;x;,t) — s(w; x;, t;)

. 1 1
min - > 1i1log ﬁ Z exp +71p
W, T1270,T22T0 N . Ti
127012270 11 4= i |e7- il

=1

n

1 1
+- > 1islog| —
w 27218 7

i=1

(s(w; X, t;) — s(W; X, t;))
Z exp

) + 720,
Ti,2

xel~

(6.48)
where 7, denotes the set of all negative data of an image x; and Z,~ denotes the set
of all negative data of the corresponding text t;, and s(w;x, t) = h;(w;X) " hy(w; t)
is the similarity score of the image and text embeddings.

While optimizing robust contrastive losses enables the learning of temperature pa-
rameters, it may compromise generalizability in downstream tasks by introducing a
large number of additional parameters, which can lead to overfitting—particularly in
noisy real-world datasets where mismatched samples are common. Two approaches
can be used to tackle this issue.

CLIP with a Global Learnable Temperature

A straightforward approach to reduce the number of temperature parameters is to
learn a single global temperature parameter for images and texts, respectively. This
is formulated as the following optimization problem:

1 ¢ 1 X, t) — X, t;
L  log __Zexp(s(wx ) — s(w;x )) rip

WTI270, 12270 1L 4= |7~ | T

1< 1 X, ) — (WX,
+;Z 7, log = Zexp(s(wx )~ S(W3 i l)) +Top

™

(6.49)
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CLIP with a Temperature Prediction Network

An alternative strategy is to learn a temperature prediction network (TempNet) that
outputs an instance-dependent temperature for each image and text. The correspond-
ing optimization problem is defined as:

1 & 1 w:x;, t) — s(W; X;, t;
min —Zr(wi;xi)log — Z exp(s( ) ’s( d l)) +7(W5X;)p
Wy 1A |7;~ | e T(W5X;)

n
+ % Z T(wh; t;) log |Il__| Zﬁ exp (S(w’ X’:_’()W, st(l‘;v’ X“t’)) +7(Whit)p.
i=1 I xel; 2
(6.50)
The temperature prediction network 7(w7;-) for images can share the encoder
layers of the image encoder & (w;-), followed by a lightweight MLP. Similarly, the
text-side temperature prediction network 7(wj;-) can share the encoder layers of
the text encoder hy(w; -), also followed by a small MLP. Again this problem can be
optimized by modifying SogCLR to account for the update of TempNet.

9 Scheduler of y

Like the standard learning rate 7 in the update of w,., the hyper-parameter y can be
also interpreted as a learning rate of SGD (4.3). The theoretical analysis shows that
v should be set to a very small value close to 0 in order to guarantee convergence.
Ideally, y should be large to rely more on the current mini-batch at earlier iterations
and be smaller to rely more on history in later iterations. To achieve this, we can use
a decreasing scheduler, e.g., a cosine schedule for y,: Let ¢ be the current iteration,
to be the number of iterations per epoch and E be the number of decay epochs, then
we sety; = 0.5 (1 +cos(x|t/tg]/E)) - (1 = Ymin) + Ymin. With this schedule, y; will
decrease from 1.0 to ypin. Note that | ¢/f9] denotes the current epoch, which means
the value of y, stays unchanged within one epoch. Also, The number of decay epochs
E is a hyperparameter, and it is not necessarily equal to the total number of training
epochs. If the current epoch exceeds E, y, will be set to yin.

¢ PyTorch Implementations

PyTorch implementations of SogCLR and iSogCLR are available in the LibAUC
library. Their distributed versions, including support for solving (6.49) with a cosine
scheduler for vy, are provided in the FastCLIP GitHub repository:

https://github.com/Optimization-AI/FastCLIP

Three versions are available: FastCLIP-v1 implements SogCLR with a tuned global
temperature, FastCLIP-v2 implements iSogCLR with individualized temperatures,
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and FastCLIP-v3 implements SogCLR for solving the global temperature optimiza-
tion in (6.49).

A distributed implementation of iSogCLR for CLIP training with the Temperature
Prediction Network (TempNet) is available at:

https://github.com/Optimization-AI/DistTempNet

Figure 6.23 presents a comparison between FastCLIP-v3 and the prior state-of-
the-art distributed implementation of optimizing the mini-batch-based InfoNCE loss,
known as OpenCLIP (Ilharco et al., 2021). This highlights the effectiveness of the
advanced compositional optimization algorithm, demonstrating clear improvements
in both convergence speed and representation quality.

6.6 Discriminative Fine-tuning of Large Language Models

Large Language Models (LLMs) have revolutionized modern Al. Their training typ-
ically consists of three stages: self-supervised pretraining on internet-scale text cor-
pora, supervised fine-tuning (SFT) on question—answer datasets, and learning with
human preference for alignment. An improved paradigm, reinforcement learning
with verifiable rewards (RLVR), further advances large reasoning models by lever-
aging automatically verifiable signals from synthesized outputs.

6.6.1 Pipeline of LLM Training

Figure 6.24 illustrates the pipeline of LLM Training. We briefly introduce these com-
ponents below.
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Reinforcement Learning
with Verifiable Awards

Py x) > Priy-x)

H v
Self-Supervised Supervised Learning with Human
Pretraining Fine-tuning Preference

Pr(oy, o) = [[ Priwdacs) Pr(ys,- - ymbx) = [] Pr(selx, y<o) Pr(y, - y_|x)

t>1 t>1

Fig. 6.24: Different Phases of training LLMs.

Self-supervised Pretraining

Self-supervised pretraining is formulated as next-token prediction. Letx = (xy, ..., X;,)
be a sequence of tokens where x ; belongs to a vocabulary of tokens V = {vy, ..., vk }.
The probability of x is modeled auto-regressively by

px) =] [ pxslec)),
Jj=1

where x.; denotes the prefix (xi,...,x;_1). The conditional probability is modeled
via a softmax over a Transformer representation:

exp((wo;x<;) T Wy;)

Zf:] GXP(h(Wo;xq)TWk) ,

p(xjlx<j) = mw(xjlx<;) = (6.51)

where h(wo;x<;) € R9 is produced by a Transformer network and Wy; € R4 is the

token embedding. The full model parameters w = (W, Wy, ..., W) are learned by
minimizing the negative log-likelihood over a dataset S = {xi,...,X,}:
.1
min —— Z log p(x;). (6.52)
v

Supervised Fine-tuning (SFT)
In SFT, a dataset S = {(x;,y;)} is used, where x; is an input prompt and y; is the
desired output. Let x = (x1,...,x;) andy = (y1, ..., yn) be token sequences from

the vocabulary V. SFT models the next-token prediction of tokens in y given X using
the autoregressive factorization:

ml
pyIx) =] Jrw(rslx y<p),
j=1
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where each term is computed using the same Transformer-based model as in pre-
training. SFT minimizes:

1 n
min —— Z log p(y;i|x;)- (6.53)
oI

Learning with Human Preference

SFT does not penalize poor responses. Hence, it does not necessarily guarantee that
the likelihood of tokens in a poor answer is low. Let us consider a simple example:

Motivation Example

(x) What is the bigger number between 9.11 and 9.9?
(y) The bigger number between 9.11 and 9.9 is 9.9.
(y") The bigger number between 9.11 and 9.9 is 9.11.

The good answer y and the bad answer y’ only differ in the last token. The like-
lihood of all preceding tokens are the same. Even though the likelihood of the last
token “9” in y conditioned on preceding tokens is increased during the fine-tuning
with this data, the likelihood of the token “11” as the last one might still be high,
making generating the bad answer y’ likely.

To address this issue, learning with human feedback fine-tunes the model using
preference tuples (X, y4+,y-), where y, is preferred over y_. Two main approaches
are reinforcement learning from human feedback (RLHF) and direct preference op-
timization (DPO).

RLHF

A reward model rg (X, y) is first trained to match human preferences by modeling the
preference probability Pr(y, > y_|x) as

exp(re (X, y+))

= y-|x) = , (6.54)
P Y = ety +exp(ra(x.y)
and minimizing the following:
minExy, y_ —log p(y+ » y-[x). (6.55)

The policy model (i.e, the target LLM) is then optimized by solving the following
problem with some RL algorithms:

mv?XEx,ywrw [79* (x,y) = BKL (7w (-[x), nref(‘|x))] . (6.56)

where the KL divergence is defined as:
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7w (y[X)
KL -x), . =Eyer (. log ———=|, 6.57
(7w (+1%), Zref (+1X)) = By (-1x) |10g g (6.57)
where s denotes a base model. If we decompose y = (yy, ..., yx) as a sequence

of tokens, then using the autoregressive factorization the KL divergence can be ex-
pressed as a sum over tokens:

k

KL (7 (-[X), et (-[X)) = By [Z log Ml . (6.58)

= Tret (Ve X, Y<r)

Direct Preference Optimization (DPO)

DPO directly optimizes the policy without a separate reward model. A closed-form
non-parameterized solution of 7 by solving (6.56) for any reward model r(x,y),
gives:

1
n(ylx) = mﬂ'ref(ﬂx) exp(Br(x.y)), (6.59)
where Z(x) is the normalization factor. Substituting into Eq. (6.55) leads to:
Aw(V-1%) g Aw(ye[X) )) .

6.60
Tret(y_ %) Trer (Vs %) (0.60)

minEyy, , log (1 +exp (ﬁ log
w

In practice, a set of tuples {(x;, Yi+, Yi— i, is constructed and used for learning.

Connections with Discriminative Learning and AUC Maximization

DPO can be also motivated from discriminative learning, particularly AUC
maximization. We view generating the answers of x as a task, and y, denotes a
positive data and y_ denotes a negative data. Let s(w, X, y) denote a scoring
function, which indicates the likelihood of generating y given x. By AUC
maximization with a continuous surrogate loss £(s(W,X,y-) — s(W,X,y+)),
we have the following problem:

mgin Exy,y f(s(W,X,y_) — s(W,X,y4)). (6.61)

DPO can be recovered by setting s(w, X, y) = log n”i(y)l,’l‘i) and £(s) = log(1+
exp(ps)).

Reinforcement Learning with Verifiable Rewards (RLVR)
RLVR is an emerging paradigm for training reasoning models, particularly suited

for tasks like mathematical problem solving, where models are expected to gener-
ate step-by-step solutions followed by a final answer. Unlike RLHF, which relies on
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Outputs Rewards

Questions
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Ex: If $3x + 5 = 208, what

is the value of $x$? {Yn,h cee 7yn,m} {rml-v‘: . . 77’77,.711}

Ex of outputs: Ex of rewards: 1
Start with the equation: $3x + 5 = 20$.

Subtract $5$ from both sides: $3x = 15$.

Divide both sides by $3$: $x = 5%.

The final answer is 5.

