
Chapter 6
Applications: Learning Predictive, Generative
and Representation Models

Abstract In this chapter, we present applications of stochastic compositional opti-
mization and finite-sum coupled compositional optimization (FCCO) in both super-
vised and self-supervised learning settings. These include training predictive mod-
els, generative models, and representation models based on advanced objective func-
tions such as distributionally robust optimization (DRO), group DRO (GDRO), AUC
losses, NDCG loss, and contrastive losses. We also highlight applications of compo-
sitional optimization in solving multiple inequality-constrained optimization prob-
lems, optimizing data compositional neural networks, and a new paradigm of learn-
ing with a reference model called DRRHO risk minimization.

Unity of knowledge and action!

299

Contents
6.1 Stochastic Optimization Framework . 301

6.1.1 Milestones of Stochastic Optimization 303
6.1.2 Limitations of Existing Optimization Framework 306

6.2 DRO and Group DRO . 307
6.2.1 DRO for Imbalanced Classification 307
6.2.2 GDRO for Addressing Spurious Correlation 313

6.3 Extreme Multi-class Classification . 315
6.4 Stochastic AUC and NDCGMaximization 318

6.4.1 Stochastic AUC Maximization . 319
6.4.2 Stochastic AP Maximization . 323
6.4.3 Stochastic Partial AUC Maximization 325
6.4.4 Stochastic NDCG Maximization . 331
6.4.5 The LibAUC Library . 334

6.5 Discriminative Pretraining of Representation Models 338
6.5.1 Mini-batch Contrastive Losses . 338
6.5.2 Contrastive Learning without Large Batch Sizes 341
6.5.3 Contrastive Learning with Learnable Temperatures 344

6.6 Discriminative Fine-tuning of Large Language Models 350
6.6.1 Pipeline of LLM Training . 350
6.6.2 DFT for fine-tuning Large Language Models 356
6.6.3 DisCO for Reinforcing Large Reasoning Models 361

6.7 Constrained Learning . 367
6.7.1 A General Penalty-based Approach via FCCO 368
6.7.2 Continual Learning with Zero-forgetting Constraints 375
6.7.3 Constrained Learning with Fairness Constraints 379

6.8 Learning Data Compositional Networks . 381
6.8.1 Large-scale Graph Neural Networks 381
6.8.2 Multi-instance Learning with Attention 384

6.9 DRRHO Risk Minimization . 387
6.10 History and Notes . 391

300

6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Algorithm 23 Stochastic Optimization Framework of DL
// The Meta Algorithm
1: Set the learning rate schedule 𝜂𝑡
2: for 𝑡 = 1, · · · , 𝑇 do
3: Compute a vanilla gradient estimator z𝑡
4: Update w𝑡+1 by calling the update of SGD, Momentum, Adam, or AdamW optimizer
5: end for

// The SGD optimizer update
1: Update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡

// The Momentum optimizer update
1: Update v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1)z𝑡 � the MA gradient estimator
2: Update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡

// The Adam optimizer update
1: Update v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1)z𝑡 � the MA gradient estimator
2: Update s𝑡 = 𝛽2s𝑡−1 + (1 − 𝛽2) (z𝑡)2

3: Update v̂𝑡 = v𝑡/(1 − 𝛽𝑡1)
4: Update ŝ𝑡 = s𝑡/(1 − 𝛽𝑡2)
5: Update w𝑡+1 = w𝑡 − 𝜂𝑡 v̂𝑡√

ŝ𝑡+𝜖
𝜖 is a small constant

// The AdamW optimizer update
1: Update v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1)z𝑡 � the MA gradient estimator
2: Update s𝑡 = 𝛽2s𝑡−1 + (1 − 𝛽2) (z𝑡)2

3: Update v̂𝑡 = v𝑡/(1 − 𝛽𝑡1)
4: Update ŝ𝑡 = s𝑡/(1 − 𝛽𝑡2)
5: Update w𝑡+1 = w𝑡 − 𝜂𝑡

(
v̂𝑡√
ŝ𝑡+𝜖

+ 𝜆w𝑡
)

𝜆 is a weight-decay constant

6.1 Stochastic Optimization Framework

For practioners who may skip Chapter 3, Chapter 4, and Chapter 5, we first provide a
brief introduction to the stochastic optimization framework commonly used for deep
learning. We also highlight the challenges in solving advanced machine learning
problems introduced in Chapter 2 and summarize the key ideas behind the solution
methods presented in Chapters 4 and 5.

The standard procedure for implementing a stochastic optimization algorithm typ-
ically involves computing a vanilla gradient estimator, followed by updating the
model parameters using a step of an optimizer. We present a meta-algorithm in
Algorithm 23, along with four classical optimizers: SGD, Momentum, Adam, and
AdamW.

301

Three forms of the Momentum Method

The Momentum method represents a key milestone (as further discussed in
the next subsection). The stochastic momentum method originates from the
Heavy-ball (HB) method, whose stochastic version (SHB) has the following
update for solving minw 𝐹 (w) := E𝜁 [𝑓 (w; 𝜁)]:

w𝑡+1 = w𝑡 − 𝜂∇ 𝑓 (w𝑡 ; 𝜁𝑡) + 𝛽1 (w𝑡 − w𝑡−1), (6.1)

where 𝛽1 ∈ (0, 1) is the momentum parameter. While we utilize a single
stochastic gradient∇ 𝑓 (w𝑡 ; 𝜁𝑡) for illustrative purposes, practical applications
generally rely on mini-batch estimation. In Section 4.3, we show it is equiv-
alent to the the following update with moving average gradient estimator:

v𝑡 = 𝛽1v𝑡−1 + (1 − 𝛽1)∇ 𝑓 (w𝑡 ; 𝜁𝑡)
w𝑡+1 = w𝑡 − 𝜂′v𝑡 ,

(6.2)

Update (6.1) is equivalent to (6.2) if 𝜂′ (1− 𝛽1) = 𝜂. In PyTorch, the Momen-
tum method is implemented by the following update:

v𝑡 = 𝛽1v𝑡−1 + ∇ 𝑓 (w𝑡 ; 𝜁𝑡)
w𝑡+1 = w𝑡 − 𝜂v𝑡 ,

(6.3)

which is equivalent to (6.1). One key insight from the convergence analysis of
the Momentum method (6.2) (cf. Theorem 4.3) is that it ensures the averaged
estimation error of the moving-average gradient estimators {v𝑡 } converge to
zero.

Thanks towell-developed deep learning frameworks such as PyTorch, implement-
ing training code for deep neural networks has become relatively straightforward.
The standard training pipeline is shown in Figure 6.1. The Dataset module allows
us to get a training sample, which includes its input and output. The Data Sampler
module (typically wrappedwithin the DataLoadermodule) provides tools to sample
a mini-batch of examples for training at each iteration. The Modelmodule allows us
to define different deep models. The Mini-batch Lossmodule defines a loss func-
tion on the selected mini-batch data for backpropagation. The Optimizer module
implements methods for updating the model parameter given the computed gradient
from backpropagation. Most essential functions are already available in PyTorch.
In practice, users often only need to define a function to compute their mini-batch
losses. By calling loss.backward(), a mini-batch stochastic gradient, serving as
a vanilla gradient estimator, is computed automatically.

302

6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

Dataset Data Sampler Model Mini-batch
Loss Optimizer

Fig. 6.1: Standard training pipeline for deep learning. Users typically only need to
implement the mini-batch loss function. It relies on a critical assumption that the
mini-batch stochastic gradient is an unbiased estimator of the true gradient

6.1.1 Milestones of Stochastic Optimization

While the Adam optimizer has become a standard in machine learning as of 2025, it
has deep roots in the innovations of stochastic optimization before deep learning era.
Below, we briefly discuss key milestones of stochastic optimization that have impact
on the Adam method.

Stochasticity. The fundamental concept of gradient descent (GD), dating back
to (Cauchy, 1847), uses the full dataset’s gradient to take a step in the steepest direc-
tion. Introduced by Robbins and Monro (1951), SGD improves upon GD by using
only a small batch of data (or even a single data point) to estimate the gradient, sig-
nificantly speeding up training on large datasets.

Acceleration. To improve the convergence rate of GD, Polyak (1964) proposed
the Heavy-ball (HB) method, which itself originates from the second-order Richard-
son method for solving a system of linear equations (Frankel, 1950). While Polyak
only proved a faster rate of local convergence than GD for smooth and strongly con-
vex problems, Nemirovski and Yudin (1977) proved the first nearly optimal rate
for general smooth and strongly convex problems. Their method was inspired by
the conjugate gradient method for solving quadratic problems and needs to solve
2-dimensional optimization problem using the method of centers of gravity every
step; cf. (Nemirovsky and Yudin, 1983)[Sec. 7.3]. Later, Nesterov (1983) derived
a simpler form of accelerated gradient method, which is now known as Nesterov’s
accelerated gradient (NAG) method.

Nesterov’s Accelerated Gradient (NAG) method

The original update form of the NAG method is given by:

u𝑡+1 = w𝑡 − 𝜂∇𝐹 (w𝑡),
w𝑡+1 = u𝑡+1 + 𝛽1 (u𝑡+1 − u𝑡).

(6.4)

It is equivalent to

w𝑡+1 = w𝑡 − 𝜂∇𝐹 (w𝑡) + 𝛽1 ((w𝑡 − 𝜂∇𝐹 (w𝑡)) − (w𝑡−1 − 𝜂∇𝐹 (w𝑡−1))).
(6.5)

Comparing with the HB method (6.1), the momentum term is changed from
𝛽(w𝑡 − w𝑡−1) to 𝛽(u𝑡+1 − u𝑡).
If we let w𝑡+1 = w𝑡 − 𝜂v𝑡 , then the NAG update is equivalent to

303

Gradient Descent (GD)
(Cauchy, 1847)

Stochastic Gradient Descent (SGD)
(Robin and Monro, 1950)

Stochasticity

Stochastic Mirror Descent (SMD)
(Nemiorvski et al., 2009)

From Euclidean distance
to Bregman divergence

AdaGrad
(Duchi et al., 2011)

Use time-varying Bregman
divergence (adaptive step size)

RMSProp
(Tieleman & Hinto., 2012)

From simple average to
moving average of 2nd moment

Adam
(Kingma & Ba, 2014)

adaptive step size

Accelerated Gradient (AG)

Heavy ball (HB)
(Polyak, 1964)

Nesterov’s Accelerated Gradient (NAG)
(Nesterov, 1983)

Stochastic Accelerated Methods
(Lan, 2012)

SHB SNAG

Improved rate for smooth &
strongly convex functions

Use moving average

gradient estimator

Use moving average
gradient estimator

Polyak Momentum

Nesterov Momentum

Muon
(Joran et al, 2024)

Momentum Orthogonalized

by Newton-Schulz

Fig. 6.2: Evolution of Stochastic Optimization

v𝑡 = 𝛽1v𝑡−1 + ∇𝐹 (w𝑡) + 𝛽1 (∇𝐹 (w𝑡) − ∇𝐹 (w𝑡−1))
w𝑡+1 = w𝑡 − 𝜂v𝑡 .

(6.6)

This is similar to (6.3) except that an error correction term 𝛽(∇𝐹 (w𝑡) −
∇𝐹 (w𝑡−1)) is added to the gradient estimator update.
We can also make the updates in (6.4) or (6.6) stochastic, leading to the
stochastic NAG (SNAG) method. In particular, if we use a stochastic gra-
dient estimator ∇ 𝑓 (w𝑡 ; 𝜁𝑡) in (6.4), we have the following update:

u𝑡+1 = w𝑡 − 𝜂∇ 𝑓 (w𝑡 ; 𝜁𝑡),
w𝑡+1 = u𝑡+1 + 𝛽1 (u𝑡+1 − u𝑡).

(6.7)

If we use stochastic gradient estimators∇ 𝑓 (w𝑡 ; 𝜁𝑡) and∇ 𝑓 (w𝑡−1; 𝜁𝑡) in (6.6),
we have the following update:

304

6.1. STOCHASTIC OPTIMIZATION FRAMEWORK

v𝑡 = 𝛽1v𝑡−1 + ∇ 𝑓 (w𝑡 ; 𝜁𝑡) + 𝛽1 (∇ 𝑓 (w𝑡 ; 𝜁𝑡) − ∇ 𝑓 (w𝑡−1; 𝜁𝑡))
w𝑡+1 = w𝑡 − 𝜂v𝑡 .

(6.8)

The difference between the two variants lies that (6.8) needs to compute two
stochastic gradient estimators at w𝑡 and w𝑡−1 per-iteration. However, inter-
ested readers can show that the update in (6.8) with a variable change is
equivalent to the STORM update as presented in Section 4.3.2 for optimizing
𝐹 (w) = E𝜁 [𝑓 (w; 𝜁)].

Lan (2012) pioneered the development and analysis of stochastic accelerated
gradient methods, achieving the optimal rates in both deterministic and stochastic
regimes. Its update is slightly different from the NAG update. (Yang et al., 2016) is
the first work to prove the convergence of stochastic NAG and stochastic HBmethods
for non-convex optimization.

Adaptive step sizes. The technique of utilizing coordinate-wise adaptive step
sizes was pioneered by AdaGrad (Duchi et al., 2011), a method whose analysis is
rooted in the framework of Stochastic Mirror Descent (SMD) (Nemirovski et al.,
2009). Both AdaGrad and SMD are thoroughly examined in Chapter 3. RMSProp,
appeared in a course lecture (Tieleman and Hinton, 2012), moved from AdaGrad’s
simple average of the second moment (squared gradients) to a moving average of
the second moment. The moving average estimator has a long history in stochastic
optimization, see (Ermoliev and Wets, 1988)[Sec. 6.2.3]. Finally, RMSProp leads
to the current standard, the Adam method (Kingma and Ba, 2014), which combines
the moving average of the first moment (similar to SHB) with the moving average
of the second moment (similar to RMSProp). AdamW is a variant of Adam, which
decouples weight decay from gradient-based updates.

Recently, a new optimizer namedMuon (Jordan et al., 2024) has emerged, specifi-
cally designed to optimize matrix-structured parameters, such as the weight matrices
between neural network layers. In contrast, conventional optimizers typically treat
these parameters as flattened vectors, potentially overlooking their inherent structural
properties.

The Muon method

Let𝑊𝑡 denote a matrix-structured parameter at the 𝑡-th iteration. The Muon
update is given by:

𝑀𝑡 = 𝛽1𝑀𝑡−1 + ∇ 𝑓 (𝑊𝑡 ; 𝜁𝑡)
(𝑈𝑡 , 𝑆𝑡 , 𝑉𝑡) = SVD(𝑀𝑡)
𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡𝑈𝑡𝑉>

𝑡 .

(6.9)

In practice, the Singular Value Decomposition (SVD) is often replaced by a
more computationally efficient Newton-Schulz matrix iteration. This process
produces an approximate matrix 𝑂𝑡 = 𝑈𝑡𝑆

′
𝑡𝑉

>
𝑡 , where 𝑆′𝑡 is diagonal with

305

𝑆′𝑡 [𝑖, 𝑖]′ ∼ Uniform(0.5, 1.5). The weight update is then applied as 𝑊𝑡+1 =
𝑊𝑡 − 𝜂𝑡𝑂𝑡 .

Summary: The evolution of stochastic optimization, which has had a major im-
pact on modern AI (see Figure 6.2), can be characterized by five key shifts in algo-
rithm design:

• From Full Gradient to Stochastic Gradient (Batch Size): Switched from using the
full dataset’s gradient (GD) to using noisy stochastic gradients (SGD) for faster
iteration speed.

• From Gradient Descent to Accelerated Gradient Methods (Momentum): The op-
timization technique was enhanced by introducing a momentum term (like HB
or NAG) to achieve an improved convergence rate for smooth convex functions,
while still using the full gradient.

• From Euclidean Distance to Bregman Divergence (Geometry): Switched the un-
derlying distance metric used for updates from the Euclidean distance to a Breg-
man divergence (SMD).

• From Static Step Size to Adaptive Step Size (Preconditioning): Switched from a
constant or manually decaying learning rate to one that is scaled by past gradient
magnitudes (AdaGrad).

• From a Mini-batch gradient estimator to a Moving Average gradient estimator
(Error reduction): Switched from a simple mini-batch gradient estimator to a
moving average gradient estimator (SHB, Adam).

6.1.2 Limitations of Existing Optimization Framework

The standard stochastic optimization algorithms and their analyses rest on a crit-
ical assumption: that the mini-batch stochastic gradient is an unbiased estimator
of the true gradient. As discussed in Chapter 4, this assumption breaks down in
the case of compositional functions of the form 𝑓 (𝑔(w)), where 𝑓 is a determin-
istic non-linear function and 𝑔 is a stochastic function. In such cases, the gradi-
ent of the mini-batch loss 𝑓 (𝑔(w;B)), where 𝑔(w;B) is an unbiased estimator of
𝑔(w) with a mini-batch B, yields a biased estimate of the true gradient. Specifi-
cally, calling loss.backward() on the mini-batch loss will return a gradient of
∇ 𝑓 (𝑔(w;B))∇𝑔(w;B), which is inherently biased. The method that directly uses
this biased gradient estimator for SGD update is referred to as biased SGD (BSGD).
However, since the estimation error is inversely proportional to the batch size, small
batches can lead to large optimization errors. According to Lemma 2.1, such errors
can negatively impact the generalization performance of the learned model.

To address this challenge, Chapters 4 and 5 introduce solution methods tailored
to different families of compositional objectives. The key ideas underlying these al-
gorithms concern (i) how the vanilla gradient estimator z𝑡 is computed in Step 3 of
Algorithm 23, and (ii) how the estimator error is further reduced through the use

306

6.2. DRO AND GROUP DRO

Fig. 6.3: Histograms of class sizes of the iNaturalist2018 dataset, which contains
437,513 natural images of 8,142 species. The sizes of classes follow a long-tail dis-
tribution.

of moving-average (MA) estimators v𝑡 as in Step 1 of the Momentum optimizer
or more advanced variance-reduction techniques. In the following sections, we will
present their applications to various complex and advanced machine learning prob-
lems, with a focus on the presentation of the novel vanilla gradient estimators, which
allow us to integrate them into the standard optimization schemes such as Momen-
tum or AdamW for non-convex deep learning problems.

6.2 DRO and Group DRO

Let us consider supervised learning with a set of training data {(x, 𝑦)}, where x ∈
R𝑑 denotes the input data and 𝑦 ∈ {1, . . . , 𝐾} denotes the output class label. Let
ℓ(w; x, 𝑦) denote the pointwise loss function, e.g., the cross-entropy loss.

6.2.1 DRO for Imbalanced Classification

Imbalanced classification is prevalent in many areas, including medicine and cy-
bersecurity, where most training data may belong to one or a few classes. Mathe-
matically, it means that the marginal distribution of the class label is a non-uniform
distribution. An example of an imbalanced dataset is shown in Figure 6.3.

For imbalanced data, the conventional empirical risk minimization would focus
on minimizing the loss of data from those dominating classes, neglecting data from
the minority classes. DRO can address this issue by assigning larger weights to data

307

with higher losses. Let us first consider the KL-divergence regularized DRO:

min
w

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; x𝑖 , 𝑦𝑖) − 𝜏
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑛) + 𝑟 (w), (6.10)

where 𝑟 (w) is a regularizer on w. A traditional way to solve this problem is to use
stochastic minimax optimization algorithms. However, there are several drawbacks
of this approach: (1) the variance of stochastic gradient for w depends on the sam-
pling distribution and the best sampling distribution depends on p; (2) the sampling
of data based on p incurs additional costs and is not friendly to practical implemen-
tation that uses random shuffling; (3) stochastic update of the dual variable p either
takes𝑂 (𝑛) time complexity per iteration or requires maintaining a special tree struc-
ture to reduce the updating time to 𝑂 (log(𝑛)).

To circumvent these issues, we consider an alternative formulation that is equiv-
alent to the above minimax objective, i.e.,

min
w
𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; x𝑖 , 𝑦𝑖)

𝜏

))
+ 𝑟 (w). (6.11)

For simplicity, we just consider the standard Euclidean norm regularization 𝑟 (w) =
𝜆
2 ‖w‖2

2. As a result, the first term in the objective takes the form of a compositional
optimization problem, namely 𝑓

(
E𝜁 [𝑔(w; 𝜁)]

)
, where 𝑓 (·) = 𝜏 log(·) and

E𝜁 [(𝑔(w; 𝜁)] = 1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; x𝑖 , 𝑦𝑖)

𝜏

)
.

The SCGD, SCMA, SCST, and SCENT algorithms can be applied to solve the
above problem. We now focus on the application of SCMA, whose key steps are
presented in Algorithm 24.

The vanilla gradient estimator z𝑡 of the first term in (6.11) at the 𝑡-th iteration is
computed by :

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)𝜏)
𝑢𝑡

∇ℓ(w𝑡 ; x𝑖 , 𝑦𝑖). (6.12)

It is motivated from (4.4) where the same mini-batch B𝑡 is used for both updating 𝑢𝑡
and computing z𝑡 .

Let us compare this gradient estimator with that of stochastic optimization for
empirical risk minimization:

ẑ𝑡 =
1
𝐵

∑
𝑖∈B𝑡

∇ℓ(w𝑡 ; x𝑖 , 𝑦𝑖). (6.13)

The difference between (6.12) and (6.13) lies in the blue term, which acts as a weight
for each data in the mini-batch. In the vanilla gradient estimator z𝑡 for DRO, the data

308

6.2. DRO AND GROUP DRO

Algorithm 24 Attentional Biased Stochastic Methods
1: for 𝑡 = 1, · · · , 𝑇 do
2: Sample a mini-batch of 𝐵 samples B𝑡 ⊂ [𝑛]
3: Compute 𝑔 (w𝑡 , B𝑡) = 1

𝐵

∑
𝑖∈B𝑡 exp(ℓ (w𝑡 ; x𝑖 , 𝑦𝑖)/𝜏)

4: Compute 𝑢𝑡 = (1 − 𝛾)𝑢𝑡−1 + 𝛾𝑔 (w𝑡 , B𝑡)
5: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B𝑡

exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)𝜏)
𝑢𝑡

∇ℓ (w𝑡 ; x𝑖 , 𝑦𝑖)

6: Update w𝑡+1 by an optimizer such as Momentum or Adam-W
7: end for

in the mini-batch with a larger loss ℓ(w𝑡 ; x𝑖 , 𝑦𝑖) has a higher weight. This will facili-
tate the learning for data from the minority group. Due to this effect, we also refer to
Algorithm 24 as attentional biased stochastic method, named as AB-xx depending
on which optimizer is used.

The use of 𝑢𝑡 for normalization to compute the weight exp(ℓ(w𝑡 ; x𝑖 , 𝑦𝑖)/𝜏)/𝑢𝑡
is also different from that using the heuristic mini-batch normalization where the
weight is computed by exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)/𝜏)∑

𝑖∈B𝑡 exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)/𝜏) , which does not ensure convergence if
the batch size is not significantly large. Let us consider a simple case such that only
one data is sampled for updating. In this case, the mini-batch normalization gives a
weight 1 for the selected data no matter whether it is from the majority or minority
class. However, if the sampled data denoted by (x𝑡 , 𝑦𝑡) at the 𝑡-th iteration is from
a minority group and hence has a large loss, we would like to penalize more on
such an example. The estimator 𝑢𝑡 = (1 − 𝛾)𝑢𝑡−1 + 𝛾 exp(ℓ(w𝑡 ; x𝑡 , 𝑦𝑡)/𝜏) is likely
to be smaller than exp(ℓ(w𝑡 ; x𝑡 , 𝑦𝑡)/𝜏) as 𝛾 < 1. As a result, normalization using
𝑢𝑡 will give a larger weight to the sampled minority data compared with using the
mini-batch normalization, i.e., exp(ℓ(w𝑡 ; z𝑡)/𝜏)/𝑢𝑡 > 1. Qi et al. (2020) empirically
demonstrated that using 𝛾 < 1 outperforms the case 𝛾 = 1, which corresponds to
using the standard mini-batch loss.

To illustrate the effect of AB-momentum on imbalanced data. We present an ex-
periment on synthetic data in Figure 6.4, which compares the result of using the Mo-
mentum method for ERM and AB-momentum for solving KL-divergence regular-
ized DRO. Figure 6.4(d) shows that AB-momentum learns a better decision bound-
ary than that of the Momentum method for ERM. Figure 6.4(b) shows that data from
the minority group that are close to the decision boundary get higher weights during
the training.

 Practical Tips

We discuss several practical tips for computing z𝑡 and other variants of DRO in the
context of deep learning.

309

(a) (b)

(c)

0.1

0.2 0.3 0.4 0.5 0.6 0.7

(d)

Fig. 6.4: (a): A synthetic data for imbalanced binary classification (green vs purple)
with a random linear decision boundary (black line). (c), (d): Learned linear models
optimized by the standardmomentummethod for ERM andAB-momentum for DRO
with logistic loss for 100 iterations, respectively. (b): The averaged weights of circled
samples in the training process of the standard momentum method for ERM and
AB-momentum method for DRO. Sample with indices in {1, . . . , 11} are from the
majority class and samples with indices in {12, 13, 14, 15, 16} are from the minority
class with sample 15, 16 close to the decision boundary.

Backpropagation.

In order to compute the vanilla gradient estimator z𝑡 using the PyTorch backward
function, we just need to have a slight change of computing the loss based on the
mini-batch data. Below we give the pseudo code in PyTorch for computing the gra-
dient estimator highlighted in Step 5 of Algorithm 24. It is worth noting that the line
of p=(exp_loss/u).detach() calculates the blue part and detaches it from the
computational graph so that gradient is not computed again for it. With the gradient
estimator computed by loss.backward(), then we can use any existing optimizers,
including the Momentum method and AdamW.

310

6.2. DRO AND GROUP DRO

sur_loss=surrogate_loss(preds, labels)
exp_loss = torch.exp(sur_loss/tau)
u = (1 - gamma)*u + gamma*(exp_loss.mean())
p = (exp_loss/u).detach()
loss = torch.mean(p * sur_loss)
loss.backward()

Avoiding the numerical issue.

However, a numerical issue may arise during the running tied to the computation
of exp(ℓ(w𝑡 ; x𝑖 , 𝑦𝑖)/𝜏), especially when 𝜏 is small and the loss function of selected
data is large so that overflow. As a result, the running of the algorithm may crash
due to a NaN error. To address this issue, we maintain 𝜈𝑡 = log 𝑢𝑡 . Specifically, we
denote by 𝑞𝑡 ,𝑖 = exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)−ℓmax,𝑡

𝜏), where ℓmax,𝑡 = max𝑖∈B𝑡 ℓ(w𝑡 ; x𝑖 , 𝑦𝑖). Then
Step 4 can be reformulated to:

exp(log 𝑢𝑡) = exp(log(1 − 𝛾) + log 𝑢𝑡−1)

+ exp
(
log 𝛾 + log

(
1
𝐵

∑
𝑖∈B𝑡

𝑞𝑡 ,𝑖

)
+ ℓmax,𝑡

𝜏

)
.

For simplicity, let 𝑏𝑡 = log(1 − 𝛾) + log 𝑢𝑡−1 and 𝑞𝑡 = log 𝛾 + log
(

1
𝐵

∑
𝑖∈B𝑡 𝑞𝑡 ,𝑖

)
+

ℓmax,𝑡
𝜏 , we have

exp(log 𝑢𝑡) = exp(𝑏𝑡) + exp(𝑞𝑡).

The update in equivalent to following:

exp(log 𝑢𝑡) = exp(max{𝑏𝑡 , 𝑞𝑡 })(1 + exp(−|𝑏𝑡 − 𝑞𝑡 |))
= exp(max{𝑏𝑡 , 𝑞𝑡 })𝜎−1 (|𝑏𝑡 − 𝑞𝑡 |),

where 𝜎(·) denotes the sigmoid function. Taking the log on both sides gives the
update for log 𝑢𝑡 . To summarize, we maintain and update 𝜈𝑡 = log 𝑢𝑡 as following:

𝑏𝑡 = log(1 − 𝛾) + 𝜈𝑡−1

𝑞𝑡 = log 𝛾 + log
(

1
𝐵

∑
𝑖∈B𝑡

exp
(
ℓ(w𝑡 ; x𝑖 , 𝑦𝑖) − ℓmax,𝑡

𝜏

))
+ ℓmax,𝑡

𝜏

𝜈𝑡 = max{𝑏𝑡 , 𝑞𝑡 } − log𝜎(|𝑏𝑡 − 𝑞𝑡 |).

(6.14)

At the first iteration 𝑡 = 1, we can just set

𝜈1 = log
(

1
𝐵

∑
𝑖∈B𝑡

exp
(
ℓ(w1; x𝑖 , 𝑦𝑖)

𝜏
− ℓmax,1

𝜏

))
+ ℓmax,1

𝜏
.

311

Fig. 6.5: t-SNE visualization of feature representations of training & testing set on CIFAR10-LT
(𝜌 = 100) with different strategies of setting 𝜏. Right: Fixed 𝜏 = 1. Left: Two-stage decay of 𝜏:
first phase 𝜏 = 100 and second phase 𝜏 = 1. For more details, please refer to (Qi et al., 2020).

With 𝜈𝑡 , the effective weight exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)/𝜏)
𝑢𝑡

can be computed by

exp
(
ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)

𝜏 − max(ℓmax,𝑡
𝜏 , 𝜈𝑡)

)
exp

(
𝜈𝑡 − max(ℓmax,𝑡

𝜏 , 𝜈𝑡)
) .

Thus, all computation involving exp(·) will not incure any numerical issue.

The Temperature parameter.

The last point we discuss here is how to set the value of the temperature parame-
ter 𝜏. A simple way is to treat it as a hyper-parameter and tune it based on cross-
validation. However, there is a trade-off in the performance. A deep neural network
is a hierarchical learner with lower layers for low-level feature extraction, middle lay-
ers for more abstract feature extraction and the last layer for classification. A larger
𝜏 indicates a more uniform weight, which is not good for learning the last classifier
layer and minority class specific features. A smaller 𝜏 indicates a more non-uniform
weight, which is not good for learning class agnostic lower level features.

One approach to mitigate this issue is to use a two-stage approach. In the first
stage, we can use a relatively larger temperature 𝜏 for learning class agnostic lower
level features. The second stage, we decrease 𝜏 to finetune the upper layers for learn-
ing robust minority-class specific features and classifier layer. An example is shown
in Figure 6.5 on a long-tailed version of the CIFAR10 dataset, where the data is in-
tentionally made imbalanced such that the number of samples per class follows a
long-tail distribution, the imbalance ratio 𝜌 means the ratio between sample sizes of
the most frequent and least frequent classes.

