Chapter 5

Advances: Finite-sum Coupled Compositional
Optimization

Abstract In this chapter, we study a novel family of stochastic compositional
optimization problems namely finite-sum coupled compositional optimization
(FCCO), and introduce algorithms for solving them. These algorithms have direct
applications in addressing the empirical X-risk minimization challenges discussed in
Chapter 2. To ensure broad applicability, we examine various settings of this prob-
lem, characterized by different properties of outer and inner functions, including
smooth and non-smooth cases, as well as convex, weakly convex, and non-convex
scenarios. The results presented here also significantly extend and complement those
discussed in Chapter 4. We also discuss how to efficiently optimize compositional
optimized certainty equivalent risks, especially compositional entropic risk.

Coupling reveals depth where composition meets reality!
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5.1. FINITE-SUM COUPLED COMPOSITIONAL OPTIMIZATION

5.1 Finite-sum Coupled Compositional Optimization

Specifically, we focus on the following optimization problem:

min F(w) := %Zfi(E{~Pigi(W§ ), (5.1)
i=1

weRd

where g;(;¢) : R — R? is a stochastic mapping, f;(-) : R¥ — R is a determin-
istic function, and P; denotes the distribution of the random variable {.

We refer to this problem as finite-sum coupled compositional optimization
(FCCO). If we interpret i as an outer random variable, a distinctive feature that sets
FCCO apart from standard stochastic compositional optimization (SCO) is that each
inner stochastic function g; (w; £) depends on both an inner random variable  and an
outer index i, giving rise to the term coupled. While this problem can be cast as a spe-
cial case of SCO by defining f(g) = % >y fi(gi) and g(w) = [g1(W),...,gn(W)],
the high dimensionality of g due to large n, along with its stochastic components, sig-
nificantly complicates the construction of unbiased estimators and theoretical anal-
ysis. Therefore, FCCO warrants the development of specialized optimization meth-
ods.

Below, we revisit several applications of FCCO in ML and discuss the properties
of f; and g;.

Group DRO

In Section 2.2.3, we have formulated the CVaR divergence regularized group DRO
as

K
|
min -— ;[Li(w) — ]+, (5.2)

where @ € (0,1), L;(w) = nl—k Z;.lil £(w; le yj.) denotes the average loss over data
from the i-th group. The first term above is an instance of the FCCO objective, where
the outer function f(g) = ([g]1 — [g]2)+ is a convex but non-smooth function of
g, and each inner function g;(w,v) = [L;(w), v]" could be convex or non-convex,
smooth or non-smooth depending on applications.

AP Maximization

In Section 2.3.2, the AP maximization has been formulated as the following problem:

1
min-— D, f(gi(w), (53)

X; €S,
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where S, is the set of n, positive examples, g;(w) = [g1(W;x;,S), g2(w;x;, S)]T
is a vector mapping with two components:

@1 wixieS) = e D 100 = DECHW:x;) = h(wix,)

XjES
1
22(Wix;, 8) = == > L(h(W;X)) = h(W;X))),
S|
X_,'ES
and f(g) = —% is simple function. We can see that f is non-convex and smooth if

the loss value is upper bounded and £(0) is lower bounded. The inner mapping g; (w)
could be convex (e.g., a linear model) or non-convex (e.g., a deep model), smooth or
non-smooth depending on applications.

Contrastive Representation Learning

The contrastive objective of self-supervised representation learning presented in (2.50),
is the following:

n

1 1
m&nzz-rlog e+ —— Z exp((s(w;x;,y) — s(W; x;,x7))/7) |.

i=1 |Sl | YES;

The outer function f(g) = 7log(e + g) is a non-convex function and smooth when
¢ is lower bounded. Each inner function g; is a non-convex function of w in general.

5.2 Smooth Functions

In this section, we consider a non-convex but smooth objective function F(w) with
smooth outer functions. In addition, we assume the inner stochastic functions satisfy
the following conditions throughout this section.

Assumption 5.1. We assume that

(i) Eeep,lllgi(w: ) - ge(WI3] < 0.
(i) Beer [IIVei(W:0) = Vei(w)3] < o
(iii) Bz, [IVg:(w: O3] < G3.
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5.2. SMOOTH FUNCTIONS

5.2.1 The SOX Algorithm

The first algorithm for solving FCCO is called SOX, named by Stochastic Optimization
of X-risks. Owing to its ease of implementation and favorable practical performance,
this algorithm is commonly adopted for addressing FCCO. Below, we outline the as-
sumptions necessary for its analysis.

Assumption 5.2. There exist G, L1, Lr > 0 such that

(i) fi: R - Ris G 1-Lipschitz continuous and Ly-smooth;
(ii) F:R? s Ris Lp-smooth;
(iii) F. = miny F(w) >> —oo.

Similar to that for SCO, we also need to track and estimate the inner functions.
However, the difference is that we need to maintain and update n estimators for the
n inner functions g;(w),i € [n].

To this end, we maintain n sequence of estimators {u;,,¢ € [T]}",. At the ¢-th
iteration, we draw a set of B random indices B, C [n] with |8;| = B. We update
u; ;,i € [n] by the following:

u, = {(1 “ YU+ i (Wb i€ B (5.4)

U;r-1, O0.W.

where {; ; ~ P; is a random variable. We refer to the above estimator as coordinate
moving average estimator. Then, similar to SCMA, a moving average estimator of
the gradient is computed by:

Vi =1 =B)vi_1 + iy,

1 ’
where z, = E Z Vgi (Wi & )V fiug ).
e,

Then, the model parameters are updated by:
Weel = Wr =11Vt

The detailed steps are presented in Algorithm 14.

Convergence Analysis

Let us first define two notations:

A = |Ivi = VF (w13, (5.5)

1 n
6=~ 3w =g w5 (5.6)
i=1
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Algorithm 14 S0X
1: Input: learning rate schedules {7, tT:I’ {7t zT:1’ {B: tT: |» starting points Wo, o, Vo
2: Let wi = wg — 170V
3:fort=1,...,Tdo

4: Draw a batch of samples 8; C [n]
5: fori € B; do
6: Draw two samples i ¢, &/, ~ Pi
7 Update the inner function value estimators
= 1=y )1 +v:8i (Wes Gie)s
8: end for

9: Setw;; =u; ;1,0 ¢ By

10: Compute the vanilla gradient estimator z, = @ Yies, V&i(We; &/ )V fi(uir)
11: Update the MA gradient estimator v, = (1 — B;)V,_| + B:Z;

12: Update the model w by w;; = w; — 1, v,

13: end for

The descent lemma (Lemma 4.9) remains valid. Next, we analyze the recursion of
A; and d;. One point of deviation is that only some randomly selected coordinates
of u are updated and used for computing the gradient estimator z,. To facilitate the
proof, we introduce a virtual sequence:

u ;= (1- %)ui,t—l +¥:8i (We; (i,t),Vi =1,...,n. (5.7

This is similar to that is done in the analysis of stochastic coordinate descent method
in Section 3.3. Then, we have

1< _
M, =Esg, z[z] = = > Vai(w)V filli;,).
n i=1

Critical: Since u, is a random variable that depends on B;, hence
1 n
Es,.ql2] # Z} Vi (W) Vi (uis).
=

We first bound the error recursion of d;.

Lemma 5.1 Consider the u, updates in Algorithm 14. Under Assumption 5.1, if y; <
1, then

2nG?2 By?c?
E[at]s( —Z—)E[a,m oo B llwey - w3+ ——=.

Yt n

Proof. Since W; ; is updated using MA, then similar to (4.6), for all i € [n] we have
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5.2. SMOOTH FUNCTIONS

Bz, [ = gi(woll3] < (1= 70?0 -1 = gi(Wo) 3 + 77 0

Given i € [n], with a probability of B/n thati € B;, we have u; ; = 0, ;; otherwise,
u; ; =u;,_1. Hence,

E¢,, Eg, v, — gi(wo)l3]

B _ B
=B, v, - gi(woll3]+ (1 - P gi(w)ll3

B Byiog B
< — (=)l = g (Woll3 + — =%+ (1= g1 = ge(wo)ll3
B'y B’}/20'2
< (1= 5 0 s = gi(wo)ll3 + ——=.

2n
where we use the fact %(1 —y)?+(1- %) <(1- %)2. Then, taking expectation
over all randomness on both sides yields

2.2
By; oy
ot

By
E [llus - gr(woll3] < (1= = 5B [, = gi(woll3] +

Then using the Young’s inequality similar to the proof of Lemma 4.1, we have

By,

By _ Bn
2n

) - 2n

)?E [Ilw;,r—1 — g (we1)II3]

Bytz 0'02

B [llui, - gi(wo)ll3] < (1+

+(1+ BQ—;Z)(l - 1;—3:)215 [lgi(we—1) — gi(wo)ll5] +

2 2. 2
By n By o
<(1- 2_nt)E [”ui,t—l _gi(Wt—l)”%] + By,ZE [”Wt—l - Wl“%] + ; 0 s

where we use y; < 1 < %”. The desired result follows by taking average over i =

1,...,n on both sides.
O

. Gic2 G¥G?,_
Lemma 5.2 (Variance of z,) Let 02 = =12 + L2128 'y paye

E; [”Zz _MIH%] <o’

Proof. First, using the variance bound of the average of B independent zero-mean
random variables gives

2

A]zEt < B )

1 1
7 2. Vs OV = 5 > Vai(w) V(i)

i€B; i€B;

2

and using the variance bound of B random variables without replacement yields
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2

G?G3n-B
A =F, LGZB: Vi (W) V fi(fij,) — — Z Ve (W) V fi (i, ,) < — 2 -
As a result,
E, [llz -~ MyII3]
2

Z Vi (Wi & )V fil,) - = Z Vi (W) fi(0i0)
16.5,

G30? G?Gin-
=A+A < l0—2+ 1721 = o2,
B B n-1

2

O

Lemma 5.3 Under Assumptions 5.1 and 5.2, if B; < 1, the gradient estimation error
A; can be bounded as
2L2% +8B2GL?
E[A] < (1= BOE[A] + %E [lIwe = weeil13] + 85, LIG3E [6,-1]
t
+Bro? +4G3 LByl oy,
GG?

2
2_ G 0'2 19 n-B
where 0° = —52 + —» =T-

Proof. Since v; is updated using MA, we apply Lemma 4.7 in light of Lemma 5.2,
yielding

E[lvi - VE(w)I3] < (1= B)E[lIvi—1 = VF(w,_1)3] (5.8)
2

+ —LE[IWi—1 = w51 +4B,ElIM; = V(W3] + B7o.

t

Next, we bound E[||M; — VF(w,)|13].

1 n . 1 n 2
IM; = VF(w)Il3 = H— D V& WOV f (@) =~ ) Vei(w)Vf(gi(w))
ni i 2
2 21 N = 2
< GILi- ) Ml = gi(w)ll3.
i=1

From Lemma 5.1, we have
Ee,, 8 — gi(Wol3] < (1= yo)? w1 — gi(Wo)ll3 + v7 o, Vi

Hence
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5.2. SMOOTH FUNCTIONS

2 2
+’yt0'0

1< IS
E[; D e = gi(wnll5 | < (1 y,>2E[; 2wt = g (w3
i=1 i=1

1 n
<(1- %)ZE[; D @llgi(we) = (Wi )13 + 2w -1 = gi(wi ) IB) | +v7og

i=1

< 2E[6;-1] +yiog + B[2G3| w1 — w,||§].

As a result,

E[|IM; = VF(W)|13] < 2G3L3E[6,-1] + G5Liy og + E|2G5 LT |lw,—1 — wt||§].

Plugging the above results into (5.8) we finish the proof.
O

For combining the descent lemma and the above lemmas, we present a result
similar to Lemma 4.10, with differences highlighted in boxes.

Lemma 5.4 Ifn, < 1/L, assume that there exist non-negative sequences A;, B;, Ty, Ay, 84,1 >
0 satisfying:

(*)Ais1 < Ap + Ay =By — 1y

C27]2 ’”
(A1 < (1= Bra)Ar + Clﬁt+1 + BH: I'; +ﬁ?+10'2 + ﬁH]ytZHO' 2 .
Can} )
(©)0r41 < (1 = yp41)6; + LT, +7’,2+10' %,

t+1

2 . 2 . .
If B :t;?,y = min(ge 7. 757).1 = min(7, %, ﬁ), then in order to
guarantee
T-1
1 1
; ?(Bt + EF,) < 62.

the iteration complexity is in the order of

CTLF CY C]C30'” CYo'z\/C_z CYVC]C3C10"2;)
2 ’ ) 4 .

T = O [max
( { € e €t €

: 1 Cy
< — 1 A
where Cy < Ag — min; A; + 2‘/(72A() + ¢, 00-

Proof. Following similar analysis to Lemma 4.10, we have
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1+ 1
Yol _ Cini)die1 < Ay — 1By — Iy

n
A + J Ay + (Crmpy
t+1

ﬂt+1
3
n Con
! z—trz+77t(,3t+10'2+ %2+10'N2 ) +| C11: (01 = 6441)

+\n+ (1=B1) | A+
t+1 +1
L+ 741 C3Cim, (1 + yia1) ,
+Clﬂti(1—%+l)5t+tfﬁrt"'clﬂt(l'*%ﬂ)%ﬂo'z-
Yie+l Yinl

where the terms in the box highlight the difference due to the slight difference in the
recursion of A;. Under similar conditions of B;41,¥++1, 7, and similar analysis, we

get
C -1 Cims-1
Apgr + LAHI + létﬂ <A+ fr A + i 01 +| C11: (61 — 6141)
t+1 t+1 B Yt
1 2 2 772 ’2
- By - 57711“1 + 1 (Brr10” + Yi+10 ) +2C10: Y10’

Since 1,41 < 174, we have
n Cin Nr-1 Cime-1
At+1 + ﬁt_:_lAt-'—l + fyt__'_lté‘t*—l + S At + ;t AI + »y: 6[ +

2 +2C n,ym(r'z.

1 ,
- EmFt + Ut(,Bt+10'2 + 7t2+10' !

— 77 Cin
Define Y;11 = Asq + ,T;A”l + ymt Or+1 +| C174416141 |, we have

2 ) + 2Cl’]t'}’t+10"2-

1 1"
n:B; + Enlrt <Y, =Y +77t(ﬁt+10'2 + 7t2+10'

Hence

T-1 T-

1 ’ 1"
Z(U,B, + EU,F,) <Yo—-A.+ Z (77,,8,+10'2 +2C 11 Yi410 24 n,ytzﬂa' 2) .
=0

1=

Next, let us consider ; =, 8; = 3, ¥: = y. Then we have

~

-1
1 1 C
—T(Bz +5Th) < —; + (,80'2 +2yCio'% + yzo-”z)) )

I
(==}

t

Since 17; = 1,¥: = ¥, B: = f8, in order to ensure the RHS is less than €2, it suffices to

have

Since
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5.2. SMOOTH FUNCTIONS

. LB Y
=mmn(—, ——,
7 (L VAC, \8C\C;

).

Thus the order of 7 becomes

B CyLr CyVC, CyVCiGC;
T = O |max

e ' e 7 ye?
( {CyLF CYVCiC30” Cyo?\C;, Cy\CC3Ci0"? })
= O [max R , >
€? e’ et et
where
n Cin 1 V€
CYZA()—A*+—A0+—60+C]T]5()SA()—A*+ Ao + 2———0p.
B Y 24C, V8Cs3

Finally, we state the convergence of SOX.

Theorem 5.1 Under Assumption 5.1 and 5.2, SOX with B = < < ﬁ,y =

402
: €2 n —in(_ L _B By ; _
mm(MG%L%m)Z, SBGIL 0_0),17 = mm(ZLF, NG nm), can find w with T ran
domly sampled from {1, ...,T} so that B [||VT||§ + ||VF(WT)||%] < €2 with an iter-

ation complexity of

T=0

5

2 e 7 e 7 B

{Cpr CyLloy CyLpo? CrLfnag}
max ,
€

2.2 232
_ 2 _ 2 _ 2 2 _ G GiG; n-B
where C; = 8G5L1,Cy = 4Ly +2,C3 = 2G5, 07 = =2 + =2 022,

O(F(Wo) = F. + 7= Ivo = VF(Wo)I3 + L1 £ luo = g(wo)13)-

@ Why it matters

3 2
Theorem 5.1 shows that SOX achieves a complexity dominated by O ( CY?}Z% ),

and Cy =

which is comparable to that of SCMA for finding an e-stationary solution. The
key difference is that the complexity of SOX is scaled by a factor of n/B, since
it must track and estimate n inner functions.

Proof. Assume that e is sufficiently small such that 88°G3L7 < 1. We have estab-
lished the following three inequalities:
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() B [F(wi)] < B[F(w)]+ TE[A] = ZE[IVF(w) 3] - T8 [Iwil13]

212 +1
(B E[Am1] < (1-B)E[A] + FT+n2E [Ivel13] +8BLIG3E [6]

+ B2 +4G5LiBY o,

G27]2

2 2 2
(©)E[641] < (1 - %)E[«»] + "B;

By“oy

E [IIveli3] +

Let us define y = ﬂ, the last inequality becomes
Y =5, q y

Gzn2 4n)720'§
2 E[lIvel13] + :

(E[6i11] < (1 =P)E[6:] + B

Define A; = 2(F(w;) — F(w,)) and B; = ||VF(wt)||2, I, = ||Vt||§ /2, A
IVF(w;) - Vt”%’ 0 = % lu; — g(Wt)”%, and Y; = A; + %At + %5t~
Then the three inequalities satisfy that in Lemma 4.10 with C; = 8G§L%, C,

Glo? GG}, _ 4no}
20212 +1),C3 =2G3, 02 = ZL2 4 L2 =B 602 = 20 72 = AG2L202. Then

B n-1° B
n, B,y satisfy
5 €2 _ . €2 € . €2B € )
= —, =mmn|——, —— | =min ) 5
402 7 8C0? 20" 128G2L2ncy? " 4G2L10g
1 B ¥ )
2LF " \4C, \8C\C3

Thus the order of T becomes

CyLF CY C1C30'" Cya2\/C_2 CYvC1C3C10'/2
T = O [max )

n:min(

2 7 €3 4 ’ et

€ €

=0

{CyLF CyL oy CyLpo? Cﬂ?naé})
max . s
€

2 e 7 e 7 éB
where
Cy
1 VG 1 ,
<2(F(wp) — F(w,)) + vo — VE(wo)||? + —|lap — g(w,
(F(wo) — F(w.)) 2«/c_2” 0 (wo)ll> mn” 0 —8(wo)llz

= 2(F(wo) ~ F(w.)) + O(L]—F)HVO ~ VEWOIE + O (L) 1w ~ g(wo)
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5.2. SMOOTH FUNCTIONS

5.2.2 Multi-block Single-Probe Variance Reduction

In this subsection, we present a second algorithm for solving FCCO with an im-
proved complexity than that of SOX under a stronger condition on g;. We replace
Assumption 5.2 by the following:

Assumption 5.3. There exist Gy, L1, L, > 0 such that

(i) fi : RY — R is G-Lipschitz continuous and Li-smooth;
(ii) Vgi(-, &) : RY — R is mean-squared Lipschitz continuous, i.e.,

E[IVgi(w, &) = Vei(W, O3] < L3lIw = w15, Yw, w';

(iii) F, = miny F(w) >> —c.