7Tnew

Fig. 6.25: The one-step iteration of RL for reinforcing Large Reasoning Model. For
each question x;, the model generates m outputs y; i,...,Yim and each of them
receives areward r; j, j = 1,...,m from a verifier. Then an algorithm will leverage
the inputs, their outputs and the reward information to update the model.

subjective preference labels, RLVR leverages verifiable signals such as whether the
final answer is correct.

What is a Large Reasoning Model?

A large reasoning model is a type of LLM that is specifically designed or fine-
tuned to perform multi-step logical reasoning, such as solving math prob-
lems, answering complex questions, or generating structured arguments. It
generates intermediate reasoning tokens before producing the final answer,
mimicking System 2 reasoning in humans, which is deliberate, logical, and
slow.

RLVR is illustrated in Figure 6.25. The old model in one step of learning is de-
noted by moq. It is used to generate multiple answers for a set of input questions.
Given a question x (with prompt included), one generated output y follows the dis-
tribution 7414 (-|X), which includes reasoning traces and the final answer. Specifically,
output y is generated token by token, i.e., y; ~ moa(‘|X, y<;), fort =1,--- ,|y|.

A key to RLVR is to assume that there exists a verifier, which can automatically
verifies the quality of the generated answer, giving a reward. Let us consider a binary
reward setting where the verifier returns a binary value for a given question x and
its corresponding answer in the output y. For answering mathematical questions,
this can be achieved by comparing the generated answer with the true answer. For
generating mathematical proofs, we can use a formal verification tool such as LEAN
to verify if the proof is correct.

Proximal Policy Optimization (PPO)

PPO is a classical RL algorithm. Let

7w (y1X)

pw(X,y) = m
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denote the likelihood ratio between the new policy my and the old policy mq4. Let
A(x,y) be an advantage function for taking action y given input x, which measures
how much better a specific action is compared to the policy’s average behavior in a
given state. The PPO objective is given by:

‘[:PPO(W) :EX,y»v]rQ]d [mln (pW(X’ Y) : A(X9 Y)’ Clip(pw(x7 y)’ I- €, 1+ E) : A(X’ y))]
— BKL (7w, Tref) (6.62)

where € > 0 is a small hyperparameter (typically around 0.1 or 0.2), and the clip
function restricts the likelihood ratio py (X, y) to the range [1 — €, 1 + €], defined as:

1-¢€ if pw(x,y) <1—¢€,
Chp(pW(X7Y)»] — €, 1 +6) = ,Ow(X,y) ifl—e< pw(X, y) < l+E,
l+e€ if pw(X,y) > 1 +e€.

The intuition of using clipping mechanism is that

¢ When A(x,y) > 0 (the action is better than expected), the clip operation prevents
nw from increasing its probability too aggressively.

e When A(x,y) < 0 (the action is worse than expected), the clip operation prevents
mw from decreasing its probability too drastically.

This clipping mechanism was used to reduce variance and maintain stable training
dynamics for reinforcement learning. However, it also suffers from zero gradient
when py (X, y) is out of the range [1 — €, 1 + €], which might slow down the learning
process.

Trust Region Policy Optimization (TRPO)

TRPO is a principled policy optimization method that improves stability and effi-
ciency by restricting each policy update to stay within a small trust region. It max-
imizes a surrogate objective function based on the advantage estimates under the
old policy, while constraining the average Kullback—Leibler (KL) divergence be-
tween the old and new policies. Formally, TRPO solves the following constrained
optimization problem:

max Ex y~roq [ow(X, ¥)A(X,y)]
subject to  Ex [KL (o1a(+[X), mw (:[x))] < 6, (6.63)

where ¢ is a predefined trust region threshold. The KL divergence is taken in the
reverse direction to ensure that the updated policy does not deviate too much from
the old policy on average across the state distribution.
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Group Relative Policy Optimization (GRPO).

GRPO is a reinforcement learning algorithm designed to optimize policies by lever-
aging group-wise relative reward information.

For inputs {x;}",, let {y; j}f: , denote the corresponding set of K generated an-
swers for each x;. the objective of GRPO for maximization is defined by:

1 &1
Jorpro (W) = Z T Z
. P

i=1
_ﬂKL(ﬂ'Hs”ref)» (664)

lyijl

, P iit|X Vi

_Zf( w(y,],z| y1,<t) A(xi,yz'j))]
|le| t=1

Towd (Vij,e X, vij,<t)’

where y;; ; denotes its #-th token and y;; ; denotes the prefix of the #-th token of
Yij, f(s,t) = min(st,clip(s,1 — €, 1 + €)t), mrr is a frozen reference model, and
A(x;,yi;) is the group-wise advantage function defined as

Ay = " T
q

with 7, being the average reward of outputs for x and o, being its standard deviation.
This advantage function quantifies how much better the reward of an output y is

compared to average reward in the group. For analysis, we consider the expected
version:

|yl
1 7Tw(yt|x»)’<t)

Farot) =528 o 1 S (b
K ( ) =y~ o (-1x) Zf 7T01d()’z|X,y<t)

A(X, Y)) ] - BKL(7g, mref),
lyl <

(6.65)
where

X) = By ni (- 1x ’|x
A(x.y) = r(¥IX) = Ey <z (107 (Y] ). 6.66)

\/VMY’~7rold('|X)r(y,|X)

6.6.2 DFT for fine-tuning Large Language Models

While learning with human feedback addresses the limitation of SFT, traditional
supervised learning methods never use human preference data. For example, in im-
age classification, training data (x, y) denote an input image and its true class label
y € {1,...,K}. We do not need the preference optimization step on preference data
saying that a dog class is preferred to a cat class for an image of a dog. So what is
the difference between traditional supervised learning and supervised finetuning of
LLMs that makes SFT not enough? The answer lies in the fact that traditional su-
pervised learning methods are usually discriminative approaches, while the SFT
method is not discriminative.
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6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

By casting the supervised fine-tuning of LLMs into data prediction, we can lever-
age discriminative learning approaches, e.g., the discriminative probabilistic model-
ing (DPM) approach and the robust optimization approach.

DPM over an Infinite Data Space

Let X and Y be infinite data spaces. Let us consider X as an anchor space and Y
as the target space with a Lebesgue measure y. When Y is countably infinite, the
Lebesgue measure y is replaced by the counting measure. We model the probability
density Pr(y | x) of an objecty € Y given an anchor object x € X by a parameterized
scoring function s(W; X, y):

exp(s(wW;X,y)/7)
Jy exp(s(wix,y)/T)du(y")’

Py(y | x) = (6.67)

where 7 > 0 is a temperature parameter. We assume that exp(s(w;X,y)/7) is
Lebesgue-integrable for w € ‘W, ‘W c R9. Here Py (y | X) is a valid probabil-
ity density function because fy Py (y | X)du(y) = 1. Given {(x1,¥1),.--» (X, ¥n) }
sampled from the joint distribution py y, the maximum likelihood estimation (MLE)
can be formulated as the following:

. 1< exp(s(w;x,y)/7)
-~ > 7l
ngn{ n ; e Jy exp(s(w:x, Y’)/T)du(y')}

-1 Z s(w;x,y) + 7log (/ exp(s(w; X, y')/‘r)d,u(y')) . (6.68)
nia v

If V is finite, the above DPM framework recovers the traditional multi-class classi-

fication and learning to rank. In particular, if Y/ denotes the label set {1, ..., K} and
s(w; x, y) denotes the classification score for the y-th class, then the above approach
recovers logistic regression. If Y denotes the set of items YV = {X41,...,Xg, Ny }

and the anchor data x denotes a query, then the above approach recovers the List-
Net (2.47).

Optimization via FCCO
The main challenge for solving the DPM problem over an infinite data space lies
in computing the integral g(w;x;, Y) = /y exp (s(w;x;,y¥")/7) du(y’) for each i €

[n], which is infeasible unless Y is finite. Below, we discuss two general approaches
for tackling the challenge.
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Sample and Optimize

The first approach is to introduce a sampling distribution P;(-), satisfying that (1) it
is easy to sample data from P;; (2) it is possible to compute the probability value of
a sample y’. Then we write

s(W:x;,y') " exp(s(W;x;,y')/7)
/y exp (f) du(y’) = Ey.p; () Pi(y) :

The optimization problem becomes an instance of FCCO:

1 n
min — — Z s(W;yi, X;)
voonig

1 exp(s(W ¥, X0) /)
= Z‘ rlog (Ey,wpl.(.) pln). (6.69)

Approximate and Optimize

In some cases, we may only have sampled data from P;(-) without access to P;(-).
LetS; ={y; ;....,¥;,,} denote a set of outputs sampled for each data x; following
some P;. Then we approximate g(w; x;, Y) by

1 'y, 1 ;Y
g(wixi, Y) ~ — Z exp(S(Ij,-V(;)X)/T) “m Z eXp(S(wT—YX))’ (©70

YeS, yeS;

where the last step assumes P;(y’) are approximately equal. Then the optimization
problem becomes an instance of FCCO:

1 n
min —— Z s(W;yi,X;)
0 n4
i=1
n

¥ % 2.l (% Dyes, FPBOWYX0/T)) (6.71)

i=1

DFT for fine-tuning LLMs

Let us apply the DPM approach to fine-tuning LLMs, which is referred to as dis-
criminative fine-tuning (DFT).

Discriminative Likelihood

Unlike SFT that maximizes the generative likelihood of tokens, DFT will maximize
the discriminative likelihood of data as defined in (6.67). By maximizing the dis-
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Fig. 6.26: (a) Log-likelihoods of (annotated) positive examples during training for
different methods. (b) Log-likelihoods of “negative” examples (generated from the
base model) during training for different methods. For more details, please refer
to (Guo et al., 2025).

Algorithm 36 The DFT Algorithm

1: Initialize wy as the base LLM, and ug = 1
2: fort=1,...,T - 1do

3: Sample a mini-batch 8; C {xy,...,X,}
4 for each x; € B, do
S: Sample a mini-batch B, from ¢ (+|X;) via an offline pool
6 Update u; ;41 according to
1 exp(S(Wz:y/,Xi) )
Uit = (1 - )ui, 1+Yy—= T_ (672)
! Y ! yB ZO ﬂref(yl|xi)
Y8,
7: end for
8: Compute a vanilla gradient estimator z, according to
1 .
Z, = —@ x;gr Vs(We;yi, X )+
s(Weiy' . Xq) -
1 1 ex Vs(we v, x;
_ Z _ Z p( p= ),_( [0 l). 6.73)
| B | X €8, Ui t+1 |Bi,t| VeB;, Trer (Y’ |Xi)
9: Update w;,1 using Momentum or AdamW
10: end for

criminative log-likelihood of the training data, we not only increase the score of the
true output y; for each input x;, corresponding to the numerator of the discriminative
likelihood, but also decrease the scores of other potentially bad answers in Y/, which
correspond to the denominator of the discriminative likelihood; see Figure 6.26.
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Fig. 6.27: Using moving average estimators with vy < 1 is important for improving
the performance. For more details, please refer to (Guo et al., 2025).