Another approach is to treat 𝜏 as a parameter to be optimized. To achieve this, we
can consider optimizing a KL-divergence constrained DRO:

312

6.2. DRO AND GROUP DRO

min
w

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; x𝑖 , 𝑦𝑖) − 𝜏0
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑛) + 𝑟 (w),

s.t.
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑛) ≤ 𝜌,

(6.15)

where the regularizer term with a small 𝜏0 is added to avoid ill conditioning, making
the resulting problem smooth in terms of losses. Using the dual form of the maxi-
mization problem (see (2.19)), the above problem is equivalent to

min
w,𝜏≥𝜏0

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; x𝑖 , 𝑦𝑖)

𝜏

))
+ 𝜏𝜌. (6.16)

We can extend Algorithm 24 to optimize the above problem by treating (w, 𝜏) as a
single variable to be optimized. The vanilla gradient estimator in terms of 𝜏 at the
𝑡-th iteration is given by :

z𝜏,𝑡 = log(𝑢𝑡) + 𝜌 −
1
𝐵

∑
𝑖∈B𝑡

exp(ℓ (w𝑡 ;x𝑖 ,𝑦𝑖)𝜏𝑡
)

𝑢𝑡

ℓ(w𝑡 ; x𝑖 , 𝑦𝑖)
𝜏𝑡

.

6.2.2 GDRO for Addressing Spurious Correlation

Data may exhibit imbalance not in the marginal distribution of class label but some
joint distribution of the class label and some attributes. Please see a discussion on
the example of classifying waterbird images from landbirds images in Section 2.2.3.
As a consequence, the model may learn spurious correlations between the labels
and some attributes. GDRO can be used to mitigate this issue by leveraging prior
knowledge of spurious correlations to define groups over the training data.

Formally, if there is spurious correlation between class label 𝑦 ∈ Y and some
attribute 𝑎 ∈ A, we can group the training data into |Y| × |A| groups according to
the value of (𝑦, 𝑎). Let D𝑖 = {(x𝑖, 𝑗 , 𝑦𝑖, 𝑗)}𝑛𝑖𝑗=1 denote the data from the 𝑖-th group
for 𝑖 ∈ {1, . . . 𝐾}. Then we can define the averaged loss for data from each group 𝑖
as 𝐿𝑖 (w) = 1

𝑛𝑖

∑𝑛𝑖
𝑗=1 ℓ(w; x𝑖, 𝑗 , 𝑦𝑖, 𝑗). Then, the GDRO formulation with CVaR diver-

gence corresponding to the top-𝑘 groups is equivalent to (cf. (2.26)):

min
w,𝜈

1
𝐾

𝐾∑
𝑖=1

[𝐿𝑖 (w) − 𝜈]+ + 𝛼𝜈 +
𝜆

2
‖w‖2

2, (6.17)

where 𝛼 = 𝑘
𝐾 . If we define w̄ = (w, 𝜈) and the inner functions as 𝑔(w̄) = 𝐿 𝑗 (w) − 𝜈

and the outer function as 𝑓 (𝑔) = [𝑔]+, then the problem becomes an instance of
non-smooth FCCO, where the outer function is non-smooth.

313

Algorithm 25 SONEX for solving (6.18)
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw a batch of 𝐵1 groups B𝑡 ⊂ [𝐾]
4: for 𝑖 ∈ B𝑡 do
5: Draw 𝐵2 samples 𝜁 𝑗𝑖,𝑡 ∼ D𝑖 , 𝑗 = 1, . . . , 𝐵2
6: Update the inner function value estimators by

𝑢𝑖,𝑡 = (1 − 𝛾𝑡)𝑢𝑖,𝑡−1 + 𝛾𝑡
1
𝐵2

𝐵2∑
𝑗=1
ℓ (w𝑡 ; x𝑖, 𝑗 , 𝑦𝑖, 𝑗)

7: end for
8: Set 𝑢𝑖,𝑡+1 = 𝑢𝑖,𝑡 , 𝑖 ∉ B𝑡
9: Compute the vanilla gradient of 𝜈𝑡 : z𝑡,𝜈 = − 1

𝐵1

∑
𝑖∈B𝑡 ∇ 𝑓𝜀 (𝑢𝑖,𝑡 − 𝜈𝑡) +

𝑘
𝐾

10: Compute the vanilla gradient of w𝑡 :

z𝑡,w =
1
𝐵1

∑
𝑖∈B𝑡

©­«∇ 𝑓𝜀 (𝑢𝑖,𝑡 − 𝜈𝑡) 1
𝐵2

𝐵2∑
𝑗=1

∇ℓ (w𝑡 ; x𝑖, 𝑗 , 𝑦𝑖, 𝑗)ª®¬
11: update 𝜈𝑡+1 using SGD
12: Update w𝑡+1 using Momentum or AdamW
13: end for

An alternative way is to formulate the problem into an equivalent min-max for-
mulation:

min
w

max
p∈Δ,𝑛𝑝𝑖≤1/𝛼

𝐾∑
𝑖=1

𝑝𝑖𝐿𝑖 (w) + 𝜆
2
‖w‖2

2. (6.18)

However, solving this min-max problem has similar drawbacks as discussed in DRO,
especially when the number of groups 𝐾 is large.

Let us discuss the applicability of algorithms presented in Chapter 4 for solv-
ing (6.17). The theory of SOX andMSVR requires the smoothness of the outer func-
tions, which is not applicable to GDRO. Both ALEXR and SONX are applicable as
their analysis does not require the smoothness of the outer functions. However, their
updates is SGD-type, which couldmake it slow or fail in practice for learningmodern
deep neural networks such as Transformer.

For deep learning applications, we can leverage SONEX. Its key idea is to smooth
the outer hinge function. In particular, we define the smoothed hinge function as
𝑓𝜀 (𝑔) with a very small 𝜀 (cf. Example 5.1):

𝑓𝜀 (𝑔) = max
𝑦∈[0,1]

𝑦𝑔 − 𝜀

2
𝑦2 =


𝑔 − 𝜀

2 if 𝑔 ≥ 𝜀
𝑔2

2𝜀 if 0 < 𝑔 < 𝜀
0 o.w.

.

As a result, we solve the following smoothed problem:

314

6.3. EXTREME MULTI-CLASS CLASSIFICATION

Fig. 6.6: An experimental comparison of different methods for solving GDRO (2.26) on the
Amazon-WILDS dataset. The dataset is a text classification benchmark derived fromAmazon prod-
uct reviews, where the task is to predict binary sentiment (positive or negative) using TF–IDF fea-
tures extracted from review text. The data spans multiple product categories. We construct groups
based on the user attribute, resulting in 1,252 distinct groups. Only 4 groups and 64 data points
per-group are sampled per-iteration. SONEX uses the Adam optimizer, SONX uses the SGD opti-
mizer, and the PrimalDual is a stochastic primal-dual method for solving (6.18) that uses the Adam
optimizer for the primal variable (model weights) and uses the stochastic mirror descent update for
the dual variable p with a KL divergence. For more details, please refer to (Chen et al., 2025b).

min
w,𝜈

1
𝐾

𝐾∑
𝑗=1

𝑓𝜀 (𝐿 𝑗 (w) − 𝜈) + 𝛼𝜈 + 𝜆
2
‖w‖2

2. (6.19)

We present a variant of SONEX in Algorithm 25. Figure 6.6 illustrates the effective-
ness of SONEX for solving GDRO comprising with SONX and a stochastic primal-
dual method.

6.3 Extreme Multi-class Classification

Multi-class classification is a cornerstone of machine learning. However, many mod-
ern applications involve an exceptionally large label space—ranging frommillions to
even billions of categories—a challenge known as extreme multi-class classification
(XMC). For instance, for face recognition, the model learning is often formulated
as classifying images into unique identities. With millions of distinct individuals,
the model must navigate millions of corresponding classes. Similarly, when training
a language model to predict the next word, the problem is treated as a multi-class
classification task where each word in the vocabulary represents a category. Given
that the English language contains over one million words, the resulting number of
classes is immense.

315

Algorithm 26 The SCENT Algorithm for solving XMC
1: Initialize𝑊1, 𝝂0, step sizes 𝜂𝑡 and 𝛼𝑡 , 𝜑 (𝜈) = 𝑒−𝜈 .
2: for 𝑡 = 1 . . . , 𝑇 − 1 do
3: Sample a mini-batch data B𝑡 ⊂ {1, . . . , 𝑛} with | B𝑡 | = 𝐵
4: Let C𝑡 denote the set of unique labels in B𝑡
5: for each (x𝑖 , 𝑦𝑖) ∈ B𝑡 do
6: Update 𝜈𝑖,𝑡 by solving

𝜈𝑖,𝑡 = arg min
𝜈

1
| B𝑡 | − 1

∑
𝑦 𝑗 ∈B𝑡\𝑦𝑖

exp((w𝑡,𝑦 𝑗 − w𝑡,𝑦𝑖)>ℎ (x𝑖) − 𝜈) + 𝜈 +
1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑖,𝑡−1)

7: end for
8: Compute Z𝑡 [C𝑡] = ∇𝐿𝑡 (𝑊𝑡 [C𝑡]) by calling backprop on the mini-batch loss

𝐿𝑡 (𝑊𝑡 [C𝑡]) =
1
𝐵

∑
𝑖∈B𝑡

1
| B𝑡 | − 1

∑
𝑦 𝑗 ∈B𝑡\𝑦𝑖

exp((w𝑡,𝑦 𝑗 − w𝑡,𝑦𝑖)>ℎ (x𝑖) − 𝜈𝑖,𝑡)

9: Compute V𝑡 [C𝑡] = (1 − 𝛽𝑡)V𝑡−1 [C𝑡] + 𝛽𝑡Z𝑡 [C𝑡] (optional)
10: Update𝑊𝑡+1 [C𝑡] =𝑊𝑡 [C𝑡] − 𝜂𝑡V𝑡 [C𝑡]
11: end for

A dominating approach of multi-class classification is logistic regression, which
minimizes the cross-entropy loss. Let us consider learning a linear model by solving
the following problem:

min
𝑊

1
𝑛

𝑛∑
𝑖=1

− log
exp(w>

𝑦𝑖 ℎ(x𝑖))∑𝐾
𝑗=1 exp(w>

𝑗 ℎ(x𝑖))

where 𝑦𝑖 ∈ {1, . . . , 𝐾} denotes the true class label of x𝑖 ,𝑊 = (w1, . . . ,w𝐾) ∈ R𝑑×𝐾

contains the weights for all classes, and ℎ(x) ∈ R𝑑 denotes the feature vector of
each data. When 𝐾 is huge, it is not efficient to compute the normalization term∑𝐾
𝑗=1 exp(w>

𝑗 ℎ(x𝑖)) for each data and loading all𝑊 into the memory might be pro-
hibited.

To solve this problem, we can use SCENT algorithm presented in Section 5.5.2.
To this end, we reformulate the problem into the following equivalent min-min op-
timization:

min
𝑊

min
𝝂

1
𝑛

𝑛∑
𝑖=1


1
𝐾

𝐾∑
𝑗=1

exp(w>
𝑗 ℎ(x𝑖) − w>

𝑦𝑖 ℎ(x𝑖) − 𝜈𝑖) + 𝜈𝑖 − 1
 .

We present an application of SCENT for solving this problem in Algorithm 26. At
each iteration, the algorithm begins by sampling a mini-batch B𝑡 (Step 3) to approx-
imate the outer summation over 𝑛 data points. Following this, the algorithm updates
the dual variables 𝜈𝑖 for each 𝑖 ∈ B𝑡 . While the original SCENT algorithm requires
sampling from the full set of classes { 𝑗 = 1, . . . , 𝐾}, we observe that for all sampled
data, the weights corresponding to their true labels {w𝑦𝑖 : 𝑖 ∈ B𝑡 } must already

316

6.3. EXTREME MULTI-CLASS CLASSIFICATION

be accessed. Consequently, we utilize the ‘in-batch’ class labels to approximate the
inner summation, setting Y𝑡 = {{𝑦𝑖}}𝑖∈B𝑡 be the multiset of labels and C𝑡 to the set
of unique labels in B𝑡 . To update 𝝂𝑡 and 𝑊𝑡 , the following calculations are imple-
mented.

• Computing Sampled and Shifted Logits.Given the mini-batchB𝑡 and the set of
sampled classesY𝑡 , we first compute the inner products between the features ℎ(x𝑖)
and class weights w 𝑗 for all 𝑖 ∈ B𝑡 and 𝑗 ∈ Y𝑡 . This is efficiently computed via
the matrix product 𝑄 = 𝐻 [B𝑡]>𝑊 [Y𝑡] ∈ R𝐵×|Y𝑡 | , where 𝐻 [B𝑡] = [ℎ(x𝑖)]𝑖∈B𝑡
represents the sampled feature matrix. We then derive the shifted logits matrix 𝑅,
defined by the entries 𝑅𝑖 𝑗 = w>

𝑗 ℎ(x𝑖) − w>
𝑦𝑖 ℎ(x𝑖) for all 𝑖 ∈ B𝑡 , 𝑗 ∈ Y𝑡 .

• Closed-form update for 𝜈𝑖,𝑡 . Given the shifted logits matrix 𝑅, we update the
state variable 𝜈𝑖,𝑡 according to Lemma 5.26:

𝜈𝑖,𝑡 = 𝜈𝑖,𝑡−1 + log ©­«1 + 𝛼𝑡
1

|Y𝑡 | − 1

∑
𝑗∈Y𝑡\𝑦𝑖

exp(𝑅𝑖 𝑗)ª®¬ − log(1 + 𝛼𝑡𝑒𝜈𝑖,𝑡−1),

where we treat the labels in Y𝑡 \ 𝑦𝑖 as independent samples from {1, . . . , 𝐾}.
To ensure numerical stability when 𝜈𝑖,𝑡−1 or 𝑅𝑖 𝑗 are large, we apply standard
logarithmic identities. Specifically, while 𝜈𝑖,𝑡−1 typically remains within a sta-
ble range, the term log(1+𝛼𝑡𝑒𝜈𝑖,𝑡−1) can be computed as 𝜈𝑖,𝑡−1+ log(𝑒−𝜈𝑖,𝑡−1 +𝛼𝑡)
for large positive values of 𝜈𝑖,𝑡−1. Furthermore, we stabilize the second term using
the Log-Sum-Exp trick by shifting the exponents by 𝑅𝑖,max = max 𝑗∈Y𝑡\𝑦𝑖 𝑅𝑖 𝑗 :

log ©­«1 + 𝛼𝑡
|Y𝑡 | − 1

∑
𝑗∈Y𝑡\𝑦𝑖

exp(𝑅𝑖 𝑗)ª®¬
= log ©­«exp(−𝑅𝑖,max) +

𝛼𝑡
|Y𝑡 | − 1

∑
𝑗∈Y𝑡\𝑦𝑖

exp(𝑅𝑖 𝑗 − 𝑅𝑖,max)ª®¬ + 𝑅𝑖,max.

• Updating 𝑊𝑡 [C𝑡]. Finally, the gradient of 𝑊𝑡 [C𝑡] is computed by performing
backpropagation on the mini-batch loss 𝐿𝑡 (𝑊𝑡 [C𝑡]). Because the loss function is
defined only over the sampled classes, the gradient updates are sparse and operate
exclusively on the sampled subset𝑊𝑡 [C𝑡]. This approach eliminates the need to
load the entire weight matrix𝑊 into the main memory, significantly reducing the
memory overhead in hardware-constrained environments.

 Empirical Comparison with baselines

An empirical study demonstrating the effectiveness of SCENT for XMC is presented
in Figure 6.7, which compares Algorithm 26 with ASGD, BSGD, and the SOX
method. The key differences between these methods and Algorithm 26 are as fol-
lows: (i) SOX is closely related to SCENT, but uses a step size 𝛼𝑖,𝑡 = 𝛾𝑒−𝜈𝑖,𝑡−1 when

317

updating 𝜈𝑖,𝑡 ; (ii) ASGD employs a standard stochastic coordinate update for the
dual variables 𝝂; and (iii) BSGD simply computes the gradient of𝑊𝑡 [C𝑡] using the
following mini-batch loss:

1
𝐵

∑
𝑖∈B𝑡

− log
exp(w>

𝑦𝑖 ℎ(x𝑖))∑
𝑗∈Y𝑡\𝑦𝑖 exp(w>

𝑗 ℎ(x𝑖))
.

0 10 20 30 40 50
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 L
os

s
BSGD ASGD SOX SCENT

0 20 40
Epoch

5

10

Tr
ai

n
Lo

ss

0 20 40
Epoch

5

10

Va
l L

os
s

Fig. 6.7: Left: training curve on Glint360K dataset. Right: accuracy curve on the
validation data. The Glint360K dataset (An et al., 2021) is a face recognition dataset
consisting of 17 million images of 360 thousand individuals (i.e., 360K classes).
To obtain the features for linear classification, we leverage a pretrained ResNet-50
model. For all the methods, we use a batch size of 1024 and update the model weights
for 50 epochs using the SGD optimizer (no momentum). We tune the learning rate
of𝑊 for all methods and decrease it in a cosine manner during training. For ASGD,
SOX and SCENT, the learning rate of the 𝝂 update is also tuned. For more details,
please refer to (Wei et al., 2026).

6.4 Stochastic AUC and NDCGMaximization

In many domains such as radiology and drug discovery, areas under the curves are
commonly used to assess the performance of a predictive model. In domains that in-
volve ranking or recommendation, normalized discounted cumulative gain (NDCG)
is commonly used as a performance metric. We present applications of SCO and
FCCO algorithms for optimizing these metrics directly.

318

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

6.4.1 Stochastic AUC Maximization

In this section, we focus on optimizing the area under ROC curve (AUC) for binary
classification as depicted in Figure 2.3.

Method 1: Pairwise Loss Minimization

The training data consists of {x𝑖 , 𝑦𝑖}𝑛𝑖=1, where x ∈ R𝑑 is the input and 𝑦 ∈ {1,−1}
is the binary label. The traditional surrogate objective for AUC maximization is the
pairwise loss given in (2.31). To optimize the pairwise surrogate objective, we just
need to sample positive and negative data and then define a mini-batch pairwise loss:

1
|B+ |

∑
x𝑖∈B+

1
|B− |

∑
x 𝑗 ∈B−

ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)).

Calling backpropagation on this mini-batch pairwise loss gives an unbiased stochas-
tic gradient estimator. Then any appropriate optimizer can be leveraged to update the
model. This is same as the conventional algorithm except for that the data sampler
needs to sample both positive and negative data (see Section 6.4.5).

A limitation of this approach is that it increases the communication costs of dis-
tributed training when data are distributed across different machines as it requires to
form positive-negative pairs across different machines.

Method 2: Minimax Optimization

The second approach is to solve the formulation as in (2.32). To illustrate the algo-
rithm, we give its formulation below:

min
w∈R𝑑 , (𝑎,𝑏) ∈R2

1
|S+ |

∑
x𝑖∈S+

(ℎ(w; x𝑖) − 𝑎)2 + 1
|S− |

∑
x 𝑗 ∈S−

(ℎ(w; x 𝑗) − 𝑏)2

+ 𝑓
©­« 1
|S− |

∑
x 𝑗 ∈S−

ℎ(w; x 𝑗) −
1

|S+ |
∑

x𝑖∈S+

ℎ(w; x𝑖)ª®¬ ,
(6.20)

where ℎ(w; ·) ∈ R is the prediction output of the model for any input, S+ is the set of
positive data and S− is the set of negative data and 𝑓 is a non-decreasing surrogate
function.

Let us illustrate the algorithm for a squared-hinge surrogate function 𝑓 (𝑠) =
max(𝑚 + 𝑠, 0)2, where 𝑚 > 0 is a margin parameter. Since 𝑓 is non-linear, the
last term of the above objective function is a compositional function of the form
𝑓 (𝑔), where 𝑔(w) = 1

|S− |
∑

x 𝑗 ∈S− ℎ(w; x 𝑗) − 1
|S+ |

∑
x𝑖∈S+ ℎ(w; x𝑖). We consider the

minimax reformulation similar to (5.27). In particular, using the conjugate of 𝑓 (·)

319

Fig. 6.8: Comparison between
PDMA/PDAdam and SGDA
for solving (6.21) of AUC
maximization. The dataset is
BBBP whose task is to predict
whether a drug can penetrate
the blood-brain barrier to ar-
rive the targeted central ner-
vous system or not. For more
details, please refer to (Guo
et al., 2021b).

(see Example 1.12), we convert the above minimization problem into a minimax
optimization problem:

min
w,𝑎,𝑏

max
𝛼≥0

𝐹 (w, 𝑎, 𝑏;𝛼) :=
1

|S+ |
∑

x𝑖∈S+

(ℎ(w; x𝑖) − 𝑎)2 + 1
|S− |

∑
x 𝑗 ∈S−

(ℎ(w; x 𝑗) − 𝑏)2

+ 𝛼 ©­«𝑚 + 1
|S− |

∑
x 𝑗 ∈S−

ℎ(w; x 𝑗) −
1

|S+ |
∑

x𝑖∈S+

ℎ(w; x𝑖)ª®¬ − 𝛼2

4
,

(6.21)
Compared to pairwise loss minimization, the advantage of the above minimax for-
mulation is that its objective is decomposable over individual data points, making it
well-suited for distributed training.

We present a practical framework in Algorithm 27 built from SMDA for solving
the above problem, where the primal-dual Momentum method (PDMA) employs
the momentum update for the primal variable w̄ or a primal-dual Adam method
(PDAdam) employs the Adam update for the primal variable. The effectiveness of
PDMA/PDAdam over SGDA for solving (6.21) on a real-world dataset is shown in
Figure 6.8.

Squared-hinge surrogate vs Square surrogate function
The minimax optimization framework (6.20) and PDMA/PDAdam algorithms with
a small modification on the dual variable update can handle any smooth surrogate
function 𝑓 . When 𝑓 (𝑠) = (𝑚 + 𝑠)2 is a square surrogate, the minimax formulation
is equivalent to the pairwise loss minimization with a square surrogate loss (AUC
square loss). Nevertheless, the minimax AUC margin loss with the squared-hinge
surrogate is more robust than the AUC square loss. Figure 6.9 illustrates the robust-
ness of the minimax AUC margin loss.

320

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Algorithm 27 PDMA or PDAdam for solving (6.21)
1: Input: learning rate schedules 𝜂𝑡 , 𝜏𝑡 ; starting points w̄1 = (w1, 𝑎1, 𝑏1) , 𝛼1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: Update 𝛼𝑡+1 =

[
(1 − 𝜏𝑡/2)𝛼𝑡 + 𝜏𝑡

(
𝑚 + 1

𝐵2

∑
x 𝑗 ∈B−

𝑡
ℎ (w; x 𝑗) − 1

𝐵1

∑
x𝑖 ∈B+

𝑡
ℎ (w𝑡 ; x𝑖)

)]
+

5: Compute the vanilla gradient estimator

z𝑡 =
1
𝐵1

∑
𝑖∈B+

𝑡

∇w̄ (ℎw𝑡 (x𝑖) − 𝑎𝑡)2 + 1
𝐵2

∑
x 𝑗 ∈B−

𝑡

∇w̄ (ℎ (w𝑡 ; x 𝑗) − 𝑏𝑡)2

+ 𝛼𝑡∇w̄
©­« 1
𝐵2

∑
x 𝑗 ∈B−

𝑡

ℎ(w; x 𝑗) −
1
𝐵1

∑
x𝑖 ∈B+

𝑡

ℎ (w𝑡 ; x𝑖)ª®¬
6: Update w̄𝑡+1 by Momentum or AdamW
7: end for

Fig. 6.9: An illustrative example for optimizing different AUC losses on a toy data for
learning a two-layer neural network with ELU activation. The top row is optimizing
the AUC square loss and the bottom row is optimizing the new AUC margin loss as
in (6.21). The first column depicts the initial decision boundary (dashed line) pre-
trained on a set of examples. In the middle column, we add some easy examples to
the training set and retrain the model by optimizing the AUC loss. In the last column,
we add some noisily labeled data (blue circled data) to the training set and retrain the
model by optimizing the AUC loss. The results demonstrate the AUC margin loss is
more robust than the AUC square loss.

321

Fig. 6.10: t-SNE visualization of feature representations of an imbalanced training
set for the Cat vs Dog visualized by t-SNE learned by different methods (from left to
right): optimizing CE loss, anAUC loss, and a compositional training (CT) objective.
For more details, please refer to (Yuan et al., 2022a).

 Feature Learning
Feature learning is an important capability of deep learning. However, like the DRO
objective, the end-to-end training based on the AUC surrogate objective does not
favor feature learning as compared with traditional ERM. The reason is that AUC
surrogate objective gives unequal weights to different data points due to the imbal-
ance of training data. To address this challenge, one way is to employ a two-stage
approach, where the first stage pretrains the encoder network on the training data
by traditional supervised learning (e.g., ERM with the CE loss) or self-supervised
representation learning and the second stage fine-tunes the feature extration layers
and a random initialized classifier layer by optimizing an AUC surrogate objective.

An approach for performing effective feature learning and AUC maximization in
a unified framework is to optimize a compositional objective (Yuan et al., 2022a):

min
w,𝑎,𝑏

max
𝛼≥0

𝐹 (w − 𝜏∇𝐿CE (w), 𝑎, 𝑏;𝛼),

where 𝐿CE (w) is the empirical risk based on the CE loss and 𝜏 > 0 is a hyper-
parameter.

To understand this compositional objective intuitively, let us take a thought exper-
iment by using a gradient descent method to optimize the compositional objective. To
this end, we denote the objective by 𝐿AUC(w− 𝜏∇𝐿CE (w)), where 𝐿AUC denotes the
AUC surrogate objective. First, we evaluate the inner function by u = w−𝛼∇𝐿CE (w).
We can see that u is computed by a gradient descent step for minimizing the empir-
ical risk 𝐿CE (w), which facilitates the learning of lower layers for feature extraction
due to equal weights of all examples. Then, we take a gradient descent step to update
w for minimizing the outer function 𝐿AUC (·) by using the gradient∇𝐿AUC (u) instead
of ∇𝐿AUC (w). Because u is better than w in terms of feature extraction layers, taking
a gradient descent step using ∇𝐿AUC (u) would be better than using ∇𝐿AUC (w). In
addition, taking a gradient descent step for the outer function 𝐿AUC (·) will make the
classifier more robust to the minority class due to use of the AUC surrogate loss.
Overall, we have two alternating conceptual steps, i.e., the inner gradient descent

322

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

step u = w − 𝜏∇𝐿CE (w) acts as a feature purification step, and the outer gradient
descent step w−𝜂(𝐼−𝜏∇2𝐿CE (w))∇𝐿AUC(u) acts as a classifier robustification step,
where 𝜂 is a step size.

For practical implementation, the intermediate model w − 𝜏∇𝐿CE (w) can be
tracked by the MA estimator u𝑡 = (1 − 𝛾)u𝑡−1 + 𝛾(w𝑡 − 𝜏∇𝐿̂CE (w𝑡)), where 𝐿̂CE is
a mini-batch CE loss. Then, u𝑡 is used to update the primal variables (w; 𝑎; 𝑏) and
the dual variable 𝛼.

Finally, we remark that the data sampler is different from traditional one because
it needs to sample both positive and negative examples. It also has great impact on
the performance. We defer the discussion to section 6.4.5.

6.4.2 Stochastic AP Maximization

Using a surrogate loss, AP maximization can be formulated as an FCCO prob-
lem (2.36), i.e.,

min
w

1
𝑛

∑
x𝑖∈S+

𝑓 (g(w; x𝑖 ,S)), (6.22)

where S+ denotes the set of 𝑛 positive examples, S is the set of all examples, and

𝑓 (g) = − [g]1

[g]2
,

g(w; x𝑖 ,S) = [𝑔1 (w; x𝑖 ,S), 𝑔2 (w; x𝑖 ,S)],

𝑔1 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)),

𝑔2 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)),

where ℓ(·) is a non-decreasing surrogate pairwise loss (see examples in Table 2.3).
We present an application of SOX to solving the above problem in Algorithm 28,

which is referred to as SOAP.

 Initialization of u

Unlike traditional algorithms, Algorithm 28 for AP maximization requires initial-
izing an additional set of auxiliary variables u1, . . . , u𝑛. In contrast to the model
parameter w, which is randomly initialized, these auxiliary variables can be initial-
ized upon their first update. Specifically, when index 𝑖 is first sampled, we set u𝑖,𝑡−1
to the corresponding mini-batch estimator of the inner function value. As a result,

323

Algorithm 28 The SOAP algorithm for AP maximization (6.22)
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: for x𝑖 ∈ B+
𝑡 do

5: Update the inner function value estimators

𝑢(1)𝑖,𝑡 = (1 − 𝛾𝑡)𝑢(1)𝑖,𝑡−1 + 𝛾𝑡
1

𝐵1 + 𝐵2

∑
x 𝑗 ∈|B+

𝑡 ∪B−
𝑡 |
I(𝑦 𝑗 = 1)ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖)) ,

𝑢(2)𝑖,𝑡 = (1 − 𝛾𝑡)𝑢(2)𝑖,𝑡−1 + 𝛾𝑡
1

𝐵1 + 𝐵2

∑
x 𝑗 ∈|B+

𝑡 ∪B−
𝑡 |
ℓ (ℎ(w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖)) ,

6: end for
7: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B+

𝑡

8: Compute the vanilla gradient estimator

z𝑡 =
1
𝐵1

∑
x𝑖 ∈B+

𝑡

1
𝐵1 + 𝐵2

∑
x 𝑗 ∈|B+

𝑡 ∪B−
𝑡 |

𝑢(1)𝑖,𝑡 − 𝑢(2)𝑖,𝑡 I(𝑦 𝑗 = 1)

(𝑢(2)𝑖,𝑡)2
∇ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖))

9: Update w𝑡+1 by Momentum or AdamW
10: end for

the initial update of u𝑖,𝑡 coincides with the mini-batch estimate of the inner function
at that point. This technique will be used in other FCCO applications.

 Feature Learning

Similar to AUC maximization, the end-to-end training based on the AP surrogate
objective does not favor feature learning. To mitigate this issue, one can first pretrain
the encoder network on the training data by traditional supervised learning (e.g. ERM
with the CE loss) or self-supervised representation learning and then fine-tune the
feature extraction layers and a random initialized classifier layer by optimizing an AP
surrogate objective. The compositional training could be also employed for unified
feature learning and AP maximization.

 Moving-average parameter 𝛾𝑡

In practice, we can set 𝛾𝑡 = 𝛾 and tune 𝛾 in the range (0, 1) to optimize the validation
performance.

324

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Fig. 6.11: Comparison of different methods for AP maximization. TFCO refers to
the constrained optimization algorithm implemented in the Google TensorFlowCon-
strained Optimization library. The experiment was conducted on a constructed im-
balanced binary classification task of CIFAR10, which originally contains 10 classes.
These classes are partitioned into two equal groups to form the positive and negative
classes based on their class IDs. The test data is unchanged (i.e., the testing data is
still balanced). For more details, please refer to (Yuan et al., 2023b).

6.4.3 Stochastic Partial AUC Maximization

Stochastic OPAUC Maximization

We focus on maximizing the OPAUC with the false positive rate (FPR) restricted to
the range [0, 𝛽]. As shown in Section 2.3.3, OPAUCmaximization can be formulated
as minimizing a surrogate objective:

min
w

1
𝑛+

1
𝑘

∑
x𝑖∈S+

∑
x 𝑗 ∈S↓

− [1,𝑘]

ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)), (6.23)

where 𝑘 = b𝑛−𝛽c,S↓ [1, 𝑘] ⊆ S denotes the subset of examples whose rank in terms
of their prediction scores in the descending order are in the range of [1, 𝑘], and ℓ(·)
denotes a continuous surrogate pairwise loss such as in Table 2.3.