The idea is to leverage advanced variance reduction for tracking both the inner
functions and the gradient. A straightforward approach is to change the update of
u; ;-1 by using the STORM estimator and do similarly for the gradient estimator. In
particular, one may change the update for u; ; according to STORM:

u;; =

(1 =y)w -1 +7:8i (Wt;gi,l) + (1 =y (g (Wt§§i,t) — & (Wz—l§§i,t)) i€B

error correction

U r-1 i ¢ B
(5.9)

However, this naive approach does not work as the standard error correction term
marked above only accounts for the randomness in g;(w;; {; ;) but not in the ran-
domness caused by sampling i € B;.

In order to tackle this challenge, we introduce the following estimator termed
multi-block single-probe variance reduction estimator (MSVR):

= {(1 =Y +Yi8i (Wi Gie) + 7 (80 (Wes dir) = 81 (Ween3 i) P € B
’ u; i¢8
(5.10)
The difference from (5.9) lies at the value of y;, which is set as B(nl;—i) + (1 -
vy) with B = |8B;|. The MSVR estimator can track multiple functional mappings
(21,82, »&n), simultaneously, while the number of sampled blocks B; for probing
can be as small as one. It is notable that when B = n, i.e., all blocks are probed at each
iteration, y; = 1 —y; and MSVR reduces to STORM applied to g(w). The additional
factoriny;,ie., a; = B("l;f;) is to account for the randomness in the sampled blocks
and noise in those blocks that are not updated.
With u,, we compute a vanilla gradient estimator by
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1 ,
Z; = B Z Vgi(wﬁgi,z)vfi(ui,t),

ieB;

where B; C [n] is a mini-batch of B indices independent of B;.
Similar to SCST, we apply another STORM estimator to estimate

1 n
My =Egq[u] = 21] Vi (W)Y fiuis),

with an extra vanilla gradient estimator at previous iteration:

_ 1 ,
1= Z Vei(We-154; )V fi(ui —1).

i€eB]
This is computed by the following sequence:
Vi = (1= B)Vio1 + Beze + (1 = Br) (2 — Z—1). (5.11)

Then we use v, to update the model parameter. The full steps are presented in Algo-
rithm 15.

Critical: We use an independent batch $B; because z, depends on u,, which
depends on B;. If we use the same batch B; to compute z,, then

! :
M:=Esg.¢| 5 Z Vgi(Wr;é,-,,)Vﬁ(ui,z)]
i€B;
1 1<
=Es.5/|5 ZB] Vgi(we: 5;,,>Vﬁ-(ﬁi,t)] =~ Zl Vi (W)Y fi(ii ).
i€B; =

where U, independent of B; is defined in (5.12). However, we cannot construct
an unbiased estimator of M, _; since W,_; is not available in the algorithm.

An alternative approach is that we use u,_; and u,_, to compute z, and Z;_1,
respectively, with B;, i.e.,

1 ,
=y Z Vei(we; &l IV fi(wir-1)

i€B;

- 1 ,
T = ) Vai(Weri 4] )V fiio),

i€B,;
and compute v; by

Vi =(1=B)vi+ Bz + (1 = Br)(2; — Z,1).
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5.2. SMOOTH FUNCTIONS

Algorithm 15 MSVR
T T

1: Input: learning rate schedules {7:},_;, {v:},_;, {B: tT: |» starting points Wo, o, Vo
2: Let wi = wg — 170V
3:fort=1,...,Tdo

4: Draw two batches of samples B;, B, C [n]

5: fori € B, do

6: Draw two samples i ¢, &/, ~ Pi

7 Update the inner function value estimators

Wi = (L= ye )it +¥:8i (Wi Gie) + 7 (80 (Wes Gie) — 83 (We-13 Gie)

8: end for

9: Setuw;; =w;,-1,i ¢ B,
10: Compute the vanilla gradient estimator z, = % Yies, V& (Wi & )V fi(ui )
11: Compute the extra vanilla gradient estimator Z,_; = % Yies, V& (We13 & )V fi(ui 1)

12: Update the STORM gradient estimator v, = (1 — B¢)Vs—1 +B:2: + (1 — B¢ ) (s — Zs—1)
13: Update the model w by w41 = Wy — 17,V
14: end for

The converge analysis can be performed similarly with slight modifications.

Convergence Analysis

We first analyze the error recursion of
1 ) 1 n )
8= ~lu = g(Wl3 = = > Il — gi(wo) 3.
n n 4

Similar to the analysis of SOX, we introduce virtual sequences u; ;, Vi :

U= (L=y)w 1 +v:&i (Wes Gie) +v7 (80 (Wes Gie) — &0 (Wem13 i) 5 Vil (5.12)

Lemma 5.5 Consider the u; updates in Algorithm 15. Under Assumption 5.1 and
5.3 (ii), by setting y; = B(”l;_l;) + (1 =), fory, < %, we have:

12nG?2

B
- 2 [llw = wii ]

2B
E[6;] < (1 - T)E[(S,_l] + 7%200%

Proof. Let us consider a fixed i € [n]. With a probability B/n that i € B;, we have
u;; = u;;; otherwise u; ; = u; ;1. Hence,

2 [l — g (W) IB] = = 8 [l — (W3] +(1 = =) B w1 - gi(w) 3]

Ay Az
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Note that the first term A; in the R.H.B. can be bounded similarly as in Lemma 4.12
for using the STORM estimator by building a recursion with |[u; ;—1 — gi(w,_1)||%.
However, there exists the second term due to the randomness of 8B;, which can be
decomposed as

Ar = E[|lw; -1 — gi(We—1) + gi(We—1) — g (W) |I3]
=E[llw—1 — & (W3] +ELllg: (Wi—1) — g: (W) 13]

Az] A22
+E[2(w,r-1 — g:(We—1)) T (gi(Wio1) — gi(Wi))] .

Anz

The first two terms in RHS (A and Aj;) can be easily handled. The difficulty comes
from the third term, which cannot be simply bounded by using Young’s inequality. If
doing so, it will end up with a non-diminishing error of u; ;. To combat this difficulty,
we use the additional factor brought by y; (g; (W;; &!) —gi (W,—1;&!)) in A to cancel
A»ss. This is more clear by the following decomposition of A;.

A =E[II(1 —y) (i -1 — gi(We—1)) +a; (g (W) — gi(Wr 1))

Aqg A

+ Y (8i(Wes $iv) — 8i(We))

A3

+ ¥/ (gi(Wis &it) — 8i(Wi—13€i0) — 8i(Wi) + gi(We1)) 131,

Ay
where a; = y; +vy; — 1. Since E,;[A3] = 0, E,[A 4] = 0, then we have

Ay <E[||A1 + Apl3] +E [llA13 + Awl3] -

In light of the above decomposition, we can bound E[||A}; + A12||%] <E[||A; ||% +
|A12ll3+2A], A12] and E[||A13+A4ll3] < 2E[||A13][5]+2E[ || A14]I5]. The resulting
term E[ZAITIAQ] has a negative sign as A»3. Hence, by carefully choosing y;, we
can cancel both terms. Specifically, we have
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5.2. SMOOTH FUNCTIONS

B B
A1 < = (BUANIB+ A} +24T, A + 2E[I1 A 18] + 2B (11 A1e]13])

+E

=512 =P - om0 B[+ 2| Z ) - w0
+E §2az(1 —¥e)(8i(We) = gi(Wi—1)) " (Wi -1 = gi(wt—l))}

| B
| 2 st ) - w0 |

| B
+E ;27;2 (| Cgi (Wi ie) = 8i(Wem1: Lie) — 8i(Wy) + gi(“’z—l))”i ]

Combining the upper bounds of A; and A;, we have

n—B
n

EA] + A2
n
B B
< E[;(l —yo) 2w m1 — gi (w13 + ;%2 llgi(we) — gi(we—1)I5]
(B
+E ;2%(1 —ye)(gi (W) — gi(We—1)) " (w1 — gi(wt—l))]
B
+B|—2v7 [lgi(wis i) - gi(wt)||§]
B
+E ;2(7{)2 [[Cai (Wes Gie) = gi(Wamis Gie) — gi(we) + gi(Wimi )2 ]

+En

n—B
lJui o1 = gi(we—) 3] + E[Tllgi(wz_O - gi(wt)”%]

,n_

+E

- Bz(ui,t—l —gi(wi—1)) " (gi(Wi—1) — 8i(wt))}~

Since 82¢,(1-7y,) =22 B(("l__liz) (1—=7:) =222 then cross terms will cancel out.

The remaining terms can be merged and handled separately. First,

n—B

B
E ;(1 —yo) o1 — gi(weo) 15 + llw; ;-1 — gi(wt—l)”%]

B
< (1= Zy0Elluii-1 - gi(wi-DIB],

where weuse Z(1-y,)?+28 < 1-28y, 4+ By2 <18y, duetoy, < 1.Second

n—B
llgi(w:-1) —gi(Wr)H%

4n — 4B

B
;af llgi(we) = gi(We)l13] +

B (n-B)? L n-B
n B2(1-y,)? n

n

G%”Wz — W] ||% <

G%”Wt — W] ||%,
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B _(n-B)’ -B -B ( _(n-B)
where we use ;m+"7 < = (B(TW + 1)

due to y; < 1/2. Third,

4(n-B) 4n—4B 43
2 (fe e d) = 2

B
E[;M'f [[Cai(Wes i) = ge(Wamrs Gie) — gi(we) + g (Wi }

B_, 2
< ;2)’ zzE[ |(gi(Wis &ie) — gi(Wi—1s §i,z)“2}
2
B n—B 2 2 8n 4B , 5
< 2l——+1- G — W < G ~1ll5»
n (B(l ) 7t) 2||Wt W 1||2 ||Wt W 1||2
where we use BZ(B +1-y)% < %2(2(”—1_;3) +1)2 < BBy =

2(2n- B)(Zn B) < 8n-4B.
B

Combmmg the above results, we have

B
E[llu;, — gi(wo)ll3] < (1- —%)E[Ilui,t-l - gi(wi—1)I3]
12n
+

B G2||Wt Wi 1||2+ 2'}’10'0

Averaging over i = 1, ..., n concludes the proof. O

Lemma 5.6 Consider the u, updates in Algorithm 15. Suppose that Assumption 5.1
and 5.3 hold. With y,; < % and y; = B(I y 5+ (1 = y;), we have

2G2

E [”“t — U ||%] < 6B7’t 0'0 + 6B%E[5t 1]+ E [”Wt — Wi ||%] .

Proof. Since ||u; —u,— 1||2 Yy g —u;;_1]|2, with a probability B/n we have
u;=1u;;anda probablhty 1 — B/n we have w; ; = u; ;_1, then

E [”“t —W- ||§]

B n
= > E[H = YeWimt + Ve (Wes Gie) + 1 (80 (Wi i) — 8 (Wem1: Gie) IIE]
i=1

IA

B n
— >E [273 llgi (Wes i) = wiema|s + 2072 |lg (Wes Zir) = &0 (W {i,t)”i]
i=1

B < ,
= S E|2vE s (wii i) = wiamaB] +2BG)2GE Iwe = w5
i=1

IA

To the first term on the RHS, we use the Young’s inequality and Lipschitz continuity
of g;:
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5.2. SMOOTH FUNCTIONS

E [”gi (Wt§§i,t) - ui,t—l”i] <3E [”gi (WZ; gi,t) —&i (Wt)Hi]
+38 [llgs (w) = g (Wi-) 13+ 3 Jgi (W) = wroa

2
< 307 +3G3E I, = wi 1B+ 3 [lgs (wi-1) = i3]
Combining the above results, we have

E [”“t —W- ||§]

< 6By?0¢ + 6By E [6,-1] + 2BG3(3y? + (¥)DE [llw: — w,1113] -

With y, < % we have y, < %", which yields (3y? + (y))?) < 53%2. O

Next, we analyze error recursion of A; := ||v; — M; ||%

Lemma 5.7 Consider the v, updates in Algorithm 15 and suppose that Assump-
tion 5.1 and 5.3 hold. Then we have

24G2L?By?
%E[é,-] ]

E[A/] < (1 - B)E[A1] +
472 272
40G4L3n 24G2L3B

+ 4L§G% + E [||W,_1 - w,||§] + 2[3?0'2 + Ty, oy

Glo}  GIG:,_
where 0> = 212 i T B

B n—-1"

Proof. Similar to Lemma 5.2, we have E,[||z, — M;II%] < o2 Since v, = (1 —
Be)Vi—1 + Bz, + (1 = B¢)(z; — Z;—1), applying Lemma 4.11, we have

E; [IIve = Mel3] < (1= Bo) IVect = Moo |13 + B [2l|20 — 71 |12] + 28202
To bound E; [||z; — Z;- ||§], we have

E:[llz; — Z;— ||§]

1
<2E |5 DV gi(Wes & IV £i(wi) = Vgi(wes £ )V fi w3

: ’
i€eB;

1
+2E; 3 Z Vei(we: &{ DV fi(wi-1) = Vgi(Wt—1;({,t)vfi(lli,z—l)”;

ieB]
1
<2GILTE, |2 > s = wiell3| + 223G Iwe = wii

s [°24
i€ B,

1 N 2 22 2
= D i = w3+ 213G Iwe = w1,

i=1

=2G;L1{E,
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where the last inequality follows the Assumption 5.3.
As a result, we have

4G3L3

E[A/] <(1 - B)E[A_1] + E [lla; — w1 |5] +4L5GIE [llw,—1 — w,|[3]

n
+28%0°.

Combining with the result in Lemma 5.6, i.e.,

22
G
E [l —w1l13] < 6By7og + 6By E[Sr1] + ——2E [Iw, = wiall3]
we have
24BG3L7
E[A:] < (1 = B)E[A 1] + ————¥;E[6-1]
40G3L3n 24BG3L3y20?
+|4L3G? + —I"; ! )E (Wi = well3] + 28707 + — 2100 Y%
n
which completes the proof.
O

Lemma 5.8 For the update Wyy1 = W, — Ve, t >0, if n; < 1/(2LE) we have

1
F(Wy1) < F(w,) + G%L%T},é, + 1A = % ||VF(Wt)||% - H (IWie1 — Wt||%~
t
(5.13)

Proof. It follows directly from Lemma 4.9 by noting that

v, = VF(Wt)”% =|lvi = M; + M; - VF(WI)”%
2

<2A 42

Y VWOV i) — Y e (WO Vil (w)
i=1 i=1 2
2 n

1 2
Dl = ge(wo) 3.
i=1

2G3L
<2A +

n

Taking expectation over all randomness on both sides yields the desired result. O

Now we state the convergence theorem for MSVR.

Theorem 5.2 Suppose that Assumption 5.1 and 5.3 hold. Let 8 = 0(%5), v =

. nlL .
mln(s(ioé",l),n = m1n(i,O(Lleﬁz),O(L;oin),O(%)). Then MSVR can

find wo that is sampled randomly from {0, . .., T — 1} satisfying
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5.2. SMOOTH FUNCTIONS

E[[Iv- 113+ IVF(wo)ll3] < O(e).

with an iteration complexity of

( {CyLF CyLin CyLiovn CrLfcron})
T = O| max R .

€2 eB° &VYB T €B

> _ Glo}  GiGi(n-B) _ B B
=5 *t B(n-1) Cy = O(F(WO) - Fi+ nlenAO + _”le’léo)‘

¢ Why it matters

Theorem 5.2 indicates that when the initial estimators uy and v have an esti-
mation error in the order of O(€) such that Cy is O (1), MSVR attains a better
complexity than SOX for finding an e-stationary solution under stronger assump-
tions of the mean-Lipschitz continuity of g and Vg. Its complexity is comparable
to that of SCST in Theorem 4.4, up to a factor of n/B.

where o

Proof. We have established the following:

1
() F(Wist) < FW) + G3Lines, + iy = S IVE ORI = 7= Iweer = wil
t

24BG3L;
(ﬁ)E[At] <(1=-B)E[A ]+ TV;E[(St—l]
40G4L%n 24BG2L%0?
+ (403G + —2" | E [lwi-1 — w,|3] + 28702 + ——21-0y2,
B 2B 12nG?
@10 = 1= 228 16,011+ 25207 + T8 [l - wea ).

In order to apply Lemma 4.15, we let A, = F(w,) — F,, B; = ||VF(wt)||%/2, I; =
v,|12/4,8; = L2G25,, 7, = B2t Then the following three inequalities
2 172 n g q
(*)E[Ar1] < E[A; +1:A; + ntgt =By — 1 14]
(DE [Ar1] S E[(1 = Brs1)Ar + C177,,61 + ConyTs + By 0 + 77,07,
(0)E [6_t+1] <E[(1- 77t+1)5t + C377t2Ft + 7_’,2+10'U2]-

2 2
hold with C, = O(n/B),Cy = O(L?n/B + L2),C3 = O(L*n/B), o> = S22 4

GiGUB)) 2 = 0(L202n/B).o"? = O(L22n/B). Following the settings i
Bn—1) )9 = 199/ b), 0" = 101/ b). Following the settings in

Lemma 4.15, we can finish the proof with
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| fi | 8i | F
Lipschitz ~ Weak Lipschitz ~ Weak
continuity convexity continuity convexity

Monotonicity Smoothness | Weak convexity (o)

5560)| G pi 20 | G ) - | GipVd + iG]
" af >0

5531 Gy o1 o gf <0 ‘ G, - L, ‘ G LVd' +pG3

Table 5.1: Conditions of f; and g; to make F(w) = % i1 fi(gi(w)) weakly convex,

where g; : RY - R? and f; : RY — R.

—min(l € eVGC, € VG, )
! L' NGo 3G 8§Cso " 4G5

. 1 € B eB B
o o K P K |
envy2C, enL; [n
= =0 —1,
B 20 ( 20 VB
B
77=min(6n‘/,c_2 ALY )=min(0(6n),0(—)),
o n

oo 2030 o)
2
7 = 0 max CyLF’ CyLli’l’ CyLlo'\/ﬁ’ CYLl(TOn
€2 €’B VB eB

_ _ 1 1
where Cy = F(wo) — Fi + 4c277A0 + 4C37760'

5.3 Non-Smooth Weakly Convex Functions

In this section, we consider non-smooth weakly convex functions, where either the
outer function or the inner function are non-smooth. The group DRO objective (5.2)
falls into this category. Another instance is the two-way partial AUC maximization
problem as discussed in Section 6.4.3.

Assumption 5.4. We assume that

(i) Egerllgi(w:0) - gi(Wll3] < o7
(ii) Eeep, 1G:(W: O3] < G2 for any Gi(w: () € gi(w: ).