The Scoring Function

For fine-tuning LLMs, the scoring function can be defined based on the generative
log-likelihood log 7w (y|Xx), as it measures the likeliness of generating y given x by
the model ny,. For a good model, we expect that a high value of the generative log-
likelihood log 7w (y|x) would indicate a high fitness score of y to answer x. With
such correspondence, the above discriminative learning framework would increase
the chance of generating a good output y given x and decrease the chance of generat-
ing possibly bad outputs given x. Common choices for the scoring function include
the raw log-likelihood s(w;y,x) = logaw(y|x) and a length-normalized version
s(w;y,Xx) = |yL| log 7w (y|x). Using the unnormalized version sy (y, X) = log 7y (¥|X)
leads to the following DFT objective:

R
min —- ;logﬂw(yl’|xi)

1< log 7w (y'[%:)
+T;leog(zy/eyexp(f . (6.74)

Comparing the DFT objective of to that of SFT in (6.53), we observe that the first
term in (6.74) is identical to the objective of SFT. The key difference lies in the
second term, which penalizes the possibly poor outputs in Y for each x; by reducing
their generative log-likelihood, thereby discouraging their generation.

Sampling Distribution

The optimization analysis reveals that the variance bound oy of the mini-batch es-
timator for the inner function g(w;x;,Y) significantly impacts convergence speed
(cf. Theorem 5.1). Ideally, the variance-minimizing distribution is Py (-|x;). How-
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ever, this distribution is impractical to evaluate and difficult to sample from directly.
Moreover, we aim for the sampled outputs y’ ~ P;(-) to represent likely poor re-
sponses to X;. A practical approach is to define P;(-) = met(+|X;), where mr denotes
the base LLM to be fine-tuned and X; is an augmented version of x; with added sys-
tem prompts to encourage the generation of suboptimal outputs. This relies on the
assumption that the base model is unlikely to generate high-quality answers in this
context.

The Optimization Algorithm

An application of the SOX algorithm for solving (6.69) is presented in Algorithm 36.
The sequence {u} plays a critical role in effectively penalizing the sampled “negative
data,” as illustrated in Figure 6.27. A PyTorch implementation of DFT is at

https://github.com/Optimization-AI/DFT.

6.6.3 DisCO for Reinforcing Large Reasoning Models

DisCO, short for Discriminative Constrained Optimization, is a recent approach for
reinforcing large reasoning models. It is motivated by the connection between the
GRPO objective and discriminative learning objectives, and is designed to overcome
key limitations of GRPO and its variants.

Limitation of GRPO and Connection with Discriminative Learning

Letr(y|x) € {1, 0} denote the reward assigned to an output y with respect to the input
X. A quantity that is important to the analysis is p(X) = By (. 1x) [7(¥[x)] € [0, 1],
which quantifies the difficulty of the question x under the model 7,9. We denote by
! 4(-1x) the conditional distribution of outputs when the reward is one (i.e., positive
answers) and by 7 ,(-|x) the conditional distribution of outputs when the reward is
zero (i.e., negative answers).

In the following analysis we assume p(X) = By, (.x)7(¥[X) € (0, 1); otherwise
we can remove them from consideration as done in practice.

Proposition 6.1. Let us consider the objective of GRPO and its variants with the
following form:

ly

! T (Ve [%, y<1) )]
= BxByr(iv) | = | 6.75
Jo(w) = BxEy ’“(”[yuzf(m,,d(ytm S AGY) (6.75)

where A(X,Y) is given in (6.66). Assume that f(x, y) is non-decreasing function of x

such that f(x,y) =1(y > 0)yf*(x,1) =I(y < 0)yf (x, 1), where both f*, f~ are
non-decreasing functions of x, then we have
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Jo(w) = ExvVp(x)(1 - p(x))Eywrgld(-|x),y’~7r;ld(~Ix) [s*(w;y,x) — s~ (W;y',x)],

(6.76)
where
+( ) 1 Zy|:f+(77w()’t|xa)’<t) 1)
sT(wyy,x) = — _—
Iyl &7 \7oia(yel%, y<r)
Iyl
l &
Iyl po Toid(ye X, y<t)
In particular, for GRPO we have
1 i . w(Ye]X, y<r)
st(wyy,x) = — Z min(————=—=_1+¢), 6.77)
lyl < Totd (Ve |X, y<t)
|yl
l 9
sT(W;y,X) = — Z max(w, —€). (6.78)
lyl por Toid(ye X, y<t)

PrOOf: Since Ey~7r01d(~|x)r(Y|X) = P(X),Va-ry~ﬂ01d(-|x)r()'|x) = p(x)(l - P(X)), we

have
[1=p(x) :
——= ifr(y|x) =1,
Axy) ={V X b (6.79)

BRY, 1?1(:2()’ 1fr(y|X) =0.

By the law of total expectation, we have
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[yl
1 Ttw (Ve]X, y<r) )]
E E - . —9A X’ )
XLy~ 7to1a ( IX)[|Y| ;f(ﬂold(yt|X,)’<t) oy

[ 4 ( 7w (3%, Y.<)

P OBy 10 Ty Zf Toan oy ”)

mod (Ve X, y<1)

lyl
Tw (Ve X, Y<r) 1-p(x)
~ X R 6.80
[p(x) Y °'d(')lylz (ﬂ'old(yt|X,}’<t) V p(x) ) (50

i Tw(yelX, y<s) p(x)
1= PO By |y|Z (nold(y,|x,y<t)’_ 1-p<X>)}

lyl

7Tw()’t|x’y<t)
y~7h C1X) Tor Iyl Z (—————D

Told (Ve lX, y<r)

lyl
+ (1= p(X)Eyx O,dux)'ylz (M,Am))]

=Exvp(x)(1 - p(x)) |E

|yl

— Tw(yelX, y<r)
y ﬂold( IX) |y| Z‘f - 1):|

ﬂold(Yz|X yar)

where the last equality follows from the assumption about f(x, y). For GPRO, we
have f*(x,1) = min(x,clip(x,1 — €,1 + €)) = min(x,1 + €) and f~(x,1) =
max(x,clip(x, 1 — €, 1 +€)) = max(x, 1 — €). O

@ Why it matters

We derive two insights from Proposition 6.1 regarding the two components
of Jy. First, let us consider the component By zt (10,5 ~75, (%), [sT(w;y,x) —
s~ (w;y’,x)]. Since both f* and f~ are non-decreasing functions of the first ar-
gument, then both s*(w;y, x) and s~ (w;y, X) are non-decreasing functions of
o (y:|X, y<¢). Hence, maximizing 5 would increase the likelihood of tokens
in the positive answers and decrease the likelihood of tokens in the negative
answers. This makes sense as we would like the new model to have a high like-
lihood of generating a positive (correct) answer and a low likelihood of generat-
ing a negative (incorrect) answer. This mechanism is closely related to traditional
discriminative methods of supervised learning in the context of AUC maximiza-
tion, which aims to maximize the scores of positive samples y ~ 77, ,(-|x) while
minimizing scores of negative samples y’ ~ r_,(-|x), where the x acts like the
classification task in the AUC maximization. Hence, in the context of discrimi-
native learning, we refer to s* (y, x) and s~ (y, X) as scoring functions. Therefore,
EYW&d('\X)’Y’N”&d(W")» [s*(y,x) — s~ (y’,x)] is a discriminative objective.

Second, let us consider the component w(x) = /p(x)(1 — p(x)), which acts like
a weight scaling the discriminative objective for each individual input question.
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Fig. 6.28: (a) Weight on questions based on correctness probability p; (b) Histogram
of per-question accuracy evaluated in the GRPO learning.

It is this component that leads to difficulty bias. As shown in Figure 6.28(a),
questions with very high p(x) values (close to 1) or very low p(x) values (close
to 0) receive small weights for their discriminative objectives, causing the opti-
mization to focus primarily on questions of intermediate difficulty while paying
little attention to hard questions (p(x) ~ 0) and easy questions (p(x) ~ 1). This
mechanism may significantly hinder the learning efficiency. Intuitively, if the
generated answers have only one correct solution out of 10 trials, i.e. p(x) = 0.1,
we should grasp this chance to enhance the model instead of overlooking it. On
the other hand, even when we encounter an easy question with a probability of
p(x) = 0.9, we should keep improving the model rather than being satisfied
because it still makes mistakes with respect to this question.

DisCO: A Discriminative Constrained Optimization Framework

Motivated by the analysis of GRPO and its connection with discriminative learning,
discriminative objectives can be borrowed directly for learning the reasoning model.

Below, we introduce two approaches.

Discriminative Objectives

For a given question x, let s(w;y, x) denote a scoring function that measures how
likely the model 7y, “predicts” the output y for a given input x '. Then the AUC score
for the “task” x is equivalent to ]EyN,r;d,y/~,,(;d [I(s(w;y,x) > s(w;y’x))]. Using a
non-decreasing continuous surrogate function £, we form the following objective (in

expectation form) for minimization:

Li(W) = ExEy-rt (x),y'~75, (10 C(s(W %) = s(w3y,X)).

(6.81)

! in the context of generative models, “predicts” is like “generates”.
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One difference from the objective of GRPO is that we use a single scoring function
s(w;y, x) for both positive outputs y and negative outputs y’. The different scoring
functions for positive and negative outputs in GRPO actually arise from the clipping
operations. The clipping could cause the vanishing gradient, which may also slow
down the learning process. To avoid these issues, we consider non-clipping scoring
functions.

One advantage of designing the objective based on the principle of discrimina-
tive learning is the ability to leverage a wide range of advanced objectives to im-
prove training. A key challenge in RL fine-tuning for reasoning models is the sparse
rewards, which leads to imbalance in generated outputs. Specifically, for some ques-
tions where p(x) < 1, the number of negative outputs can significantly exceed
the number of positive ones. The objective function £ is motivated by maximizing
AUC for each question X, i.e., By .+ vn- [I(s(w;y,x) > s(w;y’x))]. However,
when there is much more negative data than positive data, AUC is not a good mea-
sure. For example, let us consider a scenario that there are 1 positive y; and 100
negatives {y!,...,y'%}. If the scores of these data are s(y',x) = 0.9, s(y,,Xx) =
0.5,5(y2,x) = s(y>,x) ... = s(y'%, x) = 0.001, then the AUC score is 155 = 0.99.
The AUC score is high but is not informative as the model still generates the negative
data y! more likely than the positive data y,.

To address this issue, we leverage the pAUC objective (6.28), leading to the fol-
lowing objective for minimization:

T

{(s(w;y',x) = s(w;y, X))
Lo(w) = ExEy-nt (x)7 log (Ey/wﬂold(.m exp ( .