The challenge lies at how to tackle the top-𝑘 selection x 𝑗 ∈ S↓
− [1, 𝑘]. Below, we

present two approaches: a direct approach that leverages the dual form of CVaR and
an indirect approach that replaces the top-𝑘 selection by soft weighting.

A Direct Approach

This approach will be restricted to a non-decreasing pairwise loss function ℓ(𝑠).
Under this assumption, the ranking over negative samples by their prediction scores
ℎ(w; x 𝑗) is equivalent to that by the pairwise loss ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)), x 𝑗 ∈ S𝑖 .
Hence, the average of pairwise losses over top-𝑘 negatives

325

Algorithm 29 SOPA for solving (6.26) of direct OPAUC maximization
1: Initialize w and 𝝂1 = 0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: Compute 𝑝𝑖 𝑗 = I(ℓ (ℎ(w𝑡 , x 𝑗) − ℎ (w𝑡 , x𝑖)) − 𝜈𝑖,𝑡 > 0) for x𝑖 ∈ B+
𝑡 , x 𝑗 ∈ B−

𝑡

5: for 𝑖 ∈ B+
𝑡 do

6: Update 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 − 𝜂2 (𝑘𝑛− − 1
𝐵2

∑
x 𝑗 ∈B−

𝑡
𝑝𝑖 𝑗)

7: end for
8: Set 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 , 𝑖 ∉ B+

𝑡

9: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗∇wℓ (ℎ(w𝑡 , x 𝑗) − ℎ (w𝑡 , x𝑖))

10: Update w𝑡+1 by SGD or Momentum or AdamW
11: end for

𝐿𝑖 (w) = 1
𝑘

∑
x 𝑗 ∈S↓

− [1,𝑘]

ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)) (6.24)

is equivalent to the average of top-𝑘 pairwise losses over negative data, i.e., an em-
pirical CVaR estimator. Then leveraging the dual form of CVaR (2.15), we transform
the above loss into a minimization problem, i.e.,

𝐿𝑖 (w) = min
𝜈𝑖

1
𝑘

∑
x 𝑗 ∈S−

[ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)) − 𝜈𝑖]+ + 𝜈𝑖 . (6.25)

As a result, we have the following equivalent reformulation.

Lemma 6.1 (Reformulation ofOPAUCmaximization.)When ℓ(·) is non-decreasing,
then the problem (6.23) for OPAUC maximization is equivalent to

min
w,𝝂∈R𝑛+

𝐹 (w, 𝝂) = 1
𝑛+

∑
x𝑖∈S+


𝑘

𝑛−
𝜈𝑖 +

1
𝑛−

∑
x 𝑗 ∈S−

(ℓ(ℎ(w, x 𝑗) − ℎ(w, x𝑖)) − 𝜈𝑖)+
 ,
(6.26)

The above problem is a special case of compositional OCE studied in Section 5.5.
A benefit for solving (6.26) is that an unbiased stochastic subgradient can be com-

puted in terms of (w, 𝝂). We present a method in Algorithm 29, which is an appli-
cation of the ASGD and is referred to as SOPA. A key feature of SOPA is that the
stochastic gradient estimator for w (Step 9) is a weighted average gradient of the pair-
wise losses for all pairs in the mini-batch. The weights 𝑝𝑖 𝑗 (either 0 or 1) are dynami-
cally computed by Step 4, which compares the pairwise loss (ℓ(ℎ(w𝑡 , x𝑖)−ℎ(w𝑡 , x 𝑗))
with the threshold variable 𝜈𝑖,𝑡 , which is also updated by an SGD step.

326

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Algorithm 30 SOPA-s for solving (6.28) of indirect OPAUC maximization

1: Initialize w, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: for 𝑖 ∈ B+
𝑡 do

5: Update 𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾 1
𝐵2

∑
x 𝑗 ∈B−

𝑡
exp

(
ℓ (ℎ(w𝑡 ;x 𝑗)−ℎ (w𝑡 ;x𝑖))

𝜏

)
6: end for
7: Set 𝑢𝑖,𝑡 = 𝑢𝑖,𝑡−1, 𝑖 ∉ B+

𝑡

8: Compute 𝑝𝑖 𝑗 = exp(ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖))/𝜏)/𝑢𝑖,𝑡 for x𝑖 ∈ B+
𝑡 , x 𝑗 ∈ B−

𝑡

9: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗∇ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ(w𝑡 ; x𝑖))

10: Update w𝑡+1 by Momentum or AdamW method.
11: end for

The convergence guarantee of SOPA using the SGD update for w𝑡 has been es-
tablished in Section 5.5. In practice, the convergence speed of SOPA may be further
accelerated by integrating Momentum or Adam updates for the model parameter w.

An indirect approach by FCCO

Due to the connection between CVaR and DRO (2.13), an alternative approach is to
replace the top-𝑘 pairwise loss 𝐿𝑖 (w) by a KL-regularized DRO, i.e.,

𝐿̂𝑖 (w) = max
p∈Δ𝑛

∑
x 𝑗 ∈S− 𝑝 𝑗ℓ (ℎ (w;x 𝑗)−ℎ (w;x𝑖))−𝜏KL(p,1/𝑛−)

= 𝜏 log ©­« 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖))

𝜏

)ª®¬ .
(6.27)

As a result, an indirect approach for OPAUC maximization is to solve the following
FCCO problem:

min
w

1
𝑛+

𝑛+∑
𝑖=1

𝜏 log ©­« 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖))

𝜏

)ª®¬ . (6.28)

An application of the SOX algorithm is given in Algorithm 30, which is referred
to as SOPA-s. The key difference between SOPA-s and SOPA lies at the pairwise
weights 𝑝𝑖 𝑗 in SOPA-s (Step 8) are soft weights between 0 and 1, in contrast to the
hard weights 𝑝𝑖 𝑗 ∈ {0, 1} in SOPA.

327

0 10 20 30 40 50 60
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

pA
UC

Melanoma(FPR 0.3)

SOPA-s
SOPA
AW-poly
MB

0 10 20 30 40 50 60
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

pA
UC

Melanoma(FPR 0.5)

SOPA-s
SOPA
AW-poly
MB

Fig. 6.12: Comparison of different methods for OPAUCmaximization with FPR less
than 𝛽 = 0.3 (left) and 𝛽 = 0.5 (right). The dataset is Melanoma classification from
Kaggle competition. The training set has only 1.76% positive (malignant) samples.
MB refers to the BSGD approach that computes gradients using only the top 𝛽% of
negative examples within each mini-batch; AW-Poly is a heuristic weighted method
that assigns weights to negative samples in the mini-batch using a manually designed
weighting function. For more details, please refer to (Zhu et al., 2022b).

Stochastic TPAUC Maximization

As shown in Section 2.3.3, empirical maximization of TPAUCwith FPR ≤ 𝛽,TPR ≥
𝛼 can be formulated as:

min
w

1
𝑘1

1
𝑘2

∑
x𝑖∈S↑

+ [1,𝑘1]

∑
x 𝑗 ∈S↓

− [1,𝑘2]

ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)), (6.29)

where 𝑘1 = b𝑛+ (1 − 𝛼)c, 𝑘2 = b𝑛−𝛽c. If we define

𝐿𝑖 (w) = 1
𝑘2

∑
x 𝑗 ∈S↓

− [1,𝑘2]

ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)), (6.30)

then, the problem in (6.29) can be written as:

min
w

1
𝑘1

∑
x𝑖∈S↑

+ [1,𝑘1]

𝐿𝑖 (w). (6.31)

Similar to OPAUC maximization, we will present a direct approach and an indi-
rect approach.

A Direct Approach

The first approach is based on the following reformulation of TPAUCmaximization.

328

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Algorithm 31 STACO for solving (6.32) of direct TPAUC maximization
1: Initialize w and 𝜈1 = 0, 𝜈′ = 0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: Compute 𝑝𝑖 𝑗 = I(ℓ (ℎ(w𝑡 , x𝑖) − ℎ (w𝑡 , x 𝑗)) − 𝜈𝑖,𝑡 > 0) for x𝑖 ∈ B+
𝑡 , x 𝑗 ∈ B−

𝑡

5: for 𝑖 ∈ B+
𝑡 do

6: Update 𝑦𝑖,𝑡+1 and 𝜈𝑖,𝑡+1 by

𝑦𝑖,𝑡+1 =𝑦𝑖,𝑡 − 𝜂2


1
𝐵2

∑
x 𝑗 ∈B−

𝑡

(ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖)) − 𝜈𝑖,𝑡)+ +
𝑘2

𝑛−
(𝜈𝑖,𝑡 − 𝜈′𝑡)


 [0,1]

𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 − 𝜂1𝑦𝑖,𝑡+1
©­« 𝑘2

𝑛−
− 1
𝐵2

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗
ª®¬

7: end for
8: Set 𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 , 𝑖 ∉ B+

𝑡 and 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 , 𝑡 ∉ B+
𝑡

9: Update 𝜈′𝑡+1 = 𝜈′𝑡 − 𝜂1 (𝑘1𝑘2
𝑛+𝑛−

− 𝑘2
𝑛−

1
𝐵1

∑
x𝑖 ∈B+

𝑡
𝑦𝑖,𝑡+1)

10: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑦𝑖,𝑡+1𝑝𝑖 𝑗∇wℓ (ℎ (w𝑡 , x 𝑗) − ℎ (w𝑡 , x𝑖))

11: Update w𝑡+1 by SGD, Momentum or AdamW
12: end for

Lemma 6.2 (Reformulation of TPAUCmaximization.)When ℓ(·) is non-decreasing,
the problem (6.29) for TPAUC maximization is equivalent to

min
w,𝝂,𝜈′

1
𝑛+

∑
x𝑖∈S+

𝑓 (𝑔𝑖 (w, 𝝂, 𝜈′)) +
𝑘1𝑘2

𝑛+𝑛−
𝜈′, (6.32)

where 𝝂 = (𝜈1, . . . , 𝜈𝑛+)>, 𝑓 (·) = [·]+ and

𝑔𝑖 (w, 𝝂, 𝜈′) =
1
𝑛−

∑
x 𝑗 ∈S−

(ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)) − 𝜈𝑖)+ +
𝑘2

𝑛−
(𝜈𝑖 − 𝜈′).

We leave the proof as an excise for the reader.
It is clear that the problem (6.32) is an instance of FCCO, where the outer func-

tion is non-smooth and monotonically non-decreasing. Hence, SONX, SONEX, and
ALEXR can be applied. We present an application of ALEXR for solving the above
problem in Algorithm 31 (referred to as STACO) based on its min-max reformula-
tion:

329

Algorithm 32 SOTA-s for solving (6.33) of Indirect TPAUC Maximization

1: Initialize w1, u1, 𝑣1,
2: for 𝑡 = 1, . . . , 𝑇 do
3: Draw 𝐵1 positive data B+

𝑡 ⊂ S+ and 𝐵2 negative data B−
𝑡 ⊂ S−

4: for 𝑖 ∈ B+
𝑡 do

5: Update 𝑢𝑖,𝑡 = (1 − 𝛾0)𝑢𝑖,𝑡−1 + 𝛾0
1
𝐵2

∑
x 𝑗 ∈B𝑡− exp

(
ℓ (ℎ (w𝑡 ;x 𝑗)−ℎ (w𝑡 ;x𝑖))

𝜏2

)
6: end for
7: Set 𝑢𝑖,𝑡 = 𝑢𝑖,𝑡−1, 𝑖 ∉ B+

𝑡

8: Let 𝑣𝑡 = (1 − 𝛾1)𝑣𝑡−1 + 𝛾1
1
𝐵1

∑
x𝑖 ∈B+

𝑡
(𝑢𝑖,𝑡) 𝜏2/𝜏1

9: Compute

𝑝𝑖 𝑗 =
exp(ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖))/𝜏2) (𝑢𝑖,𝑡) 𝜏2/𝜏1−1

𝑣𝑡
, ∀x𝑖 ∈ B+

𝑡 , x 𝑗 ∈ B−
𝑡

10: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

𝐵1𝐵2

∑
x𝑖 ∈B+

𝑡

∑
x 𝑗 ∈B−

𝑡

𝑝𝑖 𝑗∇ℓ (ℎ (w𝑡 ; x 𝑗) − ℎ (w𝑡 ; x𝑖))

11: Update w𝑡+1 by Momentum or AdamW
12: end for

min
w,𝝂,𝜈′

max
y∈[0,1]𝑛+

1
𝑛+

∑
x𝑖∈S+

𝑦𝑖

[
1
𝑛−

∑
x 𝑗 ∈S−

(ℓ(w; x𝑖 , x 𝑗) − 𝜈𝑖)+ +
𝑘2

𝑛−
(𝜈𝑖 − 𝜈′)

]
+ 𝑘1𝑘2

𝑛+𝑛−
𝜈′.

An Indirect Approach

Following the strategy used in OPAUCmaximization, we adopt an indirect approach
by replacing top-𝑘 estimators with their KL-regularized DRO counterparts, which
yield smooth surrogate objectives.

With a non-decreasing pairwise surrogate loss ℓ(·), 𝐿𝑖 (w) is a non-increasing
function of ℎ(w; x𝑖), the average of 𝐿𝑖 (w) over bottom-𝑘1 positive examples in (6.31)
is equivalent to the average of top-𝑘1 losses 𝐿𝑖 (w) over all positive data. Hence, we
approximate the resulting top-𝑘1 estimator by a KL-regularized objective:

𝜏1 log

(
1
𝑛+

∑
x𝑖∈S+

exp
(
𝐿𝑖 (w)
𝜏1

))
.

Then, we substitute 𝐿𝑖 (w) with 𝐿̂𝑖 (w) as defined in (6.27), leading to the following
smoothed objective:

330

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

𝐹 (w) = 𝜏1 log

(
1
𝑛+

∑
x𝑖∈S+

exp
(
𝐿̂𝑖 (w)
𝜏1

))

= 𝜏1 log
©­­«

1
𝑛+

∑
x𝑖∈S+

exp
©­­«
𝜏2 log

(
1
𝑛−

∑
x 𝑗 ∈S− exp

(
ℓ (ℎ (w;x 𝑗)−ℎ (w;x𝑖))

𝜏2

))
𝜏1

ª®®¬
ª®®¬

= 𝜏1 log
©­­«

1
𝑛+

∑
x𝑖∈S+

©­« 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖))

𝜏2

)ª®¬
𝜏2
𝜏1 ª®®¬ .

To minimize this objective, we formulate the problem as a three-level composi-
tional stochastic optimization:

min
w

𝑓1

(
1
𝑛+

∑
x𝑖∈S+

𝑓2 (𝑔𝑖 (w))
)
, (6.33)

where 𝑓1 (𝑠) = 𝜏1 log(𝑠), 𝑓2 (𝑔) = 𝑔𝜏2/𝜏1 , and

𝑔𝑖 (w) = 1
𝑛−

∑
x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖))

𝜏2

)
.

The inner function of 𝑓1 exhibits a finite-sum coupled compositional optimiza-
tion (FCCO) structure. To accurately estimate ∇ 𝑓1 (·) at the inner function value, we
maintain a moving average estimator 𝑣𝑡 to track 1

𝑛+

∑
x𝑖∈S+ 𝑓2 (𝑔𝑖 (w𝑡)).

We present a stochastic optimization algorithm—referred to as SOTA-s—for solv-
ing this problem in Algorithm 32. We update 𝑢𝑖,𝑡 to track 𝑔𝑖 (w𝑡) in Step 5 and main-
tain 𝑣𝑡 to estimate 1

𝑛+

∑
x𝑖∈S+ 𝑓2 (𝑔𝑖 (w𝑡)) in Step 8. The gradient estimator in Step 9

is given by:
∇ 𝑓1 (𝑣𝑡) ·

1
|B+ |

∑
x𝑖∈B+

𝑡

∇ 𝑓2 (𝑢𝑖,𝑡) · ∇𝑔̂𝑖 (w𝑡),

where 𝑔̂𝑖 (w𝑡) = 1
𝐵2

∑
x 𝑗∼B−

𝑡
exp

(
ℓ (ℎ (w𝑡 ;x 𝑗)−ℎ (w𝑡 ;x𝑖))

𝜏2

)
.

6.4.4 Stochastic NDCGMaximization

In Section 2.3.4, we have formulatedNDCGmaximization as the following empirical
X-risk minimization problem:

min
w

1
𝑁

𝑁∑
𝑞=1

1
𝑍𝑞

∑
x𝑞,𝑖∈S+

𝑞

1 − 2𝑦𝑞,𝑖
log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1) , (6.34)

331

Algorithm 33 SONG
1: Initialize w1, u0
2: for 𝑡 = 1, ...𝑇 do
3: Draw some relevant Q-I pairs B𝑡 = { (𝑞, x𝑞,𝑖) } ⊂ S
4: For each sampled 𝑞 draw a batch of items B𝑡𝑞 ⊂ S𝑞
5: for each sampled Q-I pair (𝑞, x𝑞,𝑖) ∈ B𝑡 do
6: Compute 𝑢𝑞,𝑖,𝑡 = (1 − 𝛾)𝑢𝑞,𝑖,𝑡−1 + 𝛾 1

|B𝑡𝑞 |
∑

x′∈B𝑡𝑞 ℓ (𝑠 (w𝑡 ; x′, 𝑞) − 𝑠 (w𝑡 ; x𝑞,𝑖 , 𝑞))
7: Compute

𝑝𝑞,𝑖 = ∇ 𝑓𝑞,𝑖 (𝑢𝑞,𝑖,𝑡) =
(2𝑦𝑞,𝑖 − 1)𝑁𝑞

𝑍𝑞 (𝑁𝑞𝑢𝑞,𝑖,𝑡 + 1) log2
2 (𝑁𝑞𝑢𝑞,𝑖,𝑡 + 1) ln(2)

8: end for
9: Compute a vanilla gradient estimator z𝑡 by

z𝑡 =
1

| B𝑡 |
∑

(𝑞,x𝑞,𝑖) ∈B𝑡
𝑝𝑞,𝑖

1
| B𝑡𝑞 |

∑
x′∈B𝑡𝑞

ℓ (𝑠 (w; x′, 𝑞) − 𝑠 (w; x, 𝑞))

10: update w𝑡+1 by Momentum and AdamW optimizer
11: end for

where 𝑁𝑞𝑔(w; x,S𝑞) =
∑

x′∈S𝑞 ℓ(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞)) is a surrogate of the rank
function 𝑟 (w; x, 𝑆𝑞) =

∑
x′∈S𝑞 I(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞) ≥ 0), and 𝑠(w; x, 𝑞) denotes

the predicted relevance score for item x with respect to query 𝑞, parameterized by
w ∈ R𝑑 (e.g., a deep neural network).

As a result, NDCG maximization can be rewritten as an instance of FCCO:

min
w∈R𝑑

1
|S|

∑
(𝑞,x𝑞,𝑖) ∈S

𝑓𝑞,𝑖 (𝑔(w; x𝑞,𝑖 ,S𝑞)), (6.35)

where S = {(𝑞, x𝑞,𝑖) | 𝑞 ∈ Q, x𝑞,𝑖 ∈ S+
𝑞 } represent the collection of all relevant

query-item (Q-I) pairs, and

𝑓𝑞,𝑖 (𝑔) =
1
𝑍𝑞

1 − 2𝑦𝑞,𝑖
log2 (𝑁𝑞𝑔 + 1) .

We apply the SOX method to this problem as shown in Algorithm 33, which we
call SONG.

Top-𝐾 NDCGMaximization

In practice, top-𝐾 NDCG is the preferred metric for information retrieval and recom-
mender systems, as users primarily focus on the highest-ranked items. It is defined
as:

332

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

1
𝑁

𝑁∑
𝑞=1

1
𝑍 (𝐾)
𝑞

∑
x𝑞,𝑖∈S+

𝑞

I(x𝑞,𝑖 ∈ S (𝐾)
𝑞) · 2𝑦𝑞,𝑖 − 1

log2 (𝑟 (w; x𝑞,𝑖 ,S𝑞) + 1) ,

where S (𝐾)
𝑞 is the set of top-𝐾 items based on predicted scores, and 𝑍 (𝐾)

𝑞 is the ideal
DCG in the top-𝐾 positions.

Optimizing top-𝐾 NDCG introduces an added complexity: selecting the top-𝐾
items is non-differentiable. Unlike pAUC, where a top-𝐾 estimator exists, the surro-
gate function

2𝑦𝑞,𝑖 − 1
log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1)

is not generally monotonic in the score 𝑠(w; x𝑞,𝑖 , 𝑞) unless all 𝑦𝑞,𝑖 values are iden-
tical. We consider two approaches to handle this problem.

Approach 1: Surrogate for Top-𝐾 Inclusion

We use the identity I(x𝑞,𝑖 ∈ S (𝐾)
𝑞) = I(𝐾 − 𝑟 (w; x𝑞,𝑖 ,S𝑞) ≥ 0) and approximate it

by a non-decreasing surrogate 𝜓(𝐾 − 𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞)), e.g., the sigmoid function.
The resulting objective becomes:

min
w∈R𝑑

1
|S|

𝑁∑
𝑞=1

∑
x𝑞,𝑖∈S+

𝑞

𝜓(𝐾 − 𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞)) ·
1 − 2𝑦𝑞,𝑖

𝑍 (𝐾)
𝑞 log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1)

.

(6.36)

This can be optimized using FCCO techniques.

Approach 2: Threshold Estimation via Bilevel Optimization

Denote by 𝜆𝑞 (w) the the (𝐾 + 1)-th largest score among all x′ ∈ S𝑞 . We use
the identity I(x𝑞,𝑖 ∈ S (𝐾)

𝑞) = I(𝑠(w; x𝑞,𝑖 , 𝑞) > 𝜆𝑞 (w)) and approximate it by
𝜓(𝑠(w; x𝑞,𝑖 , 𝑞)−𝜆𝑞 (w)). The threshold 𝜆𝑞 (w) can be computed by solving a convex
optimization problem as shown in the lemma below.

Lemma 6.3 Let 𝜆𝑞 (w) = arg min𝜆 (𝐾 + 𝜀)𝜆 + ∑
x′∈S𝑞 (𝑠(w; x′, 𝑞) − 𝜆)+ for any

𝜀 ∈ (0, 1), then 𝜆𝑞 (w) is the (𝐾 + 1)-th largest value among {𝑠(w; x′, 𝑞) |x′ ∈ S𝑞}.

As a result, we formulate the following bilevel optimization problem for top-𝐾
NDCG maximization:

min
w

1
|S|

𝑁∑
𝑞=1

∑
x𝑞,𝑖∈S+

𝑞

𝜓(𝑠(w; x𝑞,𝑖 , 𝑞) − 𝜆𝑞 (w)) · (1 − 2𝑦𝑞,𝑖)
𝑍 (𝐾)
𝑞 log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1)

s.t. 𝜆𝑞 (w) = arg min
𝜆

𝐾 + 𝜀
𝑁𝑞

𝜆 + 1
𝑁𝑞

∑
x′∈S𝑞

(𝑠(w; x′, 𝑞) − 𝜆)+, ∀𝑞.
(6.37)

333

This bilevel formulation is challenging due to the non-smooth and non-strongly-
convex lower-level problem. One remedy is to apply Nesterov smoothing to the hinge
loss (see Example 5.1) and add a small quadratic regularization term of 𝜆 to the lower
level objective. This allows employing the Approach 1 of using moving-average es-
timators from Section 4.5.3.

In practice, we can ignore the gradient of 𝜓 and adapt the SONG algorithm by
updating 𝜆𝑞 iteratively and modifying 𝑝𝑞,𝑖 as:

𝜆𝑞,𝑡+1 = 𝜆𝑞,𝑡 − 𝜂′ ©­«𝐾 + 𝜀
𝑁𝑞

+ 1
|B𝑞 |

∑
x′∈B𝑡𝑞

I(𝑠(w𝑡 ; x′, 𝑞) > 𝜆)ª®¬ , ∀𝑞 ∈ B𝑡 ,

𝑝𝑞,𝑖 = 𝜓(𝑠(w𝑡 ; x𝑞,𝑖 , 𝑞) − 𝜆𝑞,𝑡+1) · ∇ 𝑓𝑞,𝑖 (𝑢𝑞,𝑖,𝑡).

Aswith other non-decomposablemetrics, it is beneficial to first pretrain themodel
by optimizing the listwise cross-entropy loss, which itself is an FCCO problem, as
defined in (2.47).

6.4.5 The LibAUC Library

The algorithms presented in Section 6.4 for various X-risk minimization tasks share
several common features: (1) they all require sampling both positive and negative ex-
amples; (2) their vanilla gradient updates involve a weighted sum of gradients from
pairwise losses computed on the sampled data; and (3) they utilize moving-average
estimators to track inner function values. These shared characteristics motivate the
design of a unified implementation pipeline. To this end, the LibAUC library was de-
veloped to encapsulate these principles within a modular and extensible framework,
built on top of the PyTorch ecosystem. Below, we highlight several key components
of LibAUC. For tutorials and source code, we refer interested readers to the GitHub
repository:

LibAUC GitHub Repository

https://github.com/Optimization-AI/LibAUC

Pipeline

The training pipeline of a deep neural network in the LibAUC library is illus-
trated in Figure 6.13. It consists of five core modules: Dataset, Controlled
Data Sampler, Model, Dynamic Mini-batch Loss, and Optimizer. While the
Dataset, Model, and Optimizermodules align closely with those in standard train-
ing frameworks, the key innovations lie in the Dynamic Mini-batch Loss and
Controlled Data Sampler modules.

334

https://github.com/Optimization-AI/LibAUC

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

Dataset Controlled
Data Sampler Model

Dynamic
Mini-batch

Loss
Optimizer

Fig. 6.13: Training pipeline of the LibAUAC library for deep learning.

Fig. 6.14: Illustration of DualSampler for an imbalanced dataset with 4 positives •
and 9 negatives •.

The Dynamic Mini-batch Loss module defines the loss using dynamically
updated variables, which are computed and refined with forward propagation re-
sults. This design ensures that compositional gradients can be correctly estimated
frommini-batch samples using backpropagation. The Controlled Data Sampler
module, in contrast to standard random sampling strategies, allows fine-grained con-
trol over the ratio of positive to negative samples. This control can be tuned to im-
prove learning effectiveness and overall performance.

Controlled Data Sampler

Unlike traditional ERM, EXM requires sampling to estimate the outer average and
the inner average. In algorithms for AUC, AP, OPAUC and TPAUC optimization,
we need to sample two mini-batches B𝑡+ ⊂ S+ and B𝑡− ⊂ S− at each iteration 𝑡.
When the total batch size is fixed, balancing the mini-batch size for outer average and
that for the inner average could be beneficial for accelerating convergence according
to our theoretical analysis in Chapter 5. Hence, the Controlled Data Sampler
module can help ensure that both positive and negative samples will be sampled and
the proportion of positive samples in the mini-batch can be controlled by a hyper-
parameter.

DualSampler. For binary classification problems, DualSampler takes as input
hyper-parameters such as batch_size and sampling_rate, and generates the cus-
tomizedmini-batch samples, where sampling_rate controls the number of positive
samples in the mini-batch according to the formula:

#positives = batch_size ∗ sampling_rate.

335

0.0 0.5 1.0 1.5 2.0
Iterations 1e4

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AP

CIFAR-10

SOX (B1 =4)
SOX (B1 =8)
SOX (B1 =32)

Fig. 6.15: The training curves
of AP for different number
of positive examples per
mini-batch in DualSampler
when the total batch size is
fixed to 64. The algorithm
is SOPA - a variant of SOX.
Experiments were conducted
on a constructed imbalanced
binary classification task
derived from CIFAR-10,
identical to the setting used in
Figure 6.11.

Figure 6.14 shows an example of DualSampler for constructing mini-batch data
with even positive and negative samples on an imbalanced dataset with 4 positives
and 9 negatives. To improve the sampling speed, two lists of indices are maintained
for the positive data and negative data, respectively. At the beginning, we shuffle
the two lists and then take the first 4 positives and 4 negatives to form a mini-batch.
Once the positive list is used up, we only reshuffle the positive list and take 4 shuffled
positives to pair with next 4 negatives in the negative list as a mini-batch. Once the
negative list is used up, we re-shuffle both lists and repeat the same process as above.
An illustration of the impact of the DualSampler on the convergence is shown in
Figure 6.15.

TriSampler. For multi-label classification problems with many labels and rank-
ing problems, TriSampler first samples a set of tasks controlled by a hyperparam-
eter sampled_tasks, and then sample positive and negative data for each task.

The following code snippet shows how to define DualSampler and TriSampler.

from libauc.sampler import DualSampler , TriSampler
dualsampler = DualSampler(trainSet ,

batch_size=32,
sampling_rate=0.1)

trisampler = TriSampler(trainSet,
batch_size_per_task=32,
sampled_tasks=5,
sampling_rate_per_task=0.1)

Dynamic Mini-batch Loss

To compute the vanilla gradient estimator, we invoke backpropagation using the Py-
Torch function loss.backward() on a defined loss. The vanilla gradient estimators
for pAUC, AP, and NDCG maximization share a common structure of the form

336

6.4. STOCHASTIC AUC AND NDCG MAXIMIZATION

1
|B1 |

∑
x𝑖∈B1

1
|B2 |

∑
x 𝑗 ∈B2

𝑝𝑖 𝑗∇ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)),

where the weights 𝑝𝑖 𝑗 are computed from dynamic variables within the algorithm.
To enable the use of loss.backward(), it suffices to define a mini-batch loss as

1
| B1 |

∑
x𝑖∈B1

1
| B2 |

∑
x 𝑗 ∈B2 𝑝𝑖 𝑗ℓ(ℎ(w; x 𝑗) − ℎ(w; x𝑖)), where 𝑝𝑖 𝑗 is detached from the

computation graph to avoid unnecessary backpropagation through these variables.
Since 𝑝𝑖 𝑗 is evolving across iterations, the mini-batch loss is called dynamic mini-
batch loss. A high-level pseudocode example for SOPAs is provided in Figure 6.16.

define dynamic mini-batch loss
def pAUCLoss(**kwargs): # dynamic mini-batch loss

sur_loss = surrogate_loss(neg_logits - pos_logits)
exp_loss = torch.exp(sur_loss / Lambda)
u[index] = (1 - gamma) * u[index] + gamma * (exp_loss.mean(1)

)
p = (exp_loss / u[index]).detach()
loss = torch.mean(p * sur_loss)
return loss

optimization
for data, targets, index in dataloader:

logits = model(data)
loss = pAUCLoss(logits, targets, index)
optimizer.zero_grad()
loss.backward()
optimizer.step()

Fig. 6.16: High-level pseudocode for SOPAs.

Comparison with Existing Libraries

We present some benchmark results of LibAUC in comparison with other state-of-
the-art training libraries.