The second condition above implies that g; is G»-Lipschitz continuous.
Assumption 5.5. We assume either of the following conditions holds:

(i) f; is p1-weakly convex, G-Lipschitz continuous, and 0 f;(g) > 0Vg; g; is p>-
weakly convex.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

(ii) f; is p1-weakly convex, G-Lipschitz continuous, and 0 f;(g) = 0 or d f;(g) <0
Vg, and g; is Lo-smooth.

We first characterize the conditions on f; and g; to induce weak convexity of F'.

Lemma 5.9 Under Assumption 5.4 and 5.5, the objective function F is p-weakly
convex for some p > 0. If Assumption 5.5(i) holds, then p = G1p,Vd' + plG% and

if Assumption 5.5(ii) holds, then p = G1L,Vd' + png.
Proof. The weak convexity of f; implies that for any v; € 9 f;(g;(W)):

fi(gi (W) 2 fi(gi(W)) + v (8:(W') — gi(W)) — %Ilgi(W’) ~gi(wli3

PlG%
2

> fi(gi(w)) + v/ (8:(W) = gi(W)) — Iw —w13.

Let us first prove the weak convexity under Assumption 5.5(i). Since g; is pa-
weakly convex, we have for any U; € dg;(w)

’ ’ p ’
8i(W) = i(W) = UT (W —w) = Z[|IW —wll31. (5.14)

where 1 denotes a vector of all ones. Since v; > 0, we have

2
p1G; 2
lw — w3

fi(gi (W) 2 fi(gi(W)) +v] (U (W = w) = '%IIW - w51 -

GVd'p, +PlG§

> fi(gi(w)) + (Uivi)) " (W —w) — 3

llw—wli3
Since U;v; € dg;(w)0 f;(g;(w)), the above inequality indicates that f;(g;(W)) is p-
weakly convex, where p = G Vd'p, + png. As aresult, F(w) = % >y fi(gi(w))
is p-weakly convex.

Next, we prove the weak convexity of F under Assumption 5.5(ii). Due to the
smoothness of g(-) we have

L
g(W) —g(W) < Vg(W)T (W= W)+ 2w - w31,
5.15)
’ ’ ’ L2 7112 (
g(W) ~g(W) 2 Vg(W)T(w - W) = Z[lw - w31

If 0f;(gi(w)) > 0, we use the second inequity above and follow the same steps

as before to prove the p-weak convexity of F with p = G Vd'L, + png. If
dfi(gi(w)) <0, we will use the first inequality above to get:
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Algorithm 16 SONX
1: Input: learning rate schedules {7, tT:I’ {7t zT:1’ {B: tT: |> starting points wo, U
2: Wi =Wy
3:fort=1,...,Tdo

4: Draw a batch of samples 8; C [n]
5: fori € B, do
6: Draw two samples ¢;; ~ P;
7 Update the inner function value estimators by
vl w, =1 =y -1 +v:8i (W5 &ie)
V2 Wi = (L= Y)Wt +e8i (Wes Gie) + v (80 (Wes Gie) — 8 (We154ie))
8: end for
9: Setw;; =u; ;1,0 ¢ B,
10: Compute z; = é i 08i(We; &/ )i (i) o check text for discussion
11: Update the model w by w41 = w; — 17,2,
12: end for
P1 2
fi(gi(W) = fi(gi(W) + v/ (g:(W) — gi(W)) - 7”81’(“',) —-gi(Wli3
2
Ly 2 P1G2 2
> fi(gi (W) + v (Vgi(w) " (W —w) + - lw- w31) - Iw—wl3
G\Vd'Ly + p1G?
2 2
> fi(gi(W) + (Vgi(w)vi)) (W —w) — —— lw- w3
This concludes the proof. O

5.3.1 SONX for Non-smooth Inner Functions

Since we do not assume smoothness for the overall objective function, the key differ-
ence from the previous two sections is that we no longer have the descent lemma in
Lemma 4.9, hence cannot leverage the MA or STORM gradient estimators. Conse-
quently, we employ the vanilla gradient estimator z, to update the model parameter
w;+1. The updating steps are summarized in Algorithm 16, referred to as SONX.
The two options correspond to different strategies for updating the inner function
value estimators: v1 uses a coordinate MA estimator, while v2 adopts the MSVR
estimator.

For ease of presentation, we compute the vanilla gradient estimator z, using a
batch B, independent from 35;:

1
2= 5 D 98i(Wid] )9 fi(ui).

. ’
i€ B,
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

However, for SONX-v1 with MA estimator, we can indeed use the same vanilla
gradient estimator z, as in SOX:

1
7 = E Z agi(wt;gf,t)aﬁ(ui,t)~

i€B;

An alternative method for using both options is to compute z; by

1 ’
n= g 2 08w 6D i)
i€B;
Convergence Analysis

Similar to Section 3.1.4, we state the convergence using the Moreau envelope of F:
—mi 1 2
Fi(w) = min F(u) + ﬁllu - wl5.
Recall the definition:
. 1 2
prox ;p(w) = arg min F(u) + 1 o — wl|5.

We first present a result similar to Lemma 3.5 for standard SGD to account for
the bias of z,.

Lemma 5.10 Suppose Assumption 5.4 and 5.5 hold. Let p = p + p2G1 + 2p1G%.

Consider the step update of SONX, we have

n;pG*
2

— n
+ L [2GI||gi<w,> —uiella + pillgi(w) —ui,fn%].
i=1

n
Egr 8 [F1/5(Wee1)] < Fryp(We) + - éHVFl/ﬁ(WI)”%

If f; is further Ly-smooth, then

n;pG?
2

n
Egr 8 [F1/5(Wee1)] < Fryp(we) + - Et”VFI/ﬁ(wt)”%

- n
el Ly
=D [7||gi<w,> — i3+ pillgi (W) - ui,,n%].
i=1
where G* = G%G%.

If u;; = gi(w;), i.e., there is no bias in z, then the terms in the square bracket
are gone, the above lemma reduces to Lemma 3.4.

Proof. Define W, := proxg ;(w;) and E;[-] = E s [-]. First,
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(lze 1] [ > ||agi<wt,4;,t>aﬁ-<ui,,>||§]

i€B

<E [ leagl(wt, I)IIZGZ]<GZG2 G2,
i€B;

Following Lemma 3.4, we have

npG?
2

E; [Fl/p(wz+1)] < Fl/ﬁ(wt) + o (Be[2,1) T (W, —w,) + (5.16)

Next we bound the term E; [z;] T (W, —w, ) on the RHS of (5.16). Note that E, [z,] =
" 08gi(w)df;(u; ;). For a given i € [n], we have

fi(gi(We)) — fi(wiz)
2 000 (@i V) i) = Zlgi () = w1
> afi(w) (gi(W) — i) — p1llgi(W,) — gi(Woll3 = pillgi(we) — w13
> 0 i) (81 W0) ~0s) — 1 G~ will3 = prllgs(w) — w3
20007 |g1(0w0) — w4 i w) T (g = i) — 2 = i

~ G = will3 = il () — w13
000 51 W0) = 1) + 0 w1, D ()T (%1 = )

02Gy
—( +P1G MIw; — Wt”% - pillgi(w;) - Ui,t”%,

where (a) follows from the p|-weak-convexity of f;, (b) follows from that 9 f;(-) > 0

and the weak convexity of g;, (c) is due to ||0 f;(w; ¢)||2 < G1. When df;(-) < 0 and

g; 1s smooth, we can bound similarly with p, in the last inequality replaced by L.
Then rearranging the above inequality and averaging over i yields

1 n
Bylz) (W = we) = 30 fi(w ) T0gi(wi)T (%1 = wo)
i=1

Iy [fl-(gi(wf)) — figi(we)) + fi(gi(we)) = filur,)
i=1

S

ANTES 2 2
+P1G)IWe = well5 + pillgi (W) — w3

i (5.17)
Due to the p-weak convexity of F(w), we have that F(w) + %Ilwt - W||§ is (P — p)-

— 3 (i) (i (W) — i) + (PzTGl

strongly convex. Then [F(wt)+§||w,—w,||%] - [F(Wt)+§||wt—€vt||§ > 5L ||W, -

w,||3. It follows that:
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

L) ) = v | = PG = Fow)
i=1

. O - O O - 5.18
=[P Sl - [Fow+ 2w = wl | - B, -z O

P - N
< (5 -p)llw, - Wz||%

Combining inequality (5.17), (5.16) and (5.18) yields

meG> '
2 2

E/[Fi/p(WirD)] < Fiyp(we) + lIw; = W13

* % Z [fi(gi(wt)) = fi(uiy) = 0 fi(wi )" (gi(We) —uiy)

i=1
+p1llgi(we) — lli,z||§ .
We finish the proof by noting that [|[VFy5(W;)|l2 = pllw; — W,]|2, using
fi(gi(w) = fi(uiy) = 3 fi(ui ) " (gi(We) —wi) < 2Gyl|gi(Ws) —wisll2,
if f; is G1-Lipschitz continuous, or using
filgi(wy)) = fi(wi,) - Bf,-(u,-,,)T(g,-(Wt) -u;;) < %Hgi(wt) - ui,t”%’

if f; is L1-smooth. O

Convergence of SONX-v1

Recall the definition:

1 n
6r=— > I = gi(wo)l3.
i=1
Let us also define: \
, 1
67 =~ > I = gi(wo)lla-
i=1

From Lemma 5.10, the key is to bound ¢, and d;.

Lemma 5.11 Consider the update of SONX-v1, under Assumptions 5.4 and 5.5, with
constant parameters y; =y < 1 and n; = n, we have
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2 2422
B'y 8n GZGIU 2
El[6] <|1-—"] dp+——+4 .
[6:] ( 4n) 0 B2y? 70

By\' , 4nG? 5G 1
E o] < (1—4n)5()+ By +2+/y00.
Proof. From the proof of Lemma 5.1, we have
2
E [”ui,t - gi(w)||, ]

A G2 By2o2
(1_l) [”U,t L= gi(we-nl5| + ] ByzE[”w’” -wilz] + :1 ;

B nG2n? 22
@_lﬁﬂmw MMM”-T%Q[MMH

By:\’ 2mGAG22 . Bylo?
< (1= 22 s s ]+ ;o.

Applying the above inequality recursively for y, = y and n, = 7, we obtain

{Jucs - siowo)2]

b__)mo&mMﬁZ@‘_)

4 2.2
2nGj G By 0'0)

By n
2t 2
8n G2G177 3
(1—4—) |luio - gi(wo)|> + BQ—yz+4Wo,
where we use
t—1 oo 1 1 1
l—a)¥ < 1—a)¥ = = < —,Ya € (0,1).
JZ:;)( @) _jZo( @) 1-1-a)? a-a) " « @ e 1)

Averaging the above inequality over i, we prove the first result in the lemma.
It follows

& [l vl ] < /B s i)

By 8n? G4 2
< (1—5) Hulo gl(WO)HZ W+4y0

4nG3Gn
—_—+

(1 - i;_n) ||ul 0~ gl(W0)||2 27

Averaging the above result, we prove the second result.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Theorem 5.3 (Convergence of SONX-v1 with Lipschitz f;) Consider SONX-v1
and suppose Assumption 5.4 and 5.5 hold and f; is G- Lipschitz continuous. Let
) iterations, we have

(Bsz) ve = v = 0( 62) Then after T = 0(

n=n=
(IVF5(woll3 ] < 0(éd).
Proof. From Lemma 5.10, we have
23T (Fiy3 - Fy;5
sE[ 2 ( 1/p(wt)T 1/5(Wr41)) +npG?
n

T
1 2
E[; Zl IV F15 (w3

+2pp1E[ Z 5,]

1
+4pG1 [
Next, we bound the last two terms. From Lemma 5.11, we have
T 2t 2420
1 1 By 8n GzGlr] 5
R I (R R e
t=1 t=1
T T t
1 1 By 4nG3 5Gin
E|l=) 6| <= 1-—] 6+ ———+2 .
T;’ T;( 4n) 0T g, e
Since Zthl(l —-n)! ;14 for u € (0, 1), we have
1 4n50 SnZG;‘G%n2 5
+4yoy.
BZ)’Z

OWIE

T
=1

t

4ns|, 4nG Gm
+2\/_0'0

T
Z(s
t:l

From Proposition 3.2, we have

T
Z(Fl/p(wt) Fi5(Wei1)) = Fis(Wi) = Fis(Wryr) < F(wyp) = F(w.)

=1
Combining the above results, we have
+ r]ﬁG2

<E
nT

8n2G4G2 2
211 +4’yo‘§.

T
1 2
E[; 21 IV F1p(wo)ll3
4ns,  4nG3iGn 4né
+4pG 0y —2" " 42 +2p +
P I(ByT By \/70'0) ppl(ByT By

Plugging the order of 7, y, we finish the proof
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Theorem 5.4 (Convergence of SONX-v1 with smooth f;) Consider SONX-v1, and

Be3)
na'g ’

suppose Assumption 5.1 and 5.5 hold and f; is Li-smooth. Let n; = n = O(

no’2
Ve =y = 0(;—22), then after T = O(5_3) iterations, we have ]E[||VF1/ﬁ(W,)||%] <
0
0(€).

Proof. By using the result for smooth f; in Lemma 5.10, we have

<E

T
[221—1(F1/ﬁ(wt;_ Fl/p(WHl)) +TIﬁG2
n

T
1 2
E[; Zl IVF1p (w13
1
+p(L1+201)E|= ) 6.
P(Li+2py) [T ; t]
Plugging the bounds for the first and last term in the RHS, we have

2(F(wi) - F))

T
1 2 =2
E T ;1 IVF5(wo)ll3| <E T +1npG
4nsy  8n°G3Gin’ 2
+p0(L1 +2 + +4yoy|.
p( 1 pl)(ByT Bzyz 7/ 0

Plugging the order of 7, y, we finish the proof.

Convergence of SONX-v2

Similar to the first option, we need to bound ¢, §; first.

Lemma 5.12 Under Assumption 5.4, 5.5, by setting y; = y < %, =0y =

BZ’I;_B),) + (1 =), we have:
2t 204 32,,2
By , 24n°G,Gin
E[é;] < (l—Z) 50+4)/O'0+B—27,
, By\' 12 5nG3Gn
E 5] < (1—5) 5o +2y o0t =T

Proof is omitted as it is similar to that of Lemma 5.11 but based on Lemma 5.5.

Theorem 5.5 (Convergence of SONX-v2) Consider SONX-v2, and suppose As-
sumption 5.4, and 5.5 hold.

e If f; is Gi-Lipschitz continuous, by setting n = 0(3—54),7 = 0(;—2), then after
0

noyo

T = 0(%) iterations, we have E[||VF1//3(X,)||§] <€
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Bé?
noyy

o [f f; is further Li-smooth, by settingn = O(

reduces to T = O(32}).

),y = 0(;—22), then the complexity
0

The proof follows similarly to that of Theorem 5.3 and Theorem 5.4 and is left as
an exercise for interested readers.

5.3.2 SONEX for Non-smooth Outer functions

When f; is Lipschitz continuous and non-smooth, the best complexity derived in last
subsection is O (n/(Be®)). Can we further improve the complexity when the inner
functions are smooth? We present a method and its analysis in this section.

Let us make the following assumptions.

Assumption 5.6. We assume that

(i) Ezplllgi(w:0) —gi(w3] < o}
(ii) Erz[IVg:(W;{) = Vgi (W3] < 0
(iii) Bg-z,[IIVg:i (W O3] < G2,

Assumption 5.7. The following conditions hold:

(i) fi is p1-weakly convex, G-Lipschitz continuous,
(ii) g; is Lo-smooth and G,-Lipschitz continuous.

Moreau Envelope Smoothing of the outer function
A classical approach of improving the convergence for non-smooth functions in con-
vex optimization is smoothing, i.e., first smoothing the function and then using an

optimizer for solving the resulting smoothed function. We define the Moreau enve-
lope smoothing of f; as follows:

fi(e) = min 2iu - g|2 + fi(w), (5.19)
ueRd’ 2

where p; > p;. We present a lemma below regarding f;.

Lemma 5.13 If f; is G-Lipschitz continuous and p-weakly convex, then f; is L;-

smooth and G Lipschitz continuous, where L| = %

Proof. Define prox ;5 (g) = argmin,,cga %llu - gllg + f;(u). We have

Vi(g) = p1(g = proxy, ;5 (8))-

Due to the optimality condition of prox 5 (g), we have
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p1(g —proxy, 5 (8)) € 0fi(proxy, ;5 (2)).

Hence, Vfi(g) € 0f; (prox .5 (8)), which implies IV fi(2)|l < G1.The smoothness
of f; follows from Proposition 3.1. O

Relationship with Nesterov Smoothing

When f; is a convex function, its Moreau envelope smoothing is also equivalent to
the well-known Nesterov smoothing. To see this, let f;* denote the convex conjugate
of fi, ie., fi(w) = max, pa u'g — fi(g). Since f; is convex, we have f;(g) =
maxyeq W' g — f*(u), where U = dom(f;") is bounded as [|df;(g)|| < Gi. As a
result,

= . Pl 2 . Pl 2 a Sy
: = min —|ju - + f;(w) = min —|ju— +maxu 'u- f(u).
Fi(g) = min - jju— gll3 + ficw) = min, Sl — g + max uTu — ;7 (u)
By Sion’s minimax theorem, we can switch the min and max. Hence,
fi(g) = max min é||u—g||§+u'Tu—fi*(u’).
wel yeRd 2

By solving the minimization over u and plugging the optimal solution into the ex-
pression, we get

_ 1

T../ Py m2
- - — f - . 5.20
fi(g) max g u fi ') % [lu’{3 (5.20)

This is known as Nesterov smoothing of the function fi(g). When p is sufficiently
large, we can prove that f; is sufficiently close to f;.

Example

Example 5.1. Let us consider the Nesterov smoothing of the hinge function
f(x) = [x]4+ Let py = 1/& for some small € < 1. Then, the Nesterov smooth-
ing of the hinge function is

_ &
f(X)=ugg§Jux—§u2: £ ifo<x<e.
’ 0 o.W.

This is also known as the smoothed hinge function.
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Solving the smoothed problem

With a smoothed outer function f;, we consider optimizing the following problem
with some proper value of p;:

min F(w) = 1) fi(gi(w). s21)
i=1

Following Lemma 4.3, F () is smooth with a smoothness parameter Ly =GiLy +
G3L,.

The key concern is how the convergence of solving the above problem translates
to the convergence of solving the original problem (5.1). To address this question,
we introduce a new convergence measure, named approximate e-stationarity.

Definition 5.1 (Approximate e-stationary solution) A point w is an approximate
e-stationary solution to the original problem (5.1), if there exists (uy,...,u,) and
A; € 8 f(u;), Vi such that

| 2

lu; — gi(W)ll2 < O(e), Vi. (5.23)

<e, (5.22)

1 n
- Z Vegi(w)a;
py

We note that this condition is closely related to the KKT condition of the following
equivalent constrained formulation of the original problem (5.1):

1 n
i - 7 (u; 5.24
min = — ; fi(w;) (5.24)
st gi(w)=wu;,Vi. (5.25)

The Lagrangian function of this constrained formulation is given by
1 n n
F(w.ud) =~ Zl filw) + Zla,.T(g,-(w) ~w).
1= =
A solution (w, u, A) satisfies the KKT condition, if

1 n
= > Veiw); =0, 4 € 9 fi(w;)
n i=1

u; = g;(w).