(6.82)

Lemma 2.4 indicates that £,(w) > £;(w) by Jensen’s inequality for the concave
function log. Hence, minimizing £, (w) will automatically decreasing £ (w). How-
ever, the reverse is not true. This also explains why minimizing £, (w) could be more
effective than maximizing £ (w).

Scoring functions
Different scoring functions can be considered. Two examples are given below.

* The log-likelihood (log-L) scoring function is defined by

|yl
1
s(Wiy,%) = 10 ) log i (yifx,v<o).
t=1

¢ The likelihood ratio (L-ratio) scoring function is computed by

|yl
1 Tw(YelX, y<s)
s(w;y,x) = — _—
lyl rz:; 7o (Ve X, y<r)
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Stabilize the training with Constrained Optimization

Training instability is a long-standing issue in RL. Instead of using the clipping op-
eration of PPO, an effective approach is to use the idea of trust region constraint of
TRPO, which restricts the updated model w in the trust region using the reverse KL:

KL (7014, Tw) < 6.

Putting It All Together

DisCO formulates policy learning as a discriminative constrained optimization prob-
lem that combines discriminative objectives with a trust-region constraint. Specifi-
cally, it solves one of the following two formulations:

min £ (w)
w (6.83)
s.t. KL(mod, Tw) < 6,
or alternatively,
min £, (w)
w (6.84)

S.t. KL(ﬂ'o]d, w) < 0.

Optimization Algorithm

To tackle the constrained optimization, we can use the penalty method presented
in next section, which converts the constrained problem into an unconstrained one
with an appropriate penalty parameter 8. For example, with a squared hinge penalty
function, we solve

min L(W) + B[KL(ola, ) = 613, (6.85)

where [-]+ = max{-, 0}. We will show that under an appropriate assumption regard-
ing the constraint function and £, solving the above squared-hinge penalized objec-
tive (6.85) can return a KKT solution of the original constrained problem (6.83).

We discuss the difference between using the squared-hinge penalty function and
the regular KL divergence regularization SKL (74, 7). The squared-hinge penalty
function has a dynamic weighting impact for the gradient, VB[KL (714, Tw) — 613 =
2B[KL(7o1d, mw) — 6]+ VKL(7o14, Tw), such that if the constraint is satisfied then
the weight 28[KL (74, mw) — 6]+ before the gradient of the regularization term
KL(7o14, Tw) becomes zero. This means the KL divergence is only effective when
the constraint is violated. In contrast, the regular KL divergence regularization
BKL (714, y) always contributes a gradient SVKL (7014, Tyw) no matter whether the
constraint is satisfied or not, which could harm the learning.

The effectiveness of DisCO over GRPO and other methods has been demonstrated
in (Li et al., 2025) for fine-tuning distilled Qwen and LLaMA models on a mathe-
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Fig. 6.29: Comparison of DisCO and GRPO for finetuning a 1.5B distilled Qwen model: left
plots the training reward (averaged over generated outputs for questions used in each step) vs the
number of training steps; right plots the generation entropy vs training steps. Each training step uses
128 questions sampled from the dataset, each associated with 8 generated responses to define the
objective, and a mini-batch size of 32 is used for updates for a epoch. For more details, please refer
to (Li et al., 2025).

matical reasoning data with approximately 40.3k unique problem-answer pairs. A
comparison of the training dynamics for different methods is shown in Figure 6.29.

A PyTorch implementation of DisCO is included in the following Github reposi-
tory:

https://github.com/Optimization-AI/DisCO.

6.7 Constrained Learning

Constrained learning is a machine learning framework in which the model is trained
not only to minimize a specified risk but also to satisfy additional constraints. These
constraints can encode domain knowledge, prior information, regularization terms,
or other application-specific requirements. Unlike simple domain constraints w €
‘W, we consider complicated functional constraints in the form:

min  F(w)
weR? (6.86)
s.t. gi(w)<0,i=1,...,m.

In many cases, g;(w) also depends on the data, making its evaluation and gradient
computation expensive.

Traditional works for constrained optimization include three primary categories:
(1) primal methods, e.g., cooperative subgradient methods and level-set methods; (2)
primal-dual methods that reformulate constrained optimization problems as saddle
point problems; (3) penalty-based approaches that incorporate constraints by adding
a penalty term to the objective function. In this section, we demonstrate how FCCO
enables penalty-based approaches to be both efficient and practically effective.
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6.7.1 A General Penalty-based Approach via FCCO

To tackle the constraints, a penalty-based approach uses a penalty function f(-) to
convert the constrained problem into an unconstrained one:

min F(w) + £ 2 &), (6.87)

where p > 0 is called the penalty parameter. Commonly used penalty functions in-
clude:

* Squared hinge penalty:
1
flg) =3Il

* Hinge penalty:

f(g) =lgl+
¢ Smoothed hinge penalty:
g—5 ifg>e,
flg) = % if0 < g <e,
0 otherwise,

where € < 1 is a small constant.

Different penalty functions yield different convergence rates. However, they share
a common property: when the constraints are satisfied at a point w, no penalty is
incurred; otherwise, the greater the violation, the larger the penalty.

We can see that the added second term in (6.87) is a form of FCCO. Hence, the
algorithms developed in Chapter 5 can be applied to solving the resulting uncon-
strained problem. Nevertheless, we need to answer several important questions: (1)
What is an appropriate value for p? (2) What convergence guarantees can be estab-
lished for the original constrained problem?

Equivalent min-max formulation

By using the conjugate of f, the unconstrained problem is equivalent to:

lm
0 IR ) ee— igi(W) = f* (i) s 6.88
o et pry O pm;(yg() ) (6.88)

For the three penalty functions, we have

¢ Squared hinge penalty: f*(y) = %yz, dom(f*) ={y:y > 0};
* Hinge penalty: f*(y) = lo,c[y € dom(f*)], dom(f*) ={y :y € [0,1]};
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¢ Smoothed hinge penalty: f*(y) = %yz, dom(f*)={y:y€[0,1]};

KKT solutions

Let us focus on non-convex optimization problems with a non-convex objective F (w)
and non-convex constraints g (W), Vk. For a non-convex optimization problem, find-
ing a globally optimal solution is intractable. Instead, a Karush-Kuhn-Tucker (KKT)
solution is of interest, which is an extension of a stationary solution of an uncon-
strained non-convex optimization problem.

Definition 6.1 (KKT solution) A solution w is a KKT solution to (6.86) if there
exists A = (A1,...,4,)" € RY such that (i) 0 € dF(w) + Xj°, Axdg(w), (ii)
gr(w) < 0,Vk and (iii) Aggr (W) =0, Vk.

For non-asymptotic analysis, we consider finding an e-KKT solution as defined
below.

Definition 6.2 A solution w is an e-KKT solution to (6.86) if there exists 4 =
(A1,...,A4m)T € R such that (i): dist(0,0F(w) + Y71, Axdgr(w)) < e, (ii):
[gx(W)]+ < €, Vk, and (iii): |Axgx(W)| < €, Vk.

If the objective and the constraint functions are non-smooth, finding an e-KKT
solution is not tractable, even the constraint functions are absent. For example, if
F(x) = |x| finding e-stationary solution is infeasible unless we find the optimal so-
lution x = 0. To address this challenge, we consider finding a nearly e-KKT solution
defined below.

Definition 6.3 A solution w is a nearly e-KKT solution to (6.86) if there exist w

and A = (A1,...,4m)7 € R such that (): lw — Wll» < O(e), dist(0, 3F (W) +
S A0gr(W)) < €, (ii): [gr(W)]+ < €,Vk, and (iii): [Axgr(W)| < €, Vk.

Theory

Solving the unconstrained problem (6.87) can yield a (nearly) stationary solution.
But is this solution close to satisfying the KKT conditions of the original con-
strained problem? We answer this question for the three penalty functions below.
Let g(w) = (g1(w),...,gn(W))T € R™ denote the vector of constraint functions,
and let Vg(w) € R"™*4 denote its Jacobian matrix.

Squared Hinge Penalty

Let us assume F and gj are differentiable. We make the following assumption re-
garding the regularity of the constraint functions.
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Assumption 6.1. There exists a constant 6 > 0 such that omin(Vg(w)) > 6 for any
w satisfying maxy=1,. . k gx(W) > 0, where omin(+) denotes the minimum singular
value of a matrix.

.....

This assumption implies that when any constraint is violated, its gradient direction
can be used to effectively reduce the constraint value. To illustrate this, consider a
single constraint defined by a L,-smooth function g(-). Suppose w is a point where
the constraint is violated, i.e., g(w) > 0. Taking a gradient descent step W' = w —
nVg(w) yields:

’ T ’ Lg ’ 2
g(w') < g(w) +Vg(w) (w - W)+ W = wii;

2

= g(w) - (n— < Ive .

If Assumption 6.1 holds, then ||Vg(w)||> > J, which implies:

L r}z
g 2
g(W’)Sg(W)—( 3 )5,
ensuring a sufficient decrease in the constraint function value.
In addition, we need to assume the objective function is Lipschitz continuous.
Assumption 6.2. There exists a constant C > 0 such that ||VF(w)||, < C,Vw.
Under these assumptions, we establish the following theorem.

Theorem 6.1 Suppose Assumption 6.1 and 6.2 hold. Let w be an e-stationary so-
lution to the unconstrained penalized problem (6.87) with a squared hinge penalty
such that

E [“VF(W) + %Vg(w)T[g(w)]JrHj <é. (6.89)

Ifp> maX(Zm(C +1) m\/Z(C +1)
problem (6.86).

) then w is also an €-KKT solution to the original

Proof. Let Ax = 2 [gx(W)]s, Vk. If maxg gx(w) < 0, then A = 0. As aresult, w is
an e-KKT solution to the original problem.

Below, let us focus on the case maxy gx(w) > 0, i.e., there exists one constraint
that is violated at w. Then, under Assumption 6.1, we have
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g (w1413 S%IIVg(W)T[g(W)LII%

> 2
= HVF (W) + £vg(w)T[g(W)]. - VF(W)H
po m )
2m? R o ) (6.90)
s [IIVF(W)IIZ +[vEw) + 2vgmlgwl. 2}
2
% [C2 +62] < ez,

where the last inequality follows from p > = "2(C e . Hence [gr(W)]+ < €, Vk.
Then, let us bound |A;gx (W)|. If gx (W) < 0, then A =0, we have |1 gx(W)| =0
If g« (w) = 0, then

Eltegr(w)]| = E|— gk(W)gk(W)]I < —Ell[g(W)] I3

< P 2m?
p252

IVFW) I3+ [VF(w) + £ vgwigw].

2
2] (6.91)
2_n12 [C2 +62] <e€

2m(C%+€?)

where the last inequality uses p > <52

Hinge Penalty

Since the hinge function is non-smooth, let us consider non-smooth F and gz. We
make the following assumption regarding the regularity of the constraint functions.