Comparison with the TFCO Library. We compare LibAUC (SOAP) with
Google’s TensorFlow Constrained Optimization (TFCO) library for optimizing av-
erage precision (AP). Both methods are trained for 100 epochs using a batch size of
128, the Adam optimizer with a learning rate of 1e-3, and a weight decay of 1e-4 on
a binary classification task derived from CIFAR-10 with imratio ∈ {1%, 2%}. The
training and testing learning curves, shown in Figure 6.11, demonstrate that LibAUC
consistently outperforms TFCO.

Comparisonwith the TF-Ranking Library.We evaluate LibAUC, using SONG
for NDCG maximization, against Google’s TF-Ranking library, which implements
ApproxNDCG and GumbelNDCG. Experiments are conducted on two large-scale datasets

337

SONG ApproxNDCG GumbelNDCG
10

15

20

25

30

35

Se
co

nd
s p

er
 E

po
ch

Training Time per Epoch

LibAUC
TF-Ranking

Fig. 6.17: Left: Benchmarks of NDCG optimization on MovieLens (ML) 20M and
25M datasets, @𝐾 means NDCG at top 𝐾 . Right: Runtime Comparison between
LibAUC and TF-ranking for NDCG maximization. For more details, please refer
to (Yuan et al., 2023b).

—MovieLens20M andMovieLens25M—from theMovieLens platform. As shown in
Figure 6.17, LibAUC achieves superior performance on both datasets. Furthermore,
the runtime comparison shows that LibAUC’s NDCG maximization algorithm is
more efficient than the corresponding implementations in TF-Ranking.

6.5 Discriminative Pretraining of Representation Models

In Chapter 2, we briefly introduced the core concepts of representation learning and
highlighted its growing significance in modern AI systems. In contemporary AI,
representationmodels are learned through Self-supervised learning (SSL), which has
emerged as a powerful paradigm for learning representation models without the need
for labeled data. Among the most prominent frameworks within SSL is contrastive
learning, which forms positive pairs by applying different augmentations to the same
data sample or taking different views of the same data, while treating different data
as negatives. In this section, we delve deeper into contrastive learning, with a focus
on its applications to both unimodal and multimodal representation learning.

6.5.1 Mini-batch Contrastive Losses

A contrastive loss is used to pull the representations of positive pairs closer together,
while pushing apart those of negative pairs in the embedding space. One of the most
widely used contrastive losses is the so-called InfoNCE loss, which operates over
samples within a mini-batch. Below, we illustrate its use in two well-known con-
trastive learning methods and discuss its limitations.

338

6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Projector Projector Projector

repelattract

<latexit sha1_base64="sNg3N4KacJub3hs8rHRdDPpYh5M=">AAAB8XicbVDLSgMxFL1TX3V8VV26CRbBVZkRUZdFNy4r2Ae2Q8mkmTY0kwxJRixD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695NwTJpxp43nfTmlldW19o7zpbm3v7O5V9g9aWqaK0CaRXKpOiDXlTNCmYYbTTqIojkNO2+H4Jvfbj1RpJsW9mSQ0iPFQsIgRbKz04PZibEZhhJ76lapX82ZAy8QvSBUKNPqVr95AkjSmwhCOte76XmKCDCvDCKdTt5dqmmAyxkPatVTgmOogmyWeohOrDFAklX3CoJn6eyPDsdaTOLSTeUC96OXif143NdFVkDGRpIYKMv8oSjkyEuXnowFTlBg+sQQTxWxWREZYYWJsSa4twV88eZm0zmr+Re387rxavy7qKMMRHMMp+HAJdbiFBjSBgIBneIU3RzsvzrvzMR8tOcXOIfyB8/kDxB6QVw==</latexit>x
<latexit sha1_base64="Hm3pVc3roveCfk9W4mZjLQbSGZo=">AAAB83icbVDLSsNAFL2prxpfVZduBosgCCWRoi6LblxWsA9oYplMJ+3QySTMTMQS+htuXCji1p9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZVWVtfWN8qb9tb2zu5eZf+greJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJP7nUcqFYvFvZ4k1I/wULCQEayN5NlehPUoCNHTw1m/UnVqzgxombgFqUKBZr/y5Q1ikkZUaMKxUj3XSbSfYakZ4XRqe6miCSZjPKQ9QwWOqPKzWeYpOjHKAIWxNE9oNFN/b2Q4UmoSBWYyj6gWvVz8z+ulOrzyMyaSVFNB5ofClCMdo7wANGCSEs0nhmAimcmKyAhLTLSpyTYluItfXibt85p7Uavf1auN66KOMhzBMZyCC5fQgFtoQgsIJPAMr/BmpdaL9W59zEdLVrFzCH9gff4A5P2Q9A==</latexit>

x+
<latexit sha1_base64="dm0b3GHU4XGYR8ubloSVySekHHk=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBIp6rLoxmUF+4Amlsl00g6dTMLMpFhC/8SNC0Xc+ifu/BsnbRbaemDgcM693DMnSDhT2nG+rZXVtfWNzdJWeXtnd2/fPjhsqTiVhDZJzGPZCbCinAna1Exz2kkkxVHAaTsY3eZ+e0ylYrF40JOE+hEeCBYygrWRerZd9jIvwnoYhOjp8dyb9uyKU3VmQMvELUgFCjR69pfXj0kaUaEJx0p1XSfRfoalZoTTadlLFU0wGeEB7RoqcESVn82ST9GpUfoojKV5QqOZ+nsjw5FSkygwk3lItejl4n9eN9XhtZ8xkaSaCjI/FKYc6RjlNaA+k5RoPjEEE8lMVkSGWGKiTVllU4K7+OVl0rqoupfV2n2tUr8p6ijBMZzAGbhwBXW4gwY0gcAYnuEV3qzMerHerY/56IpV7BzBH1ifP5Z2kv8=</latexit>

{x�}

Fig. 6.18: Illustration of SimCLR for Contrastive Visual Representation Learning.
(x, x+) are augmentations of the same image, {x−} is a set of other images. An image
encoder is a deep neural network and a projector is a lightweight multi-layer percep-
tron.

SimCLR

We now illustrate the contrastive loss in the context of visual representation learning
by the well-knownmethod SimCLR. The framework is illustrated in Figure 6.18. The
model typically consists of a deep encoder backbone followed by a small projector,
often implemented as a multi-layer perceptron (MLP). During downstream tasks, the
projector is discarded, and the encoder’s output is used as the final representation.
The inclusion of the projector during training improves the quality and transferability
of the learned embeddings by helping disentangle the contrastive learning objective
from the representation space.

Let (x, x+) ∼ P+ denote a positive pair, which are different augmented copies
from the same data. For a mini-batch B = {x1, . . . , x𝐵}, each anchor x𝑖 is paired
with an augmented positive sample x+𝑖 . The resulting mini-batch-based contrastive
loss (commonly referred to as the InfoNCE loss) for anchor x𝑖 is given by:

𝐿B (w; x𝑖 , x+𝑖) = − log
exp

(
ℎ (w;x𝑖)>ℎ (w;x+𝑖)

𝜏

)
exp

(
ℎ (w;x𝑖)>ℎ (w;x+𝑖)

𝜏

)
+ ∑

x 𝑗 ∈B−
𝑖

exp
(
ℎ (w;x𝑖)>ℎ (w;x 𝑗)

𝜏

) ,
(6.38)

where ℎ(w; x) denotes the normalized embedding of input x, i.e., ‖ℎ(w; x)‖2 = 1,
and 𝜏 > 0 is the temperature parameter. The set B−

𝑖 includes all negative samples in

339

“Kitty in a basket”

“pup in a blanket”

repel

attract

attract

Projector

Projector

Fig. 6.19: Illustration of Contrastive Language-Image Pretraining (CLIP). A projec-
tor is usually a single linear layer.

the mini-batch excluding x𝑖 and its augmentations. The positive pair can be removed
from the denominator.

CLIP (Contrastive Language–Image Pretraining)

CLIP is amultimodal representationmodel that aligns images and text via contrastive
learning on large-scale image–caption datasets. It comprises an image encoder and a
text encoder, each followed by a corresponding projector, all jointly trained through
contrastive learning (see Figure 6.19). CLIP models are typically trained on mil-
lions to billions of image–caption pairs, denoted as S = {(x1, t1), . . . , (x𝑛, t𝑛)}. Let
ℎ1 (w; ·) denote the image encoder and ℎ2 (w; ·) denote the text encoder, which out-
puts normalized embedding vectors.

With a mini-batch B = {(x1, t1), . . . , (x𝐵, t𝐵)}, a mini-batch-based contrastive
loss for each image x𝑖 is given by:

𝐿B (w; x𝑖) = − log
exp

(
ℎ1 (w;x𝑖)>ℎ2 (w;t𝑖)

𝜏

)
exp

(
ℎ1 (w;x𝑖)>ℎ2 (w;t𝑖)

𝜏

)
+ ∑

t 𝑗 ∈B−
2𝑖

exp
(
ℎ1 (w;x𝑖)>ℎ2 (w;t 𝑗)

𝜏

) , (6.39)

where the set B−
2𝑖 includes all negative texts in the mini-batch excluding t𝑖 . Similarly,

a mini-batch-based contrastive loss for each caption t𝑖 is given by:

𝐿B (w; t𝑖) = − log
exp

(
ℎ1 (w;x𝑖)>ℎ2 (w;t𝑖)

𝜏

)
exp

(
ℎ1 (w;x𝑖)>ℎ2 (w;t𝑖)

𝜏

)
+ ∑

x 𝑗 ∈B−
1𝑖

exp
(
ℎ1 (w;x 𝑗)>ℎ2 (w;t𝑖)

𝜏

) . (6.40)

340

6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

where the set B−
1𝑖 includes all negative images in the mini-batch excluding x𝑖 . Back-

propagation is then performed on the two mini-batch contrastive losses to compute
gradient estimators, which are summed to update the model parameters.

CLIP enables zero-shot image classification, cross-modality retrieval and plays a
crucial role in text-to-image generation by guiding models to synthesize images that
semantically align with textual prompts.

What is zero-shot classification?

Zero-shot classification means classifying data without any labeled data
for learning a classifier. In a multi-class classification task with 𝐾 classes
{𝐶1, . . . , 𝐶𝐾 }, where each class corresponds to a specific label (e.g., ‘dog’),
we apply the CLIP model by first constructing a natural language prompt for
each category (e.g., ‘a photo of a dog’). We then compute text embeddings
for these prompts and calculate their cosine similarity with the image embed-
ding generated by CLIP. Finally, the model predicts the class that yields the
highest similarity score.

The Challenge of Large Batch Size

While efficient, the InfoNCE loss is known to heavily rely on large batch sizes to
ensure a rich and diverse set of negatives. For example, SimCLR requires a batch
size of 8192 to achieve state-of-the-art performance for training on the ImageNet-1K
dataset. This dependence on large batches imposes significant memory and compu-
tational burdens, especially when using large network backbones or processing high-
dimensional inputs such as videos. Indeed, optimizing the InfoNCE loss is equivalent
to using the BSGD method for optimizing the global contrastive loss as discussed in
next subsection, which sufffers from non-convergence if the batch size is not signif-
icantly large.

6.5.2 Contrastive Learning without Large Batch Sizes

While the mini-batch contrastive loss offers computational convenience, it contra-
dicts to the standard optimization principle where the objective is typically defined
over the full dataset, followed by the development of efficient optimization algo-
rithms. Themini-batch contrastive loss emerged naturally from the prevalent training
pipeline (see Figure 6.1) that practitioners are familiar with. However, as previously
discussed, this pipeline originating from ERM assumes that the loss for each data
instance is independent of others, which does not hold for contrastive objectives. To
resolve this, it is essential to decouple the design of the objective function from the
optimization procedure.

341

Global Contrastive Loss: Separating Objective from Optimization

A global contrastive loss contrasts each anchor data point against all other examples
in the training set. For a given positive pair (x𝑖 , x+𝑖), the global contrastive loss is
defined as:

𝐿 (w; x𝑖 , x+𝑖) = 𝜏 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗) − ℎ(w; x𝑖)>ℎ(w; x+𝑖)

𝜏

)ª®¬ ,
(6.41)

whereS−
𝑖 is the set of all negative samples excluding x𝑖 and its positive counterparts.

The full global contrastive objective over S = {x1, . . . , x𝑛} is then given by:

min
w
𝐹 (w) = 1

𝑛

∑
x𝑖∈S

1
|S+
𝑖 |

∑
x+𝑖 ∈S+

𝑖

𝐿 (w; x𝑖 , x+𝑖), (6.42)

where S+
𝑖 denotes the set of all positive samples corresponding to x𝑖 .

SogCLR: The Optimization Algorithm

To optimize the global contrastive objective, we cast it into the following:

min
w

− 1
𝑛

∑
x𝑖∈S

1
|S+
𝑖 |

∑
x+𝑖 ∈S+

𝑖

ℎ(w; x𝑖)>ℎ(w; x+𝑖)

+ 1
𝑛

∑
x𝑖∈S

log ©­«
∑

x 𝑗 ∈S−
𝑖

exp
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗)

𝜏

)ª®¬ .
(6.43)

The first term is a standard average and the second term is an objective of FCCO,
where the outer function is 𝑓 (·) = 𝜏 log(·) and the inner function is 𝑔𝑖 (w) =

1
|S−
𝑖 |

∑
z∈S−

𝑖
exp

(
ℎ (w;x𝑖)>ℎ (w;z)

𝜏

)
. For readers who are familiar with Chapter 4 and 5,

it is easy to understand the challenge of optimizing the above objective. It lies at the
compositional structure of the second term with both summations over many data
outside and inside the log function. As a result, the using the mini-batch-based In-
foNCE loss will suffer from a biased gradient estimator whose error depends on the
batch size.

To address this challenge, we can extend the SOX algorithm to solving (6.43) as
shown in Algorithm 34, which is referred to as SogCLR. The estimators 𝑢𝑖,𝑡+1,∀𝑖
are for tracking the inner function values 𝑔𝑖 (w𝑡) and 𝑝𝑖,𝑡 = 1

𝜀+𝑢𝑖,𝑡+1
is for estimating

∇ log(𝑔𝑖 (w𝑡)), where 𝜀 is small positive value added to avoid numerical issue and
facilitate the learning.

342

6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Algorithm 34 SogCLR for optimizing the global contrastive objective (6.43)
1: Input: Initial model w1, u0 ∈ R𝑛

2: for 𝑡 = 1 to 𝑇 do
3: Sample a mini-batch B = {x𝑖 }𝐵𝑖=1 with augmentations
4: for each x𝑖 ∈ B do
5: Construct the positive and negative set within mini-batch B+

𝑖 , B−
𝑖

6: Update 𝑢𝑖,𝑡 via:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾
1

| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℎ (w𝑡 ; x𝑖)>ℎ (w𝑡 ; z)

𝜏

)
7: end for
8: Compute the vanilla gradient estimator z𝑡 :

z𝑡 = − 1
| B |

∑
x𝑖 ∈B

1
| B+
𝑖 |

∑
x+𝑖 ∈B+

𝑖

∇(ℎ (w𝑡 ; x𝑖)>ℎ (w𝑡 ; x+𝑖))

+ 1
| B |

∑
x𝑖 ∈B

1
| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℎ (w𝑡 ;x𝑖)>ℎ(w𝑡 ;z)

𝜏

)
𝜀 + 𝑢𝑖,𝑡

∇(ℎ (w; x𝑖)>ℎ (w; z)) ,

9: Update w𝑡+1 by Momentum, Adam or AdamW
10: end for

 Initialization and Update of u

Unlike the model parameter w, which is typically initialized randomly, the auxiliary
variables u can be initialized upon their first update. Specifically, when an index 𝑖 is
sampled for the first time, we set u𝑖,𝑡 to the corresponding mini-batch estimate of the
inner function value.

As with the practical considerations discussed for distributionally robust opti-
mization (DRO), the vanilla update of u can suffer from numerical instability due
to the use of exp(·), particularly when the temperature 𝜏 is small. To address this,
we can instead maintain a log-transformed variable 𝜈𝑖,𝑡 = log 𝑢𝑖,𝑡 , following the
technique in Equation (6.14).

 PyTorch Implementation

A PyTorch implementation of SogCLR for self-supervised visual representation
learning is shown in Figure 6.21. Each image in the dataset is augmented twice.
To facilitate the computation of the vanilla gradient estimator, we define a dynamic
contrastive loss function. For each augmented instance, we call this loss function to
update its associated 𝑢 variable and compute the dynamic loss using the updated 𝑢.
These individual dynamic losses are then aggregated over the mini-batch, and the 𝑢
variables for the two augmentations of each image are averaged.

343

Fig. 6.20: Impact of batch size
for different methods. The x-
axis represents the batch size,
and the y-axis shows the linear
evaluation accuracy on the Im-
ageNet validation set. Models
were pretrained for 800 epochs
using a ResNet-50 backbone on
ImageNet-1K. For more details,
please refer to (Yuan et al.,
2022c).

Finally, we invoke loss.backward() to compute the gradient, followed by an
optimizer step to update model parameters.

 Comparison with SimCLR

The effectiveness of SogCLR is illustrated in Figure 6.20 with comparison with Sim-
CLR for self-supervised visual representation learning on ImageNet-1K dataset with
1.2 million of images. With a standard mini-batch size 256 and the same other set-
tings as SimCLR, by running 800 epochs, SogCLR achieves a performance of 69.4%
for top 1 linear evaluation accuracy, which is better than 69.3% of SimCLR using a
large batch size 8,192. Linear evaluation accuracy is measured by training a linear
classifier atop a frozen encoder and subsequently assessing its performance on the
validation set.

6.5.3 Contrastive Learning with Learnable Temperatures

The temperature parameter 𝜏 plays a critical role in controlling the penalty strength
on negative samples. Specifically, a small 𝜏 penalizes much more on hard negative
samples (i.e., the degree of hardness-awareness is high), causing separable embed-
ding space. However, the excessive pursuit to the separability may break the under-
lying semantic structures because some negative samples with high similarity scores
to the anchor data might indeed contain similar semantics, to which we refer as false
negatives. In contrast, a large 𝜏 tends to treat all negative pairs equally (i.e., the de-
gree of hardness-awareness is low) and is more tolerant to false negative samples,
which is beneficial for keeping local semantic structures.

Existing approaches based on the InfoNCE loss often treat the temperature param-
eter 𝜏 as a learnable scalar to be optimized. However, this strategy lacks theoretical
justification and may not yield optimal performance. Moreover, real-world data dis-
tributions typically exhibit long-tail characteristics, with substantial variation in the

344

6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Note: This is a simplified version of SogCLR, we compute u
from each augmentation separately for computing the dynamic

contrastive loss
and then aggregated them from all augmentations.
model: encoder + mlp projectors
aug: a set of augmentation functions
tau: temperature
N: data size
ind: indices for images in mini-batch
u: 1d tensor with shape (N,1) by zero initialization
g: parameter for maintaining moving averages of u

for ind, img in dataloader:
x1, x2 = aug(img), aug(img) # augmentations
h1, h2 = model(x1), model(x2) # forward pass
h1, h2 = h1.norm(dim=1, p=2), h2.norm(dim=1, p=2)
loss1, u1 = dcl(h1, h2, ind) # dcl for h1, h2
loss2, u2 = dcl(h2, h1, ind) # dcl for h2, h1
u[ind] = (u1 + u2)/2 # update u
loss = (loss1 + loss2).mean() # symmetrized
loss.backward()
update(model.params) # momentum or adam-style

dynamic contrastive loss (mini-batch)
def dcl(h1, h2, ind):

B = h1.shape[0]
labels = cat([one_hot(range(B)), one_hot(range(B))], dim=1)
logits = cat([dot(h1, h2.T), dot(h1, h1.T)], dim=1)
neg_logits = exp(logits/tau)*(1-labels)
u_ = (1-g) * u[ind] + g*sum(neg_logits , dim=1)/(2(B-1))
p = (neg_logits/u_).detach()
sum_neg_logits = sum(p*logits, dim=1)/(2(B-1))
normalized_logits = logits - sum_neg_logits
loss = -sum(labels * normalized_logits , dim=1)
return loss, u_

Fig. 6.21: PyTorch-style implementation of SogCLR for global contrastive learning.

frequency of samples across different semantic categories. This diversity suggests
the need for individualized temperature parameters that better adapt to the inherent
heterogeneity of the data.

To improve feature qualities, samples with frequent semantics should be assigned
with a large 𝜏 to better capture the local semantic structure, while using a small 𝜏
will push semantically consistent samples away. On the other hand, samples with
rare semantics should have a small 𝜏 to make their features more discriminative and
separable.

345

Robust Global Contrastive Loss with a Learnable Temperature

Owing to the equivalence between the global contrastive loss and KL-regularized
DRO (see Eq. (2.14)), the loss in Eq. (6.41) can be rewritten as:

𝐿 (w; x𝑖 , x+𝑖) =
max
p∈Δ

∑
x 𝑗 ∈S−

𝑖

𝑝 𝑗
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗) − ℎ(w; x𝑖)>ℎ(w; x+𝑖)

)
− 𝜏KL(p, 1/|S−

𝑖 |),

(6.44)
where Δ is the probability simplex over S−

𝑖 and 𝜏 serves as the regularization param-
eter in the KL-regularized DRO.

To enable learning of the temperature parameter, we formulate a robust global
contrastive loss using a KL-constrained DRO framework:

𝐿̂ (w; x𝑖 , x+𝑖) =
max
p∈Δ

∑
x 𝑗 ∈S−

𝑖

𝑝 𝑗
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗) − ℎ(w; x𝑖)>ℎ(w; x+𝑖)

)
− 𝜏0 KL(p, 1/|S−

𝑖 |)

subject to KL(p, 1/|S−
𝑖 |) ≤ 𝜌,

(6.45)
where 𝜏0 is a small constant to ensure smoothness of 𝐿̂ (w; x𝑖 , x+𝑖). Using the dual
formulation (cf. Eq. (2.19)), this can be equivalently expressed as:

𝐿̂ (w; x𝑖 , x+𝑖) = (6.46)

min
𝜏≥𝜏0

𝜏 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℎ(w; x𝑖)>ℎ(w; x 𝑗) − ℎ(w; x𝑖)>ℎ(w; x+𝑖)

𝜏

)ª®¬ + 𝜏𝜌.
Let ℓ𝑖 (w; x 𝑗) = ℎ(w; x𝑖)>ℎ(w; x 𝑗) − ℎ(w; x𝑖)>ℎ(w; x+𝑖). The above loss simplifies
further to:

𝐿̂ (w; x𝑖 , x+𝑖) = min
𝜏≥𝜏0

𝜏 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℓ𝑖 (w; x 𝑗)

𝜏

)ª®¬ + 𝜏𝜌.
Minimizing the average of these robust global contrastive losses yields the fol-

lowing objective, which learns individualized temperatures:

min
w

1
𝑛

∑
x𝑖∈S

 min
𝜏𝑖≥𝜏0

𝜏𝑖 log ©­« 1
|S−
𝑖 |

∑
x 𝑗 ∈S−

𝑖

exp
(
ℓ𝑖 (w; x 𝑗)

𝜏𝑖

)ª®¬ + 𝜏𝑖𝜌
 . (6.47)

The SogCLR algorithm can be modified to solve this problem. We present the
resulting algorithm, referred to as iSogCLR, in Algorithm 35. The vanilla gradient
estimator with respect to w𝑡 is computed as in SogCLR, except that the temperature
𝜏 is replaced with the individualized 𝜏𝑖,𝑡 at iteration 𝑡. The gradient estimator with

346

6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

Algorithm 35 iSogCLR for optimizing the robust global contrastive objective (6.47)
1: Input: Initial model w1, u0 ∈ R𝑛

2: for 𝑡 = 1 to 𝑇 do
3: Sample a mini-batch B = {x𝑖 }𝐵𝑖=1 with augmentations
4: for each x𝑖 ∈ B do
5: Construct the positive and negative set within mini-batch 𝐵+

𝑖 , 𝐵
−
𝑖

6: Update 𝑢𝑖,𝑡 via:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾
1

| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℓ𝑖 (w; z)
𝜏𝑖,𝑡

)
7: Compute the vanilla gradient estimator z𝑖,𝑡 of 𝜏𝑖,𝑡

z𝑖,𝑡 = − 1
| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℓ𝑖 (w;z)
𝜏𝑖,𝑡

)
𝜀 + 𝑢𝑖,𝑡

ℓ𝑖 (w; z)
𝜏𝑖,𝑡

+ log(𝑢𝑖,𝑡) + 𝜌

8: end for
9: Compute the vanilla gradient estimators z𝑡 :

z𝑡 =
1
| B |

∑
x𝑖 ∈B

1
| B−
𝑖 |

∑
z∈B−

𝑖

exp
(
ℓ𝑖 (w𝑡 ;z)
𝜏

)
𝜀 + 𝑢𝑖,𝑡

∇ℓ𝑖 (w𝑡 ; z) ,

10: Update 𝜏𝑖,𝑡+1, ∀x𝑖 ∈ B by the Momentum method
11: Update w𝑡+1 by the Momentum or AdamW method
12: end for

respect to 𝜏𝑖,𝑡 is computed in Step 7 and it can be updated using the Momentum
method.

An application of iSogCLR to CIFAR-10 dataset yields more discriminative fea-
tures than SimCLR and SogCLR as shown in Figure 6.22.

CLIP Training with Learnable Temperatures

CLIP with Individualized Learnable Temperatures

We can integrate the robust global contrastive loss for temperature learning into the
contrastive language-image pretraining (CLIP), yielding the following objective:

347

SimCLR SogCLR iSogCLR

Fig. 6.22: The learned embeddings (projected onto 2D space using t-SNE) for CI-
FAR10 samples learned by self-supervised learning algorithms SimCLR, SogCLR
and iSogCLR. For more details, please refer to (Qiu et al., 2023).

min
w,𝝉1≥𝜏0 ,𝝉2≥𝜏0

1
𝑛

𝑛∑
𝑖=1

𝜏𝑖,1 log ©­« 1
|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖)

𝜏𝑖,1

)ª®¬ + 𝜏𝑖,1𝜌
+ 1
𝑛

𝑛∑
𝑖=1

𝜏𝑖,2 log ©­« 1
|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖))

𝜏𝑖,2

)ª®¬ + 𝜏𝑖,2𝜌,
(6.48)

where T −
𝑖 denotes the set of all negative data of an image x𝑖 and I−

𝑖 denotes the set
of all negative data of the corresponding text t𝑖 , and 𝑠(w; x, t) = ℎ1 (w; x)>ℎ2 (w; t)
is the similarity score of the image and text embeddings.

While optimizing robust contrastive losses enables the learning of temperature pa-
rameters, it may compromise generalizability in downstream tasks by introducing a
large number of additional parameters, which can lead to overfitting—particularly in
noisy real-world datasets where mismatched samples are common. Two approaches
can be used to tackle this issue.

CLIP with a Global Learnable Temperature

A straightforward approach to reduce the number of temperature parameters is to
learn a single global temperature parameter for images and texts, respectively. This
is formulated as the following optimization problem:

min
w,𝜏1≥𝜏0 ,𝜏2≥𝜏0

1
𝑛

𝑛∑
𝑖=1

𝜏1 log ©­« 1
|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖)

𝜏1

)ª®¬ + 𝜏1𝜌


+ 1
𝑛

𝑛∑
𝑖=1

𝜏2 log ©­« 1
|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖)

𝜏2

)ª®¬ + 𝜏2𝜌
 .

(6.49)

348

6.5. DISCRIMINATIVE PRETRAINING OF REPRESENTATION MODELS

CLIP with a Temperature Prediction Network

An alternative strategy is to learn a temperature prediction network (TempNet) that
outputs an instance-dependent temperature for each image and text. The correspond-
ing optimization problem is defined as:

min
w,w′

1 ,w
′
2

1
𝑛

𝑛∑
𝑖=1

𝜏(w′
1; x𝑖) log ©­« 1

|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖)

𝜏(w′
1; x𝑖)

)ª®¬ + 𝜏(w′
1; x𝑖)𝜌

+ 1
𝑛

𝑛∑
𝑖=1

𝜏(w′
2; t𝑖) log ©­« 1

|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖)

𝜏(w′
2; t𝑖)

)ª®¬ + 𝜏(w′
2; t𝑖)𝜌.

(6.50)
The temperature prediction network 𝜏(w′

1; ·) for images can share the encoder
layers of the image encoder ℎ1 (w; ·), followed by a lightweight MLP. Similarly, the
text-side temperature prediction network 𝜏(w′

2; ·) can share the encoder layers of
the text encoder ℎ2 (w; ·), also followed by a small MLP. Again this problem can be
optimized by modifying SogCLR to account for the update of TempNet.

 Scheduler of 𝛾

Like the standard learning rate 𝜂 in the update of w𝑡+1, the hyper-parameter 𝛾 can be
also interpreted as a learning rate of SGD (4.3). The theoretical analysis shows that
𝛾 should be set to a very small value close to 0 in order to guarantee convergence.
Ideally, 𝛾 should be large to rely more on the current mini-batch at earlier iterations
and be smaller to rely more on history in later iterations. To achieve this, we can use
a decreasing scheduler, e.g., a cosine schedule for 𝛾𝑡 : Let 𝑡 be the current iteration,
𝑡0 be the number of iterations per epoch and 𝐸 be the number of decay epochs, then
we set 𝛾𝑡 = 0.5 · (1+ cos(𝜋b𝑡/𝑡0c/𝐸)) · (1− 𝛾min) + 𝛾min. With this schedule, 𝛾𝑡 will
decrease from 1.0 to 𝛾min. Note that b𝑡/𝑡0c denotes the current epoch, which means
the value of 𝛾𝑡 stays unchanged within one epoch. Also, The number of decay epochs
𝐸 is a hyperparameter, and it is not necessarily equal to the total number of training
epochs. If the current epoch exceeds 𝐸 , 𝛾𝑡 will be set to 𝛾min.

 PyTorch Implementations

PyTorch implementations of SogCLR and iSogCLR are available in the LibAUC
library. Their distributed versions, including support for solving (6.49) with a cosine
scheduler for 𝛾, are provided in the FastCLIP GitHub repository:

https://github.com/Optimization-AI/FastCLIP

Three versions are available: FastCLIP-v1 implements SogCLR with a tuned global
temperature, FastCLIP-v2 implements iSogCLR with individualized temperatures,

349

https://github.com/Optimization-AI/FastCLIP

Fig. 6.23: FastCLIP-v3 vs
OpenCLIP. The training was
conducted on LAION315M
with 315M image-text pairs for
learning ViT-B/16 using a total
of 5120 batch size on 8 A100.
Y-axis is the zero-shot accuracy
on ImageNet validation data. For
more details, please refer to (Wei
et al., 2024).

and FastCLIP-v3 implements SogCLR for solving the global temperature optimiza-
tion in (6.49).

A distributed implementation of iSogCLR for CLIP trainingwith the Temperature
Prediction Network (TempNet) is available at:

https://github.com/Optimization-AI/DistTempNet

Figure 6.23 presents a comparison between FastCLIP-v3 and the prior state-of-
the-art distributed implementation of optimizing themini-batch-based InfoNCE loss,
known as OpenCLIP (Ilharco et al., 2021). This highlights the effectiveness of the
advanced compositional optimization algorithm, demonstrating clear improvements
in both convergence speed and representation quality.