Hence, an approximate e-stationary solution satisfies the KKT condition approxi-
mately when € < 1.

If f; is L1-smooth, an approximate e-stationary solution is also a standard O (¢)-
stationary solution. To see this, we have
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Algorithm 17 SONEX
1: Input: learning rate schedules {7,
2 Wy = Wo — 170V0
3:fort=1,...,Tdo

T T T . : :
=1» \¥t},—1» {Br},_,; starting points wo, Vo, Ug

4: Draw a batch of samples 8; C [n]
5: fori € B, do
6: Draw two samples ¢;; ~ P;
7 Update the inner function value estimators by
vl w, =1 =y -1 +v:8i (W5 &ie)
V2 Wi = (1= )Wt +e8i (Wes Gie) + v (80 (Wes &ie) — 81 (Wem13 &ie))
8: end for
9: Setw;; =u; ;1,0 ¢ B; B
10: Compute the vanilla gradient estimator z, = % Yies; V8i(Wi; &/ )V fi(uwiy)

11: Update the MA gradient estimator v, = (1 — B;)V,—1 + B:Z;
12: Update the model w by w;; = w; — 17, v,
13: end for

H% 7 ViV igi (W)
i=1

2

1 v 1 & L&
HZ ; V&i(W)V fi(gi(W)) = — ; Vgi(W)V fi(w) + ; Vg (W)V fi (u;)

2

IA

] n
= > GaLiflui = gi(W)ll2 + € < O(e).
n i=1

The following proposition states that an e-stationary solution to the smoothed
problem (5.21) is an approximate e-stationary solution to the original problem when
p1 is sufficiently large.

Proposition 5.1 Let w be an e-stationary solution to (5.21), when p| = 1/€, then w
is also an approximate €-stationary solution to (5.1).

Proof. Given that w be an e-stationary solution to (5.21), we have

<e€.

H% > ViV igi(w)
i=1

2

We define u; = prox 5 (g:(w)) = argminy f;(u) + %Hu - gi(w)llg and A; =
Vfi(gi(w)). Since V f;(gi(W)) € 8 fi(prox, 5 (g:(W))) = 8 fi(u;). As a result, we
have A; € f;(u;) and H% " Vgl-(w)/ll-”2 <e.

Due to the optimality condition of u;, we have g;(w) —u; € d f;(u;)/p;. Since f;
is G|-Lipschitz continuous and p; > 1/€, hence, ||ju; — g;(W)||2 < O(e). |
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Next, we discuss algorithms and complexities for solving the smoothed problem
when p; = 1/e. Since both inner and outer functions of the smoothed problem are
smooth, we can leverage the moving average gradient estimators. We present detailed
steps for solving the smoothed problem in Algorithm 17, which is referred to as
SONEX.

A step in implementing SONEX for solving the smoothed problem (5.21) is the
calculation of V f;(u; ;), which amounts to solving a proximal mapping of f;, i.e.,

_ . Pl 2
proxy, 5 (w;,) = arg [min, 7 o=l + fi(u).

In fact, V f; (w; ;) = p1(u;; — prox s, 5 (ui 1))

Convergence of SONEX-vl

Finally, we present the complexity of SONEX-v1 for finding an e-stationary solution
to the smoothed problem when p; = 1/e.

Corollary 5.1 (Convergence of SONEX-v1) Under Assumptions 5.6 and 5.7, if we
n 62 64
set wo such that LE[ZL, w0 — gi(Wo)ll3] < O(e), B = O(5),y = 0(5z)n =

min(e, 0(Be), 0(B2)), 5y = 1/e > pi, then SONEX-vI finds an approximate

n

2
no
Be(7) )

O (e)-stationary solution to the original problem (5.1) with a complexity of O(

Proof. The proof can be completed by using the convergence result of SOX with
noting the order of L; = O(p1) = O(1/e) and Ly = O(L1) = O(1/e). i

Convergence of SONEX-v2

SONEX-v2 is a combination of SOX and MSVR, i.e., with u; sequence from MSVR
and v; from SOX.

Theorem 5.6 (Convergence of SONEX-v2) Under Assumptions 5.6 and 5.7, if
2
we set uy such that %E[Z?:l |la; o — gi(wo)||§] < 0(€¥)oy), B = O(%),y =
0(2—22),77 = min(O(€), O(Be), O(B‘nﬁe )) and p; % > p1, then SONEX-v2 finds
0

an approximate €-stationary solution to the original problem (5.1) with a complexity

of ,
1 o° noy
T = O | max 35 s s
e’ € Be
G*0? G?*G%*(n-B
where 02 = -2 + ‘B(Zn_l))

Proof. The proof is similar to that of Theorem 4.3 except that the ¢ inequality in
Lemma4.10is replaced by the following for using MSVR estimators (see Lemma 5.5):
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(©) E[8m] <E[(1-9)d, + C’Ty + 720",
2
where 37=%,0"2 = 2"]_;r‘),C3 =0(n/B)
We only highlight the changes below and leave details as an exercise. First, the
condition on 77 in Lemma 4.10 is changed to

n<0

L B |7
L’\/C_‘Z’ CiCs

The settings on 3, ¥ remain the same as 8 = 0(5—22), y = 0(%). The iteration
complexity becomes:

_ CyLrp CyVCy CyvCiCs
T = O [max s >
e e e
( {CTLF CYO'ZVCQ CTVC3C10'/})
O [max s .

€? et ’ el

and Cy is changed to

n C]T] 1 VC]
CY:Ao—A*+—A0+f50SA()—A*+O(—)A0+O( 00
B Y v

2 VC3y

1 C10")

=A)g—A.+O0|—|Ag+ O 90.
° (ch) ° (V8C36 °

Then, as in the proof of Theorem 5.1, we substitute C; = O(L?), C, = O(L%),

_ 2 _ Gio? G?>G2%(n-B)
Cs; = O(n/B), o° = ]BZ + IB(Zn—l)

complexity expression and Cy, and obtain

,and ¢’ = O(no}/B) into the above

CyLr CyLpo? CynL?c
T = O | max YF,YFO—,Y 170 >
€? et Be3

_ 1 Z%O’O

Cy <O(F(wy)-F.)+0|— Ao+ O 00.

Lrp €

We finish the proof by noting that L; = O(1/e) and Ly = O(1/€) and Cy = O(1)

if 99 < 0(63/0'0).
a

5.4 Convex inner and outer functions

In Chapter 3, we discussed standard stochastic convex optimization and estab-
lished the iteration complexities of various algorithms. For general convex problems,
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Algorithm 18 ALEXR
T T

1: Input: learning rate schedules {7, },_,, {a:},_,, 6 € [0, 1]; starting points wo, y1 € Y X
Lo X yn,

2: Letw; = wy

3: fort=1,...,T - 1do

4: Sample a batch 8; c {1,...,n}, |8;|=B

for eachi € S; do
Draw a sample &; ¢, {,.’J ~ P;
Compute &;.; = gi (We3 4ie) + 0(8i(Wes Gie) — 86 (We—154it))
Update y; r+1 = arg maxy, ey, {y?gi,t - f7(3i) = &= Dy, i yi,t)}

9: end for

10: Foreachi ¢ By, yir+1 = Vit

® D9

11: Compute the vanilla gradient estimator z, = % Yies, [08i(Wy; {i”t)]Tyf,H]
12: Update W4 = arg miny, {z;rw+ Tl;, lw — w, ||§ + r(w)}
13: end for

stochastic gradient descent (SGD) achieves a complexity of O(1/€%), while for u-
strongly convex problems, its complexity improves to O(1/(ue)). These analyses
rely on the assumption of unbiased stochastic gradient estimators, which does not
hold for convex compositional optimization problems.

In this section, we introduce stochastic algorithms for a family of convex FCCO
problems, where both the inner and outer functions are convex. We establish that
these algorithms attain the same order of iteration complexities as SGD in standard
stochastic convex optimization. In particular, let us consider a regularized convex
FCCO:

. 1 ¢
min F(W) := = " fi(gi(W) +r(w), (5.26)
weRd n i~

where g;(w) = E;p, [gi(W; {)], the outer and inner functions satisfy the following
assumption.

Assumption 5.8. The following conditions hold:

(i) f; is convex, G1-Lipschitz continuous, and 9 f;(-) > 0.
(ii) gi is convex and G,-Lipschitz continuous.
(iii) r is u-strongly convex for some yu > 0.

Group DRO (5.2) could satisfy the above assumption when the individual loss
function is convex and Lipschitz with respect to the model parameter. Two-way par-
tial AUC maximization considered in Section 6.4.3 is another example satisfying the
above assumption when the loss function is convex and Lipschitz continuous.

Let f;* denote the convex conjugate of f;. We can write f;(g;(W)) as

fi(gi(w)) = max (y; gi(w) = f (yi)s
vieY;
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where Y; = dom(f;"). Since 0 < df;() and ||df;(-)|| < G1, hence Y; is a compact
set following from Lemma 1.8.
Then, we can convert (5.26) into an equivalent minimax optimization problem:

min max— 3 (57 g:(W) = £; (v)) + r(w), (527)
=1

weRd yeY n ‘

wherey = (y1,...,yn)", Y = Y X ---Y,. Thus, the above problem is convex-
concave problem under Assumption 5.8.

We introduce a method to optimize the above minimax problem. However, there
are several unique challenges: (i) updating all coordinates of y is difficult because it is
computationally prohibitive to traverse all data points i = 1, ..., n at each iteration;
(ii) we only have access to stochastic evaluations of the functions g;(w;{), which
limits our ability to update both the corresponding coordinate of y and the parameter
w.

5.4.1 The ALEXR Algorithm

To present the algorithm, we assume a strongly convex prox-function ¢; for the i-th
coordinate and impose the following conditions.

Assumption 5.9. Suppose y; is differentiable and obeys the following conditions

(i) i is py-strongly convex with respect to ||-||2, i.e., i (y) = i (y")+Vy; ()T (y—
’ Hy w12
)+ 5y =yl
(ii) Dg:(y,y") 2 pDy,(y,y’) for some p > 0.
(iii) The following proximal mapping can be easily computed:

Yi,r+1 = arg max {yiTg'i,z - fi i) = isz,— (yi,yi,t)} :
€Y [e7
A meta-algorithm, termed ALEXR, is presented in Algorithm 18. ALEXR em-
ploys stochastic block-coordinate proximal mirror ascent to update y, using the prox-
function y; for the i-th coordinate, and applies stochastic proximal gradient descent
to update w. Below, we consider different choices of the prox-functions ; and the
corresponding updates for y; r41.

ALEXR-v1 for smooth f;: using ; = f;

When f; is L-smooth, its convex conjugate f;" is 1/L;-strongly convex. We can use
i = f; to define a Bregman divergence Dy, (y,y") = Dz (y,)’).
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Critical: In this case, Assumption 5.9 (i) and (ii) hold with u, = 1/Ly, and
p=1

Let us consider the update of y; ;.1, which becomes:

. . 1 .
Yi,r+1 = arg max {)’,-Tgi,t =1 i) - _Df-*(yi’yi,t)} Vi€ B;. (5.28)
Yi€Y: a; !

i

The following lemma provides an efficient way to compute y; ;+1, which also builds
the connection to the sequence of u; ; in SOX and MSVR.

Lemma 5.14 Let w; ;1 € 0f(yi,s). Then fori € B, we have y; 41 = V fi(u; ),

_ 1 [ 7
where u; s = mum_l + Té,gi»f'

Proof. For the problem (5.28), we have

T~ * l

Vi &ie — 1 (yi) — _Dfi* (Yi»yise)
@y
~ * 1 * * *
=¥, & = [7(yi) - a—(fi ) =08 i) T (i = yiu) = f7 (i)
t
T(~ 1 * 1 * l * T 1 *
=y; @in+ —0f (i) —(L+ )7 (i) = —0f (Vi) Yie + — 1 Yine)-
Qy ay (077 077

Hence y; 41 € argmaxyey, ] (1558 + 12707 (Vi) = f7(vi). If we define
5 1
Ui = Tp5-8ie + Tog 07 (Vi) we have

Fluig) = max yluie = f7 (i) = Vi Wio = f7 Gisn).

IE L
Hence, u; ; € arg max, yl.THlu — fi(u) and therefore y; ;41 = Vfi(u; ;). ]

If f; is a Legendre function such that V fi’l = V /7 (see Lemma 1.8). Then, we can
derive the following equivalent update of u sequence such that y; , = Vfi(u; ;_1).

1 a ~ s
w, = {Tarui,t—l T Tiq, 8its ifi € B, . (5.29)
W -1 O0.W.
When 6 = 0, the equivalent u update (5.64) becomes:
a o .
Wi = (1= et g (Wi G) Vi € By (5.30)

This is the same as the moving average estimator in SOX with y, = @, /(1 + a;).
Using the equivalent u sequence, the stochastic gradient estimator becomes z; =
% Yies, [0gi(xs; {l.”t)]TVﬁ(u,-,,). If the regularizer r is not present, the update of
the model parameter becomes W, = W; — 1;Z;. In this case, ALEXR with 6 = 0 is
the same as SOX with 8; = 1. We will prove its convergence for convex and strongly
convex regularizer r.
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When 6 > 0, the equivalent u update (5.64) becomes:

a a ba
u,=(1- 1+tat)ui,t71 + 1+zatgi(wt;§i,t)+ 1+;I (8i(Wi: &r) = gi(Wi-1:41)).
(5.31)
This is similar to the MSVR estimator with y; = lf{tz, and y, = ﬁ‘;’ . However,

the key difference is that y; in MSVR is larger than 1, while it is smaller than 1 in
ALEXR for convex problems. In practice, setting y; < 1 is a better choice. We will
prove a better convergence of ALEXR with 6 € (0, 1) for a strongly convex r.

ALEXR-v2 for non-smooth f;: using a quadratic function ; (-)

When f; is non-smooth, we cannot use f;* as the prox function. In this case, we will
use a smooth and strongly convex ;. a quadratic function ;(y) = %H y||%.

Critical: In this case, Assumption 5.9 (i) holds with uy = 1, and Assump-
tion 5.9 (ii) holds with p = 0.

Example

Example 5.2. For the update of y; 111, consider the example f;(-) = [ -4, as
used in GDRO and TPAUC maximization. In this case, the conjugate f;'(y)

is the indicator function of the interval [0, 1]. Consequently, y; ;41 can be
computed as:

_ 1 . )
Yi+l = arg max {y?gi,t -—(i- yi,t)2} =Ijo,11(Vi,r — @:8ir), Vi € By,
yi€[0,1] 2a,

where 1| 1](+) projects the input into the range of [0, 1].

5.4.2 Technical Lemmas

To facilitate the analysis, we define (W, y.) as the saddle point to the minimax prob-
lem and
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1< \
F(W.y) = — 3 v78i(W) = f; (30) +r(w).
i=1
8= @ Bn).

_ _ . 1 .
Vir+1 = arg max {y?gi,z =17 (yi) = —Dy, (yi,yi,z)} ,Vi € [n]
i€Y; (073

Yi€Ji

n
Dy(y,¥) =) Dy, (vir 7).

i=1

Note that y, is a virtual sequence, which is updated for all coordinates from y,
making it independent of B;.
We make the following assumption regarding the stochastic estimators.

Assumption 5.10. We assume that

(i) Beerlllgiw:0) —gi(wli3] < 0.
(i) Beop [IVgi(w:0) = Vei(WI3] < o3
e n 2
(iii) Ej-u, [||y,~Vg,-(w) - % 2 y,-Vgi(w)”z] < 62 for any fixed y, where U, de-
notes a uniform distribution.

Lemma 5.15 The following holds for any w,y € Y after the t-th iteration of Algo-
rithm 18.

F(wt+1’ Y) - F(W, yt+1) (532)

2, 21,

1 1 1
< —w- Wr||% - (2_77t + 5) W — Wi ||§ = — |Wes1 — Wz||§
+ A (y) + B (y) + Ci (w),

where
1 1 Jel _ 1 _
Ai(Y) = —Dy(y.¥)) = (— + =)Dy (¥, ¥1+1) = — Dy V41, ¥1)
nay na; n nay

1< _ ]
Bi(¥) =~ > (8i(Wiat) = 8i) (i = Fise)
i=1

CZ(W) = %Z(&'(WHI) - gi(w))T)_’i,Hl - Z;I—(WHI - W)~

i=1

Proof. Following Lemma 3.10, for all i € [n] the dual update rule implies that for
any y € Y it holds

8L i = Viue) + [ Giert) = f7 (i)
1 1 _ 1 _

< —Dy, i, yip) = (— +P)D¢,» Vi» Vire1) — —Dy, (Vire+15 Vi)
077 7 (o7

Averaging this inequality overi = 1,...,n.
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L, - v, 1<,
n ;gi,t(yi,t = Vies1) + n lzzlfl (Fir+1) — 0 l:Zlfl (i) (5.33)

1 1 _ 1 _
< —Dy(y.¥0) = (— + 2Dy (y.5101) = — Dy (Fra1.¥0)-
nay nay n nay
According to Lemma 3.6, the primal update rule implies that
2/ (Wie1 = W) +7(Weg1) — (W) (5.34)

1 u 1

2 2 2

llw— Wt||2 - (_Zr] + 5) [lw — Wt+l||2 - — W1 - Wt”z .
t

S _
2n, 2n,

By the definition of F(w,y), we have

F(Wei1,y) = F(W, ¥r41)
1< 1< 1 ¢
= ; i 8i(Wis1) — - ; F i) +r(Wesr) - - ; Vi 10181 (W)
1 n
= 3 Giaen) = r(W)
i=1
1< . - I o, v,
= Z 8i(Wrs1) (Vi = Viee1) + - Z 17 Gige1) = p Z 1)
i=1 i=1 i=1
1 n
= (@ (Wert) = 8i(W) T w1 +7(Wist) = r(W).
nia
Combining the equation above with (5.34) and (5.33), we can finish the proof. O

Next, we bound the three terms A; (y), B;(y), C;(w) separately.

Lemma 5.16 Let 7, = 1/a,. Fory that possibly depends on all randomness in the
algorithm and any Ao > 0, we have

T T+ _ T, _
BA/(W] =B | 2Du(y.¥) = T LDy (v.5em) = DGy | (535)

n+p(1-2) T +p | = _
<E|—— "Dy (y.¥0) - tB Dy(¥,¥s1) | = —E[Dy (Fr41,¥1)]
n
Ao(7: + p) . .
+B|——2(Dy(y.9:) = Dy (¥, §1+1))
n

L =B+
2,u¢,/lonB

D UIVei i) = Vi ol
i=1 |

where the sequence {§,}:,¥, € Y is virtual. In addition, fory., we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

T T+ _ T _
E[A;(y.)] =E [;tD.p(Y*,Yt) - tTpD¢(y*,Yz+1) - ;tD«p(Ytﬂ,Yt)] (5.36)

w+p(1-7) Ttp T ]
<8 Dy vy = LDy (v v | - SB[y Gy

B

Proof.