Assumption 6.3. There exists a constant § > 0 such that
, 1 < S
dist |0, — Z Agr(W)]s| = =.yweV (6.92)
m m

where V = {w : maxy gx(w) > 0} and d[ gy (W)] denotes the subgradient in terms
of w.

The above assumption is implied by Assumption 6.1 when g is differentiable and
hence is weaker. To see this, we have

m

1< 1
dist (0, —~ ; V[gk(w]+) = ”E > Vigk(wl,

k=1

0
= [[Vg(w) all> > dljall> > p

2

where a = ;- (¢1,..., &), and & € ([gx(W)]4) € [0,1].

Theorem 6.2 Suppose Assumption 6.3 and Assumption 6.2 hold. Let w be a nearly
e-stationary solution to the unconstrained penalized problem (6.87) with a hinge
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penalty such that there exists W satisfying |w — w||, < O(¢€), and

<e.

dist (0, OF (W) + % zm] A[gr(W)]+
k=1

Ifp > @, then w is a nearly €-KKT solution to the original problem (6.86).
Proof. By the definition of w, there exists w such that |w — w|[> < O(e), and

dist

0.0rw) + 2 S a[gk<v'v>]+) <e
mn k=1

Since 0[gr(W)]+ = £x0gr (W), where

1 if g1 (W) > 0,
& =1400,1] ifge(w) =0, € [gx(W]},
0 ifgi(W) <0,

there exists A € ”7& > 0, Vk such that

dist (O, OF(w) + i /lkﬁgk(v_v)) <e.

k=1

Thus, we prove condition (i) in Definition 6.3. Next, let us prove condition (ii). We
argue that maxy gx(W) < 0. Suppose this does not hold, i.e., maxy gx (W) > 0, we
will derive a contradiction. Since 3v € dF (W) we have

m
€ > dist (o,v+ ES olgi(w)] )
m

k=1

P X pé

> dist [0, 2 > 0[gi (W] | = IVl = =~ C.
“m = m
which is a contradiction to the assumption that p > M . Thus, max; gx(X) < 0.

This proves condition (ii). The last condltlon (iii) holds because A = p £k , which is

zero if g (W) < 0. Hence, Axgr (W) = 0. O

Smoothed Hinge Penalty

We make the following assumption regarding the regularity of the constraint func-
tions.

Assumption 6.4. There exists a constant § > 0 such that

dist (0,0g(w)"v) > §|lv|l2, YW € V,Vv € R™ (6.93)
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where V = {w : maxy gx(w) > 0}.

Theorem 6.3 Suppose Assumption 6.1 and Assumption 6.2 hold. Let w be a nearly
e-stationary solution to the unconstrained penalized problem (6.87) with a smoothned
hinge penalty such that there exists W satisfying ||w — w||2 < O(€), and

dist |0, OF (W) + % Dof(aw)| <e
k=1

Ifp > @, then there exists A € R} it holds (i) ||w—w|| < O(e), dist(0, 0F (W) +
Yo Ak0gk(W)) < € (ii) [gu(W)]+ < €, Yk, and (iii) Ax[gr(W)]+ < pe/m,Vk.

Proof. By the definition of f(-), we have

V() = < min{[],, €},

According to the definition of w, there exists W such that ||w — w|| < O(e) and

dist

0.0F(W)+ 23" Vf[gk(v-vnagk(v-v)) <e.
k=1

Let 4 = £V f(gi(W)) = £ min{[g;(W)], €}. Then,

dist (O, OF (W) + Z /lkagk(V_V)) <€
k=1

Suppose max;-;.... . g(W) > €. Then there exists kK’ such that [gx(W)]+ > €.

Hence

.....

A = 2= min{[ge (W), e} = e = £
Em Em m

Hence [|]|2 > £. As a result, there exists v € 9 F (W) such that

€ > dist (0, v+ Z ABgx (W)
k=1

m

s

> dist (O,Z/lkagk(v‘v)) —Ivll2 > % Yol (6.94)
k=1

which contradicts with p > @ Therefore, we must have

max gx(w) < e. (6.95)
k=1,....m

.....

Finally, let us prove |Axgx (W)| < O(e€). If gr (W) < 0, we have Ax = 0, then it holds
trivially. If 0 < gx (W) < €, we have
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Algorithm  Penalty F g; Complexity Loop

SOX sqH/smH SM SM O(e~7) Single
MSVR sqH/smH MSS MSS O(e™>) Single
SONX H WC WC O(e™®) Single
SONEX H SM SM O(e™>) Single

ALEXRDL smH WC WC O(e5) Double

Table 6.1: Summary of different algorithms for penalty-based constrained opti-
mization. “‘WC” means weakly convex, “SM” means smooth, MSS mean “mean
squared smoothness, ‘H’ denotes the hinge penalty, ‘smH’ denotes the smoothed
hinge penalty and ‘sqH’ denotes the squared hinge penalty.

gk (W] < £ g1, < £, (6.96)

Critical: One important difference among the three penalty functions lies in
the required order of the penalty parameter p. For the squared hinge penalty,
it is necessary to set p = O(1/€), whereas for the hinge and smoothed hinge
penalties, it suffices to take p = O(1). This lead to different complexities of
algorithms based on these penalty functions.

Optimization Algorithms

The SOX algorithm and the MSVR algorithm can be used to optimize the squared
hinge penalty function and smoothed hinge penalty function with smooth objective
function and constraints. SONX and SONEX can be used to optimize the hinge
penalty based objective, where the latter is equivalent to a variant for optimizing the
smoothed hinge penalty using the MSVR estimator for the inner functions and the
MA gradient estimator. ALEXR-DL (the double-loop ALEXR, see Section 5.4.5)
can be used to optimize the problem with a weakly convex objective and weakly
convex constraint functions. The computational complexities of these algorithms for
obtaining a (nearly) e-KKT solution are summarized in Table 6.1. The complexity
results for SONX and SONEX follow directly from their original theorems. The com-
plexities of SOX and MSVR are obtained by substituting Lr = O(p), L1 = O(p),
G| =0(p), and p = O(1/e€) into Theorem 5.1 and Theorem 5.2, respectively. The
complexity of ALEXR-DL follows the argument in Section 5.4.5.

Finally, we note that the value of the parameter ¢ in Assumptions 6.1, 6.3, and 6.4
has a significant impact on the complexity. In particular, smaller values of ¢ lead to
higher complexities.
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6.7.2 Continual Learning with Zero-forgetting Constraints

Continual learning usually refers to learning a sequence of tasks one by one and
accumulating knowledge like human instead of substituting knowledge. The core is-
sue in continual learning is known as catastrophic forgetting, i.e., the learning of the
later tasks may significantly degrade the performance of the model for the earlier
tasks. Different approaches have been investigated to mitigate catastrophic forget-
ting, including regularization based approaches, memory based approaches, network
expansion based approaches, and constrained optimization based approaches.

Regularization based approaches

These methods aim to preserve previously learned knowledge by penalizing changes
to important model parameters. These approaches usually solve the following objec-
tive:

mvin -Lnew (Wa Snew) + /lR(W, Wold), (697)

where Lw denotes the loss on the new task with a data set Syew, and R(W, Woq) is
the regularization of the new model with respect to the old model. It could regular-
ize directly in the weight parameters or regularize through functions of the weight
parameters (e.g., intermediate layers of the neural networks)

Memory based approaches

These techniques store a subset of past data or representations and replay them during
training on new tasks. This allows the model to rehearse old knowledge, effectively
mimicking how humans review what they’ve previously learned. Strategies include
storing raw data, or using generative models to simulate past experiences. These
replay data will be used in training as simple as a regularization approach:

min Lpew (W, Snew) + ALoa(w, Sold) (6.98)

where Lo1q(W, Soiq) denotes the loss of the model old tasks using their data Sojg.

Network Expansion based approaches

Network expansion based methods address forgetting by dynamically growing the
model’s architecture as new tasks are introduced. This can involve adding new neu-
rons, layers, or modules for each task while keeping older components fixed or par-
tially shared. By allocating new capacity, the model can learn new tasks without
overwriting old knowledge.
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A Constrained Optimization Approach

A key limitation of the replay and regularization approach in (6.98) is that it does
not necessarily preserve the model’s performance on all previous tasks, even with a
large regularization weight. Moreover, overly large weights can suppress learning on
the new task. This arises because not all prior tasks are equally challenging—some
may be inherently easier than others.

A straightforward remedy is to formulate a constrained optimization problem:

m\’}’n LHCW(“’? SI]CW)

st. Lr(w,Sr) — Li(Woid, Sk) <0, Vk=1,...,m,

(6.99)

where Sy denotes the dataset for the k-th previous task and Ly is its corresponding
loss function. These constraints ensure that the new model does not degrade perfor-
mance on any individual old task as measured on replayed data, which are referred
to as the zero-forgetting constraints.

Although this constrained optimization problem was traditionally considered dif-
ficult due to the number of constraints and data dependencies, the algorithms in-
troduced in the previous subsection make it tractable. Notably, this constrained for-
mulation serves as a unifying framework that connects all three major approaches:
regularization-based, expansion-based, and memory-based continual learning.

With a penalty function f (e.g., smoothed hinge penalty), we solve the following
problem:

m
Min Loew (W, Snew) + £ > (LW, S6) = Le(Waia, Se)-
v M=
Then the algorithms can be easily applied to solving this problem.

Connection with the Three Categories of Approaches

First, the above constrained optimization method falls under memory based ap-
proaches, as it requires access to data Sy from each previous task to define the zero-
forgetting constraints.

Second, the penalty term introduces a regularization perspective, establishing a
connection with regularization based approaches. However, it differs from standard
regularization as in (6.98). The penalty function adaptively weights the gradients of
each prior task. For example, consider the hinge penalty. The gradient of the penalty
term is given by

2N 69 Li(ws Sp). (6.100)
mn k=1

where & = 1 if Lp(w;Sk) — Li(Woa; Sk) > 0; otherwise, & = 0. Using
the FCCO technique, an estimator uy is used to track the quantity L (w;Sy) —
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Fig. 6.30: Performance comparison with the standard regularization method (RM).
The new task is to improve the performance on classifying the class Dresssing Room
on Places365 Dataset, and other 354 classes serve as previous tasks each with 2k
samples. Red line denotes the old model’s performance, green diamonds denote the
performance on the target class. The RM baseline shown is for the regularization
parameter A = 10000. For more details, please refer to (Li et al., 2024)

L (Woid; Sk), based on which & is computed. Consequently, the algorithm assigns
adaptive weights to the gradients of prior tasks: if task £ shows no performance
degradation (i.e., ux < 0), the corresponding gradient receives zero weight. This
effect makes the constrained optimization approach more attractive than the regular-
ization approach for enforcing the constraints; see Figure 6.30.