6.6 Discriminative Fine-tuning of Large Language Models

Large Language Models (LLMs) have revolutionized modern AI. Their training typ-
ically consists of three stages: self-supervised pretraining on internet-scale text cor-
pora, supervised fine-tuning (SFT) on question–answer datasets, and learning with
human preference for alignment. An improved paradigm, reinforcement learning
with verifiable rewards (RLVR), further advances large reasoning models by lever-
aging automatically verifiable signals from synthesized outputs.

6.6.1 Pipeline of LLM Training

Figure 6.24 illustrates the pipeline of LLMTraining.We briefly introduce these com-
ponents below.

350

https://github.com/Optimization-AI/DistTempNet

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

Self-Supervised
Pretraining

Supervised
Fine-tuning

<latexit sha1_base64="P/VrvbX25ypGLeARZ1Js+er5vAE=">AAACIHicbVDLSgMxFM34rPVVdekmWASFUmakWBcKRTcuK9gHdMqQyaRtaGYyJnekZeynuPFX3LhQRHf6NaaPha8DgcM553Jzjx8LrsG2P6y5+YXFpeXMSnZ1bX1jM7e1XdcyUZTVqBRSNX2imeARqwEHwZqxYiT0BWv4/Yux37hlSnMZXcMwZu2QdCPe4ZSAkbxcOetW1cHAcwrYFYEEXcADr3+Iz9xYycBLwe2yG+yMpim4G3jpKYwOsZfL20V7AvyXODOSRzNUvdy7G0iahCwCKojWLceOoZ0SBZwKNsq6iWYxoX3SZS1DIxIy3U4nB47wvlEC3JHKvAjwRP0+kZJQ62Hom2RIoKd/e2PxP6+VQOeknfIoToBFdLqokwgMEo/bwgFXjIIYGkKo4uavmPaIIhRMp1lTgvP75L+kflR0joulq1K+cj6rI4N20R46QA4qowq6RFVUQxTdo0f0jF6sB+vJerXeptE5azazg37A+vwC96ehrw==</latexit>

Pr(x1, . . . , xk) =
Y

t�1

Pr(xt|x<t)
<latexit sha1_base64="cOtOa8AuSLOHWfF5z6WalUmvwQw=">AAACNXicbVDLSsNAFJ34rPVVdelmsAgKUhIRdaEgunHhooKtQlPCZDKpQyeZOHMjhtifcuN/uNKFC0Xc+gtO2oLPAwOHc85l7j1+IrgG236yRkbHxicmS1Pl6ZnZufnKwmJTy1RR1qBSSHXhE80Ej1kDOAh2kShGIl+wc797VPjn10xpLuMzyBLWjkgn5iGnBIzkVU7Kbl2tZZ6zgV0RSNAbOPOiWzcicOmH+GYd77uJkoGXg9thV9jpDfLwFSkm8j3orWOvUrVrdh/4L3GGpIqGqHuVBzeQNI1YDFQQrVuOnUA7Jwo4FaxXdlPNEkK7pMNahsYkYrqd96/u4VWjBDiUyrwYcF/9PpGTSOss8k2yWFX/9grxP6+VQrjbznmcpMBiOvgoTAUGiYsKccAVoyAyQwhV3OyK6SVRhIIpumxKcH6f/Jc0N2vOdm3rdKt6cDiso4SW0QpaQw7aQQfoGNVRA1F0hx7RC3q17q1n6816H0RHrOHMEvoB6+MTejqqGw==</latexit>

Pr(y1, . . . , ym|x) =
Y

t�1

Pr(yt|x, y<t)

Learning with Human
Preference

Reinforcement Learning
with Verifiable Awards

<latexit sha1_base64="lI0c8P4bdpQcKfxQpl5ufkafdmE=">AAACFnicbZDLSsNAFIYn9VbjLerSzWARKtKSSFGXRTcuK9gLNCFMppN26OTCzEQssU/hxldx40IRt+LOt3HSRtTWHwY+/nMOc87vxYwKaZqfWmFhcWl5pbiqr61vbG4Z2zstESUckyaOWMQ7HhKE0ZA0JZWMdGJOUOAx0vaGF1m9fUO4oFF4LUcxcQLUD6lPMZLKco2Kbjd42Q6QHHg+HLlHtkgwhj9G5e6bbw+ha5TMqjkRnAcrhxLI1XCND7sX4SQgocQMCdG1zFg6KeKSYkbGup0IEiM8RH3SVRiigAgnnZw1hgfK6UE/4uqFEk7c3xMpCoQYBZ7qzFYUs7XM/K/WTaR/5qQ0jBNJQjz9yE8YlBHMMoI9ygmWbKQAYU7VrhAPEEdYqiR1FYI1e/I8tI6r1km1dlUr1c/zOIpgD+yDMrDAKaiDS9AATYDBPXgEz+BFe9CetFftbdpa0PKZXfBH2vsX7/Sd/w==</latexit>

Pr(y+ � y�|x)

<latexit sha1_base64="UQxqFAX5AOIfvKKEN+Wsys9q9rA=">AAACH3icbZDLSsNAFIYn9VbrLerSzWARKmJJpFRXUnTjsoK9QBPKZDpph04uzEzEEPsmbnwVNy4UEXd9GydthF48MPDx/+cw5/xOyKiQhjHWciura+sb+c3C1vbO7p6+f9AUQcQxaeCABbztIEEY9UlDUslIO+QEeQ4jLWd4m/qtR8IFDfwHGYfE9lDfpy7FSCqpq1etOi9ZHpIDx4Vx9+z5j59Or+G8dz7jdfWiUTYmBZfBzKAIsqp39R+rF+DII77EDAnRMY1Q2gnikmJGRgUrEiREeIj6pKPQRx4RdjK5bwRPlNKDbsDV8yWcqLMTCfKEiD1HdaYbikUvFf/zOpF0r+yE+mEkiY+nH7kRgzKAaViwRznBksUKEOZU7QrxAHGEpYq0oEIwF09ehuZF2ayWK/eVYu0miyMPjsAxKAETXIIauAN10AAYvIA38AE+tVftXfvSvqetOS2bOQRzpY1/AfjLobQ=</latexit>

Pr(y+|x) > Pr(y�|x)

Fig. 6.24: Different Phases of training LLMs.

Self-supervised Pretraining

Self-supervised pretraining is formulated as next-token prediction. Let x = (𝑥1, . . . , 𝑥𝑚)
be a sequence of tokenswhere 𝑥 𝑗 belongs to a vocabulary of tokensV = {𝑣1, . . . , 𝑣𝐾 }.
The probability of x is modeled auto-regressively by

𝑝(x) =
𝑚∏
𝑗=1

𝑝(𝑥 𝑗 |𝑥< 𝑗),

where 𝑥< 𝑗 denotes the prefix (𝑥1, . . . , 𝑥 𝑗−1). The conditional probability is modeled
via a softmax over a Transformer representation:

𝑝(𝑥 𝑗 |𝑥< 𝑗) = 𝜋w (𝑥 𝑗 |𝑥< 𝑗) =
exp(ℎ(w0; 𝑥< 𝑗)>w𝑥 𝑗)∑𝐾
𝑘=1 exp(ℎ(w0; 𝑥< 𝑗)>w𝑘)

, (6.51)

where ℎ(w0; 𝑥< 𝑗) ∈ R𝑑 is produced by a Transformer network and w𝑥 𝑗 ∈ R𝑑 is the
token embedding. The full model parameters w = (w0,w1, . . . ,w𝐾) are learned by
minimizing the negative log-likelihood over a dataset S = {x1, . . . , x𝑛}:

min
w

−1
𝑛

𝑛∑
𝑖=1

log 𝑝(x𝑖). (6.52)

Supervised Fine-tuning (SFT)

In SFT, a dataset S = {(x𝑖 , y𝑖)} is used, where x𝑖 is an input prompt and y𝑖 is the
desired output. Let x = (𝑥1, . . . , 𝑥𝑘) and y = (𝑦1, . . . , 𝑦𝑚′) be token sequences from
the vocabularyV. SFTmodels the next-token prediction of tokens in y given x using
the autoregressive factorization:

𝑝(y|x) =
𝑚′∏
𝑗=1

𝜋w (𝑦 𝑗 |x, 𝑦< 𝑗),

351

where each term is computed using the same Transformer-based model as in pre-
training. SFT minimizes:

min
w

−1
𝑛

𝑛∑
𝑖=1

log 𝑝(y𝑖 |x𝑖). (6.53)

Learning with Human Preference

SFT does not penalize poor responses. Hence, it does not necessarily guarantee that
the likelihood of tokens in a poor answer is low. Let us consider a simple example:

Motivation Example

(x) What is the bigger number between 9.11 and 9.9?
(y) The bigger number between 9.11 and 9.9 is 9.9.
(y′) The bigger number between 9.11 and 9.9 is 9.11.

The good answer y and the bad answer y′ only differ in the last token. The like-
lihood of all preceding tokens are the same. Even though the likelihood of the last
token “9” in y conditioned on preceding tokens is increased during the fine-tuning
with this data, the likelihood of the token “11” as the last one might still be high,
making generating the bad answer y′ likely.

To address this issue, learning with human feedback fine-tunes the model using
preference tuples (x, y+, y−), where y+ is preferred over y− . Two main approaches
are reinforcement learning from human feedback (RLHF) and direct preference op-
timization (DPO).

RLHF

A reward model 𝑟𝜃 (x, y) is first trained to match human preferences by modeling the
preference probability Pr(y+ � y− |x) as

𝑝(y+ � y− |x) =
exp(𝑟𝜃 (x, y+))

exp(𝑟𝜃 (x, y+)) + exp(𝑟𝜃 (x, y−))
, (6.54)

and minimizing the following:

min
𝜃

Ex,y+ ,y− − log 𝑝(y+ � y− |x). (6.55)

The policy model (i.e, the target LLM) is then optimized by solving the following
problem with some RL algorithms:

max
w

Ex,y∼𝜋w

[
𝑟𝜃∗ (x, y) − 𝛽KL(𝜋w (·|x), 𝜋ref (·|x))

]
. (6.56)

where the KL divergence is defined as:

352

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

KL(𝜋w (·|x), 𝜋ref (·|x)) = Ey∼𝜋w (· |x)

[
log

𝜋w (y|x)
𝜋ref (y|x)

]
, (6.57)

where 𝜋ref denotes a base model. If we decompose y = (𝑦1, . . . , 𝑦𝑘) as a sequence
of tokens, then using the autoregressive factorization the KL divergence can be ex-
pressed as a sum over tokens:

KL(𝜋w (·|x), 𝜋ref (·|x)) = Ey∼𝜋w

[
𝑘∑
𝑡=1

log
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋ref (𝑦𝑡 |x, 𝑦<𝑡)

]
. (6.58)

Direct Preference Optimization (DPO)

DPO directly optimizes the policy without a separate reward model. A closed-form
non-parameterized solution of 𝜋 by solving (6.56) for any reward model 𝑟 (x, 𝑦),
gives:

𝜋(y|x) = 1
𝑍 (x) 𝜋ref (y|x) exp(𝛽𝑟 (x, y)), (6.59)

where 𝑍 (x) is the normalization factor. Substituting into Eq. (6.55) leads to:

min
w

Ex,y+ ,y− log
(
1 + exp

(
𝛽 log

𝜋w (y− |x)
𝜋ref (y− |x)

− 𝛽 log
𝜋w (y+ |x)
𝜋ref (y+ |x)

))
. (6.60)

In practice, a set of tuples {(x𝑖 , y𝑖+, y𝑖−}𝑛𝑖=1 is constructed and used for learning.

Connections with Discriminative Learning and AUC Maximization

DPO can be also motivated from discriminative learning, particularly AUC
maximization.We view generating the answers of x as a task, and y+ denotes a
positive data and y− denotes a negative data. Let 𝑠(w, x, y) denote a scoring
function, which indicates the likelihood of generating y given x. By AUC
maximization with a continuous surrogate loss ℓ(𝑠(w, x, y−) − 𝑠(w, x, y+)),
we have the following problem:

min
𝜃

Ex,y+ ,y−ℓ(𝑠(w, x, y−) − 𝑠(w, x, y+)). (6.61)

DPO can be recovered by setting 𝑠(w, x, y) = log 𝜋 (y |x)
𝜋ref (y |x) and ℓ(𝑠) = log(1+

exp(𝛽𝑠)).

Reinforcement Learning with Verifiable Rewards (RLVR)

RLVR is an emerging paradigm for training reasoning models, particularly suited
for tasks like mathematical problem solving, where models are expected to gener-
ate step-by-step solutions followed by a final answer. Unlike RLHF, which relies on

353

<latexit sha1_base64="NgI79JrFOEs2WC0to4Av7m5oV4c=">AAAB+nicbVBNS8NAEN3Urxq/Uj16CRbBU0lE1GPRi8cK9gPaEDabTbt0swm7E7XE/BQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSDlT4DjfRmVldW19o7ppbm3v7O5Ztf2OSjJJaJskPJG9ACvKmaBtYMBpL5UUxwGn3WB8PfW791Qqlog7mKTUi/FQsIgRDFryrZo5SJmfD4A+Qp7wsCh8q+40nBnsZeKWpI5KtHzraxAmJIupAMKxUn3XScHLsQRGOC3MQaZoiskYD2lfU4Fjqrx8dnphH2sltKNE6hJgz9TfEzmOlZrEge6MMYzUojcV//P6GUSXXs5EmgEVZL4oyrgNiT3NwQ6ZpAT4RBNMJNO32mSEJSag0zJ1CO7iy8ukc9pwzxtnt2f15lUZRxUdoiN0glx0gZroBrVQGxH0gJ7RK3oznowX4934mLdWjHLmAP2B8fkDrpuUTA==</latexit>⇡old
Questions Outputs

…

Rewards

Verifier

Algorithm

<latexit sha1_base64="NgI79JrFOEs2WC0to4Av7m5oV4c=">AAAB+nicbVBNS8NAEN3Urxq/Uj16CRbBU0lE1GPRi8cK9gPaEDabTbt0swm7E7XE/BQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSDlT4DjfRmVldW19o7ppbm3v7O5Ztf2OSjJJaJskPJG9ACvKmaBtYMBpL5UUxwGn3WB8PfW791Qqlog7mKTUi/FQsIgRDFryrZo5SJmfD4A+Qp7wsCh8q+40nBnsZeKWpI5KtHzraxAmJIupAMKxUn3XScHLsQRGOC3MQaZoiskYD2lfU4Fjqrx8dnphH2sltKNE6hJgz9TfEzmOlZrEge6MMYzUojcV//P6GUSXXs5EmgEVZL4oyrgNiT3NwQ6ZpAT4RBNMJNO32mSEJSag0zJ1CO7iy8ukc9pwzxtnt2f15lUZRxUdoiN0glx0gZroBrVQGxH0gJ7RK3oznowX4934mLdWjHLmAP2B8fkDrpuUTA==</latexit>⇡old
<latexit sha1_base64="dzUzBYk45FaZTVEXwVtf1VEHluc=">AAAB+nicbVBNT8JAEN3iF+JX0aOXRmLiibSGqEeiF4+YyEcChGyXATZst83uVCS1P8WLB43x6i/x5r9xgR4UfMkkL+/NZGaeHwmu0XW/rdza+sbmVn67sLO7t39gFw8bOowVgzoLRahaPtUguIQ6chTQihTQwBfQ9Mc3M7/5AErzUN7jNIJuQIeSDzijaKSeXSx0It5LOgiPmEiYpGnPLrlldw5nlXgZKZEMtZ791emHLA5AIhNU67bnRthNqELOBKSFTqwhomxMh9A2VNIAdDeZn546p0bpO4NQmZLozNXfEwkNtJ4GvukMKI70sjcT//PaMQ6uugmXUYwg2WLRIBYOhs4sB6fPFTAUU0MoU9zc6rARVZShSatgQvCWX14ljfOyd1Gu3FVK1essjjw5JifkjHjkklTJLamROmFkQp7JK3mznqwX6936WLTmrGzmiPyB9fkDv1SUVw==</latexit>⇡newEx: If $3x + 5 = 20$, what

is the value of x?
…

Ex of outputs:
Start with the equation: $3x + 5 = 20$.
Subtract 5 from both sides: $3x = 15$.
Divide both sides by 3: $x = 5$.
The final answer is 5.

Ex of rewards: 1

<latexit sha1_base64="bljP12ZyWzPZH2NlmdINl23j7A4=">AAACDHicbVDLSsNAFJ3UV62vqks3g0VwUUoiRV0W3bisYFuhCWUymbRDJ5MwcyOW0A9w46+4caGIWz/AnX/jpC2orQcGDuecy9x7/ERwDbb9ZRWWlldW14rrpY3Nre2d8u5eW8epoqxFYxGrW59oJrhkLeAg2G2iGIl8wTr+8DL3O3dMaR7LGxglzItIX/KQUwJG6pUrbuZGBAZ+iO97TtUVQQy6in806Y5Nyq7ZE+BF4sxIBc3Q7JU/3SCmacQkUEG07jp2Al5GFHAq2LjkppolhA5Jn3UNlSRi2ssmx4zxkVECHMbKPAl4ov6eyEik9SjyTTJfUs97ufif100hPPcyLpMUmKTTj8JUYIhx3gwOuGIUxMgQQhU3u2I6IIpQMP2VTAnO/MmLpH1Sc05r9et6pXExq6OIDtAhOkYOOkMNdIWaqIUoekBP6AW9Wo/Ws/VmvU+jBWs2s4/+wPr4BuMOmuU=</latexit>

{x1, . . . ,xn} <latexit sha1_base64="wm7/8KEavKGimiqSlPnM8tmtgnU=">AAACFHicbVBNS8NAEN3Ur1q/oh69LBZBsJREinosevFYwdZCE8Jmu2mXbjZhdyOEkB/hxb/ixYMiXj1489+4aXOwrQ8GHu/NMDPPjxmVyrJ+jMrK6tr6RnWztrW9s7tn7h/0ZJQITLo4YpHo+0gSRjnpKqoY6ceCoNBn5MGf3BT+wyMRkkb8XqUxcUM04jSgGCkteeaZkzkhUmM/gKmX2Q07bzhsGCnZgHN6mDu5Z9atpjUFXCZ2SeqgRMczv51hhJOQcIUZknJgW7FyMyQUxYzkNSeRJEZ4gkZkoClHIZFuNn0qhydaGcIgErq4glP170SGQinT0NedxaFy0SvE/7xBooIrN6M8ThTheLYoSBhUESwSgkMqCFYs1QRhQfWtEI+RQFjpHGs6BHvx5WXSO2/aF83WXavevi7jqIIjcAxOgQ0uQRvcgg7oAgyewAt4A+/Gs/FqfBifs9aKUc4cgjkYX7+FYp3g</latexit>

{y1,1, . . . ,y1,m}
<latexit sha1_base64="4ZH61nHV5vHsmnL2OjCARowuZvI=">AAACFHicbVBNS8NAEN3Ur1q/oh69LBZBsJREinosevFYwdZCE8Jmu2mXbjZhdyOEkB/hxb/ixYMiXj1489+4aXOwrQ8GHu/NMDPPjxmVyrJ+jMrK6tr6RnWztrW9s7tn7h/0ZJQITLo4YpHo+0gSRjnpKqoY6ceCoNBn5MGf3BT+wyMRkkb8XqUxcUM04jSgGCkteeaZkzkhUmM/gKmX8YadNxw2jJRswDk9zJ3cM+tW05oCLhO7JHVQouOZ384wwklIuMIMSTmwrVi5GRKKYkbympNIEiM8QSMy0JSjkEg3mz6VwxOtDGEQCV1cwan6dyJDoZRp6OvO4lC56BXif94gUcGVm1EeJ4pwPFsUJAyqCBYJwSEVBCuWaoKwoPpWiMdIIKx0jjUdgr348jLpnTfti2brrlVvX5dxVMEROAanwAaXoA1uQQd0AQZP4AW8gXfj2Xg1PozPWWvFKGcOwRyMr19Gc55a</latexit>

{yn,1, . . . ,yn,m}

<latexit sha1_base64="DU+N2oCsR7LRviZvFUddCaWCiF8=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovgopREirosunFZwT6gCWEymbRDZ5IwMxFKyMKNv+LGhSJu/Qh3/o3TNAttPXDhzDn3MvceP2FUKsv6Nipr6xubW9Xt2s7u3v6BeXjUl3EqMOnhmMVi6CNJGI1IT1HFyDARBHGfkYE/vZn7gwciJI2jezVLiMvROKIhxUhpyTPrTia8zG7aedNhQaxkExZvnju5ZzasllUArhK7JA1QouuZX04Q45STSGGGpBzZVqLcDAlFMSN5zUklSRCeojEZaRohTqSbFUfk8FQrAQxjoStSsFB/T2SISznjvu7kSE3ksjcX//NGqQqv3IxGSapIhBcfhSmDKobzRGBABcGKzTRBWFC9K8QTJBBWOreaDsFePnmV9M9b9kWrfddudK7LOKqgDk7AGbDBJeiAW9AFPYDBI3gGr+DNeDJejHfjY9FaMcqZY/AHxucPbziXVg==</latexit>

{r1,1, . . . , r1,m}
<latexit sha1_base64="+3NJKSb843huciRo2qCWp4HLQsM=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovgopREirosunFZwT6gCWEymbRDJ5MwMxFKyMKNv+LGhSJu/Qh3/o3TNAttPXDhzDn3MvceP2FUKsv6Nipr6xubW9Xt2s7u3v6BeXjUl3EqMOnhmMVi6CNJGOWkp6hiZJgIgiKfkYE/vZn7gwciJI35vZolxI3QmNOQYqS05Jl1JxNexpt23nRYECvZhMU7yp3cMxtWyyoAV4ldkgYo0fXMLyeIcRoRrjBDUo5sK1FuhoSimJG85qSSJAhP0ZiMNOUoItLNiiNyeKqVAIax0MUVLNTfExmKpJxFvu6MkJrIZW8u/ueNUhVeuRnlSaoIx4uPwpRBFcN5IjCggmDFZpogLKjeFeIJEggrnVtNh2Avn7xK+uct+6LVvms3OtdlHFVQByfgDNjgEnTALeiCHsDgETyDV/BmPBkvxrvxsWitGOXMMfgD4/MHLmGX0A==</latexit>

{rn,1, . . . , rn,m}

Fig. 6.25: The one-step iteration of RL for reinforcing Large Reasoning Model. For
each question x𝑖 , the model generates 𝑚 outputs y𝑖,1, . . . , y𝑖,𝑚 and each of them
receives a reward 𝑟𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑚 from a verifier. Then an algorithm will leverage
the inputs, their outputs and the reward information to update the model.

subjective preference labels, RLVR leverages verifiable signals such as whether the
final answer is correct.

What is a Large Reasoning Model?

A large reasoningmodel is a type of LLM that is specifically designed or fine-
tuned to perform multi-step logical reasoning, such as solving math prob-
lems, answering complex questions, or generating structured arguments. It
generates intermediate reasoning tokens before producing the final answer,
mimicking System 2 reasoning in humans, which is deliberate, logical, and
slow.

RLVR is illustrated in Figure 6.25. The old model in one step of learning is de-
noted by 𝜋old. It is used to generate multiple answers for a set of input questions.
Given a question x (with prompt included), one generated output y follows the dis-
tribution 𝜋old (·|x), which includes reasoning traces and the final answer. Specifically,
output y is generated token by token, i.e., 𝑦𝑡 ∼ 𝜋old (·|x, 𝑦<𝑡), for 𝑡 = 1, · · · , |y|.

A key to RLVR is to assume that there exists a verifier, which can automatically
verifies the quality of the generated answer, giving a reward. Let us consider a binary
reward setting where the verifier returns a binary value for a given question x and
its corresponding answer in the output y. For answering mathematical questions,
this can be achieved by comparing the generated answer with the true answer. For
generating mathematical proofs, we can use a formal verification tool such as LEAN
to verify if the proof is correct.

Proximal Policy Optimization (PPO)

PPO is a classical RL algorithm. Let

𝜌w (x, y) =
𝜋w (y|x)
𝜋old (y|x)

354

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

denote the likelihood ratio between the new policy 𝜋w and the old policy 𝜋old. Let
𝐴(x, y) be an advantage function for taking action y given input x, which measures
how much better a specific action is compared to the policy’s average behavior in a
given state. The PPO objective is given by:

LPPO (w) =Ex,y∼𝜋old [min (𝜌w (x, y) · 𝐴(x, y), clip(𝜌w (x, y), 1 − 𝜖, 1 + 𝜖) · 𝐴(x, y))] ,
− 𝛽KL(𝜋w, 𝜋ref), (6.62)

where 𝜖 > 0 is a small hyperparameter (typically around 0.1 or 0.2), and the clip
function restricts the likelihood ratio 𝜌w (x, y) to the range [1 − 𝜖, 1 + 𝜖], defined as:

clip(𝜌w (x, y), 1 − 𝜖, 1 + 𝜖) =


1 − 𝜖 if 𝜌w (x, y) < 1 − 𝜖,
𝜌w (x, y) if 1 − 𝜖 ≤ 𝜌w (x, y) ≤ 1 + 𝜖,
1 + 𝜖 if 𝜌w (x, y) > 1 + 𝜖 .

The intuition of using clipping mechanism is that

• When 𝐴(x, y) > 0 (the action is better than expected), the clip operation prevents
𝜋w from increasing its probability too aggressively.

• When 𝐴(x, y) < 0 (the action is worse than expected), the clip operation prevents
𝜋w from decreasing its probability too drastically.

This clippingmechanismwas used to reduce variance andmaintain stable training
dynamics for reinforcement learning. However, it also suffers from zero gradient
when 𝜌w (x, y) is out of the range [1− 𝜖, 1+ 𝜖], which might slow down the learning
process.

Trust Region Policy Optimization (TRPO)

TRPO is a principled policy optimization method that improves stability and effi-
ciency by restricting each policy update to stay within a small trust region. It max-
imizes a surrogate objective function based on the advantage estimates under the
old policy, while constraining the average Kullback–Leibler (KL) divergence be-
tween the old and new policies. Formally, TRPO solves the following constrained
optimization problem:

max
𝜃

Ex,y∼𝜋old [𝜌w (x, y)𝐴(x, y)]

subject to Ex [KL (𝜋old (·|x), 𝜋w (·|x))] ≤ 𝛿, (6.63)

where 𝛿 is a predefined trust region threshold. The KL divergence is taken in the
reverse direction to ensure that the updated policy does not deviate too much from
the old policy on average across the state distribution.

355

Group Relative Policy Optimization (GRPO).

GRPO is a reinforcement learning algorithm designed to optimize policies by lever-
aging group-wise relative reward information.

For inputs {x𝑖}𝑚𝑖=1, let {y𝑖 𝑗 }
𝐾
𝑗=1 denote the corresponding set of 𝐾 generated an-

swers for each x𝑖 . the objective of GRPO for maximization is defined by:

JGRPO (w) = 1
𝑚

𝑚∑
𝑖=1

1
𝑘

𝑘∑
𝑗=1

[
1

|y𝑖 𝑗 |

|y𝑖 𝑗 |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑖 𝑗 ,𝑡 |x, 𝑦𝑖 𝑗 ,<𝑡)
𝜋old (𝑦𝑖 𝑗 ,𝑡 |x, 𝑦𝑖 𝑗 ,<𝑡)

, 𝐴(x𝑖 , y𝑖 𝑗)
)]

− 𝛽KL(𝜋𝜃 , 𝜋ref), (6.64)

where 𝑦𝑖 𝑗 ,𝑡 denotes its 𝑡-th token and 𝑦𝑖 𝑗 ,<𝑡 denotes the prefix of the 𝑡-th token of
y𝑖 𝑗 , 𝑓 (𝑠, 𝑡) = min(𝑠𝑡, clip(𝑠, 1 − 𝜖, 1 + 𝜖)𝑡), 𝜋ref is a frozen reference model, and
𝐴(x𝑖 , y𝑖 𝑗) is the group-wise advantage function defined as

𝐴(x, y) =
𝑟 (y|x) − 𝑟𝑞

𝜎𝑞

with 𝑟𝑞 being the average reward of outputs for x and 𝜎𝑞 being its standard deviation.
This advantage function quantifies how much better the reward of an output y is
compared to average reward in the group. For analysis, we consider the expected
version:

JGRPO (w) = ExEy∼𝜋old (· |x)

[
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 𝐴(x, y)
)]

− 𝛽KL(𝜋𝜃 , 𝜋ref),

(6.65)

where

𝐴(x, y) =
𝑟 (y|x) − Ey′∼𝜋old (· |x)𝑟 (y′ |x)√

Vary′∼𝜋old (· |x)𝑟 (y′ |x)
. (6.66)

6.6.2 DFT for fine-tuning Large Language Models

While learning with human feedback addresses the limitation of SFT, traditional
supervised learning methods never use human preference data. For example, in im-
age classification, training data (x, 𝑦) denote an input image and its true class label
𝑦 ∈ {1, . . . , 𝐾}. We do not need the preference optimization step on preference data
saying that a dog class is preferred to a cat class for an image of a dog. So what is
the difference between traditional supervised learning and supervised finetuning of
LLMs that makes SFT not enough? The answer lies in the fact that traditional su-
pervised learning methods are usually discriminative approaches, while the SFT
method is not discriminative.

356

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

By casting the supervised fine-tuning of LLMs into data prediction, we can lever-
age discriminative learning approaches, e.g., the discriminative probabilistic model-
ing (DPM) approach and the robust optimization approach.

DPM over an Infinite Data Space

Let X and Y be infinite data spaces. Let us consider X as an anchor space and Y
as the target space with a Lebesgue measure 𝜇. When Y is countably infinite, the
Lebesgue measure 𝜇 is replaced by the counting measure. We model the probability
density Pr(y | x) of an object y ∈ Y given an anchor object x ∈ X by a parameterized
scoring function 𝑠(w; x, y):

𝑃w (y | x) = exp(𝑠(w; x, y)/𝜏)∫
Y exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)

, (6.67)

where 𝜏 > 0 is a temperature parameter. We assume that exp(𝑠(w; x, y)/𝜏) is
Lebesgue-integrable for w ∈ W, W ⊂ R𝑑 . Here 𝑃w (y | x) is a valid probabil-
ity density function because

∫
Y 𝑃w (y | x)𝑑𝜇(y) = 1. Given {(x1, y1), . . . , (x𝑛, y𝑛)}

sampled from the joint distribution 𝑝x,y, the maximum likelihood estimation (MLE)
can be formulated as the following:

min
w

{
−1
𝑛

𝑛∑
𝑖=1

𝜏 log
exp(𝑠(w; x, y)/𝜏)∫

Y exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)

}
= −1

𝑛

𝑛∑
𝑖=1

𝑠(w; x, y) + 𝜏 log
(∫

Y
exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)

)
. (6.68)

If Y is finite, the above DPM framework recovers the traditional multi-class classi-
fication and learning to rank. In particular, ifY denotes the label set {1, . . . , 𝐾} and
𝑠(w; x, 𝑦) denotes the classification score for the 𝑦-th class, then the above approach
recovers logistic regression. If Y denotes the set of items Y = {x𝑞,1, . . . , x𝑞,𝑁𝑞 }
and the anchor data x denotes a query, then the above approach recovers the List-
Net (2.47).