T T + _ T; _
;’Dw(y, ye) - tTpr(y, Vis1) — ;tsz(YHI,Yt) (5.37)

Cn+p(1-2)
- B

T, +p T; +p -
+ ZTDlﬂ(y’ Ve+l) — ZTDw(y’ Yis1) +

T; +p T, _
Dy(y.y:) = ——=—Dy(y, Y1) — ;’D¢(y”1,yz)

B
(B—n)(1: +p)
—F——FD .
B v(¥.y1)
For bounding the last three terms, we consider the following:

B —n)
nB

1 1 _ (
=Dy, (yi» Yies1) = ;Dd/,— i Vire1) + Dy, (yi»yiz) (5.38)

B

1
=3 Wi o) =i Yiger) = Vi i) T (Vi = Yises1))

1
- (Wi (i) =i Gige1) = Vi Fise1) " (i = Fiee1))
(B—n)
nB

1
= [; (‘//i()_’i,tﬂ) - %'ﬁi()’i,m) +

+

(Wi(yi) —wi(yie) = Vi (i) " (i — i)

n—

B
B l//i(yi,z))]

+ Vi (i) Vi

1 1 B _ (B-n)
Vi Yier1)  Vinr — =i (Fige1)  Vigr1 +
B n B

B
Vi (yie)) T yi -

1 n - n-
+ = (=S Vi (Vi) + Vi (i) +
n B B

#

Taking expectation over B; for the first two terms in the brackets of the above bound
will give zeros. This is because that both y; ;41 and y; ; are independent of B; such
that

n—

B
Wi (Vit)s

B
Eg, [Wi(yie1)] = ;‘/’i(yi,ml) +—

n—B
Vi (i) Vi

B _ _
Eg, [Vi(yis1)  Yige1] = ;Vlﬂi(yz',m)Tyz‘,m +—

n—

B
Vb (i)
n

B
Eg, [V¢i (i) = ;Vlﬁi(yi,m) +

Next, we bound the § term. When y = y., expectation of § is also zero which
proves (5.36).
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When y is possibly random, let us apply Lemma 3.13 to the update $; 41 =
arg min, —Aztv + 20Dy, (v, $i,1), Vi (Ap to be determined), where

n—

B
3 Vi (vir)

Air = —%V¢i(yi,z+1) + Vi (i) +
is a martingale sequence due to
B, [(Wi 1) = VO] = = (Wi Giasn) = Vi (i),
We have

E[#] <E

A . . 1 2
FO(D% (Vi i) = Dy, (,Vi,)’i,m))] + WE [”Ai,tnz] .
Note that Eg, [(V¢; (yi.i+1) — Vi (vi )] = 2(V; (Fie1) — Vi (viye)) such that

2
2

By, ||l | = B,
n? 2 i} 2
5 Vi Yiaer) = Vi eo)|s = (VWi Gret) = Vi (i)

% Vi (Fira1) — Vl//i(yi,t)ni —|(Vei i 1) - Vd’i(yi,z))”i .

(Vi Fiee1) = Vi (i) — %(V%()’i,m) = Vi (vir)

Eg,

IA

IA

Thus, we have

E[f] <E

Ao R N
7(D¢/,- (i i) = Dy, (yis yi,z+l))]

n—-B
E

+ 21y AonB [”V%(ii,m) - Vlﬁi(yi,t)”;] .

Averaging (5.38) multiplied by 7; + p and combining (5.37) finishes the proof. O

Lemma 5.17 Suppose ; is p1y-strongly convex. For any Az, A3, 44,45 > 0 and y
that possibly depends on all randomness in the algorithm, we have

l n
BIBi(y)] = — > E(8i(Weet) = &) (i = ient) SE[La —61] (5.39)
i=1

, G+ UOBIDy Gyl | G2E||Wes1 — Wl . G20E ||w; — w,_1 I3

Hyh 243 244
(1+3.50+3.50%) 020,  (1+60)0f 003ls
+ + +
My 2y 2y
1+0 ~ N 0 . .
+——E[Dy(¥,¥:) = Dy (¥, ¥r+1)] + —E[Dy (y,¥:) — Dy (¥, ¥i+1)],
I’l/lz I’l/lj
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5.4. CONVEX INNER AND OUTER FUNCTIONS

where I'; = % Z:’:I(g,-(w,) —gi(wWwe )" (yi — yir) and §;,§; are some virtual se-
quences. In addition, we have

1 S * *
E[B;(y.)] = - ZE(gi(Wm) = &i0)  (Vie — Yirr1) < B[, —6I7]  (5.40)
i1

+ (/13 +/149)E[Dw()_’t+l,Yt)] + GﬁE ||Wl+l - Wt“% + G%QE ||Wt — Wi ||%
My 2/13 2/14
(1+3.50+3.560%) 0,

+ b
Hy

where T} == 1 57 (gi(W;) = gi(Wi—1)) T (Vi = Virt)-
Proof. Since
&it = 8i(We3 Lit) +0(8i(We Live) — 8i(We-154it)),

we have

1 n
= D (81 Wia1) = 80T (i = Fias) (5.41)
i=1

_1+0
- n

Z(gi(wt) —8i(Weis Gie) " (i = Fisee1)
im1

I

0 n
D) )G =)

I

13 i (Wean) = g (W) + 68 (We—1) = g (W) (vt = Fiert)
n i=1

I

Define
. 1 .
Vil = Mgifé?;({UT((H@)gi(Wz)—Hgi(Wz—l))—fi (U)_Q_Dwi(l}’yi,l)}v\/l € [n].
i t

This update differs from that of y; ,,; in that it uses full gradients instead of stochastic
gradients. We decompose the I term in (5.41) as
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”QZ@(W» 8(Wi )T Ot = Fiann)

- 10 Z(gl(wt) 80 (Wi &) (ot = Fier)

I

1+92(g1(wt) 8i(Wii i) T yi— 1+92(&(W:) 8i(Wii i) Vit -

I I3
Taking expectation over ¢; ;, Vi will make E, [I3] = 0. Below, we will bound I; and
L.

[ <— Z “gz(wz) 8i(We i, t)||2 Hyz t+1 = Vi, I+1||2

Since Dy, (yi, yi,r) is py-strongly convex, Lemma 3.8 implies that

1¥ire1 = Viestll2

< 2L ((1+0) lgi(w) = gi(wes i)l + 0 s (wi1) = giwe1: 20,
Hy

Hence
(1 + 9)0/,

E& L] <
n,u,/,

VB |1+ 1.50) [Jgi (wo) = gi (Wi £ +0.56 [lgr(wi-1) = gr(wi-1: 0|

i=1

(1+0)(1+20)07a;
< .
Hy

5.42)
Next, let us handle I,. Let us define an auxiliary sequence {¥; };>1,
- . T 1 -
Vw1 = argmin{(g; (w3 i) — 8:(We)) v+ —Dy, (v, 5i1)},
veY; A

where A > 0. Lemma 3.13 implies that

/120’3
2,uw

1 3 N
(gi(We) = gi(Wes &ig)) Tyi < A—ZE[D% (Vi Fist) = Dy, (vis Fise1)] +

Averaging over i = 1,...,n and multiplying (1 + 6) yields a bound of I:
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1+6 (1+0) 107
E[I,] <« —E[D y;)— D ¥ +— .
2] < ) [Dy (¥, ¥:) = Dy (¥, Vr+1)] 2
As aresult, the I term in (5.41) can be bounded as
146 y y (1+0)0? (1+6)(1+20)02a;
E[l] £ ——E[Dy(y,§) = Dy (¥, Frs1)] + 2+ et
ny 2py Hy
(5.43)
Similarly, the II term in (5.41) can be bounded as
e y } 0ds07  0(0.5+1.50)03a;
E[I] < —E[Dy(y,¥:) = Dy(y,¥r+1)] + + . (544
nds 2y Ky

where
Vir+1 = arg Helgl_{(gi(wt—l) —8i(We—154i4)) v+ AsDy, (v, ¥i )}, Vi

Next, let us bound III. Recall I'; = %Z;’zl(gi(wt) —gi(we—1)) " (y; — yir). For
any A3, A4 > 0, Il can be rewritten as

1 v _
Il =Ty — 61 + - Z(&'(Wm) =8 (W) (Vir+1 = Visee1)
i=1

- g Z(&'(Wr) = 8i(Wim1)) " (Viye = Vie1)
i1

2 = 2
G% IWis1 — Wt”z + A3 |lyee1 — Yt+1||2

< TIyy — 6T
Sl rt 215 n
G20 Wi —wiill2 A40llys = Vet
2 t t-1llp 40 |ly: Yt+1||2
+ + .
2/14 2n

- e ‘ o

Note that y; ;+1 = J;,41 if i € B, and y; 141 = yi,, otherwise. Then, |ly;+1 — ¥e+1l5 <
o 2

ly: — ¥:+11l5 such that

G% ”Wt+1 - Wt”% G%G ||Wz - W1 ||%
R * 2
. (43 +/149)D¢/(}_’t+1»Yz)_
fyn

M < Ty — 6T, +

(5.45)

Combining (5.43), (5.45), (5.44), we have
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E[B;(y)] < E[I}41 - 617]

1+6 - - 0 . .
+ n_/le[D“’(y’ ¥0) = Dy (¥, 5] + @E[Dw(y, Y1) = Dy (¥, ¥141)]
, B+ UOBIDY Frt, )] GRE Wi = wWilly  GIOE [Iwi = Wil
My 213 224
L ax 0) 207 . o s L (1+3.56+ 3.50%) 05y
24ty 2ty Hy

O

Lemma 5.18 When 0 = O, for any A2,44 > 0 and y that possibly depends on all
randomness in the algorithm, we have

1 & ~ . G2E [IWes1 — will3]
B[B,(y)] = — > B(gi(Wir1) = &) (v = Fiin1) < ———— 2+ 40,6
e 44
1 _ ~ /120'3 Uga/,
+ —E[Dy(y,¥:) = Dy (y, V)] + + : (5.46)
nA, 2y Hy

Proof. For ALEXR with 8 = 0, we have g; ; = gi(W;; {;.,). Then, for any 14 > 0 we
have

1< 3 B} 1\ i}
- Z E(gi(We1) = 80) T (yi = Vije1) = — Z E [(gi(Wes1) — 8 (We) T (i = Fiee1) ]
e i
1 n
= > B (8w = 8i(Wei L) T (i = Fian)] - (5.47)
i=1
We bound the first term on the RHS by Young’s inequality:
1 ¢ _
" Z: E [(8i(Wrs1) = 8i(W:)T (i = Fis1) ]
i=

1 v G%||Wt+l - Wt”% 2 G%||Wt+l - WIH%
< - E ——= + ||y — Vi <2 2 14G2
n L ( A 4||Yt yt,t+1“2 4 1

The second term in (5.47) can be bounded similarly as (5.43) by:

1 n
= D E[(si(w) = gi(We i) T (i = Fien)]
i=1

1 . .
< —E[Dy(y,¥) — Dy (y,¥er1)] +
n/lz

Combining the above inequalities together, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1 <& B _ G3E [lw; I—V"t”2
;;E(&'(Wm) ~ &) (i = Fiue1) < —2 [ 4;4 2 +424G3

2 2
/120'0 . loryedt

2y gy

1 5 _
+—E[Dy(y,¥:) — Dy (y,¥ir1)] +
n/lz

Lemma 5.19 If g; is Ly-smooth and n < 2(;1?, then

E[Ci(w.)] =E

i=1

1 n

- Z(gi(wtﬂ) - gi(w*))Tyi,Hl - th (Wt+1 - W*)l (5.48)
n

2 1 2

<noT+ 4_77 [IWeer = well5 .

If g; is Go-Lipschitz continuous, then

E[Ci(w.)] =E

1 n
- Z(gi(wm) = &i(W.) Fige1 — 2] (W1 — W*)] (5.49)
=1

1
< (e +4GiG3) + ™ [[Weat = well3 -

2.2 22
2 _ Gio; G{G;(n-B)
where 0° = —5 Bon=T)

Proof. We define A; = 5 S, [08i(We; £l ) yiest — 5 20 [08i (W1 T Fi 1
Similar to Lemma 5.2, we have E, [||A, ||§] < 2. To proceed, we have

1 n
= D (81 We1) = i (W) Tt = 2 (Weat = W)
i=1

1 v _ 1 v _
= Z(gi(wm) —8i(W)) i1 + - Z(gi(wt) —&i(W.)) Pi e
im1 =

1 n
+ = > ([9g: (W) Tt + A)T(We = Wiaa).
n i=1

Since g; is convex and Y; c R as 4 f; = 0, we have

1 ¢ 1<

- Z(&'(Wr) —8i(W.) Jism < - Z[Vgi(wt)]T(wt - W) Fise
i=1

i=1

Adding the above two inequalities, we have
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1 n
- D (& (Wia1) = 8i (W) Fi a1 = 2] (Wiw = W.) (5.50)

i=1

1 ¢ 1
<~ D (@i (Wit) = i (Wo) = Vi (W) T (Weat = W) 5001 + - Z AL (We = W),

n
=1

i=1 i
If g; is Ly-smooth, the first term in (5.50) can be bounded by
1 n
- Z(gi(wm) —8i(We) = Vgi(we) T (Wes1 — We)) Fira
i=1

Gi1L,
2

G n
< 71 Z ||gi(wt+1) —gi(w;) = Vgi(w,) " (Wi1 — Wt)“2 < IWes1 — Wt”% .

i=1

(5.51)
To bound the second term in (5.50), we note that Eg [A,;] = 0. Let us define
W41 = arg miny WT,ll Vg (W) 91 + # lw — w, ||§ + r(w). Then we have

E =E

1
n

1 n
- Z Al (We = Wra)
)

n
T ~ N
Z Ay (Wo = Wi +Wpyg — Wt+1)l
i=1

=E

>

1 n
" Z Al (Wes1 — Wea)
i1

where we use the fact that

E =E

1< .
= D AT (W =)
i=1

1 v .
n Z Eg,.¢ [A]T (W, - wt+1)l =0.
i=1

According to Lemma 1.7 we have

no?
1+ un

E[A:(WHI - Wt+1)] < l+,u77

Then, combining (5.50), (5.51) and (5.52) leads to

ElA 3 < (5.52)

] n
- ZE[(&'(WHI) - 3i(w*))T)_’i,t+1] - EZ,T(W,H - W)
n i=1

no? N LyG,

2
> W, - W ’
P e il

which finishes the first part by noting the condition on 7.
If g; is G,-Lipschitz continuous, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

G n
= D l8i(Wear) = gi(We) = Dgi(We) (Wear = W)l (5.53)

i=1

1
<2G1G [|Wi1 — Willp < 774G%G§ + % [Wes1 — Wt||§ .

Combining (5.50), (5.52), and (5.53), we get

n
Z E[gi(Wi1) — &i(Ws) " i 1] — Bz (Wit — Wo)

1
n
i=1

1
< n(c? +4GiG3) + i [West — w13

5.4.3 Strongly convex objectives

In this section, we derive a complexity of O(1/¢) under the the following condition.

Assumption 5.11. We assume that the function r is u-strongly convex (u > 0) and
each f; is Li-smooth, both with respect to the Euclidean norm || - ||5.

With this assumption, the minimax problem becomes strongly convex and strongly
concave since the dual f;" is 1/L1-strongly convex with respect to || - [|2. In this case,
we will establish the convergence of u||w — w, ||§

Critical: Under Assumption 5.11, parts (i) and (ii) of Assumption 5.9 hold
for both variants of ALEXR. For ALEXR-v1, we have 1y, = 1/L; and p =1,
whereas for ALEXR-v2, we have 1y, = 1 and p = 1/L;. Hence, the following
theorem holds for both variants of ALEXR.
Let us introduce a few notations:

_ EUyp

a= 207 by =3(0? +4G3G3), by =30".

Theorem 5.7 Suppose Assumptions 5.8, 5.10 and 5.11 hold.

o [f g; is Go-Lipschitz continuous, by setting a = W, n= % and

(,l§ HE
f=max{1-—2,1- )
l+a by + ue

ALEXR finds a solution Wt such that E[ u||Wr.1 — W, ||%] < € with an iteration
complexity of
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i 5 log(3Y/6)) =0

r-of

(n (0'2+G%G§) n(rg ))
max | . .

1 Ue " Bepyp

o [f g; is further Ly-smooth, by setting a = W, n= 10__/19 and

al ue 7
#=max{l - —2- 1 1 ,

l+a _b2+,u6’ _2G1L2+u

Jor sufficiently small €, ALEXR finds a solution wr, such that E[u||wrs, —
W, II%] < € with an iteration complexity of

1 - GiL 2 nog
T=0 log(3Y/€e)| = O | max L 2,2,0-—, 0 .
1-6 B e Beuyp
h Y = H 2 2/7D d 2 _ G%O—ZZ GIZG%(nfB)
where Y = 5{[Wi = W.l5+ F Dy (ys, y1) and 0° = =5 Bn-D)

@ Why it matters

For smooth functions g;, the iteration complexity is improved in the sense that

the O(1/€) dependence is scaled by the variance of the stochastic estimators. In
GG}
HE

contrast, for non-smooth g;, the complexity always has a term
of variance.