Third, although the connection to network expansion based approaches is less
direct, it is suggested by the convergence analysis of the constrained optimization
algorithms. Specifically, the regularity assumptions in Assumptions 6.1 and 6.3 pro-
vide insight into the benefits of network expansion. Expanding the network from the
old model wqq can make it easier to find a new model that maintains or improves
performance on previous tasks, effectively increasing the regularity constant 6. This,
in turn, allows for a smaller penalty parameter p and potentially accelerates conver-
gence—an effect formalized in what follows.

Without causing confusion, we denote by w the parameter of the old neural net-
work, which consists of two components wy and W such that the output 2(w, x) €
R% can be represented as h(w,x) = W - ho(Wo, X), where ho(Wo, ) € R% is a back-
bone network and W € R%%41 ig the head. Given the old model w = (wo, W), we
expand the network by allowing task-dependent heads, which is to let each task k
have its own head Wy, = W+ Uy where Uj, € R%*"_ The output of this expanded net-
work for task k is h(W;X) = (W + Uy) - ho(wg, X), where W = (wo, W, Uy, ...,Up).
For simplicity, let us assume each task has only one example Sy = {xx} and let
L (w;Sg) = €(h(w, x)). Without the expansion, the Jacobian of the constraint func-
tions at w is Vg(w) = [Vh(w,x1), -+, Vi(W, X;;)] A, where A € R™*" a diagonal
matrix with Agr = €’ (h(w; Xg)). With the expansion, the Jacobian of the constraint
functions at W is Vg(w) = [VA(W,xq),- -+, Vh(W,Xx,,)]A’, where A’ € R"™*"™ a di-
agonal matrix with A}, = ¢'(h(W;xg)). If we initialize Uy = Up... = Uy, = 0,
then A = A’. Next, we quantify the increase of the minimum singular value of
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the matrix Vh(W) = [VA(W,x;),--- , VA(W,X,,)] compared with that of Vh(w) =
[Vh(wa Xl)7 R Vh(w7 Xm)]

Lemma 6.4 Suppose Uy = 0 for all k. We have
T aNTIh (G T . 2
Aumin (Vh(w) Vh(w)) > Ain (VH(W)T V(W) + min |y i (w3,

where Awin(+) denotes the minimum eigen-value of a matrix and hy (w) = h(w; X).

¢ Why it matters

This lemma indicates that expanding the network can increase the minimum sin-
gular value of the Jacobian matrix of the constraint functions, which in turn leads
to a lower complexity in finding a KKT solution, i.e., making the constraints eas-
ier to satisfy.

Proof. Let hy (W) = h(W;x;). We consider w, W, U as flattend vectors. Recall that
w has two component wy and W. The gradient of /i (w) with respect to W and wyg
are denoted by Vy hx(w) and Vy, hi (W), respectively. Hence,

Vhi(w)" = (Vo he (W) T, Vg hi(w) )
for k = 1,...,m. Similarly, after adding the task-dependent heads, W has three com-

ponent wo, W, U = (U, ...,U,). The gradients Vy,/ix (W), Vv (W) Vyhy (W)
are defined correspondingly, and

Vi (w)T = (Vwoflk(W)T, Vi hie(W)T, VUflk(W)T) .

Recall that
hk(W) = hk((Wo,W+ Uk)) fork=1,...,m.

Therefore,

Vo 1 (W) = Vo i ((Wo, W + Uy)),
Vi (W) = Vi hi ((Wo, W+ Up)),

and

Vuhi(W)T = (0,...,0, Viyhe((wo, W+ U)) 7,0, ... .,0),

The kth block

where the sparsity pattern of Vy/y (W) is because /1 does not depend on U, j # k.
Since Uy = 0 for all k. It holds that Ay (w) = h (W) and

V(W)™ = (Vug i) T, Vi (W) ) = (Vi (9) T, Vi (9)7)

378



6.7. CONSTRAINED LEARNING

Consider any @ = (a4, ..., a;,) € R™. We have

Ao ([ (9), ., Vi ()] [V (W), ..., Vi (W)]

m 2

= min Zathk(W)

a,s.t.||a|=1 = )

= min || eV he(W)|| + (> exVwhi(W)| + > axVuhe(W)

a,s.t.||a|=1
k=1 2 k=1 2 k=1 2
m 2 m

. 2
= min || axVaW| + > af Vwhe(W)II3
a,s.ta]=1 =i

2 k=1

k
> Amin ([Vhl (W)7 B th(w)]T [Vh] (W), SRRR) th(W)])

+ min [V hic (w13

where the first two equalities are by definitions and the third equality is because
Uy =0 for all k. O

Q@ Practice: Squared Hinge Penalty vs. Smoothed Hinge Penalty

Both the squared hinge penalty and the smoothed hinge penalty are smooth functions,
but they have different practical implications. The squared hinge penalty typically
requires a much larger penalty parameter, on the order of p = O(1/¢) as indicated
by the theory, to enforce the constraints effectively. In contrast, the smoothed hinge
penalty achieves similar constraint satisfaction with a significantly smaller p. This
difference is illustrated in Figure 6.31 (right), which shows that a large penalty pa-
rameter p = 800 is needed for the squared hinge penalty, whereas the smoothed
hinge penalty achieves comparable results with just p = 20. As a result, optimiza-
tion of the objective function tends to be more effective when using the smoothed
hinge penalty as seen in Figure 6.31 (left).

6.7.3 Constrained Learning with Fairness Constraints

Machine learning models are increasingly used in high-stakes domains such as hir-
ing, finance, and healthcare, where biased predictions can lead to unfair outcomes
for individuals from protected groups (e.g., based on race, gender, or age). Learn-
ing with fairness constraints is a framework that aims to train models that are both
accurate and equitable by incorporating formal definitions of fairness directly into
the training objective. Various notions of fairness have been proposed, including de-
mographic parity, equalized odds, equal opportunity, AUC fairness, ROC fairness,
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Fig. 6.31: Training curves of Target AACC values (left) and constraint violation
(right) of different methods. The format of label is “Algorithm(penalty function,
p)”, and SH, smH mean square hinge and smoothed hinge, respectively. For more
details, please refer to (Chen et al., 2025b).

and ranking fairness. Below, we present an application of constrained optimization
to learning under ROC fairness constraints.

Constrained Learning with ROC Fairness

We consider a binary classification setting. Let 2(w;-) € R denote a predic-
tive model. Suppose the data are divided into two demographic groups D,
{(xP,y")}7 and D, = {(x¥,y*)}", where x denotes the input data and y €
{1, =1} denotes the class label. Traditional fairness measures usually assume the pre-
diction is given by I(h(w;x) > t) with a specific threshold. However, the threshold
may be dynamically changed in practice to achieve a balance between true positive
and false positive rate.

To accommodate this, a ROC fairness is introduced to ensure the ROC curves for
classification of the two groups are the same, which indicates the false positive rate
(FPR) and true positive rate (TPR) at all possible thresholds are equal across the two
groups. Since the ROC curve is constructed with all possible thresholds, we use a set
of thresholds I" = {7y, - - - , 75, } to define the ROC fairness. For each threshold 7, we
impose a constraint that the TPR and FPR of the two groups are close, formulated
as the following:

gr(w) =
1 np 1 My
= Zl 107 = Do (hwix?) =) = = zl] Iy = Do (h(w;x4) —7)| -k <0,
and
g (w) =
] np 1 Ny
|; Zn(yg’ = Do (h(w:x]) =) = — Zﬂ(y;f = —Do(h(w:;x*) - 1)| -k < 0,

P i1 U=l
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where o (s) is a surrogate of the indicator function I(s > 0), e.g., the sigmoid func-
tion, and k > 0 is a tolerance parameter.
Then the learning problem can be imposed as:

min  F(w),
w
st gi(w)<0,g7(w) <0,Vrel.

where F(w) is an appropriate risk function.
By utilizing the penalty method, we solve the following problem:

min F(w) + 5 TZEF(f(gi(w)) + £ (g7 (W)). (6.101)
Let us define

g1 (wi) = %21@5’ = Do (h(w;x?) = 7)

ga(wiT) = n‘—;gw = Do (h(wixt) = 7).

Since f(-) is a non-decreasing convex function, hence f(|x|) is a convex func-
tion. Then the penalty term f(gt(w)) = f(lg1(W;7) — g2(W;T)| — k) is a com-
positional of a convex function f(g) = f(|g1 — g2] — ) and a smooth mapping
g(w) = [g1(w; 1), g2(w; 7)]. Hence, SONX, SONEX, ALEXR-DL can be employed
to solve the above problem.

6.8 Learning Data Compositional Networks

So far, we have considered the compositional loss function, which involves compar-
ing the output of one data #(w;x) with that of many other data. In this section, we
consider compositional networks, where the computation of z(w; x) for one data x
depends on many other data.

6.8.1 Large-scale Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful class of models designed to learn
representations from graph-structured data, where information is distributed across
nodes and edges. Unlike traditional neural networks that operate on grid-like inputs,
GNNSs leverage the connectivity structure of graphs to propagate and aggregate in-
formation from a node’s neighborhood, capturing both local and global patterns.
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GNNSs have been successfully applied to tasks such as node classification, link pre-
diction, and graph-level classification in domains including social networks, molec-
ular chemistry, and recommendation systems.

A key distinction in GNN-based learning lies between transductive and inductive
settings. In transductive learning, the model is trained and tested on the same fixed
graph, meaning all nodes (including test nodes) are present during training. Classic
GNN models such as Graph Convolutional Neural (GCN) Network in this setting.
In contrast, inductive methods aim to generalize to unseen nodes or entirely new
graphs not available during training. GraphSAGE (Graph Sample and Aggregate)
is a method that is designed for inductive learning, enabling flexible deployment in
dynamic environments where new nodes or graphs continuously emerge.

Let G = (V, &) denote a graph, where V is the set of nodes and & is the set of
edges. Each node v € V is associated with a feature vector Xx,. Given a node v with
neighbors N (v), a general scheme fo updating the node’s representation in layer & is
following:

hf\];()u) = Aggregate ({h,(lk_l) ‘u € N(v)}) ,

(k) _ (k=1) 4.(k)
h,”’ = Update (hv ,hN(v)) ,

where the first step aggregates the representations of the nodes in the immediate
neighborhood of node v into a single vector, and the second step updates the node’s
current representation h,gk_l), with the aggregated neighborhood vector to generate
a new embedding hf,k).

GraphSAGE (Graph Sample and Aggregate)

GraphSAGE is a scalable inductive framework for learning node representations in
large graphs. Let us consider a particular implementation of the above framework:

hD (6.102)
ue N(v)u{v}

A cue N() U {o}}) = NI

b = o (WE - AL cue Ny U {o}), (6.103)

where A(+) denotes the mean operator and o (-) is an activation function.