Optimization via FCCO

The main challenge for solving the DPM problem over an infinite data space lies
in computing the integral 𝑔(w; x𝑖 ,Y) :=

∫
Y exp (𝑠(w; x𝑖 , y′)/𝜏) 𝑑𝜇(y′) for each 𝑖 ∈

[𝑛], which is infeasible unlessY is finite. Below, we discuss two general approaches
for tackling the challenge.

357

Sample and Optimize

The first approach is to introduce a sampling distribution 𝑃𝑖 (·), satisfying that (1) it
is easy to sample data from 𝑃𝑖; (2) it is possible to compute the probability value of
a sample y′. Then we write∫

Y
exp

(
𝑠(w; x𝑖 , y′)

𝜏

)
𝑑𝜇(y′) = Ey′∼𝑃𝑖 (·)

exp(𝑠(w; x𝑖 , y′)/𝜏)
𝑃𝑖 (y′)

.

The optimization problem becomes an instance of FCCO:

min
w

− 1
𝑛

𝑛∑
𝑖=1

𝑠(w; y𝑖 , x𝑖)

+ 1
𝑛

𝑛∑
𝑖=1

𝜏 log
(
Ey′∼𝑃𝑖 (·)

exp(𝑠(w; y′, x𝑖)/𝜏)
𝑃𝑖 (y′)

)
. (6.69)

Approximate and Optimize

In some cases, we may only have sampled data from 𝑃𝑖 (·) without access to 𝑃𝑖 (·).
Let S𝑖 = {y′𝑖,1, . . . , y′𝑖,𝑚} denote a set of outputs sampled for each data x𝑖 following
some 𝑃𝑖 . Then we approximate 𝑔(w; x𝑖 ,Y) by

𝑔(w; x𝑖 ,Y) ≈ 1
𝑚

∑
y′∈S−

𝑖

exp(𝑠(w; y′, x)/𝜏)
𝑃𝑖 (y′)

∝ 1
𝑚

∑
y′∈S𝑖

exp(𝑠(w; y′, x)
𝜏

), (6.70)

where the last step assumes 𝑃𝑖 (y′) are approximately equal. Then the optimization
problem becomes an instance of FCCO:

min
𝜃

−1
𝑛

𝑛∑
𝑖=1

𝑠(w; y𝑖 , x𝑖)

+ 1
𝑛

𝑛∑
𝑖=1

𝜏 log
(

1
𝑚

∑
y′∈S𝑖

exp(𝑠(w; y′, x𝑖)/𝜏)
)
. (6.71)

DFT for fine-tuning LLMs

Let us apply the DPM approach to fine-tuning LLMs, which is referred to as dis-
criminative fine-tuning (DFT).

Discriminative Likelihood

Unlike SFT that maximizes the generative likelihood of tokens, DFT will maximize
the discriminative likelihood of data as defined in (6.67). By maximizing the dis-

358

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

0 50 100 150
Training Steps

1000

500

0

lo
gP

g(
y|

x)
SFT
DFT

(a) Log-likelihoods of positives

0 50 100 150
Training Steps

4000

2000

0

lo
gP

g(
y′

|x
)

SFT
DFT

(b) Log-likelihoods of negatives

Fig. 6.26: (a) Log-likelihoods of (annotated) positive examples during training for
different methods. (b) Log-likelihoods of “negative” examples (generated from the
base model) during training for different methods. For more details, please refer
to (Guo et al., 2025).

Algorithm 36 The DFT Algorithm
1: Initialize w1 as the base LLM, and u0 = 1
2: for 𝑡 = 1, . . . , 𝑇 − 1 do
3: Sample a mini-batch B𝑡 ⊂ {x1, . . . , x𝑛 }
4: for each x𝑖 ∈ B𝑡 do
5: Sample a mini-batch B−

𝑖,𝑡 from 𝜋ref (· |x̄𝑖) via an offline pool
6: Update 𝑢𝑖,𝑡+1 according to

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾
1
𝐵

∑
y′∈B0

𝑖,𝑡

exp(𝑠 (w𝑡 ;y
′ ,x𝑖)
𝜏)

𝜋ref (y′ |x̄𝑖)
, (6.72)

7: end for
8: Compute a vanilla gradient estimator z𝑡 according to

z𝑡 = − 1
| B𝑡 |

∑
x𝑖 ∈B𝑡

∇𝑠 (w𝑡 ; y𝑖 , x𝑖)+

1
| B𝑡 |

∑
x𝑖 ∈B𝑡

1
𝑢𝑖,𝑡+1 | B−

𝑖,𝑡 |
∑

y′∈B−
𝑖,𝑡

exp(𝑠 (w𝑡 ;y
′ ,x𝑖)
𝜏)∇𝑠 (w𝑡 ; y′, x𝑖)
𝜋ref (y′ |x̄𝑖)

. (6.73)

9: Update w𝑡+1 using Momentum or AdamW
10: end for

criminative log-likelihood of the training data, we not only increase the score of the
true output y𝑖 for each input x𝑖 , corresponding to the numerator of the discriminative
likelihood, but also decrease the scores of other potentially bad answers inY, which
correspond to the denominator of the discriminative likelihood; see Figure 6.26.

359

0.8 0.85 0.9 0.95 1.052

54

56

58

60

62

Ac
cu

ra
cy

 (%
)

Fig. 6.27: Using moving average estimators with 𝛾 < 1 is important for improving
the performance. For more details, please refer to (Guo et al., 2025).

The Scoring Function

For fine-tuning LLMs, the scoring function can be defined based on the generative
log-likelihood log 𝜋w (y|x), as it measures the likeliness of generating y given x by
the model 𝜋w. For a good model, we expect that a high value of the generative log-
likelihood log 𝜋w (y|x) would indicate a high fitness score of y to answer x. With
such correspondence, the above discriminative learning framework would increase
the chance of generating a good output y given x and decrease the chance of generat-
ing possibly bad outputs given x. Common choices for the scoring function include
the raw log-likelihood 𝑠(w; y, x) = log 𝜋w (y|x) and a length-normalized version
𝑠(w; y, x) = 1

|y | log 𝜋w (y|x). Using the unnormalized version 𝑠w (y, x) = log 𝜋w (y|x)
leads to the following DFT objective:

min
w

−1
𝑛

𝑛∑
𝑖=1

log 𝜋w (y𝑖 |x𝑖)

+ 𝜏 1
𝑛

𝑛∑
𝑖=1

log
(∑

y′∈Y
exp

(
log 𝜋w (y′ |x𝑖)

𝜏

))
. (6.74)

Comparing the DFT objective of to that of SFT in (6.53), we observe that the first
term in (6.74) is identical to the objective of SFT. The key difference lies in the
second term, which penalizes the possibly poor outputs inY for each x𝑖 by reducing
their generative log-likelihood, thereby discouraging their generation.

Sampling Distribution

The optimization analysis reveals that the variance bound 𝜎0 of the mini-batch es-
timator for the inner function 𝑔(w; x𝑖 ,Y) significantly impacts convergence speed
(cf. Theorem 5.1). Ideally, the variance-minimizing distribution is 𝑃w (·|x𝑖). How-

360

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

ever, this distribution is impractical to evaluate and difficult to sample from directly.
Moreover, we aim for the sampled outputs y′ ∼ 𝑃𝑖 (·) to represent likely poor re-
sponses to x𝑖 . A practical approach is to define 𝑃𝑖 (·) = 𝜋ref (·|x̄𝑖), where 𝜋ref denotes
the base LLM to be fine-tuned and x̄𝑖 is an augmented version of x𝑖 with added sys-
tem prompts to encourage the generation of suboptimal outputs. This relies on the
assumption that the base model is unlikely to generate high-quality answers in this
context.

The Optimization Algorithm

An application of the SOX algorithm for solving (6.69) is presented in Algorithm 36.
The sequence {𝑢} plays a critical role in effectively penalizing the sampled“negative
data,”as illustrated in Figure 6.27. A PyTorch implementation of DFT is at

https://github.com/Optimization-AI/DFT.

6.6.3 DisCO for Reinforcing Large Reasoning Models

DisCO, short for Discriminative Constrained Optimization, is a recent approach for
reinforcing large reasoning models. It is motivated by the connection between the
GRPO objective and discriminative learning objectives, and is designed to overcome
key limitations of GRPO and its variants.

Limitation of GRPO and Connection with Discriminative Learning

Let 𝑟 (y|x) ∈ {1, 0} denote the reward assigned to an output ywith respect to the input
x. A quantity that is important to the analysis is 𝑝(x) = Ey∼𝜋old (· |x) [𝑟 (y|x)] ∈ [0, 1],
which quantifies the difficulty of the question x under the model 𝜋old. We denote by
𝜋+old (·|x) the conditional distribution of outputs when the reward is one (i.e., positive
answers) and by 𝜋−old (·|x) the conditional distribution of outputs when the reward is
zero (i.e., negative answers).

In the following analysis we assume 𝑝(x) = Ey∼𝜋old (· |x)𝑟 (y|x) ∈ (0, 1); otherwise
we can remove them from consideration as done in practice.

Proposition 6.1. Let us consider the objective of GRPO and its variants with the
following form:

J0 (w) = ExEy∼𝜋old (· |x)

[
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 𝐴(x, y)
)]
, (6.75)

where 𝐴(x, y) is given in (6.66). Assume that 𝑓 (𝑥, 𝑦) is non-decreasing function of 𝑥
such that 𝑓 (𝑥, 𝑦) = I(𝑦 > 0)𝑦 𝑓 + (𝑥, 1) − I(𝑦 ≤ 0)𝑦 𝑓 − (𝑥, 1), where both 𝑓 +, 𝑓 − are
non-decreasing functions of 𝑥, then we have

361

https://github.com/Optimization-AI/DFT

J0 (w) = Ex
√
𝑝(x) (1 − 𝑝(x))Ey∼𝜋+old (· |x) ,y′∼𝜋

−
old (· |x) [𝑠

+ (w; y, x) − 𝑠− (w; y′, x)],
(6.76)

where

𝑠+ (w; y, x) = 1
|y|

|y |∑
𝑡=1

𝑓 +
(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 1
)

𝑠− (w; y, x) = 1
|y|

|y |∑
𝑡=1

𝑓 −
(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 1
)
.

In particular, for GRPO we have

𝑠+ (w; y, x) = 1
|y|

|y |∑
𝑡=1

min(𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 1 + 𝜖), (6.77)

𝑠− (w; y, x) = 1
|y|

|y |∑
𝑡=1

max(𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 1 − 𝜖). (6.78)

Proof. Since Ey∼𝜋old (· |x)𝑟 (y|x) = 𝑝(x),Vary∼𝜋old (· |x)𝑟 (y|x) = 𝑝(x)(1 − 𝑝(x)), we
have

𝐴(x, y) =

√

1−𝑝 (x)
𝑝 (x) , if 𝑟 (y|x) = 1,

−
√

𝑝 (x)
1−𝑝 (x) , if 𝑟 (y|x) = 0.

(6.79)

By the law of total expectation, we have

362

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

ExEy∼𝜋old (· |x)

[
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 𝐴(x, y)
)]

= Ex

[
𝑝(x)Ey∼𝜋+old (· |x)

1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 𝐴(x, y)
)

+ (1 − 𝑝(x))Ey∼𝜋−
old (· |x)

1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 𝐴(x, y)
)]

= Ex

[
𝑝(x)Ey∼𝜋+old (· |x)

1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

,

√
1 − 𝑝(x)
𝑝(x)

)
+ (1 − 𝑝(x))Ey∼𝜋−

old (· |x)
1
|y|

|y |∑
𝑡=1

𝑓

(
𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

,−

√
𝑝(x)

1 − 𝑝(x)

)]
= Ex

√
𝑝(x)(1 − 𝑝(x))

[
Ey∼𝜋+old (· |x)

1
|y|

|y |∑
𝑡=1

𝑓 + (𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 1)

− Ey∼𝜋−
old (· |x)

1
|y|

|y |∑
𝑡=1

𝑓 − (𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

, 1)
]
,

(6.80)

where the last equality follows from the assumption about 𝑓 (𝑥, 𝑦). For GPRO, we
have 𝑓 + (𝑥, 1) = min(𝑥, clip(𝑥, 1 − 𝜖, 1 + 𝜖)) = min(𝑥, 1 + 𝜖) and 𝑓 − (𝑥, 1) =
max(𝑥, clip(𝑥, 1 − 𝜖, 1 + 𝜖)) = max(𝑥, 1 − 𝜖). ut

 Why it matters

We derive two insights from Proposition 6.1 regarding the two components
of J0. First, let us consider the component Ey∼𝜋+old (· |x) ,y′∼𝜋

−
old (· |x) , [𝑠

+ (w; y, x) −
𝑠− (w; y′, x)]. Since both 𝑓 + and 𝑓 − are non-decreasing functions of the first ar-
gument, then both 𝑠+ (w; y, x) and 𝑠− (w; y, x) are non-decreasing functions of
𝜋𝜃 (𝑦𝑡 |x, 𝑦<𝑡). Hence, maximizing J0 would increase the likelihood of tokens
in the positive answers and decrease the likelihood of tokens in the negative
answers. This makes sense as we would like the new model to have a high like-
lihood of generating a positive (correct) answer and a low likelihood of generat-
ing a negative (incorrect) answer. Thismechanism is closely related to traditional
discriminative methods of supervised learning in the context of AUCmaximiza-
tion, which aims to maximize the scores of positive samples y ∼ 𝜋+old (·|x) while
minimizing scores of negative samples y′ ∼ 𝜋−old (·|x), where the x acts like the
classification task in the AUC maximization. Hence, in the context of discrimi-
native learning, we refer to 𝑠+ (y, x) and 𝑠− (y, x) as scoring functions. Therefore,
Ey∼𝜋+old (· |x) ,y′∼𝜋

−
old (· |x) , [𝑠

+ (y, x) − 𝑠− (y′, x)] is a discriminative objective.
Second, let us consider the component𝜔(x) =

√
𝑝(x) (1 − 𝑝(x)), which acts like

a weight scaling the discriminative objective for each individual input question.

363

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.1

0.2

0.3

0.4

0.5
Weight on Questions

GRPO (p(1 p))
Dr. GRPO (p(1 p))

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ra
tio

Dist. of per-question accuracies

Fig. 6.28: (a) Weight on questions based on correctness probability 𝑝; (b) Histogram
of per-question accuracy evaluated in the GRPO learning.

It is this component that leads to difficulty bias. As shown in Figure 6.28(a),
questions with very high 𝑝(x) values (close to 1) or very low 𝑝(x) values (close
to 0) receive small weights for their discriminative objectives, causing the opti-
mization to focus primarily on questions of intermediate difficulty while paying
little attention to hard questions (𝑝(x) ≈ 0) and easy questions (𝑝(x) ≈ 1). This
mechanism may significantly hinder the learning efficiency. Intuitively, if the
generated answers have only one correct solution out of 10 trials, i.e. 𝑝(x) = 0.1,
we should grasp this chance to enhance the model instead of overlooking it. On
the other hand, even when we encounter an easy question with a probability of
𝑝(x) = 0.9, we should keep improving the model rather than being satisfied
because it still makes mistakes with respect to this question.

DisCO: A Discriminative Constrained Optimization Framework

Motivated by the analysis of GRPO and its connection with discriminative learning,
discriminative objectives can be borrowed directly for learning the reasoning model.
Below, we introduce two approaches.

Discriminative Objectives

For a given question x, let 𝑠(w; y, x) denote a scoring function that measures how
likely the model 𝜋w “predicts” the output y for a given input x 1. Then the AUC score
for the “task” x is equivalent to Ey∼𝜋+old ,y′∼𝜋

−
old
[I(𝑠(w; y, x) > 𝑠(w; y′x))]. Using a

non-decreasing continuous surrogate function ℓ, we form the following objective (in
expectation form) for minimization:

L1 (w) := ExEy∼𝜋+old (· |x) ,y′∼𝜋
−
old (· |x)ℓ(𝑠(w; y′x) − 𝑠(w; y, x)). (6.81)

1 in the context of generative models, “predicts” is like “generates”.

364

6.6. DISCRIMINATIVE FINE-TUNING OF LARGE LANGUAGE MODELS

One difference from the objective of GRPO is that we use a single scoring function
𝑠(w; y, x) for both positive outputs y and negative outputs y′. The different scoring
functions for positive and negative outputs in GRPO actually arise from the clipping
operations. The clipping could cause the vanishing gradient, which may also slow
down the learning process. To avoid these issues, we consider non-clipping scoring
functions.

One advantage of designing the objective based on the principle of discrimina-
tive learning is the ability to leverage a wide range of advanced objectives to im-
prove training. A key challenge in RL fine-tuning for reasoning models is the sparse
rewards, which leads to imbalance in generated outputs. Specifically, for some ques-
tions where 𝑝(x) � 1, the number of negative outputs can significantly exceed
the number of positive ones. The objective function L1 is motivated by maximizing
AUC for each question x, i.e., Ey∼𝜋+old ,y′∼𝜋

−
old
[I(𝑠(w; y, x) > 𝑠(w; y′x))]. However,

when there is much more negative data than positive data, AUC is not a good mea-
sure. For example, let us consider a scenario that there are 1 positive y+ and 100
negatives {y1

− , . . . , y100
− }. If the scores of these data are 𝑠(y1

− , x) = 0.9, 𝑠(y+, x) =
0.5, 𝑠(y2

− , x) = 𝑠(y3
− , x) . . . = 𝑠(y100

− , x) = 0.001, then the AUC score is 99
100 = 0.99.

The AUC score is high but is not informative as the model still generates the negative
data y1

− more likely than the positive data y+.
To address this issue, we leverage the pAUC objective (6.28), leading to the fol-

lowing objective for minimization:

L2 (w) := ExEy∼𝜋+old (· |x)𝜏 log
(
Ey′∼𝜋−

old (· |x) exp
(
ℓ(𝑠(w; y′, x) − 𝑠(w; y, x))

𝜏

))
.

(6.82)

Lemma 2.4 indicates that L2 (w) ≥ L1 (w) by Jensen’s inequality for the concave
function log. Hence, minimizingL2 (w) will automatically decreasingL1 (w). How-
ever, the reverse is not true. This also explains whyminimizingL2 (w) could be more
effective than maximizing L1 (w).

Scoring functions

Different scoring functions can be considered. Two examples are given below.

• The log-likelihood (log-L) scoring function is defined by

𝑠(w; y, x) = 1
|y|

|y |∑
𝑡=1

log 𝜋w (𝑦𝑡 |x, 𝑦<𝑡).

• The likelihood ratio (L-ratio) scoring function is computed by

𝑠(w; y, x) = 1
|y|

|y |∑
𝑡=1

𝜋w (𝑦𝑡 |x, 𝑦<𝑡)
𝜋old (𝑦𝑡 |x, 𝑦<𝑡)

.

365

Stabilize the training with Constrained Optimization

Training instability is a long-standing issue in RL. Instead of using the clipping op-
eration of PPO, an effective approach is to use the idea of trust region constraint of
TRPO, which restricts the updated model w in the trust region using the reverse KL:

KL(𝜋old, 𝜋w) ≤ 𝛿.

Putting It All Together

DisCO formulates policy learning as a discriminative constrained optimization prob-
lem that combines discriminative objectives with a trust-region constraint. Specifi-
cally, it solves one of the following two formulations:

min
w

L1 (w)

s.t. KL(𝜋old, 𝜋w) ≤ 𝛿,
(6.83)

or alternatively,
min

w
L2 (w)

s.t. KL(𝜋old, 𝜋w) ≤ 𝛿.
(6.84)

Optimization Algorithm

To tackle the constrained optimization, we can use the penalty method presented
in next section, which converts the constrained problem into an unconstrained one
with an appropriate penalty parameter 𝛽. For example, with a squared hinge penalty
function, we solve

min
w

L(w) + 𝛽[KL(𝜋old, 𝜋w) − 𝛿]2
+, (6.85)

where [·]+ = max{·, 0}. We will show that under an appropriate assumption regard-
ing the constraint function and 𝛽, solving the above squared-hinge penalized objec-
tive (6.85) can return a KKT solution of the original constrained problem (6.83).

We discuss the difference between using the squared-hinge penalty function and
the regular KL divergence regularization 𝛽KL(𝜋old, 𝜋𝜃). The squared-hinge penalty
function has a dynamic weighting impact for the gradient, ∇𝛽[KL(𝜋old, 𝜋w) − 𝛿]2

+ =
2𝛽[KL(𝜋old, 𝜋w) − 𝛿]+∇KL(𝜋old, 𝜋w), such that if the constraint is satisfied then
the weight 2𝛽[KL(𝜋old, 𝜋w) − 𝛿]+ before the gradient of the regularization term
KL(𝜋old, 𝜋w) becomes zero. This means the KL divergence is only effective when
the constraint is violated. In contrast, the regular KL divergence regularization
𝛽KL(𝜋old, 𝜋w) always contributes a gradient 𝛽∇KL(𝜋old, 𝜋w) no matter whether the
constraint is satisfied or not, which could harm the learning.

The effectiveness of DisCO over GRPO and other methods has been demonstrated
in (Li et al., 2025) for fine-tuning distilled Qwen and LLaMA models on a mathe-

366

6.7. CONSTRAINED LEARNING

0 200 400 600 800 1000 1200 1400
Step

0.45

0.50

0.55

0.60

0.65

Re
wa

rd

GRPO
DisCO (L-ratio)
DisCO (log-L)

0 200 400 600 800 1000 1200 1400
Step

0.0

0.1

0.2

0.3

0.4

0.5

Ge
ne

ra
tio

n
En

tro
py

GRPO
DisCO (L-ratio)
DisCO (log-L)

Fig. 6.29: Comparison of DisCO and GRPO for finetuning a 1.5B distilled Qwen model: left
plots the training reward (averaged over generated outputs for questions used in each step) vs the
number of training steps; right plots the generation entropy vs training steps. Each training step uses
128 questions sampled from the dataset, each associated with 8 generated responses to define the
objective, and a mini-batch size of 32 is used for updates for a epoch. For more details, please refer
to (Li et al., 2025).

matical reasoning data with approximately 40.3k unique problem-answer pairs. A
comparison of the training dynamics for different methods is shown in Figure 6.29.

A PyTorch implementation of DisCO is included in the following Github reposi-
tory:

https://github.com/Optimization-AI/DisCO.

6.7 Constrained Learning

Constrained learning is a machine learning framework in which the model is trained
not only to minimize a specified risk but also to satisfy additional constraints. These
constraints can encode domain knowledge, prior information, regularization terms,
or other application-specific requirements. Unlike simple domain constraints w ∈
W, we consider complicated functional constraints in the form:

min
w∈R𝑑

𝐹 (w)

𝑠.𝑡. 𝑔𝑖 (w) ≤ 0, 𝑖 = 1, . . . , 𝑚.
(6.86)

In many cases, 𝑔𝑖 (w) also depends on the data, making its evaluation and gradient
computation expensive.

Traditional works for constrained optimization include three primary categories:
(1) primal methods, e.g., cooperative subgradient methods and level-set methods; (2)
primal-dual methods that reformulate constrained optimization problems as saddle
point problems; (3) penalty-based approaches that incorporate constraints by adding
a penalty term to the objective function. In this section, we demonstrate how FCCO
enables penalty-based approaches to be both efficient and practically effective.

367

https://github.com/Optimization-AI/DisCO

6.7.1 A General Penalty-based Approach via FCCO

To tackle the constraints, a penalty-based approach uses a penalty function 𝑓 (·) to
convert the constrained problem into an unconstrained one:

min
w
𝐹 (w) + 𝜌

𝑚

𝑚∑
𝑖=1

𝑓 (𝑔𝑖 (w)), (6.87)

where 𝜌 > 0 is called the penalty parameter. Commonly used penalty functions in-
clude:

• Squared hinge penalty:
𝑓 (𝑔) = 1

2
[𝑔]2

+,

• Hinge penalty:
𝑓 (𝑔) = [𝑔]+,

• Smoothed hinge penalty:

𝑓 (𝑔) =

𝑔 − 𝜖

2 if 𝑔 ≥ 𝜖,
𝑔2

2𝜖 if 0 < 𝑔 < 𝜖,
0 otherwise,

where 𝜖 � 1 is a small constant.

Different penalty functions yield different convergence rates. However, they share
a common property: when the constraints are satisfied at a point w, no penalty is
incurred; otherwise, the greater the violation, the larger the penalty.

We can see that the added second term in (6.87) is a form of FCCO. Hence, the
algorithms developed in Chapter 5 can be applied to solving the resulting uncon-
strained problem. Nevertheless, we need to answer several important questions: (1)
What is an appropriate value for 𝜌? (2) What convergence guarantees can be estab-
lished for the original constrained problem?

Equivalent min-max formulation

By using the conjugate of 𝑓 , the unconstrained problem is equivalent to:

min
w

max
y∈dom𝑚 (𝑓 ∗)

𝐹 (w) + 𝜌 1
𝑚

𝑚∑
𝑖=1

(𝑦𝑖𝑔𝑖 (w) − 𝑓 ∗ (𝑦𝑖)) , (6.88)

For the three penalty functions, we have

• Squared hinge penalty: 𝑓 ∗ (𝑦) = 1
2 𝑦

2, dom(𝑓 ∗) = {𝑦 : 𝑦 ≥ 0};
• Hinge penalty: 𝑓 ∗ (𝑦) = I0,∞ [𝑦 ∈ dom(𝑓 ∗)], dom(𝑓 ∗) = {𝑦 : 𝑦 ∈ [0, 1]};

368

6.7. CONSTRAINED LEARNING

• Smoothed hinge penalty: 𝑓 ∗ (𝑦) = 𝜖
2 𝑦

2, dom(𝑓 ∗) = {𝑦 : 𝑦 ∈ [0, 1]};

KKT solutions

Let us focus on non-convex optimization problemswith a non-convex objective 𝐹 (w)
and non-convex constraints 𝑔𝑘 (w),∀𝑘 . For a non-convex optimization problem, find-
ing a globally optimal solution is intractable. Instead, a Karush-Kuhn-Tucker (KKT)
solution is of interest, which is an extension of a stationary solution of an uncon-
strained non-convex optimization problem.

Definition 6.1 (KKT solution) A solution w is a KKT solution to (6.86) if there
exists 𝝀 = (𝜆1, . . . , 𝜆𝑚)> ∈ R𝑚+ such that (i) 0 ∈ 𝜕𝐹 (w) + ∑𝑚

𝑘=1 𝜆𝑘𝜕𝑔(w), (ii)
𝑔𝑘 (w) ≤ 0,∀𝑘 and (iii) 𝜆𝑘𝑔𝑘 (w) = 0, ∀𝑘 .

For non-asymptotic analysis, we consider finding an 𝜖-KKT solution as defined
below.

Definition 6.2 A solution w is an 𝜖-KKT solution to (6.86) if there exists 𝝀 =
(𝜆1, . . . , 𝜆𝑚)> ∈ R𝑚+ such that (i): dist(0, 𝜕𝐹 (w) + ∑𝑚

𝑘=1 𝜆𝑘𝜕𝑔𝑘 (w)) ≤ 𝜖 , (ii):
[𝑔𝑘 (w)]+ ≤ 𝜖,∀𝑘 , and (iii): |𝜆𝑘𝑔𝑘 (w) | ≤ 𝜖,∀𝑘 .

If the objective and the constraint functions are non-smooth, finding an 𝜖-KKT
solution is not tractable, even the constraint functions are absent. For example, if
𝐹 (𝑥) = |𝑥 | finding 𝜖-stationary solution is infeasible unless we find the optimal so-
lution 𝑥 = 0. To address this challenge, we consider finding a nearly 𝜖-KKT solution
defined below.

Definition 6.3 A solution w is a nearly 𝜖-KKT solution to (6.86) if there exist w̄
and 𝝀 = (𝜆1, . . . , 𝜆𝑚)> ∈ R𝑚+ such that (i): ‖w − w̄‖2 ≤ 𝑂 (𝜖), dist(0, 𝜕𝐹 (w̄) +∑𝑚
𝑘=1 𝜆𝑘𝜕𝑔𝑘 (w̄)) ≤ 𝜖 , (ii): [𝑔𝑘 (w̄)]+ ≤ 𝜖,∀𝑘 , and (iii): |𝜆𝑘𝑔𝑘 (w̄) | ≤ 𝜖,∀𝑘 .

Theory

Solving the unconstrained problem (6.87) can yield a (nearly) stationary solution.
But is this solution close to satisfying the KKT conditions of the original con-
strained problem? We answer this question for the three penalty functions below.
Let 𝒈(w) = (𝑔1 (w), . . . , 𝑔𝑚 (w))> ∈ R𝑚 denote the vector of constraint functions,
and let ∇𝒈(w) ∈ R𝑚×𝑑 denote its Jacobian matrix.

Squared Hinge Penalty

Let us assume 𝐹 and 𝑔𝑘 are differentiable. We make the following assumption re-
garding the regularity of the constraint functions.

369

Assumption 6.1. There exists a constant 𝛿 > 0 such that 𝜎min (∇𝒈(w)) ≥ 𝛿 for any
w satisfying max𝑘=1,...,𝐾 𝑔𝑘 (w) > 0, where 𝜎min (·) denotes the minimum singular
value of a matrix.

This assumption implies that when any constraint is violated, its gradient direction
can be used to effectively reduce the constraint value. To illustrate this, consider a
single constraint defined by a 𝐿𝑔-smooth function 𝑔(·). Suppose w is a point where
the constraint is violated, i.e., 𝑔(w) > 0. Taking a gradient descent step w′ = w −
𝜂∇𝑔(w) yields:

𝑔(w′) ≤ 𝑔(w) + ∇𝑔(w)> (w′ − w) +
𝐿𝑔

2
‖w′ − w‖2

2

= 𝑔(w) −
(
𝜂 −

𝐿𝑔𝜂
2

2

)
‖∇𝑔(w)‖2

2.

If Assumption 6.1 holds, then ‖∇𝑔(w)‖2 ≥ 𝛿, which implies:

𝑔(w′) ≤ 𝑔(w) −
(
𝜂 −

𝐿𝑔𝜂
2

2

)
𝛿2,

ensuring a sufficient decrease in the constraint function value.
In addition, we need to assume the objective function is Lipschitz continuous.

Assumption 6.2. There exists a constant 𝐶 > 0 such that ‖∇𝐹 (w)‖2 ≤ 𝐶,∀w.

Under these assumptions, we establish the following theorem.

Theorem 6.1 Suppose Assumption 6.1 and 6.2 hold. Let w be an 𝜖-stationary so-
lution to the unconstrained penalized problem (6.87) with a squared hinge penalty
such that

E
[

∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w)> [𝒈(w)]+

2

2

]
≤ 𝜖2. (6.89)

If 𝜌 ≥ max(2𝑚(𝐶2+1)
𝜖 𝛿2 ,

𝑚
√

2(𝐶2+1)
𝜖 𝛿), then w is also an 𝜖-KKT solution to the original

problem (6.86).