2 independent

Proof. We first consider non-smooth g;. Combining (5.32), (5.36) for A;(y.), (5.40)
for B;(y.), (5.49) for C;(w.) together we have

E[F(WtﬂaY*) - F(W*, yt+l)]

1 u 1
2 2 2
W = Wil = (5= + ) IWe = Weaill; = 5= IWee1 = will3

P
2n, 2n, 2n,

B
+E ij(y*,y;) - %Dw(y*,ym) ~ 2B Dy ey
n
(A3 + UO)E[D y (Fi+1,¥1)]
Hyn
. G2E [|Wrs1 — W I3 . G20E |lw; — w,_1l3 . (1+3.50 +3.56%) 0 e,
2/13 2/14 My

+E[T

t+1

-0r7] +

1
+17: (02 +4G3G3) + I, Wee1 — w3
t

Define Y, ; = % [|w. — W,H% and Yo, = %Dlp(y*,y,). Since
F(wt+l’Y*)_F(W*’yt+l) > F(wt+],y*)_F(W*,Y*)+F(W*,Y*)_F(W*,ytﬂ) = 07

multiplying the above inequality by 8~ on both sides, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1 B
0<67'E [—Yl,t + (e +p(1==))Yo, - 01“;*} (5.54)
un n

_ 1 *
—907'E (n_ + ) Y141+ (70 4+ 0) Vo041 — Ft+1]
t

(A3 + A40)E[D y (F1+1, 1)1
pyn

1 T _ -
=07 (Bl = Well3 + B [Dy (F141,9)]) + 67
un n

G3E |[West — Will3 G30E [lw, — w113 1
o122 +o-122 2 0 R _ 2
215 2, 47, Wt Wt”z
1+3.50 +3.50%) 0%
+67° ( )7 +n: (02 +4G%G§) )
Hy
Let
1 1 1 B
tu=—, (r-1+p)=—(r+p(l--)). (5.55)
-1 n:0 0 n
Hence,
S, B \
DA = Yu+ (r+p(1 = =) Yo, - 0T
po] n: n
—t 1 *
-6 (77_ + )Yy + (7 +0) Yo = Ty
t
L 1
< Z {9_(t_1) [( +) Y1+ (t-1 +p) Y2 — F;*]
o Ne-1
-6 (’7_ + W)Y 1+ (T + )Xo 41 — I,
t
1
= (% +w) Y+ (o +p) Yo — T
_ 1
-0 (77_ + )Y+ (tr+p) Yo 741 — FT+1] .
T
Since

1 n
~Tra 2 == > Galwrer = wrlallyi = yirall
i=1

1 & G%B , npy(p+1r) 5
> —— _ - |y — Vs
2~ ;Zl(n(P”T)Mw”Wm wrl3 1B lyis = yirell)
G%B
2 2, PTTT
> (—m—— - +—Y . 5.56
> (Zl’l(p+TT),Lt¢,”WT+l wrll; 5 2.T+1) (5.56)
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Summing (5.54) over t = 1,...,T and utilizing the above two inequalities, we have

Q_TE + 1T

1
(77_ + )Yy 11 + L Yo 741
T

1
< (%+M)Y171+(T0+p)Y2,1—F1 +
0-TG2B et 1 G G}

2 2 2 2 2
~———E|wry —wrll; -E (=== === = 5=) [IWrr1 = W]l
2n(p+1r)py : ,:Z, 2 A3 A 2y T TR

T _

| A3 + 40

-E — (= - =Dy (Fr41s
E " (a, i )D y (F141,¥1)

t=1

+1, (o'2 + 4G%G§)

b}

T 2\ +2
+29_t (1+3.560 +3.56%) 0,
Hy

t=1

where we use the fact 57, [[we = we—113 < S74 l[we = we-1[3 = £ [Iweer - wel.

Letn; = n,a; = TL, =a, A3 = A4 = 877G%. Ifa < 2 (to be verfied later),

1617G?3
4nG:B G2B 16nG?
we have 7 > 122 Asaresult, =——2-— < L and - > =722 Then the terms
npy 2n(p+7e )y 8n a Hy

related to [|[W.1 — W,|| and D (§:41,Y/) is less than zero. As a result,

1 1
(=+w Y141 + (/—) + _)YZ,TH]
n 2 2

<o

1 1
(=+WY 1+ (=+p)Y2
n a

T 2
8o
# Y07 | == 4 n(0? +4G1G)
( Uy -2

t=1

1 (80’3&

<o

1 1
(5+ﬂ)Y1,1+(;+,0)Y2,1 +—— | —— +n(c? +4G3G3)

1-6 [Jl//

Due to the relationship between 77, @ and 6 in (5.55), we have

1 l+ap(l-B/n) S 1
S l4unp 1+ap T l+ap
1-6 1-6
a = 5 n= .
p(8—=(1-B/n)) Ou

Then, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

1
(1Y 1741 = ﬂ(— + ) Y1141

L+nun
1+ 1 802
<0Tu Y, L Uraon O‘p)"Y + Uln 07 1 n(c? +4G2G2)
a(l+np) 1-01+nu\ uy
802
=0"Y + —— +n(c? +4G1G3)

1-6 805 1

-0
<Y+ ————— 2+ — (0 +4G3G?),
p(0—(1-B/n) uy  6Ou 2

WhereY:pY],l +ﬂ(1 P)UY 2.1-

a(l+nu)
To let the RHS be less than e, it is sufficient to have

1
T > 5 log(3Y/e) > s (9) log(3Y/e) = 67Y < ¢/3,
€ B/(2402n 1- 802
S| R /( 02)=> 0 8% _ o3,
1 +euyp/(240y) p(0—(1-B/n) py
> = o°+4G1G5) < -.
1+ pe/(3(02 +4G3G2)) Ou ( 162) 3
As a result,
0%+ G2G? no?
T=0 10g(3Y/6) max ( L 2),2, 0
HE B Bepyp
232
Finally, we verify that if €2 < % then it holds that
o Me _ Uy € uw3(0' +4G2G2) MmO py
T 2407 240%e 16G2e 16G2(1 -0) 16;7G§
Since ap < O(1), we have
(I+pma =™ a ™ p

thus Y],l + S{Y:ﬁazY 21 <Y 1+ ng . Thus, Y < ﬂY] 1 +2pY21
For smooth g;, the proof is s1rmlar by using (5.48) instead of using (5. 49) Hence,
n (o +4G2 2) becomes 7; (0%) and there is additional condition 77, < 2G o which

transfers to a condltlon on 6. ]
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5.4.4 Convex objectives with non-smooth outer functions

In this section, we only consider ALEXR-v2 for solving convex objectives with
non-smooth f;. For ALEXR-v2, we have that i is 1-smooth and 1-strongly convex.
Hence, we have

(n-B)(T+p)_|x _

%E Z”Vl/fi()’i,m)—Vwi()’i,z)ni (5.57)
(n-B)(z+p) (n—B)(t+p) i

= 2/10,; : ZHyl 1+1 ‘ytt”zl s %E [Dy (Fes1.¥0)] -

Theorem 5.8 Suppose Assumption 5.9 holds with p = 0,uy = 1, and Assump-
tions 5.8, 5.10 hold. If g; is G,-Lipschitz continuous, setting 0 = 0 and

€ €

6(c2 +8G2G2)

ALEXR-v2 returns an €-optimal solution Wr = Zthl w, /T in expectation with a
complexity of

2 202 2 2

_ o+ GiG5 QO'O Qo-o
T=0 , )

€2 Be?’ ne?

where Q is a constant such that E[Dy(y;,y1)] < Q < O(G%n), and y; =
arg Maxye y, x...x y, F(Wr,Y).

@ Why it matters

S GiG}  nGio}
In the worst case, the complexity is O [ —32 Lo
€2 Be?

). This will match the
lower bounds established in next section.

Proof. Combining (5.35) with (5.57) yields

T
T T AT .
E ZAz(y)] < ZEDy(y.y)] - ~E +— “EDy(y.§1)

t=1

T
Z Dl//(yt+1’yt)

t=1
(5.58)

N (n-B)T

T
E Dy (Y41, 5.59
b Zl o (Fra yz)l (5.59)

Adding this inequality with (5.32), (5.46), and (5.49) overt =1,...,T, we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

T T
_ 1 1
E[ D F(Wey) - F(W*,yHl)] < o llwe =il - 5 Zl B[t = will3]
t=

t=1

AoT N
+ TEDw(y, y1)

T
T T _
+ ZEIDy(y.y)] - ~E Z}] Dy (¥r41.%1)

(n—B)T 4
+—F Dy (¥i41, ,
AonB ; o (Fi+1, Y1)
G _|< Do
+—E (|Wee1 — Wz”z +444TGT + _E[D(//(y’yl)]
4/14 oy n/lz
/120'2
> Or + o'gaT,

T
1
2 2,2 2
+nT(0c° +4G1G3) + —477 ,zgl E[[weer — well5.

G? . .
ﬁ = ﬁ,we observe that the terms 1nvolv1ng1E[ZtT=l [[Wes1 — w,||2]

and E[ZL Dy (Y141, y,)] cancel out, leaving us with the following:

If wesetdg = % and

T
E[ Z F(Wee1,y) — F(w,, yt+l)]
t=1

1 5 [T(1+29B/n) 1
< — |lwe — +|——————+ — |EDy(y,
< ool = il (e, )
2

/le’
+T (0% +8G3G2) + TOT +02aT.

Lety =y} = argmax F(Wr,y). Since & 37, F(W,11,y) > F(Wr,y}) = F(Wr)
and F(W.,¥:+1) < F(W.,Y.), we have

_ 1 (7(1+B/n) 1
E|F(Wwr) - Fw)| < — W, —wi [P+ = [—22 10
[ (1) = Fwo)| < 5z llwe = willd+ 7 [ T+ o
0?2
+ (o2 +8G2G2) + % +ola. (5.60)
Let
€ € €
a4 =—:, = —, =
62’ 7302 1T 602 +8G2GY)
wi — w.||?
7> 0 |max [lw1 ||2,9(1+/103/n)’ Q '
12ne 6Bea 6nlse

Then, the RHS of (5.60) is less than €. As a result, the complexity is in the order of
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0

2 22 2 2
loa +G1G2 QO'O QO'O)

€? " Be?’ ne?

max (

O

Theorem 5.9 Suppose Assumption 5.9 holds with p = 0, uy, = 1, Assumptions 5.8, 5.10
hold. If g; is G,-Lipschitz continuous and Ly-smooth, for sufficiently small e, setting
6 =1and
€ . € 1

T e 1T (802’ ZGILZ)
ALEXR-v2 returns an €-optimal solution Wr = Zthl w; /T in expectation with a
complexity of
G1L2 0'2 Q(Tg Q(Tg

5

T=0 —
€ €2’ Be?’ ne?

where Q and y}. are defined similarly as in last theorem.

¢ Why it matters

For smooth functions g;, the iteration complexity is improved in the sense that

the O(1/€*) dependence is scaled by the variance of the stochastic estimators.
. . GG?
In contrast, for non-smooth g;, the complexity always includes a term 152 2,

regardless of the variance.

Proof. The proof is similar to that of previous theorem except that we use (5.39)
instead of (5.46), and using (5.48) instead of using (5.49). Additionally, we use

T n
1
Z(Fm -I)=Tra -T1 < - Z Gollwrsr = wrllallyi = yirsillz - (5.61)

t=1 i=1

2
5 ™/B
Wit — WT||§ +

S -
2nt n

Dy (y,yr+1).

Combining this with (5.39), we have

E

T
G§B 2 T

E Bt(y)] < ST E[llwrs1 — wrll3] + EE[Dw(y, y7+1)] (5.62)

P nt

T
2 - (/13+/l4) _
+—E[Dy(y, +—— > E|D ,
BT+ Zl o (Fra1.30)

G <
2
ton ;E[uwml - wil3]

G} ¢ 2 2 2 T3 1 y
to ;E[Hwt = Wietl3] + 805aT + LogT + =T + —-BIDy (3. §)].
Summing the inequalities in (5.32), (5.58), (5.62), and (5.49) overt =1,...,T, we
have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

T
E ZF(WHI,Y) - F(W.,¥141)

t=1

T
1 2 1 2
< —||w, — -— >3 E -
< g lIwe =il - 5 Zl [lIweer = well3]
- T
—E[Dy(y,y1) = Dy (y,yr+1)] - p ZE [Dy (Fis1.¥0)]
=

AoT (n-B)T U
+ —ED V) + —— E|Dy(Yit1, s
N v (¥, 91) AonB ,Z:; [ v (Y41 Yt)]

2

2 29, T
+ %E[Hwnl —wrl3] + EE[Dw(y, yr+1)]

2
+n E[Dy(y,y1)] + MZ [Dw(}’m»)ﬁ

2 T

o2
As 1
2 2 9 v
2—2 [Ilwi = w1131 +8050T + LogT + —5=T + —-E[Dy (v, 3],

ZE[HWM will3]

T
1
+ ™ ZE West — Well5 +nTo?.
=1

2 2
Similarly as before, if we let dg = 2220 2 = 22 = oL 4344 = 167G} < 7/2,
G2 1
< L

and T S gy We observe that all the cumulated terms cancel out, leaving us the
followmg:

T
E| > F(We1,y) = F(We,§101)
t=1

1 7(1+ A9B/n) 1
— ||w. — +|—+ —+ —|ED ,
o [lw W1||2 ( B n/lz s (¥, ¥1)

o2
As
+ 17T0' + 80'0aT + /lza'OT + 02 T.

Lety = y; = argmax F(Wr,y). Since /| F(Wre1,y) > F(Wr,y}) = F(Wr)
and F(W.,¥:+1) < F(W.,Y.), we have

E[F (Wr) = F <w*>} < w2 e L (FLE B 2]

Q
2nT T B n/lz

n/l5
0’0/15

> (5.63)

+ 17(0'2) + 80‘3(1 + /lza'g +

Let
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smoothf, g

convexf, g

Fig. 5.1: Relationship between different algorithms for FCCO.

€ 1 € 1 € min 1
a=—-:, = —, = —, = mi _—
6402 T80 T ag 822G L

T=>0

Iwi —=w.ll3 Q(1+2B/n) Q@  Q
32ne 8Bea ' 4ndye’ 8ndse

max (

2
Then the conditions 167]G2 < 71/2, % < # hold for sufficiently small €, and the

RHS of (5.63) is less than €. As a result, the complexity is in the order of

o

Gil, o2 Qoj 3Q
max T TR T 5
€ € Be* ne
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Critical: The convergence results above remain valid for ALEXR-v2 even
when the outer functions f; are smooth. If f; is a smooth Legendre function,
ALEXR-v1 can also be applied and its convergence can be established. The
key is to note that

Vi Gir) = Vi Gio)ls = IV £7 Gie) = VI iz = i = w2

where u; ;_; is defined in Lemma 5.14 and u; ; is a virtual sequence similar
to u; ; (5.64) except that all coordinates are updated by:

1
Wit + i Vi (5.64)

0, =——
b ]+at 1+(1,

Then, similar to the analysis of SOX, we can establish a bound of
Zthl :'l:l E[”ﬁi,t —W ||§] and use it to prove the convergence of ALEXR-
vl. However, it remains unclear whether ALEXR-v1 provides any conver-
gence advantage over ALEXR-v2 when f; are smooth.

5.4.5 Double-loop ALEXR for weakly convex inner functions

ALEXR can be also useful for solving non-convex FCCO with convex outer func-
tions and weakly convex inner functions. In particular, we consider the following
non-convex problem:

mvgn%;fi(gi(vv)) +r(w),

where g; : R — R and f; : R? — R satisfy the following conditions:
Assumption 5.12. Assume

(i) fi is convex, G-Lipschitz continuous and 0 f(g) = 0.
(ii) each dimension of g; is pa-weakly convex and G,-Lipschitz continuous.
(iii) r (W) is a convex function.

The key idea is to solve the following quadratic problem sequentially:
1 < p

Wit ~ argmin F(w, W) = = " fi(gi(w)) + Sllw = w3,
n 2

where p > p, with p being the weak-convexity parameter of F (w). We can employ
ALEXR to solve miny F (W, W,) approximately up to an e-level. This yields a double-
loop scheme.
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| fi | & | r | F | Algorithm |Convergence Measure| ~ Complexity  |Theorem

2
sm - 0 nex, sm SOX Stationary o (2‘:‘3 ) Thm. 5.1
sm mss 0 nex MSVR Stationary o ( % ) Thm. 5.2
sm - pm [ncx, sm SOX Stationary o ('l;:‘} ) Thm. 5.1
sm mss pm ncx MSVR Stationary o ('L'g‘:‘{ ) Thm. 5.2
we, nd we 0 ncx | SONX (vl) | Nearly Stationary o (Z:‘; ) Thm. 5.3
2
sm, nd we 0 | ncx |SONX(vl)| Nearly Stationary o ('};2 ) Thm. 5.4
we, nd we 0 ncx | SONX (v2) | Nearly Stationary o ('g: 0 ) Thm. 5.5
sm, nd we 0 ncx | SONX (v2) | Nearly Stationary o (Z‘:ﬂ ) Thm. 5.5
C 2
wc, pm sm 0 ncx  |[SONEX (v1)| Approx. Stationary o (;:‘; ) Cor. 5.1
we, pm sm | 0 | nex |SONEX (v2)| Approx. Stationary o (’;;Ef 2) Thm. 5.6
nd, cvx, f pm |sm, cvx|cvx,pm| cx [ALEXR (v2) Obj. Gap o (max (‘:—:, Z(Z )) Thm. 5.9
nd,cvx, ffpm | ovx |ovx,pm| cx |ALEXR (v2) Obj. Gap o (max (ﬁ 2% )) Thm. 5.8
2
sm, nd, cvx cvxX [scx,pm| cx ALEXR Dist. Gap o (max (;:]T’ V;:;’ )) Thm.5.7
sm, nd, cvx sm, CVX|scx, pm| cx ALEXR Dist. Gap ] (max (}‘j—;, ';rs“ )) Thm.5.7
b, 2
sm, nd, cvx, fl* pm| wc cX, pm ncx | ALEXR-DL | Nearly Stationary |O (max (ﬁ, ;:‘4’ )) -
2
nd, cvx, f;' pm we  |[cx,pm | ncx |[ALEXR-DL| Approx. Stationary |O (max (%, %)) -

Table 5.2: Complexity of solving FCCO F(w) = % 1 fi(gi(w)) +r(w) under dif-
ferent conditions of f; and g;, where f; is a deterministic Lipschitz continuous and
g 1s mean Lipschitz continuous. pms means “proximal mapping is simple to com-
pute”, mss mean “mean squared smoothness”, and ALEXR-DL denotes a double-

loop method that employs ALEXR in the inner loop.

We highlight the key results as follows. If each f; is non-smooth, the double loop
2

method achieves a sample complexity of O (%) for finding a nearly e-stationary

solution. The analysis can be found in (Zhou et al., 2025).
nL, o2
3540
ing a nearly e-stationary solution. This result further implies that, for non-smooth f;,
we may apply the Nesterov smoothing f; in (5.20) with p; = 1/e, so that f; becomes
Ly = p1-smooth. Hence, Proposition 5.1 implies that the double-loop ALEXR algo-
rithm can find an approximate e-stationary stationary solution of F'(w) with a sample

n 2 n 2 .
complexity 0( IL;;O ) =0 (B—(:%) . The analysis can be found in (Chen et al., 2025b).

Finally, we summarize the sample complexities of all methods introduced in this
chapter in Table 5.2, and illustrate the relationship between different methods in Fig-
ure 5.1.

If each f; is Li-smooth, the sample complexity improves to O( ) for obtain-
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Algorithm 19 Abstract Stochastic Update Scheme for Convex FCCO

1: Initialize affine subspaces Xy, 9o, 80, ®o
2: fort=0,1,..., T —1do

3: Sample a batch 8; c {1,...,n}, |8;|=B
4. for eachi € B, do
5: Sample ¢ ;, ;.. from P;
6: ory =9, +span{gi (%:4i0) | £ € X}
7.
i i A (i « 1 o (i NG NG, i
D4 = ;" +span {argrr;gx{yig< D= £ 1) = — Dy (39" >>} 187 egh 9@ e; >}
8: end for ) ) ) )
9: Foreachi ¢ S;, 95?1 = g;'), ‘{)z(?l = t(’)

100 Gy = 6, +span{z Tiep, 3V Vi (2:4i0) [ £ € X0 9 € Ve }
11: X1 = X; +span {argminx {GTx+r(x) + ﬁ [|x - fc||%} |2e€%,G¢e (ﬁ,”}
12: end for

5.4.6 Lower Bounds

In this section, we prove that the complexities of ALEXR for strongly convex and
convex FCCO problems are nearly optimal by establishing the matching lower
bounds.