When working with large-scale graphs, GraphSAGE employs node sampling to
ensure scalability. At each layer, a node samples a fixed number of neighbors and
aggregates their features. However, as the number of layers increases, the number
of nodes involved in computing a single node’s embedding can grow exponentially.
Specifically, if each node samples K neighbors and the model has L layers, then
computing the embedding for a single node may involve up to K~ nodes. This ex-
ponential growth is known as the neighborhood explosion problem, which can lead
to significant computational and memory overhead, especially in deep models or
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large graphs. While reducing K (e.g., to 1) can mitigate neighborhood explosion, it
may also introduce high variance in the estimation of the mean operator potentially
degrading model performance.

GraphSAGE with Feature Momentum

The challenge discussed earlier arises from the compositional structure of hl(,k). To
address this, we leverage a moving average estimator. Let 8, C N(v) be a sub-
sampled neighborhood of node v, and define BU = B, U {v}. At the ¢-th iteration, we
estimate the aggregated feature vector as follows:

Rl ifv¢ Oy,

i (k1)

h = ki A ([ (k= _ 6.104
Y {(l - y)h,(,k’t D +yA ({hf,k Ly e BU}) otherwise, ( )
where Dy is the sub-sampled set of nodes updated at the k-th layer, y € (0, 1) is the
momentum parameter, and A(+) is an unbiased estimator of the aggregation function
A(+) over the neighborhood N, U {v}. The estimator is computed as:

o (g (k- 5 1 s ING] 1 & (k=1,1)
ﬂ({h,‘f Lo eB}): RO : RGO
ST T NG+ N + 1 |B”|ueZB,,

Next, we update the feature representation at the k-th layer:

b0 = o (W,(k) .ﬁl()k»f)) _ (6.105)

This process is repeated for L layers to compute the output representation lAll(,L’t) for
sub-sampled nodes v € Dy, which are then used to compute the mini-batch loss. We
refer to this approach as GraphSAGE with Feature Momentum.

This method effectively reduces the required number of sampled neighbors per
node while maintaining the performance of using full neighborhoods; see Fig-
ure 6.32.
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6.8.2 Multi-instance Learning with Attention

Multi-instance learning (MIL) refers to a setting where a bag of instances are ob-
served for an object of interest and only one label is given to describe that ob-
ject. Many real-life applications can be formulated as MIL. For example, the med-
ical imaging data for diagnosing a patient usually consists of a series of 2D high-
resolution images (e.g., CT scan), and only a single label (containing a tumor or not)
is assigned to the patient.

A standard assumption for MIL is that a bag is labeled positive if at least one of
its instances has a positive label, and negative if all of its instances have negative
labels. The assumption implies that a MIL model must be permutation-invariant for
the prediction function 2(X), where X = {x1, ..., X,,} denotes a bag of instances. To
achieve permutation invariant property, fundamental theorems of symmetric func-
tions have been developed. In particular, a scoring function for a set of instances X
denoted by 2(X) € R, is a symmetric function if and only if it can be decomposed as
h(X) = g(Xxex ¥ (X)) (Zaheer et al., 2017), where g and ¢ are suitable transforma-
tions. Another theory is that a Hausdorft continuous symmetric function 2(X) € R
can be arbitrarily approximated by a function in the form g(maxye x ¥ (x)) (Qi et al.,
2016), where max is the element-wise vector maximum operator and ¢ and g are
continuous functions. These theories provide support for several widely used pool-
ing operators used for MIL.

Deep learning with different pooling operations

Let e(W,;X) € R% be the instance-level representation encoded by a neural network
W, #(w;x) € [0, 1] be the instance-level prediction score (after some activation
function), and h(w; X;) € [0, 1] be the pooled prediction score of the bag i over all
its instances. Besides, o (-) denotes the sigmoid activation.

Softmax pooling of predictions

The simplest approach is to take the maximum of predictions of all instances in the
bag, i.e., h(w; X) = maxxeyx ¢(W;x). However, the max operation is non-smooth,
which usually causes difficulty in optimization. In practice, a smoothed-max (aka.
log-sum-exp) pooling operator is used instead:

1
h(w; X) = 7 log X Z exp(¢(w:;x)/7) ], (6.106)
xeX

where 7 > 0 is a hyperparameter and ¢ (W; X) is the prediction score for instance x.
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Mean pooling of predictions

The mean pooling operator just takes the average of predictions of individual in-
stances, i.e., h(w; X) = ﬁ Yxex ¢(W;x). Indeed, smoothed-max pooling interpo-
lates between the max pooling (with 7 = 0) and the mean pooling (with 7 = o).

Attention-based Pooling of features

Attention-based pooling aggregates the feature representations using attention, i.e.,

Eowid) = 3 < SRE)

e’ X), 6.107
245 cexp(gwix)) <Y (@107

where g(w;x) is a parametric function, e.g., g(w;x) = w/ tanh(Ve(w,; X)), where
V € R"™*4o and w, € R™. Based on the aggregated feature representation, the bag
level prediction can be computed by

(6.108)

) — ot Bl — o [ SREVX)s (W)
B =T OEMX) =0 | )5 e e )

where s(W; X) = W] e(W,; X).

Optimization Algorithms

Given the pooled prediction i(w; X), the empirical risk minimization (ERM) prob-
lem is defined as:

N

1
in — f,]’l sA\j)).
mvgnn; (h(W; X;))

The main challenge in solving this problem lies in the computational cost of evalu-
ating h(w; X;), as it involves aggregating over potentially many instances.

To address this, we employ techniques from compositional optimization. Specifi-
cally, we express the smoothed-max pooling in (6.106) as a composition 2(w; X;) =
2 (fi(w; X;)), where the functions f; and f, are defined as:

AWK = o S exp(@(wini, /).

|Xl| X; ,'EX,‘
f2(si) = tlog(s;).

Similarly, we express the attention-based pooling in (6.108) as a compositional func-
tion A(w; X;) = fo(f1(w; X;)), with:
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TR Zne,y X CXP( (W3 X ;)W e(We3 Xi, ;)
TR 2y X EXP(8 (W3 i)

filw; Xp) =

l, fa(w;) =0'([ui]l)-

[u;]2

The key difference between the two pooling mechanisms is that the inner function f;
in attention-based pooling is a vector-valued function with two components. In both
cases, the computational bottleneck lies in computing f;(w; X;).

To reduce this cost, we maintain a dynamic estimator u; , for each bag X;. At
iteration ¢, for any X; € B, ; (a mini-batch of bags), we update the estimator as:

wig =1 =yui 1 +yfi(w;Bi;), (6.109)

where B; ; C X; is a mini-batch of instances sampled from Xj;, and y € [0,1] is a
smoothing parameter. For smoothed-max pooling, this becomes:

wip ==y + _|By | E exp(d(wsx; 7)/7), (6.110)
i,t
’ Xi’jGBi’r

and for attention-based pooling, we update:

@ Dixi e B, CXP(S (Wi Xi ;)6 (Wi Xy, ;)

6.111)
@ ZX,"J'E,(B,'J exp(g(wl; Xl,]))

==y, +y
The corresponding vanilla gradient estimator for softmax pooling is:

1 , 1
2= Z G (i )V foa(ui ) 75— Z Vexp(¢p(wesx; ;)/7), (6.112)
81 & Bl 24

t i,] it
and for attention-based pooling:
&= (6.113)

-
BT Sxesi, ¥ (exp(g (Wi xi,))s(Whixi )

1
—_— & u;
B 2, ) | ¥ explevii,)

Vfa(u;,).

Then we can update the model parameter w,;; by Momentum, Adam, or Adam-W
methods.

As established in Chapter 5, the theory of compositional optimization guarantees
that the moving average estimators u; , ensure the average estimation error,

T

1

= 2l = AW XIS,
t=1

converges to zero as T — oo, provided that the model parameters and hyperparam-
eters are properly updated.
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6.9 DRRHO Risk Minimization

As a last application of compositional optimization, we consider an emerging prob-
lems in Al. With the success of large foundation models, numerous companies and
research groups have entered the race to develop state-of-the-art models. While the
data and code are often proprietary, the resulting models are sometimes released pub-
licly, such as the CLIP models from OpenAl How can we leverage these open-weight
models? We discuss three commonly used strategies and then present an emerging
paradigm.

Using the Model As-Is

A straightforward strategy for leveraging open-weight foundation models is to use
them as-is. This approach requires no additional training and can be deployed im-
mediately, making it highly convenient and cost-effective. It is particularly attractive
when computational resources or labeled data are limited. However, the downside is
that the pretrained model may not perform well on specialized tasks or under distri-
bution shifts, where its generic knowledge does not fully align with the requirements
of the target application.

Fine-Tuning the Model

An alternative strategy is to use the pretrained model as a starting point for fine-
tuning. By performing minimal task-specific training, the model can be adapted to
new domains with relatively low computational and data costs. Fine-tuning gener-
ally yields better performance than using the model out-of-the-box. Nevertheless,
since the model architecture remains unchanged and the updates are typically mod-
est, the improvements in performance may be limited, particularly when the pre-
trained model is already near-optimal for its design.

Knowledge Distillation from the Model

A more flexible approach involves using the pretrained model as a teacher in a
knowledge distillation framework. Here, a smaller or more efficient student model is
trained to mimic the teacher’s outputs, enabling knowledge transfer that can improve
training efficiency and generalization. This strategy is particularly useful for deploy-
ing models in resource-constrained environments. The main drawback, however, is
that the student model is usually less expressive than the teacher, which can cap its
performance despite potential gains in speed and efficiency.

387



Reference Model Steering for training from scratch

An emerging learning paradigm has recently surfaced that leverages a pre-trained ref-
erence model to guide and enhance training via strategic data weighting—a process
we term reference model steering. Unlike the knowledge distillation framework, ref-
erence model steering does not assume that the reference model is a stronger teacher;
in fact, it can lead to the training of a model that ultimately surpasses the reference
model in performance, i.e., enabling weak to strong generalization.

DRRHO Risk Minimization

Let z ~ P denote a random data point drawn from distribution P, and let w € ‘W rep-
resent model parameters from a parameter space “W. Given a loss function £(w, z),
the expected risk is defined as:

R(W) = Egep[€(W,2)].

Given a pretrained reference model wy¢, we define a new loss ¢ (w,)=L4(w,-) —
€(Wres, -), which is termed as RHO loss. Incorporating this into the distributionally
robust optimization (DRO) framework (2.12), we define DRRHO risk minimization
as:

n
min, Sup ) pi (EOV.2) ~ ((Wer. 7). 6.114)
Dy (pll1/n)<p/n i=1

Theoretical guarantees for DRRHO have been developed with the y? divergence,

2
ie,Dg(pllq) = X, %qi (% - 1) . Under mild conditions, it can be shown that
with high probability:

R(W,) < inf (ﬁ(w) + \/2—'0 Var(€(w, -) — €(Wref, ))) +0 (1) . (6.115)
weW n n

where W, is an optimal solution to DRRHO risk minimization.
In particular, plugging in w,. = arg minyeqy R(W) yields:

R(W.) < R(w.) + \/ 2 Nar(t(w, ) = (Wet, ) + O (%) .