Proof. Let 𝜆𝑘 = 𝜌
𝑚 [𝑔𝑘 (w)]+,∀𝑘 . If max𝑘 𝑔𝑘 (w) ≤ 0, then 𝜆𝑘 = 0. As a result, w is

an 𝜖-KKT solution to the original problem.
Below, let us focus on the case max𝑘 𝑔𝑘 (w) > 0, i.e., there exists one constraint

that is violated at w. Then, under Assumption 6.1, we have

370

6.7. CONSTRAINED LEARNING

‖ [𝒈(w)]+‖2
2 ≤ 1

𝛿2 ‖∇𝒈(w)> [𝒈(w)]+‖2
2

=
𝑚2

𝜌2𝛿2

∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w)> [𝒈(w)]+ − ∇𝐹 (w)

2

2

≤ 2𝑚2

𝜌2𝛿2

[
‖∇𝐹 (w)‖2

2 +

∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w) [𝒈(w)]+

2

2

]
≤ 2𝑚2

𝜌2𝛿2

[
𝐶2 + 𝜖2] ≤ 𝜖2,

(6.90)

where the last inequality follows from 𝜌 ≥ 𝑚
√

2(𝐶2+𝜖 2)
𝛿𝜖 . Hence [𝑔𝑘 (w)]+ ≤ 𝜖,∀𝑘 .

Then, let us bound |𝜆𝑘𝑔𝑘 (w) |. If 𝑔𝑘 (w) < 0, then 𝜆𝑘 = 0, we have |𝜆𝑘𝑔𝑘 (w) | = 0.
If 𝑔𝑘 (w) ≥ 0, then

E|𝜆𝑘𝑔𝑘 (w)] | = E| 𝜌
𝑚
𝑔𝑘 (w)𝑔𝑘 (w)] | ≤ 𝜌

𝑚
E‖[𝒈(w)]+‖2

2

≤ 𝜌

𝑚
· 2𝑚2

𝜌2𝛿2

[
‖∇𝐹 (w)‖2

2 +

∇𝐹 (w) + 𝜌

𝑚
∇𝒈(w) [𝒈(w)]+

2

2

]
≤ 2𝑚
𝜌𝛿2

[
𝐶2 + 𝜖2] ≤ 𝜖

(6.91)

where the last inequality uses 𝜌 ≥ 2𝑚(𝐶2+𝜖 2)
𝜖 𝛿2 . ut

Hinge Penalty

Since the hinge function is non-smooth, let us consider non-smooth 𝐹 and 𝑔𝑘 . We
make the following assumption regarding the regularity of the constraint functions.

Assumption 6.3. There exists a constant 𝛿 > 0 such that

dist
(
0,

1
𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w)]+

)
≥ 𝛿

𝑚
,∀w ∈ V (6.92)

where V = {w : max𝑘 𝑔𝑘 (w) > 0} and 𝜕 [𝑔𝑘 (w)] denotes the subgradient in terms
of w.

The above assumption is implied by Assumption 6.1 when 𝑔 is differentiable and
hence is weaker. To see this, we have

dist

(
0,

1
𝑚

𝑚∑
𝑘=1

∇[𝑔𝑘 (w]+

)
=

 1
𝑚

𝑚∑
𝑘=1

∇[𝑔𝑘 (w]+

2

= ‖∇𝑔(w)>a‖2 ≥ 𝛿‖a‖2 ≥ 𝛿

𝑚
,

where a = 1
𝑚 (𝜉1, . . . , 𝜉𝑚), and 𝜉𝑘 ∈ ([𝑔𝑘 (w)]+)′ ∈ [0, 1].

Theorem 6.2 Suppose Assumption 6.3 and Assumption 6.2 hold. Let w be a nearly
𝜖-stationary solution to the unconstrained penalized problem (6.87) with a hinge

371

penalty such that there exists w̄ satisfying ‖w − w̄‖2 ≤ 𝑂 (𝜖), and

dist
(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
≤ 𝜖 .

If 𝜌 > 𝑚(𝐶+1)
𝛿 , then w is a nearly 𝜖-KKT solution to the original problem (6.86).

Proof. By the definition of w, there exists w̄ such that ‖w − w̄‖2 ≤ 𝑂 (𝜖), and

dist

(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
≤ 𝜖 .

Since 𝜕 [𝑔𝑘 (w̄)]+ = 𝜉𝑘𝜕𝑔𝑘 (w̄), where

𝜉𝑘 =


1 if 𝑔𝑘 (w̄) > 0,
[0, 1] if 𝑔𝑘 (w̄) = 0,
0 if 𝑔𝑘 (w̄) < 0,

∈ [𝑔𝑘 (w̄)]′+,

there exists 𝜆𝑘 ∈ 𝜌𝜉𝑘
𝑚 ≥ 0,∀𝑘 such that

dist

(
0, 𝜕𝐹 (w̄) +

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)
≤ 𝜖 .

Thus, we prove condition (i) in Definition 6.3. Next, let us prove condition (ii). We
argue that max𝑘 𝑔𝑘 (w̄) ≤ 0. Suppose this does not hold, i.e., max𝑘 𝑔𝑘 (w̄) > 0, we
will derive a contradiction. Since ∃v ∈ 𝜕𝐹 (w̄) we have

𝜖 ≥ dist

(
0, v + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
≥ dist

(
0,
𝜌

𝑚

𝑚∑
𝑘=1

𝜕 [𝑔𝑘 (w̄)]+

)
− ‖v‖2 ≥ 𝜌𝛿

𝑚
− 𝐶,

which is a contradiction to the assumption that 𝜌 > 𝑚(𝜖 +𝐶)
𝛿 . Thus, max𝑘 𝑔𝑘 (x̄) ≤ 0.

This proves condition (ii). The last condition (iii) holds because: 𝜆𝑘 = 𝜌𝜉𝑘
𝑚 , which is

zero if 𝑔𝑘 (w̄) < 0. Hence, 𝜆𝑘𝑔𝑘 (w̄) = 0. ut

Smoothed Hinge Penalty

We make the following assumption regarding the regularity of the constraint func-
tions.

Assumption 6.4. There exists a constant 𝛿 > 0 such that

dist
(
0, 𝜕𝑔(w)>v

)
≥ 𝛿‖v‖2,∀w ∈ V,∀v ∈ R𝑚 (6.93)

372

6.7. CONSTRAINED LEARNING

whereV = {w : max𝑘 𝑔𝑘 (w) > 0}.

Theorem 6.3 Suppose Assumption 6.1 and Assumption 6.2 hold. Let w be a nearly
𝜖-stationary solution to the unconstrained penalized problem (6.87) with a smoothned
hinge penalty such that there exists w̄ satisfying ‖w − w̄‖2 ≤ 𝑂 (𝜖), and

dist
(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

𝜕 𝑓 (𝑔𝑘 (w̄))
)
≤ 𝜖 .

If 𝜌 > 𝑚(𝐶+1)
𝛿 , then there exists 𝝀 ∈ R𝑚+ it holds (i) ‖w−w̄‖ ≤ 𝑂 (𝜖), dist(0, 𝜕𝐹 (w̄)+∑𝑚

𝑘=1 𝜆𝑘𝜕𝑔𝑘 (w̄)) ≤ 𝜖 , (ii) [𝑔𝑘 (w̄)]+ ≤ 𝜖,∀𝑘 , and (iii) 𝜆𝑘 [𝑔𝑘 (w̄)]+ ≤ 𝜌𝜖/𝑚,∀𝑘 .

Proof. By the definition of 𝑓 (·), we have

∇ 𝑓 (·) = 1
𝜖

min{[·]+, 𝜖}.

According to the definition of w, there exists w̄ such that ‖w − w̄‖2 ≤ 𝑂 (𝜖) and

dist

(
0, 𝜕𝐹 (w̄) + 𝜌

𝑚

𝑚∑
𝑘=1

∇ 𝑓 [𝑔𝑘 (w̄)]𝜕𝑔𝑘 (w̄)
)
≤ 𝜖 .

Let 𝜆𝑘 = 𝜌
𝑚∇ 𝑓 (𝑔𝑖 (w̄)) = 𝜌

𝜖𝑚 min{[𝑔𝑘 (w̄)]+, 𝜖}. Then,

dist

(
0, 𝜕𝐹 (w̄) +

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)
≤ 𝜖 .

Suppose max𝑖=1,...,𝑚 𝑔𝑖 (w̄) > 𝜖 . Then there exists 𝑘 ′ such that [𝑔𝑘 (w̄)]+ > 𝜖 .
Hence

𝜆𝑘′ =
𝜌

𝜖𝑚
min{[𝑔𝑘′ (w̄)]+, 𝜖} =

𝜌

𝜖𝑚
𝜖 =

𝜌

𝑚
.

Hence ‖𝝀‖2 ≥ 𝜌
𝑚 . As a result, there exists v ∈ 𝜕𝐹 (w̄) such that

𝜖 ≥ dist

(
0, v +

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)

≥ dist

(
0,

𝑚∑
𝑘=1

𝜆𝑘𝜕𝑔𝑘 (w̄)
)
− ‖v‖2 ≥ 𝜌𝛿

𝑚
− 𝐶, (6.94)

which contradicts with 𝜌 > 𝑚(𝐶+𝜖)
𝛿 . Therefore, we must have

max
𝑘=1,...,𝑚

𝑔𝑘 (w̄) ≤ 𝜖 . (6.95)

Finally, let us prove |𝜆𝑘𝑔𝑘 (w̄) | ≤ 𝑂 (𝜖). If 𝑔𝑘 (w̄) < 0, we have 𝜆𝑘 = 0, then it holds
trivially. If 0 ≤ 𝑔𝑘 (w̄) ≤ 𝜖 , we have

373

Algorithm Penalty 𝐹 𝑔𝑖 Complexity Loop

SOX sqH/smH SM SM 𝑂 (𝜖 −7) Single
MSVR sqH/smH MSS MSS 𝑂 (𝜖 −5) Single
SONX H WC WC 𝑂 (𝜖 −6) Single
SONEX H SM SM 𝑂 (𝜖 −5) Single
ALEXR-DL smH WC WC 𝑂 (𝜖 −5) Double

Table 6.1: Summary of different algorithms for penalty-based constrained opti-
mization. ‘WC” means weakly convex, “SM” means smooth, MSS mean “mean
squared smoothness, ‘H’ denotes the hinge penalty, ‘smH’ denotes the smoothed
hinge penalty and ‘sqH’ denotes the squared hinge penalty.

|𝜆𝑘𝑔𝑘 (w̄) | ≤ 𝜌

𝑚
[𝑔𝑘 (w̄)]+ ≤ 𝜌𝜖

𝑚
. (6.96)

ut

Critical: One important difference among the three penalty functions lies in
the required order of the penalty parameter 𝜌. For the squared hinge penalty,
it is necessary to set 𝜌 = 𝑂 (1/𝜖), whereas for the hinge and smoothed hinge
penalties, it suffices to take 𝜌 = 𝑂 (1). This lead to different complexities of
algorithms based on these penalty functions.

Optimization Algorithms

The SOX algorithm and the MSVR algorithm can be used to optimize the squared
hinge penalty function and smoothed hinge penalty function with smooth objective
function and constraints. SONX and SONEX can be used to optimize the hinge
penalty based objective, where the latter is equivalent to a variant for optimizing the
smoothed hinge penalty using the MSVR estimator for the inner functions and the
MA gradient estimator. ALEXR-DL (the double-loop ALEXR, see Section 5.4.5)
can be used to optimize the problem with a weakly convex objective and weakly
convex constraint functions. The computational complexities of these algorithms for
obtaining a (nearly) 𝜖-KKT solution are summarized in Table 6.1. The complexity
results for SONX and SONEX follow directly from their original theorems. The com-
plexities of SOX and MSVR are obtained by substituting 𝐿𝐹 = 𝑂 (𝜌), 𝐿1 = 𝑂 (𝜌),
𝐺1 = 𝑂 (𝜌), and 𝜌 = 𝑂 (1/𝜖) into Theorem 5.1 and Theorem 5.2, respectively. The
complexity of ALEXR-DL follows the argument in Section 5.4.5.

Finally, we note that the value of the parameter 𝛿 in Assumptions 6.1, 6.3, and 6.4
has a significant impact on the complexity. In particular, smaller values of 𝛿 lead to
higher complexities.

374

6.7. CONSTRAINED LEARNING

6.7.2 Continual Learning with Zero-forgetting Constraints

Continual learning usually refers to learning a sequence of tasks one by one and
accumulating knowledge like human instead of substituting knowledge. The core is-
sue in continual learning is known as catastrophic forgetting, i.e., the learning of the
later tasks may significantly degrade the performance of the model for the earlier
tasks. Different approaches have been investigated to mitigate catastrophic forget-
ting, including regularization based approaches, memory based approaches, network
expansion based approaches, and constrained optimization based approaches.

Regularization based approaches

These methods aim to preserve previously learned knowledge by penalizing changes
to important model parameters. These approaches usually solve the following objec-
tive:

min
w

Lnew (w,Snew) + 𝜆𝑅(w,wold), (6.97)

where Lnew denotes the loss on the new task with a data set Snew, and 𝑅(w,wold) is
the regularization of the new model with respect to the old model. It could regular-
ize directly in the weight parameters or regularize through functions of the weight
parameters (e.g., intermediate layers of the neural networks)

Memory based approaches

These techniques store a subset of past data or representations and replay them during
training on new tasks. This allows the model to rehearse old knowledge, effectively
mimicking how humans review what they’ve previously learned. Strategies include
storing raw data, or using generative models to simulate past experiences. These
replay data will be used in training as simple as a regularization approach:

min
w

Lnew (w,Snew) + 𝜆Lold (w,Sold) (6.98)

where Lold (w,Sold) denotes the loss of the model old tasks using their data Sold.

Network Expansion based approaches

Network expansion based methods address forgetting by dynamically growing the
model’s architecture as new tasks are introduced. This can involve adding new neu-
rons, layers, or modules for each task while keeping older components fixed or par-
tially shared. By allocating new capacity, the model can learn new tasks without
overwriting old knowledge.

375

A Constrained Optimization Approach

A key limitation of the replay and regularization approach in (6.98) is that it does
not necessarily preserve the model’s performance on all previous tasks, even with a
large regularization weight. Moreover, overly large weights can suppress learning on
the new task. This arises because not all prior tasks are equally challenging—some
may be inherently easier than others.

A straightforward remedy is to formulate a constrained optimization problem:

min
w

Lnew (w,Snew)

s.t. L𝑘 (w,S𝑘) − L𝑘 (wold,S𝑘) ≤ 0, ∀𝑘 = 1, . . . , 𝑚,
(6.99)

where S𝑘 denotes the dataset for the 𝑘-th previous task and L𝑘 is its corresponding
loss function. These constraints ensure that the new model does not degrade perfor-
mance on any individual old task as measured on replayed data, which are referred
to as the zero-forgetting constraints.

Although this constrained optimization problem was traditionally considered dif-
ficult due to the number of constraints and data dependencies, the algorithms in-
troduced in the previous subsection make it tractable. Notably, this constrained for-
mulation serves as a unifying framework that connects all three major approaches:
regularization-based, expansion-based, and memory-based continual learning.

With a penalty function 𝑓 (e.g., smoothed hinge penalty), we solve the following
problem:

min
w

Lnew (w,Snew) +
𝜌

𝑚

𝑚∑
𝑘=1

𝑓 (L𝑘 (w,S𝑘) − L𝑘 (wold,S𝑘)).

Then the algorithms can be easily applied to solving this problem.

Connection with the Three Categories of Approaches

First, the above constrained optimization method falls under memory based ap-
proaches, as it requires access to data S𝑘 from each previous task to define the zero-
forgetting constraints.

Second, the penalty term introduces a regularization perspective, establishing a
connection with regularization based approaches. However, it differs from standard
regularization as in (6.98). The penalty function adaptively weights the gradients of
each prior task. For example, consider the hinge penalty. The gradient of the penalty
term is given by

𝜌

𝑚

𝑚∑
𝑘=1

𝜉𝑘∇L𝑘 (w;S𝑘), (6.100)

where 𝜉𝑘 = 1 if L𝑘 (w;S𝑘) − L𝑘 (wold;S𝑘) > 0; otherwise, 𝜉𝑘 = 0. Using
the FCCO technique, an estimator 𝑢𝑘 is used to track the quantity L𝑘 (w;S𝑘) −

376

6.7. CONSTRAINED LEARNING

0 28 56 84 112 140 168 196 224 252 280 308 336 364
Class

0.2

0.0

0.2

0.4

0.6

Ac
c(

w
ne

w
)

Ac
c(

w
ol

d)

Safe Zone

Unsafe Zone

RM
Ours

Fig. 6.30: Performance comparison with the standard regularization method (RM).
The new task is to improve the performance on classifying the classDresssing Room
on Places365 Dataset, and other 354 classes serve as previous tasks each with 2k
samples. Red line denotes the old model’s performance, green diamonds denote the
performance on the target class. The RM baseline shown is for the regularization
parameter 𝜆 = 10000. For more details, please refer to (Li et al., 2024)

L𝑘 (wold;S𝑘), based on which 𝜉𝑘 is computed. Consequently, the algorithm assigns
adaptive weights to the gradients of prior tasks: if task 𝑘 shows no performance
degradation (i.e., 𝑢𝑘 ≤ 0), the corresponding gradient receives zero weight. This
effect makes the constrained optimization approach more attractive than the regular-
ization approach for enforcing the constraints; see Figure 6.30.

Third, although the connection to network expansion based approaches is less
direct, it is suggested by the convergence analysis of the constrained optimization
algorithms. Specifically, the regularity assumptions in Assumptions 6.1 and 6.3 pro-
vide insight into the benefits of network expansion. Expanding the network from the
old model wold can make it easier to find a new model that maintains or improves
performance on previous tasks, effectively increasing the regularity constant 𝛿. This,
in turn, allows for a smaller penalty parameter 𝜌 and potentially accelerates conver-
gence—an effect formalized in what follows.

Without causing confusion, we denote by w the parameter of the old neural net-
work, which consists of two components w0 and 𝑊 such that the output ℎ(w, x) ∈
R𝑑2 can be represented as ℎ(w, x) = 𝑊 · ℎ0 (w0, x), where ℎ0 (w0, ·) ∈ R𝑑1 is a back-
bone network and 𝑊 ∈ R𝑑2×𝑑1 is the head. Given the old model w = (w0,𝑊), we
expand the network by allowing task-dependent heads, which is to let each task 𝑘
have its own head𝑊𝑘 = 𝑊 +𝑈𝑘 where𝑈𝑘 ∈ R𝑑2×𝑟 . The output of this expanded net-
work for task 𝑘 is ℎ(ŵ; x) = (𝑊 +𝑈𝑘) · ℎ0 (w0, x), where ŵ = (w0,𝑊,𝑈1, . . . ,𝑈𝑚).
For simplicity, let us assume each task has only one example S𝑘 = {x𝑘} and let
L𝑘 (w; S𝑘) = ℓ(ℎ(w, x)). Without the expansion, the Jacobian of the constraint func-
tions at w is ∇𝒈(w) = [∇ℎ(w, x1), · · · ,∇ℎ(w, x𝑚)]𝐴, where 𝐴 ∈ R𝑚×𝑚 a diagonal
matrix with 𝐴𝑘𝑘 = ℓ′ (ℎ(w; x𝑘)). With the expansion, the Jacobian of the constraint
functions at ŵ is ∇ 𝒈̂(w) = [∇ℎ(ŵ, x1), · · · ,∇ℎ(ŵ, x𝑚)]𝐴′, where 𝐴′ ∈ R𝑚×𝑚 a di-
agonal matrix with 𝐴′

𝑘𝑘 = ℓ′ (ℎ(ŵ; x𝑘)). If we initialize 𝑈1 = 𝑈2 . . . = 𝑈𝑚 = 0,
then 𝐴 = 𝐴′. Next, we quantify the increase of the minimum singular value of

377

the matrix ∇ĥ(ŵ) = [∇ℎ(ŵ, x1), · · · ,∇ℎ(ŵ, x𝑚)] compared with that of ∇h(w) =
[∇ℎ(w, x1), · · · ,∇ℎ(w, x𝑚)].

Lemma 6.4 Suppose𝑈𝑘 = 0 for all 𝑘 . We have

𝜆min

(
∇ĥ(ŵ)>∇ĥ(ŵ)

)
≥ 𝜆min

(
∇h(w)>∇h(w)

)
+ min

𝑘
‖∇𝑊ℎ𝑘 (w)‖2

2 ,

where 𝜆min (·) denotes the minimum eigen-value of a matrix and ℎ𝑘 (w) = ℎ(w; x𝑘).

 Why it matters

This lemma indicates that expanding the network can increase the minimum sin-
gular value of the Jacobianmatrix of the constraint functions, which in turn leads
to a lower complexity in finding a KKT solution, i.e., making the constraints eas-
ier to satisfy.

Proof. Let ℎ̂𝑘 (ŵ) = ℎ(ŵ; x𝑘). We consider w,𝑊,𝑈 as flattend vectors. Recall that
w has two component w0 and 𝑊 . The gradient of ℎ𝑘 (w) with respect to 𝑊 and w0
are denoted by ∇𝑊ℎ𝑘 (w) and ∇w0ℎ𝑘 (w), respectively. Hence,

∇ℎ𝑘 (w)> =
(
∇w0ℎ𝑘 (w)>,∇𝑊ℎ𝑘 (w)>

)
for 𝑘 = 1, . . . , 𝑚. Similarly, after adding the task-dependent heads, ŵ has three com-
ponent w0, 𝑊 , U = (𝑈1, . . . ,𝑈𝑚). The gradients ∇w0 ℎ̂𝑘 (ŵ), ∇𝑊 ℎ̂𝑘 (ŵ) ∇U ℎ̂𝑘 (ŵ)
are defined correspondingly, and

∇ℎ̂𝑘 (ŵ)> =
(
∇w0 ℎ̂𝑘 (ŵ)>,∇𝑊 ℎ̂𝑘 (ŵ)>,∇U ℎ̂𝑘 (ŵ)>

)
.

Recall that
ℎ̂𝑘 (ŵ) = ℎ𝑘 ((w0,𝑊 +𝑈𝑘)) for 𝑘 = 1, . . . , 𝑚.

Therefore,

∇w0 ℎ̂𝑘 (ŵ) = ∇w0ℎ𝑘 ((w0,𝑊 +𝑈𝑘)),
∇𝑊 ℎ̂𝑘 (ŵ) = ∇𝑊ℎ𝑘 ((w0,𝑊 +𝑈𝑘)),

and

∇U ℎ̂𝑘 (ŵ)> =

(
0, . . . , 0,∇𝑊ℎ𝑘 ((w0,W +𝑈𝑘))>︸ ︷︷ ︸

The 𝑘th block

, 0, . . . , 0
)
,

where the sparsity pattern of ∇U ℎ̂𝑘 (ŵ) is because ℎ̂𝑘 does not depend on𝑈 𝑗 , 𝑗 ≠ 𝑘 .
Since𝑈𝑘 = 0 for all 𝑘 . It holds that ℎ𝑘 (w) = ℎ̂𝑘 (ŵ) and

∇ℎ𝑘 (w)> =
(
∇w0ℎ𝑘 (w)>,∇𝑊ℎ𝑘 (w)>

)
=

(
∇w0 ℎ̂𝑘 (ŵ)>,∇𝑊 ℎ̂𝑘 (ŵ)>

)
.

378

6.7. CONSTRAINED LEARNING

Consider any 𝜶 = (𝛼1, . . . , 𝛼𝑚) ∈ R𝑚. We have

𝜆min

([
∇ℎ̂1 (ŵ), . . . ,∇ℎ̂𝑚 (ŵ)

]> [
∇ℎ̂1 (ŵ), . . . ,∇ℎ̂𝑚 (ŵ)

])
= min

𝜶,s.t.‖𝜶‖=1

 𝑚∑
𝑘=1

𝛼𝑘∇ℎ̂𝑘 (ŵ)

2

2

= min
𝜶,s.t.‖𝜶‖=1

©­«

 𝑚∑
𝑘=1

𝛼𝑘∇w0 ℎ̂𝑘 (ŵ)

2

2

+

 𝑚∑
𝑘=1

𝛼𝑘∇𝑊 ℎ̂𝑘 (ŵ)

2

2

+

 𝑚∑
𝑘=1

𝛼𝑘∇U ℎ̂𝑘 (ŵ)

2

2

ª®¬
= min

𝜶,s.t.‖𝜶‖=1

©­«

 𝑚∑
𝑘=1

𝛼𝑘∇ℎ𝑘 (w)

2

2

+
𝑚∑
𝑘=1

𝛼2
𝑘 ‖∇𝑊ℎ𝑘 (w)‖2

2
ª®¬

≥𝜆min
(
[∇ℎ1 (w), . . . ,∇ℎ𝑚 (w)]> [∇ℎ1 (w), . . . ,∇ℎ𝑚 (w)]

)
+ min

𝑘
‖∇𝑊ℎ𝑘 (w)‖2

2 ,

where the first two equalities are by definitions and the third equality is because
𝑈𝑘 = 0 for all 𝑘 . ut

 Practice: Squared Hinge Penalty vs. Smoothed Hinge Penalty

Both the squared hinge penalty and the smoothed hinge penalty are smooth functions,
but they have different practical implications. The squared hinge penalty typically
requires a much larger penalty parameter, on the order of 𝜌 = 𝑂 (1/𝜖) as indicated
by the theory, to enforce the constraints effectively. In contrast, the smoothed hinge
penalty achieves similar constraint satisfaction with a significantly smaller 𝜌. This
difference is illustrated in Figure 6.31 (right), which shows that a large penalty pa-
rameter 𝜌 = 800 is needed for the squared hinge penalty, whereas the smoothed
hinge penalty achieves comparable results with just 𝜌 = 20. As a result, optimiza-
tion of the objective function tends to be more effective when using the smoothed
hinge penalty as seen in Figure 6.31 (left).

6.7.3 Constrained Learning with Fairness Constraints

Machine learning models are increasingly used in high-stakes domains such as hir-
ing, finance, and healthcare, where biased predictions can lead to unfair outcomes
for individuals from protected groups (e.g., based on race, gender, or age). Learn-
ing with fairness constraints is a framework that aims to train models that are both
accurate and equitable by incorporating formal definitions of fairness directly into
the training objective. Various notions of fairness have been proposed, including de-
mographic parity, equalized odds, equal opportunity, AUC fairness, ROC fairness,

379

Fig. 6.31: Training curves of Target ΔACC values (left) and constraint violation
(right) of different methods. The format of label is ”Algorithm(penalty function,
𝜌)”, and SH, smH mean square hinge and smoothed hinge, respectively. For more
details, please refer to (Chen et al., 2025b).

and ranking fairness. Below, we present an application of constrained optimization
to learning under ROC fairness constraints.

Constrained Learning with ROC Fairness

We consider a binary classification setting. Let ℎ(w; ·) ∈ R denote a predic-
tive model. Suppose the data are divided into two demographic groups D𝑝 =
{(x𝑝𝑖 , 𝑦

𝑝
𝑖)}

𝑛𝑝
𝑖=1 and D𝑢 = {(x𝑢𝑖 , 𝑦𝑢𝑖)}

𝑛𝑢
𝑖=1, where x denotes the input data and 𝑦 ∈

{1,−1} denotes the class label. Traditional fairness measures usually assume the pre-
diction is given by I(ℎ(w; x) > 𝑡) with a specific threshold. However, the threshold
may be dynamically changed in practice to achieve a balance between true positive
and false positive rate.

To accommodate this, a ROC fairness is introduced to ensure the ROC curves for
classification of the two groups are the same, which indicates the false positive rate
(FPR) and true positive rate (TPR) at all possible thresholds are equal across the two
groups. Since the ROC curve is constructed with all possible thresholds, we use a set
of thresholds Γ = {𝜏1, · · · , 𝜏𝑚} to define the ROC fairness. For each threshold 𝜏, we
impose a constraint that the TPR and FPR of the two groups are close, formulated
as the following:

𝑔+𝜏 (w) =��� 1
𝑛+𝑝

𝑛𝑝∑
𝑖=1

I(𝑦𝑝𝑖 = 1)𝜎(ℎ(w; x𝑝𝑖) − 𝜏) −
1
𝑛+𝑢

𝑛𝑢∑
𝑖=1

I(𝑦𝑢𝑖 = 1)𝜎(ℎ(w; x𝑢𝑖) − 𝜏)
��� − 𝜅 ≤ 0,

and

𝑔−𝜏 (w) =��� 1
𝑛−𝑝

𝑛𝑝∑
𝑖=1

I(𝑦𝑝𝑖 = −1)𝜎(ℎ(w; x𝑝𝑖) − 𝜏) −
1
𝑛−𝑢

𝑛𝑢∑
𝑖=1

I(𝑦𝑢𝑖 = −1)𝜎(ℎ(w; x𝑢𝑖) − 𝜏)
��� − 𝜅 ≤ 0,

380

6.8. LEARNING DATA COMPOSITIONAL NETWORKS

where 𝜎(𝑠) is a surrogate of the indicator function I(𝑠 > 0), e.g., the sigmoid func-
tion, and 𝜅 > 0 is a tolerance parameter.

Then the learning problem can be imposed as:

min
w

𝐹 (w),

𝑠.𝑡. 𝑔+𝜏 (w) ≤ 0, 𝑔−𝜏 (w) ≤ 0,∀𝜏 ∈ Γ.

where 𝐹 (w) is an appropriate risk function.
By utilizing the penalty method, we solve the following problem:

min
w
𝐹 (w) + 𝜌

2|Γ|
∑
𝜏∈Γ

(𝑓 (𝑔+𝜏 (w)) + 𝑓 (𝑔−𝜏 (w))). (6.101)

Let us define

𝑔1 (w; 𝜏) = 1
𝑛+𝑝

𝑛𝑝∑
𝑖=1

I(𝑦𝑝𝑖 = 1)𝜎(ℎ(w; x𝑝𝑖) − 𝜏)

𝑔2 (w; 𝜏) = 1
𝑛+𝑢

𝑛𝑢∑
𝑖=1

I(𝑦𝑢𝑖 = 1)𝜎(ℎ(w; x𝑢𝑖) − 𝜏).

Since 𝑓 (·) is a non-decreasing convex function, hence 𝑓 (|𝑥 |) is a convex func-
tion. Then the penalty term 𝑓 (𝑔+𝜏 (w)) = 𝑓 (|𝑔1 (w; 𝜏) − 𝑔2 (w; 𝜏) | − 𝜅) is a com-
positional of a convex function 𝑓 (𝒈) = 𝑓 (|𝑔1 − 𝑔2 | − 𝜅) and a smooth mapping
𝑔(w) = [𝑔1 (w; 𝜏), 𝑔2 (w; 𝜏)]. Hence, SONX, SONEX,ALEXR-DL can be employed
to solve the above problem.

6.8 Learning Data Compositional Networks

So far, we have considered the compositional loss function, which involves compar-
ing the output of one data ℎ(w; x) with that of many other data. In this section, we
consider compositional networks, where the computation of ℎ(w; x) for one data x
depends on many other data.