What is a lower bound?

A lower bound states: for any algorithm in a certain class, there exists a “hard”
optimization problem such that the algorithm cannot converge faster than a
specified rate.

Lower bounds for convex optimization are typically derived under the standard
oracle model, where the algorithm has access only to first-order information—either
exact gradients in the deterministic setting or unbiased stochastic gradients in the
stochastic setting. In the latter case, a classical result by Nemirovski and Yudin es-
tablishes that no stochastic algorithm using unbiased gradient oracles can achieve a
convergence rate faster than O (1/VT) in terms of the objective gap after T iterations.
For strongly convex problems, this lower bound improves to O (1/T). Nevertheless,
these lower bounds do not apply to convex FCCO problems or to ALEXR, because
the algorithm does not have access to unbiased stochastic gradients.

Below, we establish lower bounds for an abstract stochastic update scheme de-
scribed in Algorithm 19, where the symbol “+” denotes Minkowski addition. We
consider an oracle model that, upon receiving a query point, returns unbiased stochas-
tic function values and stochastic gradients of the inner functions g;, as well as the
solution to the proximal mirror-descent update of f;* with respect to a proximal func-
tion ;. Since there are n inner functions in total, we assume that at each iteration
the algorithm is allowed to access information from only B randomly selected in-
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Fig. 5.2: Visualization of f (left) and F (right) in (5.65).

ner functions. Algorithm 19 is sufficiently general to encompass ALEXR, as well as
SOX and MSVR.

Theorem 5.10 Consider the abstract scheme (Algorithm 19) with an initialization
% = {0}, 95" = {0}, g =0, 67" = 0.
o There exists a convex FCCO problem (5.26) with smooth f; and u-strongly con-

vex r such that any algorithm in the abstract scheme requires at least T = Q (’;20 )

iterations to find an X that satisfies E [% |lx — x*||§] <eorE[F(x)-F(x.)] <e
o There exists a convex FCCO problem (5.26) with non-smooth f; such that any

2
algorithm in the abstract scheme requires at least T = Q. (%) iterations to find an
X that satisfies E[F(X) — F(x.)] < e.

¢ Why it matters

In light of this theorem, we see that ALEXR (v1/v2) attains a nearly optimal com-

plexity up to a logarithmic factor for solving strongly convex FCCO problems,
. = 1 no} .
as its upper bounds are O (max (E, - )) Moreover, ALEXR-v2 achieves the

optimal complexity for solving convex FCCO problems with non-smooth outer
functions.

Proof. We construct the hard problems for (i) smooth f;; and (ii) non-smooth f;
separately.

(i) Smooth f; and strongly convex r: Consider the following strongly convex
FCCO problem
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5.4. CONVEX INNER AND OUTER FUNCTIONS

min F(x) = i Z] Flgi() +r(x),

(v—l)u+%(v—1)2+v—1—"72, u € (—oo0,—1) |
Fl) =13ty =5, wel-11] . ()=,
(1+v)u+%(1+v)2—1—v—7, u e (1,c0)
(5.65)

where X = [-1,1]", the outer function f : R — R is smooth and Lipschitz
continuous for some v € (0, 1/2). Besides, the inner function g; : R* — R is
8i(x) = Esop(gi(x;¢)] and g;(x;) = x; + £, where ¢ follows a distribution P de-
fined below:

) =1 2
P: Pr(f==v) =1-p, ,Wherep:=V—2<1.
Pr({=v(1-p)/p)=p o,

We will determine the values of v later. We can verify that

201 N2 201
By llgi (65 ¢) - i) ] = B[22 = v3(1 = p) + 2 “p Py _Y “p P g2

By the definition of convex conjugate, for any y; € R we have

u<-1

f o0 :maX{SUP {Myi - ((v— l)u+%(v— D2 +v—1- V;)}

1 , Vv
sup juy; — —(u+v) +—;, (5.66)
—l<u<l1 2 2

s { = (1+v) +1(1+ 2 —1- —V—Q}}
up {uy; v)u ) v v 5

u>1

(5.67)

_ T Yi € (o0, vy = 1) U (v + 1, )
10i=v2 yielv-Lyv+l].

We define F;(x;) = f(gi(x)) + %[xi]2 such that F(x) = % " Fi(x;). Let x,
arg min,c x F(x). Since the problem is separable over the coordinates we have x;

argminye[—1,1] Fi(x;). Thus, we have x; . = % Y and F;(x;.) = _T
Since P; = P in the “hard” problem (5.65), the abstract scheme (Algorithm 19)
only needs to sample shared ;, ; ~ P for all coordinates i € S; in the ¢-th iteration.

For any i € [n], suppose that gm 0 or {-v}, ‘D(i) = {0}, %(i) ={0} forall T < t.
Note that when g(T = (), it means that the corresponding y(*) will not be updated.
Then,

o Ifi ¢ B, the abstract scheme (Algorithm 19) leads to

aiy =0or {—v}, 9 ={0}, X ={0}.
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e Ifi € B, and {; = —v, the abstract scheme (Algorithm 19) proceeds as
gt(i)l = gt(’) + span {)?l- +4 | &€ x,([)} ,
(i) (l)
29t+1

i€[v-1,v+1]

L1 1 . R
+ span{ arg max {yigi ) (i —v)* - ;D% (yi,yz')} | 8i € Q,H,yz € ‘D(l)} )
¥i

%(1)

t+1

. I, 1 2 1 (i) (i)
+ —Vi i+_ i + — — le s le%
sPan{erglnEnJ{Byx 4n[x] 277( xi) }Iy ‘D,+1 X

x"

Then, we can derive that g([) =0or{-v}, ‘D(i) = {0}, and x = {0}.

t+1 t+1

To sum up, given the event (1’ _ l{g(l) =0or {—v}, 9% = {0}, xV = {0}},
we can make sure that {gt(jr)1 =0or{-v}A ‘Dt(i)l = {0} A %t(i)l = {0}} for the
abstract scheme in Algorithm 19 when one of the following mutually exclusive events

happens:

e Eventl:i ¢ B,
e EventIl:i € B, and {; = —v.

Note that the random variable Z; is independent of B;. Thus, the probability of the
event Et(jr)l = {ggi)l = 0 or {-v} A 2) = {0} A %Hl {0}} conditioned on
*_ EY can be bounded as

t
(i) (i)
lst+l | (—W Eq
7=1

t+1

t
Pr 2|l =00r (-} 99 = (0} A 2D, = (03} 1 £V

>P{i¢ B} +P[{{i € B} A& =-v}}]
=P[{i¢ B} +P[{i € BIP[{& =-v}]

B\ B B
=(1——)+—(1—p)=1——p.
n n n

Since B; and {; in different iterations ¢ are mutually independent, we have

T- t T

; Bp TBp
|| ES ) ED =(1——n) >3/4- =2
t=0 t=1

where the last inequality is due to the Bernoulli inequality (1+x)" > 1+rx for every
integer r > 1 and x > —1.

Thus, if T < éﬁ we have Pr [E(T’)] > %.Letus setv = 3\/2_esuchthatp = (‘;—22 =
0

T-1

M ED | =

t=0

(0
pr|Ef| 2 2

lj—g. For any i € [n] and any output X; € 3€(Ti), we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

T 2 () ?
E [(Xi —Xi,*) ] =E HE(') ( - X; *) o) (x _xi,*)
T
>E []I (l) — X *)2]
. 2
=B []IE(’ (xi,*)z] =Pr [E;l)] (xi,*)z > % =4e,

where Ir denotes the indicator function of an event E. Moreover, we have

E[Fi(xX;) — Fi(x;i )] = E[ EW (Fi(%;) = Fi(xi0)) + I 0 (Fi(%;) = Fi(xi,2))

> E|l g (Fi®) = Fi(x, )]
-E []IE(,) (F:(0) - F; (x,-,*))] = Pr[E] (Fi(0) - Fi(x;..))
4

> — > €.
6

Since the derivations above hold for arbitrary i € [n] and the r(x) in (5.65) is 2i—
strongly convex (u = ﬁ), we can derive that

- i Zn:E | (& = xi.)*| > e

E[F(¥) - F(x,)] = ZE[F(x) Fi(xi.)] > e.

Ko 2 [ 2
B[S k- 13| =B [E % - .1

Thus, to find an output ¥ that satisfies E [§ [|¥ — x. ||2] <eorE[F(%) - F(x.)] <€

the abstract scheme requires at least T > g 72 5= iterations.

(ii) Non-smooth f;: Let g;(x) = E;[x; + {] = x; be defined the same as in the
smooth case. Let F;(x;) = f(gi(x)) + $[xi]* = Bmax{x;, —v} + % [x;]* such that
F(x) = ﬁ 1 Fi(x;), where @, 8 > 0. Let the domain X be [-2v, 2v]". Hence, f
is B-Lipschitz continuous and F is a-strongly convex. By the definition of convex
conjugate, we have f(2;) = maxy,cfo51 {yidi - v(B - i)}

Since the problem is separable over the coordinates, we have

Xi» = argmin F;(x;) = argmin {,8 max{x;, —v} + g[)ci]z} .
xe[-2v,2v] x;€[-2v,2v] 2
Considering
2 s
F,(x,) — ﬁxl ['xl] 5 'xl = v ,
—Bv+F[xi]* xi<-v
we have
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{—ﬁ/a ifa>,8/v {—,82/(2(1) ifa>,8/v
Xix = F‘(xi *) <
’ -V ifaet [0 1]’ —Bv/2 ifaet [0 1].

Since F;(0) = 0, we can derive that F;(0) — F;(x; ) > min{,Bv B%/a}. Consider

an arbitrary i € [n]. Suppose that g(T =0 or {-v}, %< ) = {0}, ‘D(’) = {0} for all
T<Ut.
o If i ¢ B;, the abstract scheme (Algorithm 19) leads to

o =0or {—v}, 99 =0}, x2 =0}

t+1 t+1

o If i € B,, the abstract scheme (Algorithm 19) proceeds as

gﬁi)l = gt(l) + span {)2,- +4 | &€ %fi)} ,

i) _q)
2)t+1_ t
1 . .
+ span {arg[ma;i {ylgz -v(B-yi) - —Dw(yl,yz)} | &i € gffl,yt ‘Df’)},
0.8
x@ _ %51)

t+1

1 1 1 l l
+ span {x,-ir[%?f?vj {Eﬁm =[]’ + 7 (i =50 } |9 €D % € X! )}

Due to the same reason as in the smooth f; case, the probability of the event £, () =

{g(l) 0O or {—v} A ‘D(Tl) ={0} A %(Tl) = {0}} can be bounded as

Q) Ao -TTe |0 ) Bp\" TBp

L L 12 12

pr|E| 2| E E! ]|| ]E ( —) >3/4-—L.
t=0 t=0

Thus, if T < 4L we have P [E(i)] > l. Letusset 8 = Gy, v = 4G—El such that

B
2
p = ;_g = Cl;?f ~. For any i € [n] and any output ¥; € %m we have

E[F; (%) - Fi(x;«)] =E

]IE(i) (Fi(fl) F; (x, *)) +— <l> (Fi(fi) - Fi(x,-’*))]

T

[]IE(T,) F ()El) - Fi(xi,*))]
- [ g (Fi(0) - Fi(Xi,*))]
=Pr[Ey"] (Fi(0) - Fi(x;..)) > min{Bv, % /a}/4 = €.

Since the derivations above hold for arbitrary i € [n], we can derive that
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

E[F(3) - F(x,)] = % D IEIFi(E) - Fi(xi.)] > €.
i=1

Thus, to find an output X that satisfies E[F(X) — F(x.)] < €, the abstract scheme
nGlz(rg . .
p 1terations. O

. 0
requires at least 7 > 155 =GB

Critical: From the proof of the non-smooth case, we can see that even when
the overall objective is strongly convex, the lower bound complexity is still 7" =

2
Q(%) as long as f; is non-smooth. This behavior contrasts with standard

strongly stochastic optimization with an optimal complexity of O(1/€) and
highlights a fundamental challenge in solving compositional problems.

5.5 Stochastic Optimization of Compositional OCE

The goal of this section is to present and analyze stochastic algorithms for solving
compositional OCE (COCE) risk minimization as introduced in Chapter 3. In par-
ticular, we consider the following abstract problem:

weR4 yeRn

1 n
min _ F(W.v) = Z Fi(w,vi), (5.68)
i=1

where

Fi(w,v;) =E;p, [@i(W,v;;0)], Di(w,vi;{) = TW(M) +vi,

where 7 > 0 is a constant.
In the special case when ¢*(-) = [-]+/a for some a € (0, 1), the general COCE
minimization problem reduces to

, 1< [s:(w; £) = vi
min F(w.v) = ~ le Bgp, o Vi (5.69)

We refer to this problem as the compositional CVaR minimization (CCVaR) prob-
lem. The direct one-way partial AUC optimization problem (2.39) can be reformu-
lated as an instance of CCVaR minimization as shown in (6.26).

In the special case when ¢* () = exp(-) — 1, the problem (5.68) reduces to

ngn F(w) = % Z 7 log (]ngpl. exp (M)) . (5.70)
i=1
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Algorithm 20 The ASGD Algorithm for solving (5.68)
1: Initialize w, v, step sizes 77, and y,
2: fort=0,1...,T - 1do
3: Sample B, c {1, ..., n}and |B;| = B
: for eachi € B, do

4
5 Update v; 111 = Vis — Y10 @i (We, vigs Lir)
6: end for

7: Compute Z; = é ZiGBf 61@1' (Wt, Vits gi,t)

8: Update Wy = Wy — 17, Z;

9: end for

We refer to this problem as the compositional entropic risk minimization (CERM)
problem. The cross-entropy loss for multi-class classification, the listwise cross-
entropy loss for ranking, the indirect one-way partial AUC loss for imbalanced classi-
fication, and the contrastive losses for representation learning discussed in Chapter 2
are all instances of the CERM problem. In particular, for cross-entropy loss mini-
mization, the proposed framework becomes especially relevant when the number of
classes is very large, so that the normalization term in the loss cannot be computed
efficiently. This setting naturally motivates the stochastic algorithms developed in
this section.

Although we can cast the CERM problem into a special instance of FCCO, there
remain some gaps to be filled. (i) For the convex CERM problem with a convex loss
function s;(-; {), the ALEXR algorithm and its convergence analysis are not directly
applicable, since the outer function f(-) = 7log(-) is not convex, as required by
ALEXR. Consequently, a convergence rate of O(1/€?) for solving convex CERM
remains to be developed. (ii) For the CCVaR problem, the optimal solution of v
given w is typically difficult to derive in closed form, and hence the problem cannot
be reduced to an instance of FCCO. As a result, previous analyses for FCCO do not
directly apply. We address these gaps in this section.

5.5.1 A Basic Algorithm

For optimizing the general COCE minimization problem, we present a basic stochas-
tic algorithm in Algorithm 20. It alternates the stochastic block-coordinate update for
v and a SGD update for w, which is referred to as ASGD. Below, we present its con-
vergence analysis for both convex and non-convex loss functions.

5.5.1.1 Convex loss

For notational simplicity, we set 7 = 1 throughout the analysis.

Assumption 5.13. s;(-, ) is a convex function.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Lemma 5.20 F(w, v) is jointly convex in terms of (W', v") T if s;(+; 0) is convex.

Proof. We prove that ®; (w, v;; £) is jointly convex in terms of (w', ;) 7. Then the
convexity of F(w,v) follows. Let u = (w',v)T. Consider uj,uy, @ € [0,1], and
i = au; + (1 — @)uy. Then

D () = " (5:(W;0) =) + V.

If s;(+; £) is convex, we have s;(W; ) <; (W1;0) + (1 — a@)s;(wa; £). Since ¢*(-) is
non-decreasing (cf. Lemma 2.3), we have

" (si(W;0) =) < @™ (a(si(wi: Q) —vi) + (1 — @) (si(W230) = v2)).

Since ¢*(+) is convex, we further have

" (a(si(wi;0) = vi) + (1 = @) (s:(W2; ) —2))
< ag*(si(wi3 ) —vi) + (1 —a)¢*(si (W23 ) —v2).

As a result,
®;(1;{) < a®;(uy; ) + (1 — )P;(uz; ),

which proves the convexity of ®;(u; ).

Assumption 5.14. Assume that either of the following conditions hold:

o (i) F(w,v) is smooth satisfying:
IV1F (W, )3 + [[V2F (W, )[[3 < 2Lp (F(W,v) = F(W., v.)),

e (ii) F(w,v) non-smooth such that for any vi € 01F(W,v),Va; € 02F;(W,v;) it
holds
Ivill; < GT,  Ival* < G5,

where W, v.. denotes an optimal solution to (5.68), and V| F (w,v)(0,F(w,v)), and
VaoF (w,v)(02F (w, v)) denote (partial) gradients with respect to w, v, respectively.

Critical: For CERM, the smoothness assumption is satisfied when s; (w; ¢) is
bounded, Lipschitz, and smooth. For CCVaR, the non-smoothness assumption

is satisfied when s; (W; ¢) is bounded and Lipschitz.