This result provides valuable insight: if the reference model w;r is well-trained such
that €(Wee, -) closely matches £(w.,,-) in distribution, then the variance term be-
comes small. As a result, DRRHO achieves better generalization than the standard

O(+/1/n) bound of ERM.

Furthermore, if wy; € ‘W, we obtain a comparison in terms of excess risk:

R(W.) = R(W.) < R(Wrer) = R(W.) + O (%)

388



6.9. DRRHO RISK MINIMIZATION

This enables a direct comparison between the DRRHO minimizer w, and the refer-
ence model wr from the same hypothesis class. Suppose wr was trained via ERM
on a dataset with m samples. Then standard generalization theory gives an excess
risk of order O(1/+/m). In contrast, to match this level of generalization error, DR-
RHO requires only n = O(+/m) samples—significantly improving over the O (m)
sample complexity required by ERM without a reference model.

Optimization Algorithms

When the CVaR is used defined by ¢(7) = 1if r < n/k and ¢(¢) = oo otherwise, the
DRRHO risk reduces to the average of the top-k RHO losses:

k
min F(w) = ¢ D3 eCwm) = v (6.116)

where z[;} denotes the data point ranked i-th in descending order based on its RHO
loss. This problem can be equivalently reformulated as:

1 n
min — Z [6(W,2;) — C(Weer, Zi) — V], + v, 6.117)
wv k i=1

which is more amenable to gradient-based optimization techniques.
When DRRHO risk is defined using KL divergence regularization, the objective
becomes:

min 7log (% > exp (g(w’ 2i) = {(Wret 2:) )) . (6.118)

T
i=1

This formulation can be optimized by simply replacing the loss in Algorithm 24 with
the RHO loss. The vanilla gradient at iteration 7 is estimated by:

5>

i€B;

exp (E(w,,z,—)—Tf(Wref,Zi) )

Uy

Vi(w;,z;), (6.119)

where u; is the MA estimator of the inner function value. This gradient estimator
naturally assigns higher weights to data points with larger RHO losses, thereby pri-
oritizing samples with high learnability during training.

Finally, when DRRHO is formulated with a KL-divergence constraint, the opti-
mization problem becomes:

T n

1< £(W,2;) — €(Wref, 2;
min min Tlog(—Zexp( (W, 2;) = {(Wrer. 2 ))) + P (6.120)
W 7>0 n

i=1
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This formulation can be optimized using techniques similar to those introduced in
the first section of this chapter.

DRRHO-CLIP with a Reference Model

We now consider applying the DRRHO risk minimization framework to CLIP. Given
the established connection between robust global contrastive loss and DRO, as shown
in (6.44) and (6.45), it is straightforward to incorporate the RHO loss into the training
objective. Define the following loss components:

1 (w; X, t,t) = s(w; x;, 1) — s(w; x;, t;),
O(W; X, 6, X) = s(W; X, ;) — s(W; x;, t;),
01 (Wref; Xi, 6, t) = (Wref; X;, ) — 5(Wrep; X, £7),
O (Wrefs Xi, 6, X) = §(Wref; X, t) — 5(Weefs X, £7),

where s(-;-,-) denotes the similarity function, and wi is a pretrained reference
model.

Using these definitions, we modify the original objective in (6.49) to incorporate
the RHO loss:

77 2 O

L teT”

1< 1
+ - ) mlog| —
nzl dUA

i= xel~

(gl (wv Xi, tis t) B 51 (Wref; X, ti, t)

) + 7110
7]

Z b (W3 X, ti, X) — 02 (Wref X, £, X)
exp - +1p.

(6.121)
This objective can be optimized using an algorithm similar to that used in the
CLIP training. Empirical results show that this approach significantly reduces sample
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Fig. 6.34: Comparison between a target model (ViT-B/16) trained by DRRRHO-
CLIP and the reference model it leverages. OpenAl CLIP (ViT-B/32) was trained
on a private 400M dataset with 12.8B samples seen and 32768 batch size. DRRho-
CLIP model was trained on DFN-192M with 1.28B samples seen and 5120 batch
size, and using OpenAl CLIP as a reference model. DRRHO-CLIP training took
376 GPU hours on 8 H100 (2 days), OpenAl CLIP (ViT-L/14) model was trained
on 256 V100 with 12 days, which gives an estimate of 256*%12%24/11.6=6356 GPU
hours for training ViT-B/32 as its FLOPs is 11.6 smaller. For more details, please
refer to (Wei et al., 2025).

complexity and improves the empirical scaling law (see Figure 6.33), while also
achieving weak to strong generalization (see Figure 6.34).

6.10 History and Notes

DRO and GDRO.

We first formulated KL-regularized Distributionally Robust Optimization (DRO) as
a stochastic compositional optimization (SCO) problem in (Qi et al., 2021b), uti-
lizing STORM-based estimators. This line of research was further developed in (Qi
et al., 2020), which introduced an attentional biased stochastic momentum method
for KL-regularized DRO with specific applications in imbalanced data classification.
Subsequently, we extended both the algorithmic framework and theoretical analysis
to address KL-constrained DRO (Qi et al., 2023). Collectively, these works demon-
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strate the advantages of employing compositional optimization techniques over tra-
ditional primal-dual methods for solving DRO problems.

The formulation of FCCO for group DRO (GDRO) was initially identified in
(Hu et al., 2024b). Building on this, Wang and Yang (2023) applied the ALEXR
algorithm to convex group DRO, demonstrating significant improvements over tra-
ditional stochastic primal-dual methods. Most recently, the application of SONEX
to non-convex group DRO within the context of deep learning was investigated by
Chen et al. (2025b).

Stochastic AUC and NDCG Optimization.

Stochastic AUC maximization has a long-standing history in machine learning, as
detailed in our survey (Yang and Ying, 2023). The formulation of AUC maximiza-
tion with a square surrogate loss as a minimax optimization problem was first in-
troduced by Ying et al. (2016b). Building on this foundation, we developed the first
convergence analysis for stochastic non-convex minimax optimization in the context
of deep AUC maximization (Liu et al., 2020). While this work was inspired by our
previous work on weakly-convex strongly-concave minimax optimization (Rafique
et al., 2022), it established a superior complexity bound by leveraging the PL condi-
tion. These theoretical results were subsequently strengthened in (Guo et al., 2023).

This line of research eventually facilitated our winning entry in the CheXpert
competition for X-ray image classification (Yuan et al., 2021), which also introduced
the AUC-margin minimax objective. Notably, all of these proposed methods utilize
a double-loop algorithmic structure. The single-loop PDMA and PDAdam methods
for deep AUC maximization was first proposed and analyzed in our work (Guo et al.,
2021b). The compositional training method for deep AUC maximization that facili-
tates the feature learning and classifier learning in a unified framework was proposed
in our work (Yuan et al., 2022b).

The SOAP algorithm represents the first method of its kind to offer a convergence
guarantee that does not rely on the use of large batch sizes, which has challenged the
computer vision and machine learning communities for many years (see references
in (Qi et al., 2021c)). The SOPA and SOPAs algorithms for one-way partial AUC
maximization and STOAs for two-way partial AUC maximization were developed
and analyzed in (Zhu et al., 2022b). The STACO algorithm for two-way partial AUC
maximization was proposed in (Zhou et al., 2025). These stdudies have addressed
long-standing open problems for efficient partial AUC maximization with conver-
gence guarantee (Kar et al., 2014; Narasimhan and Agarwal, 2013).

The formulation of stochastic NDCG optimization as FCCO was proposed in our
work (Qiu et al., 2022), which also developed a multi-block bilevel optimization
formulation and algorithm for optimizing top-K NDCG. The complexity for multi-
block bilevel optimization was improved in (Hu et al., 2023) by using the MSVR
estimators.

The design and benchmark of LibAUC library was presented in (Yuan et al.,
2023a).
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Discriminative Learning of Foundation models.

The SogCLR algorithm was inspired by the SOX framework for FCCO; its advan-
tages over SimCLR, particularly regarding efficiency with small batch sizes in uni-
modal contrastive learning, were demonstrated in (Yuan et al., 2022c). Building on
this, we introduced iSogCLR in (Qiu et al., 2023) to optimize individualized tem-
peratures. This advancement was also informed by our previous research on KL-
constrained DRO (Qi et al., 2023).

Subsequently, we proposed TempNet (Qiu et al., 2024), which has been success-
fully applied to CLIP training and the pretraining of large language models (LLMs).
Furthermore, a comprehensive evaluation of FCCO-based techniques for distributed
CLIP training was recently provided in (Wei et al., 2024).

The discriminative fine-tuning approach of LLMs was proposed in our work (Guo
et al., 2025). The DisCO method for fine-tuning large reasoning models was devel-
oped in our work (Li et al., 2025).

FCCO for Constrained Learning.

The application of compositional optimization techniques to penalty methods for
constrained learning dates back to (Ermoliev and Wets, 1988). The first non-asymptotic
analysis of the penalty method with a squared hinge penalty function for non-convex
inequality constrained optimization based on FCCO was conducted in our work (Li
et al., 2024). This work investigated the problem within the context of continual
learning under zero-forgetting constraints and established a complexity of O(1/€’)
for finding an e-KKT solution. Additionally, we developed a theoretical framework
to characterize the benefits of network expansion in facilitating constrained learning
with non-forgetting constraints. The ROC fairness constraint was first considered
in (Vogel et al., 2020).

Subsequent advancements have further improved the complexity of penalty based
methods based on FCCO. By employing SONX for the hinge penalty, the complex-
ity was reduced to O(1/€%) (Yang et al., 2025). More recently, the introduction of
SONEX and a double-loop ALEXR method for the squared hinge penalty achieved
a complexity of O(1/€’) (Chen et al., 2025b). This currently represents the state-of-
the-art complexity for penalty methods in non-convex constrained optimization.

Learning with data compositional networks.

Graph convolutional neural network was proposed by Kipf and Welling (2017).
GraphSAGE was developed in (Hamilton et al., 2017). The use of compositional op-
timization techniques, specifically incorporating feature momentum for large-scale
Graph Neural Network (GNN) learning, was introduced in our previous work (Yu
et al., 2022). Furthermore, the application of compositional optimization to multi-
instance learning, utilizing compositional pooling operations, was first proposed
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in (Zhu et al., 2023a). Attention-based pooling for multi-instance learning was pro-
posed by Ilse et al. (2018).

DRRHO risk minimization.

The development of DRRHO risk minimization framework and its application to
CLIP training was introduced in our work (Wei et al., 2025). The theoretical analysis
of this method is largely built upon the foundations of DRO (Namkoong and Duchi,
2017), while the conceptual idea of using the RHO loss for data selection in a mini-
batch was originally proposed in (Mindermann et al., 2022).
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