6.8.1 Large-scale Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful class of models designed to learn
representations from graph-structured data, where information is distributed across
nodes and edges. Unlike traditional neural networks that operate on grid-like inputs,
GNNs leverage the connectivity structure of graphs to propagate and aggregate in-
formation from a node’s neighborhood, capturing both local and global patterns.

381

GNNs have been successfully applied to tasks such as node classification, link pre-
diction, and graph-level classification in domains including social networks, molec-
ular chemistry, and recommendation systems.

A key distinction in GNN-based learning lies between transductive and inductive
settings. In transductive learning, the model is trained and tested on the same fixed
graph, meaning all nodes (including test nodes) are present during training. Classic
GNN models such as Graph Convolutional Neural (GCN) Network in this setting.
In contrast, inductive methods aim to generalize to unseen nodes or entirely new
graphs not available during training. GraphSAGE (Graph Sample and Aggregate)
is a method that is designed for inductive learning, enabling flexible deployment in
dynamic environments where new nodes or graphs continuously emerge.

Let G = (V, E) denote a graph, where V is the set of nodes and E is the set of
edges. Each node 𝑣 ∈ V is associated with a feature vector x𝑣. Given a node 𝑣 with
neighborsN(𝑣), a general scheme fo updating the node’s representation in layer 𝑘 is
following:

h(𝑘)
N(𝑣) = Aggregate

({
h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
,

h(𝑘)
𝑣 = Update

(
h(𝑘−1)
𝑣 , h(𝑘)

N(𝑣)

)
,

where the first step aggregates the representations of the nodes in the immediate
neighborhood of node 𝑣 into a single vector, and the second step updates the node’s
current representation h(𝑘−1)

𝑣 , with the aggregated neighborhood vector to generate
a new embedding h(𝑘)

𝑣 .

GraphSAGE (Graph Sample and Aggregate)

GraphSAGE is a scalable inductive framework for learning node representations in
large graphs. Let us consider a particular implementation of the above framework:

A({h(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣) ∪ {𝑣}}) = 1

|N𝑣 | + 1

∑
𝑢∈N(𝑣)∪{𝑣}

h(𝑘−1)
𝑢 (6.102)

h(𝑘)
𝑣 = 𝜎

(
W(𝑘) · A({h(𝑘−1)

𝑢 : 𝑢 ∈ N𝑣 ∪ {𝑣}})
)
, (6.103)

where A(·) denotes the mean operator and 𝜎(·) is an activation function.
When working with large-scale graphs, GraphSAGE employs node sampling to

ensure scalability. At each layer, a node samples a fixed number of neighbors and
aggregates their features. However, as the number of layers increases, the number
of nodes involved in computing a single node’s embedding can grow exponentially.
Specifically, if each node samples 𝐾 neighbors and the model has 𝐿 layers, then
computing the embedding for a single node may involve up to 𝐾𝐿 nodes. This ex-
ponential growth is known as the neighborhood explosion problem, which can lead
to significant computational and memory overhead, especially in deep models or

382

6.8. LEARNING DATA COMPOSITIONAL NETWORKS

1 2 4 8 16 32
Neighbor size

0.93

0.94

0.95

0.96

F1
-m

icr
o

sc
or

e

2-layer GraphSAGE
2-layer GraphFM-IB + SAGE

Fig. 6.32: Comparison between
standard GraphSAGE and Graph-
SAGE with Feature Momentum
on the Reddit dataset, which
contains 232,965 nodes and
11,606,919 edges. Each node has
an average of 49.82 neighbors.
For more details, please refer
to (Yu et al., 2022).

large graphs. While reducing 𝐾 (e.g., to 1) can mitigate neighborhood explosion, it
may also introduce high variance in the estimation of the mean operator potentially
degrading model performance.

GraphSAGE with Feature Momentum

The challenge discussed earlier arises from the compositional structure of h(𝑘)
𝑣 . To

address this, we leverage a moving average estimator. Let B𝑣 ⊂ N(𝑣) be a sub-
sampled neighborhood of node 𝑣, and define B̄𝑣 = B𝑣 ∪ {𝑣}. At the 𝑡-th iteration, we
estimate the aggregated feature vector as follows:

h̃(𝑘,𝑡)
𝑣 =

{
h̃(𝑘,𝑡−1)
𝑣 if 𝑣 ∉ D𝑘 ,

(1 − 𝛾)h̃(𝑘,𝑡−1)
𝑣 + 𝛾Â

({
ĥ(𝑘−1,𝑡)
𝑢 : 𝑢 ∈ B̄𝑣

})
otherwise,

(6.104)

where D𝑘 is the sub-sampled set of nodes updated at the 𝑘-th layer, 𝛾 ∈ (0, 1) is the
momentum parameter, and Â(·) is an unbiased estimator of the aggregation function
A(·) over the neighborhood N𝑣 ∪ {𝑣}. The estimator is computed as:

Â
({

ĥ(𝑘−1,𝑡)
𝑢 : 𝑢 ∈ B̄𝑣

})
=

1
|N𝑣 | + 1

ĥ(𝑘−1,𝑡)
𝑣 + |N𝑣 |

|N𝑣 | + 1
· 1
|B𝑣 |

∑
𝑢∈B𝑣

ĥ(𝑘−1,𝑡)
𝑢 .

Next, we update the feature representation at the 𝑘-th layer:

ĥ(𝑘,𝑡)
𝑣 = 𝜎

(
W(𝑘)
𝑡 · h̃(𝑘,𝑡)

𝑣

)
. (6.105)

This process is repeated for 𝐿 layers to compute the output representation ĥ(𝐿,𝑡)
𝑣 for

sub-sampled nodes 𝑣 ∈ D𝐿 , which are then used to compute the mini-batch loss. We
refer to this approach as GraphSAGE with Feature Momentum.

This method effectively reduces the required number of sampled neighbors per
node while maintaining the performance of using full neighborhoods; see Fig-
ure 6.32.

383

6.8.2 Multi-instance Learning with Attention

Multi-instance learning (MIL) refers to a setting where a bag of instances are ob-
served for an object of interest and only one label is given to describe that ob-
ject. Many real-life applications can be formulated as MIL. For example, the med-
ical imaging data for diagnosing a patient usually consists of a series of 2D high-
resolution images (e.g., CT scan), and only a single label (containing a tumor or not)
is assigned to the patient.

A standard assumption for MIL is that a bag is labeled positive if at least one of
its instances has a positive label, and negative if all of its instances have negative
labels. The assumption implies that a MIL model must be permutation-invariant for
the prediction function ℎ(X), whereX = {x1, . . . , x𝑚} denotes a bag of instances. To
achieve permutation invariant property, fundamental theorems of symmetric func-
tions have been developed. In particular, a scoring function for a set of instances X
denoted by ℎ(X) ∈ R, is a symmetric function if and only if it can be decomposed as
ℎ(X) = 𝑔(∑x∈X 𝜓(x)) (Zaheer et al., 2017), where 𝑔 and 𝜓 are suitable transforma-
tions. Another theory is that a Hausdorff continuous symmetric function ℎ(X) ∈ R
can be arbitrarily approximated by a function in the form 𝑔(maxx∈X 𝜓(x)) (Qi et al.,
2016), where max is the element-wise vector maximum operator and 𝜓 and 𝑔 are
continuous functions. These theories provide support for several widely used pool-
ing operators used for MIL.

Deep learning with different pooling operations

Let 𝑒(w𝑒; x) ∈ R𝑑𝑜 be the instance-level representation encoded by a neural network
w𝑒, 𝜙(w; x) ∈ [0, 1] be the instance-level prediction score (after some activation
function), and ℎ(w;X𝑖) ∈ [0, 1] be the pooled prediction score of the bag 𝑖 over all
its instances. Besides, 𝜎(·) denotes the sigmoid activation.

Softmax pooling of predictions

The simplest approach is to take the maximum of predictions of all instances in the
bag, i.e., ℎ(w;X) = maxx∈X 𝜙(w; x). However, the max operation is non-smooth,
which usually causes difficulty in optimization. In practice, a smoothed-max (aka.
log-sum-exp) pooling operator is used instead:

ℎ(w;X) = 𝜏 log

(
1
|X|

∑
x∈X

exp(𝜙(w; x)/𝜏)
)
, (6.106)

where 𝜏 > 0 is a hyperparameter and 𝜙(w; x) is the prediction score for instance x.

384

6.8. LEARNING DATA COMPOSITIONAL NETWORKS

Mean pooling of predictions

The mean pooling operator just takes the average of predictions of individual in-
stances, i.e., ℎ(w;X) = 1

|X |
∑

x∈X 𝜙(w; x). Indeed, smoothed-max pooling interpo-
lates between the max pooling (with 𝜏 = 0) and the mean pooling (with 𝜏 = ∞).

Attention-based Pooling of features

Attention-based pooling aggregates the feature representations using attention, i.e.,

𝐸 (w;X) =
∑
x∈X

exp(𝑔(w; x))∑
x′∈X exp(𝑔(w; x′)) 𝑒(w𝑒; x), (6.107)

where 𝑔(w; x) is a parametric function, e.g., 𝑔(w; x) = w>
𝑎 tanh(𝑉𝑒(w𝑒; x)), where

𝑉 ∈ R𝑚×𝑑𝑜 and w𝑎 ∈ R𝑚. Based on the aggregated feature representation, the bag
level prediction can be computed by

ℎ(w;X) = 𝜎(w>
𝑐 𝐸 (w;X)) = 𝜎

(∑
x∈X

exp(𝑔(w; x))𝑠(w; x)∑
x′∈X exp(𝑔(w; x′))

)
, (6.108)

where 𝑠(w; x) = w>
𝑐 𝑒(w𝑒; x).

Optimization Algorithms

Given the pooled prediction ℎ(w;X), the empirical risk minimization (ERM) prob-
lem is defined as:

min
w

1
𝑛

𝑁∑
𝑖=1

ℓ𝑖 (ℎ(w;X𝑖)).

The main challenge in solving this problem lies in the computational cost of evalu-
ating ℎ(w;X𝑖), as it involves aggregating over potentially many instances.

To address this, we employ techniques from compositional optimization. Specifi-
cally, we express the smoothed-max pooling in (6.106) as a composition ℎ(w;X𝑖) =
𝑓2 (𝑓1 (w;X𝑖)), where the functions 𝑓1 and 𝑓2 are defined as:

𝑓1 (w;X𝑖) =
1
|X𝑖 |

∑
x𝑖, 𝑗 ∈X𝑖

exp(𝜙(w; x𝑖, 𝑗)/𝜏),

𝑓2 (𝑠𝑖) = 𝜏 log(𝑠𝑖).

Similarly, we express the attention-based pooling in (6.108) as a compositional func-
tion ℎ(w;X𝑖) = 𝑓2 (𝑓1 (w;X𝑖)), with:

385

𝑓1 (w;X𝑖) =
[

1
|X𝑖 |

∑
x𝑖, 𝑗 ∈X𝑖 exp(𝑔(w; x𝑖, 𝑗))w>

𝑐 𝑒(w𝑒; x𝑖, 𝑗)
1

|X𝑖 |
∑

x𝑖, 𝑗 ∈X𝑖 exp(𝑔(w; x𝑖, 𝑗))

]
, 𝑓2 (u𝑖) = 𝜎

(
[u𝑖]1

[u𝑖]2

)
.

The key difference between the two pooling mechanisms is that the inner function 𝑓1
in attention-based pooling is a vector-valued function with two components. In both
cases, the computational bottleneck lies in computing 𝑓1 (w;X𝑖).

To reduce this cost, we maintain a dynamic estimator 𝑢𝑖,𝑡 for each bag X𝑖 . At
iteration 𝑡, for any X𝑖 ∈ B𝑜,𝑡 (a mini-batch of bags), we update the estimator as:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 + 𝛾 𝑓1 (w𝑡 ;B𝑖,𝑡), (6.109)

where B𝑖,𝑡 ⊂ X𝑖 is a mini-batch of instances sampled from X𝑖 , and 𝛾 ∈ [0, 1] is a
smoothing parameter. For smoothed-max pooling, this becomes:

𝑢𝑖,𝑡 = (1 − 𝛾)𝑢𝑖,𝑡−1 +
𝛾

|B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡
exp(𝜙(w𝑡 ; x𝑖, 𝑗)/𝜏), (6.110)

and for attention-based pooling, we update:

u𝑖,𝑡 = (1 − 𝛾)u𝑖,𝑡−1 + 𝛾
[

1
| B𝑖,𝑡 |

∑
x𝑖, 𝑗 ∈B𝑖,𝑡 exp(𝑔(w𝑡 ; x𝑖, 𝑗))𝛿(w𝑡 ; x𝑖, 𝑗)
1

| B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡 exp(𝑔(w𝑡 ; x𝑖, 𝑗))

]
. (6.111)

The corresponding vanilla gradient estimator for softmax pooling is:

z𝑡 =
1
|B|

∑
X𝑖∈B

ℓ′𝑖 (𝑓2 (𝑢𝑖,𝑡))∇ 𝑓2 (𝑢𝑖,𝑡)
1

|B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡
∇ exp(𝜙(w𝑡 ; x𝑖, 𝑗)/𝜏), (6.112)

and for attention-based pooling:

z𝑡 = (6.113)

1
|B|

∑
X𝑖∈B

ℓ′𝑖 (𝑓2 (u𝑖,𝑡))
[

1
| B𝑖,𝑡 |

∑
x𝑖, 𝑗 ∈B𝑖,𝑡 ∇

(
exp(𝑔(w𝑡 ; x𝑖, 𝑗))𝑠(w𝑡 ; x𝑖, 𝑗)

)
1

| B𝑖,𝑡 |
∑

x𝑖, 𝑗 ∈B𝑖,𝑡 ∇ exp(𝑔(w𝑡 ; x𝑖, 𝑗))

]>
∇ 𝑓2 (u𝑖,𝑡).

Then we can update the model parameter w𝑡+1 by Momentum, Adam, or Adam-W
methods.

As established in Chapter 5, the theory of compositional optimization guarantees
that the moving average estimators u𝑖,𝑡 ensure the average estimation error,

1
𝑇

𝑇∑
𝑡=1

‖u𝑖,𝑡 − 𝑓1 (w𝑡 ;X𝑖)‖2
2,

converges to zero as 𝑇 → ∞, provided that the model parameters and hyperparam-
eters are properly updated.

386

6.9. DRRHO RISK MINIMIZATION

6.9 DRRHO Risk Minimization

As a last application of compositional optimization, we consider an emerging prob-
lems in AI. With the success of large foundation models, numerous companies and
research groups have entered the race to develop state-of-the-art models. While the
data and code are often proprietary, the resultingmodels are sometimes released pub-
licly, such as the CLIPmodels fromOpenAI. How canwe leverage these open-weight
models? We discuss three commonly used strategies and then present an emerging
paradigm.

Using the Model As-Is

A straightforward strategy for leveraging open-weight foundation models is to use
them as-is. This approach requires no additional training and can be deployed im-
mediately, making it highly convenient and cost-effective. It is particularly attractive
when computational resources or labeled data are limited. However, the downside is
that the pretrained model may not perform well on specialized tasks or under distri-
bution shifts, where its generic knowledge does not fully align with the requirements
of the target application.

Fine-Tuning the Model

An alternative strategy is to use the pretrained model as a starting point for fine-
tuning. By performing minimal task-specific training, the model can be adapted to
new domains with relatively low computational and data costs. Fine-tuning gener-
ally yields better performance than using the model out-of-the-box. Nevertheless,
since the model architecture remains unchanged and the updates are typically mod-
est, the improvements in performance may be limited, particularly when the pre-
trained model is already near-optimal for its design.

Knowledge Distillation from the Model

A more flexible approach involves using the pretrained model as a teacher in a
knowledge distillation framework. Here, a smaller or more efficient student model is
trained to mimic the teacher’s outputs, enabling knowledge transfer that can improve
training efficiency and generalization. This strategy is particularly useful for deploy-
ing models in resource-constrained environments. The main drawback, however, is
that the student model is usually less expressive than the teacher, which can cap its
performance despite potential gains in speed and efficiency.

387

Reference Model Steering for training from scratch

An emerging learning paradigm has recently surfaced that leverages a pre-trained ref-
erence model to guide and enhance training via strategic data weighting—a process
we term reference model steering. Unlike the knowledge distillation framework, ref-
erence model steering does not assume that the reference model is a stronger teacher;
in fact, it can lead to the training of a model that ultimately surpasses the reference
model in performance, i.e., enabling weak to strong generalization.

DRRHO Risk Minimization

Let z ∼ P denote a random data point drawn from distribution P, and let w ∈ W rep-
resent model parameters from a parameter space W. Given a loss function ℓ(w, z),
the expected risk is defined as:

R(w) = Ez∼P [ℓ(w, z)] .

Given a pretrained reference model wref , we define a new loss ℓ̂(w, ·) = ℓ(w, ·) −
ℓ(wref , ·), which is termed as RHO loss. Incorporating this into the distributionally
robust optimization (DRO) framework (2.12), we define DRRHO risk minimization
as:

min
w∈W

sup
p∈Δ

𝐷𝜙 (p ‖ 1/𝑛) ≤𝜌/𝑛

𝑛∑
𝑖=1

𝑝𝑖 (ℓ(w, z𝑖) − ℓ(wref , z𝑖)) . (6.114)

Theoretical guarantees for DRRHO have been developed with the 𝜒2 divergence,

i.e., 𝐷𝜙 (p ‖ q) =
∑𝑛
𝑖=1

1
2𝑞𝑖

(
𝑝𝑖
𝑞𝑖

− 1
)2
. Under mild conditions, it can be shown that

with high probability:

R(w̃∗) ≤ inf
w∈W

(
R(w) +

√
2𝜌
𝑛

Var(ℓ(w, ·) − ℓ(wref , ·))
)
+ O

(
1
𝑛

)
. (6.115)

where w̃∗ is an optimal solution to DRRHO risk minimization.
In particular, plugging in w∗ = arg minw∈W R(w) yields:

R(w̃∗) ≤ R(w∗) +
√

2𝜌
𝑛

Var(ℓ(w∗, ·) − ℓ(wref , ·)) + O
(
1
𝑛

)
.

This result provides valuable insight: if the reference model wref is well-trained such
that ℓ(wref , ·) closely matches ℓ(w∗, ·) in distribution, then the variance term be-
comes small. As a result, DRRHO achieves better generalization than the standard
O(

√
1/𝑛) bound of ERM.

Furthermore, if wref ∈ W, we obtain a comparison in terms of excess risk:

R(w̃∗) − R(w∗) ≤ R(wref) − R(w∗) + O
(
1
𝑛

)
.

388

6.9. DRRHO RISK MINIMIZATION

This enables a direct comparison between the DRRHO minimizer w̃∗ and the refer-
ence model wref from the same hypothesis class. Suppose wref was trained via ERM
on a dataset with 𝑚 samples. Then standard generalization theory gives an excess
risk of order O(1/√𝑚). In contrast, to match this level of generalization error, DR-
RHO requires only 𝑛 = O(√𝑚) samples—significantly improving over the O(𝑚)
sample complexity required by ERM without a reference model.

Optimization Algorithms
When the CVaR is used defined by 𝜙(𝑡) = 1 if 𝑡 ≤ 𝑛/𝑘 and 𝜙(𝑡) = ∞ otherwise, the
DRRHO risk reduces to the average of the top-𝑘 RHO losses:

min
w
𝐹 (w) :=

1
𝑘

𝑘∑
𝑖=1

(
ℓ(w, z[𝑖]) − ℓ(wref , z[𝑖])

)
, (6.116)

where z[𝑖] denotes the data point ranked 𝑖-th in descending order based on its RHO
loss. This problem can be equivalently reformulated as:

min
w,𝜈

1
𝑘

𝑛∑
𝑖=1

[ℓ(w, z𝑖) − ℓ(wref , z𝑖) − 𝜈]+ + 𝜈, (6.117)

which is more amenable to gradient-based optimization techniques.
When DRRHO risk is defined using KL divergence regularization, the objective

becomes:

min
w

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w, z𝑖) − ℓ(wref , z𝑖)

𝜏

))
. (6.118)

This formulation can be optimized by simply replacing the loss in Algorithm 24 with
the RHO loss. The vanilla gradient at iteration 𝑡 is estimated by:

1
𝐵

∑
𝑖∈B𝑡

exp
(
ℓ (w𝑡 ,z𝑖)−ℓ (wref ,z𝑖)

𝜏

)
𝑢𝑡

∇ℓ(w𝑡 , z𝑖), (6.119)

where 𝑢𝑡 is the MA estimator of the inner function value. This gradient estimator
naturally assigns higher weights to data points with larger RHO losses, thereby pri-
oritizing samples with high learnability during training.

Finally, when DRRHO is formulated with a KL-divergence constraint, the opti-
mization problem becomes:

min
w

min
𝜏≥0

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w, z𝑖) − ℓ(wref , z𝑖)

𝜏

))
+ 𝜏𝜌
𝑛
. (6.120)

389

10
10

10
11

Compute (GFLOPS x Samples Seen)

30

40
Im

ag
eN

et
-1

K
 E

rr
or

 (%
)

E = 5.77 C 0.116

E = 7.15 C 0.127

ViT-B/32
OpenCLIP

ViT-B/16
DRRho-CLIP

ViT-L/14
Fig. 6.33: Scaling performance
of OpenCLIP and DRRho-CLIP,
which uses the OpenAI CLIP
model as the reference model. We
conduct experiments of the two
methods under different settings
to fit scaling laws, as shown in the
bottom left corner. For more de-
tails, please refer to (Wei et al.,
2025).

This formulation can be optimized using techniques similar to those introduced in
the first section of this chapter.

DRRHO-CLIP with a Reference Model

We now consider applying the DRRHO risk minimization framework to CLIP. Given
the established connection between robust global contrastive loss andDRO, as shown
in (6.44) and (6.45), it is straightforward to incorporate the RHO loss into the training
objective. Define the following loss components:

ℓ1 (w; x𝑖 , t𝑖 , t) = 𝑠(w; x𝑖 , t) − 𝑠(w; x𝑖 , t𝑖),
ℓ2 (w; x𝑖 , t𝑖 , x) = 𝑠(w; x, t𝑖) − 𝑠(w; x𝑖 , t𝑖),
ℓ1 (wref; x𝑖 , t𝑖 , t) = 𝑠(wref; x𝑖 , t) − 𝑠(wref; x𝑖 , t𝑖),
ℓ2 (wref; x𝑖 , t𝑖 , x) = 𝑠(wref; x, t𝑖) − 𝑠(wref; x𝑖 , t𝑖),

where 𝑠(·; ·, ·) denotes the similarity function, and wref is a pretrained reference
model.

Using these definitions, we modify the original objective in (6.49) to incorporate
the RHO loss:

min
w,𝜏1 ,𝜏2

1
𝑛

𝑛∑
𝑖=1

𝜏1 log ©­« 1
|T −
𝑖 |

∑
t∈T−

𝑖

exp
(
ℓ1 (w; x𝑖 , t𝑖 , t) − ℓ1 (wref; x𝑖 , t𝑖 , t)

𝜏1

)ª®¬ + 𝜏1𝜌
+ 1
𝑛

𝑛∑
𝑖=1

𝜏2 log ©­« 1
|I−
𝑖 |

∑
x∈I−

𝑖

exp
(
ℓ2 (w; x𝑖 , t𝑖 , x) − ℓ2 (wref; x𝑖 , t𝑖 , x)

𝜏2

)ª®¬ + 𝜏2𝜌.
(6.121)

This objective can be optimized using an algorithm similar to that used in the
CLIP training. Empirical results show that this approach significantly reduces sample

390

6.10. HISTORY AND NOTES

OpenAI CLIP DRRho-CLIP
60

62

64

66

68

70

Im
ag

eN
et

-1
K

To
p-

1
Ac

cu
ra

cy
 (%

)

Re
fe

re
nc

e

Reference Target

OpenAI CLIP DRRho-CLIP
60

62

64

66

68

70

Im
ag

eN
et

-1
K

To
p-

1
Ac

cu
ra

cy
 (%

)

Re
fe

re
nc

e
Fig. 6.34: Comparison between a target model (ViT-B/16) trained by DRRRHO-
CLIP and the reference model it leverages. OpenAI CLIP (ViT-B/32) was trained
on a private 400M dataset with 12.8B samples seen and 32768 batch size. DRRho-
CLIP model was trained on DFN-192M with 1.28B samples seen and 5120 batch
size, and using OpenAI CLIP as a reference model. DRRHO-CLIP training took
376 GPU hours on 8 H100 (2 days), OpenAI CLIP (ViT-L/14) model was trained
on 256 V100 with 12 days, which gives an estimate of 256*12*24/11.6=6356 GPU
hours for training ViT-B/32 as its FLOPs is 11.6 smaller. For more details, please
refer to (Wei et al., 2025).

complexity and improves the empirical scaling law (see Figure 6.33), while also
achieving weak to strong generalization (see Figure 6.34).

6.10 History and Notes

DRO and GDRO.

We first formulated KL-regularized Distributionally Robust Optimization (DRO) as
a stochastic compositional optimization (SCO) problem in (Qi et al., 2021b), uti-
lizing STORM-based estimators. This line of research was further developed in (Qi
et al., 2020), which introduced an attentional biased stochastic momentum method
for KL-regularized DROwith specific applications in imbalanced data classification.
Subsequently, we extended both the algorithmic framework and theoretical analysis
to address KL-constrained DRO (Qi et al., 2023). Collectively, these works demon-

391

strate the advantages of employing compositional optimization techniques over tra-
ditional primal-dual methods for solving DRO problems.

The formulation of FCCO for group DRO (GDRO) was initially identified in
(Hu et al., 2024b). Building on this, Wang and Yang (2023) applied the ALEXR
algorithm to convex group DRO, demonstrating significant improvements over tra-
ditional stochastic primal-dual methods. Most recently, the application of SONEX
to non-convex group DRO within the context of deep learning was investigated by
Chen et al. (2025b).

Stochastic AUC and NDCG Optimization.

Stochastic AUC maximization has a long-standing history in machine learning, as
detailed in our survey (Yang and Ying, 2023). The formulation of AUC maximiza-
tion with a square surrogate loss as a minimax optimization problem was first in-
troduced by Ying et al. (2016b). Building on this foundation, we developed the first
convergence analysis for stochastic non-convex minimax optimization in the context
of deep AUC maximization (Liu et al., 2020). While this work was inspired by our
previous work on weakly-convex strongly-concave minimax optimization (Rafique
et al., 2022), it established a superior complexity bound by leveraging the PL condi-
tion. These theoretical results were subsequently strengthened in (Guo et al., 2023).

This line of research eventually facilitated our winning entry in the CheXpert
competition for X-ray image classification (Yuan et al., 2021), which also introduced
the AUC-margin minimax objective. Notably, all of these proposed methods utilize
a double-loop algorithmic structure. The single-loop PDMA and PDAdam methods
for deep AUCmaximization was first proposed and analyzed in our work (Guo et al.,
2021b). The compositional training method for deep AUC maximization that facili-
tates the feature learning and classifier learning in a unified framework was proposed
in our work (Yuan et al., 2022b).

The SOAP algorithm represents the first method of its kind to offer a convergence
guarantee that does not rely on the use of large batch sizes, which has challenged the
computer vision and machine learning communities for many years (see references
in (Qi et al., 2021c)). The SOPA and SOPAs algorithms for one-way partial AUC
maximization and STOAs for two-way partial AUC maximization were developed
and analyzed in (Zhu et al., 2022b). The STACO algorithm for two-way partial AUC
maximization was proposed in (Zhou et al., 2025). These stdudies have addressed
long-standing open problems for efficient partial AUC maximization with conver-
gence guarantee (Kar et al., 2014; Narasimhan and Agarwal, 2013).

The formulation of stochastic NDCG optimization as FCCO was proposed in our
work (Qiu et al., 2022), which also developed a multi-block bilevel optimization
formulation and algorithm for optimizing top-𝐾 NDCG. The complexity for multi-
block bilevel optimization was improved in (Hu et al., 2023) by using the MSVR
estimators.

The design and benchmark of LibAUC library was presented in (Yuan et al.,
2023a).

392

6.10. HISTORY AND NOTES

Discriminative Learning of Foundation models.

The SogCLR algorithm was inspired by the SOX framework for FCCO; its advan-
tages over SimCLR, particularly regarding efficiency with small batch sizes in uni-
modal contrastive learning, were demonstrated in (Yuan et al., 2022c). Building on
this, we introduced iSogCLR in (Qiu et al., 2023) to optimize individualized tem-
peratures. This advancement was also informed by our previous research on KL-
constrained DRO (Qi et al., 2023).

Subsequently, we proposed TempNet (Qiu et al., 2024), which has been success-
fully applied to CLIP training and the pretraining of large language models (LLMs).
Furthermore, a comprehensive evaluation of FCCO-based techniques for distributed
CLIP training was recently provided in (Wei et al., 2024).

The discriminative fine-tuning approach of LLMswas proposed in our work (Guo
et al., 2025). The DisCO method for fine-tuning large reasoning models was devel-
oped in our work (Li et al., 2025).

FCCO for Constrained Learning.

The application of compositional optimization techniques to penalty methods for
constrained learning dates back to (Ermoliev andWets, 1988). The first non-asymptotic
analysis of the penalty method with a squared hinge penalty function for non-convex
inequality constrained optimization based on FCCO was conducted in our work (Li
et al., 2024). This work investigated the problem within the context of continual
learning under zero-forgetting constraints and established a complexity of 𝑂 (1/𝜖7)
for finding an 𝜖-KKT solution. Additionally, we developed a theoretical framework
to characterize the benefits of network expansion in facilitating constrained learning
with non-forgetting constraints. The ROC fairness constraint was first considered
in (Vogel et al., 2020).

Subsequent advancements have further improved the complexity of penalty based
methods based on FCCO. By employing SONX for the hinge penalty, the complex-
ity was reduced to 𝑂 (1/𝜖6) (Yang et al., 2025). More recently, the introduction of
SONEX and a double-loop ALEXR method for the squared hinge penalty achieved
a complexity of𝑂 (1/𝜖5) (Chen et al., 2025b). This currently represents the state-of-
the-art complexity for penalty methods in non-convex constrained optimization.

Learning with data compositional networks.

Graph convolutional neural network was proposed by Kipf and Welling (2017).
GraphSAGE was developed in (Hamilton et al., 2017). The use of compositional op-
timization techniques, specifically incorporating feature momentum for large-scale
Graph Neural Network (GNN) learning, was introduced in our previous work (Yu
et al., 2022). Furthermore, the application of compositional optimization to multi-
instance learning, utilizing compositional pooling operations, was first proposed

393

in (Zhu et al., 2023a). Attention-based pooling for multi-instance learning was pro-
posed by Ilse et al. (2018).

DRRHO risk minimization.

The development of DRRHO risk minimization framework and its application to
CLIP training was introduced in our work (Wei et al., 2025). The theoretical analysis
of this method is largely built upon the foundations of DRO (Namkoong and Duchi,
2017), while the conceptual idea of using the RHO loss for data selection in a mini-
batch was originally proposed in (Mindermann et al., 2022).

394