Assumption 5.15 (Bounded Variance). There exist 07,07, 6% such that
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E Vi@ (W, vi;¢) = ViFi(w,v;)|[3 < o2, Vi€ [n],
B |Vo2®@; (W, vi58) = VoF; (W, vi)|3 < 03, Vi€ [n],

1 n
= D IViE ) = ViF(w )l < 67,
i=1
In the non-smooth case, the gradients above are replaced by subgradients. The sub-
sequent analysis proceeds analogously.
Lemma 5.21 Let D%v,o =E|wp — W*||§ and n; = n, we have
2

T-1
1 Do
7 2, CEIVIE W v)T (Wi = W)l = nEIIViF(Wev)[3) < —22 47707,
r =0 T

2 2
_ T 2 _ O 6°(n-B)
where vi = (Vi4,...,Vny) and o~ = 5 + B -

Proof. Let E, denote the expectation over the random samples in the #-th iteration.
First, we note that E; [z;] = V| F(w;, v;). Similar to Lemma 5.2, we have

Eyllz: = ViF (Wi, vo)ll3

:El[
:Et[

0'12 §*(n— B) 2

B Bw-n

2

J

1

E Z O1Fi (W, Vi) — VIF(W:,v)
ieB,;

1 1
-3 Z O1Fi(Ws,vig) + 3 Z O1F; (W, vis) — ViF (W, vp)
i€B; i€By

+E,;

1

2
2

1
7 — E Z 01 F; (W, Vi)
i€B;

Due to the update of w, we have
2 2 2 2
[Wert = Wall3 = llwe = wall3 = 20z (W = w.) + 17|z |l
Then,

Ellwrs1 — w.l3 < Bllw, — wall3 = 27E[Vi F (Wi, v,) T (W, — w.)] (5.71)
+ P BIIViF (Wi, vo) |3 + 00,

Summing over t = 0,...,T — 1 and rearranging it finishes the proof. |

Lemma 5.22 Let D3, = Ellvo — v.||3 and y; =y, we have

= D2,
T 2, (CEIV2F (W v) (v = v.)] = ynBIIV2F (Wi, v)ll) < Z55 + 7073,

=l
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Proof. Let E, denote the expectation over the random samples in the ¢-th iteration.
Note that E,[Vo®;(W;, vis:{ie)] = VoFi(We,vip) and B ||Vo®;(We, vig: Lie) —
Vo F;(wy, vi,,)||§ < 0'5 foreachi € [n] (Forthosei ¢ By, Vo®;(W;, v +; {i.r) are not
explicitly computed). For each i € [n], we have

Ellvie1 = visll3

B B
=(1- ;)E”Vi,t — Vi3 + ;EHVU — yVa®i (Wi, visi i) — Vil

2yB y?B
< Ellvis —vi.l3 - E[VoF;(We,vie) T (Vie — vioe) ] + TE”VZFi(Wt’ vi)ll3
’y 05 ’B
n

Summing over i € [n] leads to

2yB
Ellvis1 — V*”% =Eljv; - V*”z - _E[ Z VoFi(We, vi, t) Viye = Vi)

+ —E[Z IV2Fi (Wi, vi) 3| +¥2 03 B. (5.72)

Since

l n
VZF(Wt,Vt)T(Vz - V*) = - g VzFi(Wt, Vi,t)(Vi,t - Vi,*)
n &

1 n
IV2F (Wi v)I3 = 5 ) IV2Fi (Wi i) I,
plugging these into (5.73) we have
Ellvist = vall < Ellve = vl - ZVBE[VZF(Wu V)T (ve = v)

+ yZnBE[||V2F(w,, vo)ll3| +y*o3B. (5.73)

Summing over t =0, ...,T — 1 and rearranging it finishes the proof. O

Theorem 5.11 (Smooth case) Suppose Assumption 5.13, 5.14(i) and 5.1 5 hold. If

2
—20) then

o
we set y = min{;—, ﬁ} n= mln{gL s 507} and T = max(—== ,75 » SBe

ASGD guarantees that

T 1
Z(F(wt’yt) _F(W*9V*))l <e.
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The iteration complexity is

2 2 2 22 2
T=0 maX{Dw,oLF nD; oLr D5 007 Dy 2})
6 9

b}

Be ° €  Be?

2 _ op | 8% n-B)

where o° = ?+m

Proof. From Lemma 5.21 and Lemma 5.22, we have

T-1 2
1 D3 o
= (2EV(F(w,, Vt) (w; —w.) = nE||V1 F(w;, Vt)”%) <—=+ 710'2,
T parc nT
= 2 .
= 2 BV F (W )T (v, = v.) = ynEIIVaF (Wi, v)I3) < — +y03.
parc yBT

1
If F is smooth and n < 2L and yn < T

5= (19 F v B+ 192w 1B)
< F(wy,vy) — F(W,, vy,

nIViF (W, vo)ll5 +ynl|VaF (we, v 5 <

where the last inequality uses the Lemma 1.5(b).
On the other hand, the joint convexity of F' implies

F(w;,v;) — F(W,,v.) < ViF(w,, Vt)T(Wt - Ww.) + Vo F(w;, Vt)T(Vt - V).

Then combining the above inequalities, we have

T-1 2 2 2

1 DwO 770'2 DVO Yo,
E|= ) [F(W,v;) = F(Wa,v)]| < =+ — + 57—+ ——
T;[MW)<wvﬂ T Y5t 2

In order to let the RHS above be less than €, we set y = min{ﬁ, #} and n =

2 2
m1n{2L s 53}, and T > max( 776 , yBE) As aresult, the complexity is the in the
order of
D} Ly nD3} Lp D (o> D3 o3
T = O | max , ) ) .
€ Be 62 Be?

O

Theorem 5.12 (Non-smooth case) Suppose Assumption 5 13, 5 14( ii) and 5.15
2
hold. If we set y = —20), then ASGD

guarantees that

andT = max(

€ — €
26+ T T 2GR 776 ’ 736

T-1
E % ;(F(w,,v,) - F(w*,v*))l <e€.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

The iteration complexity is

- {Di,o(G% +0?) D} (G} +03) })

T=0

€? ’ Be?

We leave the proof as an exercise for the reader.

¢ Why it matters

Since F(w,v) is jointly convex in (w, v), the above two theorems imply con-
vergence of the objective with respect to the primary variable w, i.e., Fj(w) =
min, F(w,v). In particular, if we define the averaged iterate wy = % Z,T:_Ol Wy,
we have

~

E[Fi(wr) - F1(w.)] <E (Fi(w;) — F (W*))l

N~

~

~
[ =)

IA
es]
S| —

(F(ws,vy) — F(w*,v*))l <e.

(=)

1=

5.5.1.2 Non-convex loss

If s;(w, £) is non-convex, we consider two different cases: (1) smooth case and (2)
non-smooth weakly convex case. If F'(w, v) is smooth in terms of w, v and is strongly
convex in terms of v (e.g, compositional entropic risk or COCE with y? divergence
for ¢(+)), we can follow the analysis in Chapter 4 [Section 4.5] to design an algorithm
and an analysis to prove the convergence for finding an e-stationary point of Fj(w) =
min, F(w;v). We leave this as an exercise for the reader.

Below, we analyze the convergence of ASGD for non-smooth weakly convex
losses. We also assume ¢* is non-smooth such that it covers the CCVaR minimiza-
tion.

Assumption 5.16. Suppose the following conditions hold:

o 5;(W; () is po-weakly convex with respect to W, and E [||ds; (w; §)|I§] < G%;
o Assume |%;q)| < Gy forany q = s;(w,{) — v;.

Lemma 5.23 F(w,v) is p-weakly convex with respect to (W, v), where p = poG.

Proof. We first prove that ¢* (s;(w; ) — v;) is weakly convex in terms of (w, v;), i.e.
there exists p > 0 such that ¢ (s;(w; ) — v;) + §|lwl|3 + §v? is jointly convex in
terms of w, v;.

Since s;(W; ) is po-weakly convex, we have that g(w, v;,{) = s;(W,{) — v; is
po-weakly convex in terms of v; = (W, v;):

’ ’ ’ PO/ ’
q(vi’ g) 2 q(vi7 g) +aq(vi’ g)T(Vi _Vi) - THV[ _Vi”%’vvi’vi'
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For any £, we abbreviate ¢(v;; ) as ¢g(v;). Since ¢* is convex and monotonically
non-decreasing, for any w € d¢*(q(v;)) € [0, Go] we have

¢ (q(vi)) = ¢*(q(v)) + w(gq(vi) — q(v}))
> ¢*(q(vD) + w(dq(v) T (vi = V) — %

G
> ¢"(g(vD) + 96" (q(v)) (vi = v)) = T2 lvi = Vi,

2
v = vill3)

The above inequality implies that ¢*(s;(w; () — v;) is p = Gopp-weakly convex in
terms of (w,v;), i.e., B¢ ¢ (5;(w; 0) — vi) + 5 (Il + |v;|?) is convex. As a result
F(w,v) + 51wl + £|Iv||3 is jointly convex in terms of (W, v). |

Similar to the SGD for weakly convex objectives in Chapter 3[Section 3.1.4], we
use the Moreau envelope of F(w;v). In particular, let v = (w',v")T and consider
some p > p, we define:

Fijp(v) = min F(w) + £ lu - v, (5.74)
,_ - P 2
proxg;(v) = arg min F(u) + 5”“ = v|l5. (5.75)

Convergence Analysis
Lemma 5.24 Under Assumption 5.16, we have

E/llz:3] <G, |&:Fi(w,v)|* < G,
where G = G3G?, and G5 = (1+ Go)*.

Proof. For the first part,

1 2
E:[llz113] =Et[ 3 Z 0@ (Wi, Vi i) ] < G}G?.
i€B; 2
For the second part,
0¢* 2 Vis :
(BaF(w, vl = ‘Eg |- 20 < 1+ G

O

Lemma 5.25 Under Assumption (5.16), let v, = (w;,v])T, for one iteration of
ASGD, we have
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

_ — P —
E: [Fi/5(Vie1)] £ Fry(ve) + pns (F (V) — F(vy) + EHVI - Vt“%)
, P1i(Gi+G3/B)
— s
where V; = proxg 5(V;).

Proof. Let E; denote the expectation over the random samples at the z-th iteration
conditioned on that in all previous iterations.

B [Fup(ven)] < Bi|F(30) + SlIvier = %3
< F(¥0) + SEi[lIwi = ey = Wall3 + 1vier = ¥i3]

_. P _ 20 P -2
S F(v) + EEt[”wt -z — W3] + EEt[”Vt+l =151

Gy
2

< F(¥0) + S W = W3 + pniE,[(% = w) T F (Wi vi)] +

+ gEt[uml Ak

where the last step uses E,[z;] = 9, F (w;, v;) and E[||zt||§] < G%.
Similar to (5.73), we can prove that

B ||veer — f’t”% =|lvi - ‘_’z”% = 2y;Bo F(wy, Vt)T(Vz - V) +712G%B~

Let y,B = n;, combining the above we have

E; [Fl/p(Vt+1)]

SF@)+ gllvz 3+ o B [(V: = v)TOF (V)] + ‘w
S F(v) + gllvt =I5+ P B [(V, = Vi) TOF (v,)] + ’w
< Fiyp(ve) + pne(F (V) = F(ve) + %’uv, - i[5 + M,

2

where the last step uses the definition of Fy;(v;) and the p-weak convexity of F.
Rearranging this inequality finishes the proof.

O
Theorem 5.13 Suppose Assumption (5.16) holds and F, = inf F(w,v) > oo, by

setting p =2p, n = 62/(2/5(G% + G%/B)), vy=n/BandT > A%w, ASGD
guarantees that

E <ée

T

1

7 2 IVF (01l
t=1
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2 2
with a complexity of T = O (M)
Proof. Since F(v) + §||V - V,H% is (p — p)-strongly convex and have a minimum
solution at V;, then we have

F(v) = F() = Slvi =913

= (FO) + Slve = vilB) = (FG) + 519 = vl + (5 = D)live = w13

(0 —p)
ZTII
p=p

=— IVE15(vo)ll5-

(p-p)

<2 SN2 (= < 2
Vi — Vt”2 + lv: — Vz”z =@ -pllvi - Vt”z

Combining this result with that in Lemma 5.25 and noting that p = 2p,n, = 1, we
have

T-1
1 2(Fy)5(vo) — F.)
2| 25 VR0l | < SR n(@ i)
2(F(vg) — Fx _
< AF () 1) (7;); ) +pn(G7 + G3/B)

By settingn = €2/(26(G1+G3/B)) and T > A%L_F*),WC have E[||VF/5(v-)|3] <

€2 fora randomly selected 7 € {0,...,T — 1}. m]

5.5.2 A Geometry-aware Algorithm for Entropic Risk

Although last section presents a general algorithm for solving COCE risk minimiza-
tion, it may exhibits numerical instability issue and slow convergence when solving
compositional entropic risk minimization:

1 n
minmin | F(w,v) = — Z{]Eg exp(s;(w;¢) —vi) —1+v;}
vy ni

l n
=min - ; log (E¢ exp(si(w:))) .

The numerical instability issue is caused by dealing with exponential functions, e.g.,
exp(s;(w; {) —v;), in calculation of stochastic gradients of v;. The slow convergence
arises because the standard SGD update for v; fails to exploit the geometric structure
of the problem.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

5.5.2.1 Stochastic Optimization of Log-E-Exp

We first consider a simplified problem where there is only one component n = 1,
ie.,

ngn Fi(w) :=log (B exp(s(w; {))) . (5.76)

The KL-regularized DRO problem (2.14) is a special case. It is also known as log-
E-Exp, a more general form of the log-Sum-Exp function, where the middle “E”
denotes an expectation and highlights the associated computational challenges.

Application of SCGD

At the beginning of Section 4.1, we treat this problem as a special case of stochastic
compositional optimization (SCO), where the outer function is f(-) = log(-) and the
inner function is g(w) = E; [exp(s(w; ))]. Let us first apply the SCGD algorithm.
The key updates are presented below:

ur = (L =y)ur—1 +yrexp(s(we; &),
1 !’ !

Z; = — exp(s(w;; &) Vs(wes £]), 5.77)
t

Wiil = We — N2y,

where u, is an estimator of the inner function value g(w;) andz, = V f(u;)Vg(w;; {;)
is a gradient estimator of w;.

From a practitioner’s perspective, the algorithm can be readily implemented and
applied to real applications. However, from a theoretical perspective, several open
problems remain. In particular: (1) Can we establish an O (1/€?) convergence rate
for this algorithm to find an e-optimal solution when s(w; ) is convex? (2) If yes,
what are the practical advantages of this algorithm compared with the ASGD method
presented in the previous section?

Wait! Shouldn’t we established the convergence rate of SCGD in Chapter 47 It is
true that we presented a convergence analysis of the above algorithm for non-convex
problems under proper conditions, however, it remains an open problem to establish
the complexity of O(1/€?) for finding an e-optimal solution under the convexity
of s(w; ). A naive analysis of SCGD for convex problems yields a complexity of
O(1/€*) (see Wang et al. (2017a)).

A Novel Algorithm

To address these open questions, we present a novel algorithm based on the min-min
reformulation of log-E-exp, i.e.,
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mvin min F(w, v) :=E; exp(s(w;{) —v) +v. (5.78)

where we ignored the constant —1 in the objective. As proved in Lemma 5.20,
F(w;v) is jointly convex in terms of w, v when s(w; {) is convex.

Motivation

The key novelty of our design is a geometry-aware algorithm for solving the equiv-
alent min-min optimization (5.78). Let us first discuss the motivation. One challenge
for solving the min-min optimization problem is that the objective function F(w, v)
could have exponentially large smoothness constant in terms of v. We will formally
analyze this phenomenon in next section. Hence, a vanilla gradient method that uses
the firs-order approximation of F will inevitably impacted by the large smoothness
parameter.

To mitigate the adverse effects of a large smoothness parameter with respect to
v, we resort to the classical approach of employing a proximal mapping. Proximal
mappings have been widely used to handle a non-smooth function in composite ob-
jectives consisting of a smooth loss and a non-smooth regularizer. This approach
enables optimization algorithms to retain the favorable convergence properties of
smooth optimization and often leads to faster convergence despite the presence of
non-smooth terms. Analogously, even when a function is smooth but characterized
by a very large smoothness parameter, applying its proximal mapping can effectively
alleviate the negative impact of this large smoothness constant.

However, there is an important distinction from classical proximal methods,
which typically rely on direct access to the function of interest for computing the
proximal mapping. In our setting, we cannot directly apply the proximal mapping of
F(w,v). Instead, we only have access to a stochastic estimator

D(w,v; ) =SV 4y,
defined for a random sample £. As a result, it becomes necessary to explicitly account

for the noise introduced by this stochastic approximation.

Algorithm

To account for the stochastic noise, we introduce a Bregman divergence D, (-, -) and
update v, according to the following scheme:

1
v, = argmin ®(w,, v; {;) + a—D¢(v, Vi), (5.79)
v t

where {; ~ P is a random sample and @, > 0 is a step size parameter. We refer
to this step as stochastic proximal mirror descent (SPMD) update. To respect the
geometry of the stochastic objective ®(w,, v; {;), we construct a tailored Bregman
divergence induced by the function ¢(v) = ¢, namely,
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Algorithm 21 The SCENT Algorithm for solving Log-E-Exp (5.76)

1:
2:

4
5
6:
7
8:

Initialize wy, vy, step sizes 1, and a;, ¢ (v) =e™".

forr=1...,T-1do
Sample &, ¢/

Update v, = argmin,, exp(s(W;; &) —v) + v + L%D‘p (v, ve-1)
Compute z; = exp(s(W;; ) — ve)Vs(we /)
Compute v, = (1 = ;) Vi—1 + Br2s
Update W;41 = W, — 17, V;
end for

If the problem is non-convex, we compute a moving-average estimator v, = (1 —
B:)Vi—1 + B:Z, and then update the model parameter w,,;. We present the full steps

Dy(v,vic))=e™”

Once we have v;, we compute a vanilla gradient estimator by

z; = exp(s(w; 4}) — vi)Vs(we; £)). (5.81)

in Algorithm 21, which is referred to SCENT.

SCGD is just a special case of SCENT

To see the connection with SCGD, we present the following lemma.
Lemma 5.26 The update of v, defined by (5.79) can be computed by

vt = ! Vi-1 e’ . 5.82
¢ = 1+ asevt-1 ¢ * 1+ a e exp(s(Wi3 1)) (5.82)
t t

If y: = e, we have
i1t
Ve = 1+ a/tes(wt;{t) ’

Proof. We compute the gradient of the problem (5.79) and set it to zero for
computing v;, i.e.,

1
—exp(s(wg &) —ve) + 1+ a—(—e“” +e 1) =0.
t

Solving this equation finishes the proof. O

If we define u; = ¢ and y; = %, then the updates of SCENT (5; = 1)
are equivalent to

267

—e T 4 eV (y — vy). (5.80)




u;=(1- 7;)’/%—1 +’Y; exp(s(ws; ¢r))
1 ’ !’

z; = u—exp(s(w,;{t))Vs(w,;g“,), (5.83)
t

Wieel = Wr — 12y

Comparing this update with that of SCGD (5.77), the key difference lies in
the choice of the moving-average parameter: SCENT adopts an adaptive pa-

Vi o
rameter y; = y& w7, whereas SCGD uses a non-adaptive ;. If we set

a; = ly’y e -1 then the updates of SCENT reduce to that of SCGD.

e

Convergence analysis for convex problems
Since z; = Vy exp(s(w;; {;) — v;), we have
Eg[z:] = VwEg [exp(s(Wes £)) = ve)] = ViF(We, vy).
Let w.., v, be the optimal solution:
(W, vs) = argmin F(w, v).
w,v
It is straightforward to derive v, = log[E exp(s(w.;{))].

Assumption 5.17. Assume that the following conditions hold:

(i) s(w; ) is convex;
(ii) the loss function is bounded such that s(w;{) € [co,c1], YW, (.
(iii) there exists G such that E;||Vs(w;, {)H%] < G*,Vt.

Critical: To relax the second assumption, we can assume that w is restricted
to a bounded domain ‘W and s(w; £) is regular. In practice, we always enforce
the boundness of w; through either projection onto W or using a regularizer
r(w). The update of w;,; can be modified as the SPGD update:

1
Wy = argminz, w+r(w) + —||lw — w, ||§.
W/ un
The analysis can be performed similarly.

Lemma 5.27 Under Assumption 5.17(ii), v. € [co,c1] and if vo € [co,c1] then
v € [co,c1], V2.

Proof. v. € [cp, c1] can be seen from v, = log[E exp(s(w.,;¢))]. The second result
can be easily seen from the update of e** as in (5.82) by induction. O
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

For the ease of analysis, we define two quantities to capture the variance terms
caused by using stochastic estimators.

o7 =By llexp(s(wis &) = v) Vs(wis D31
67 =By, [e7 |8 Vi) — By [eS MO,

Under Assumption 5.17 (ii) and (iii), oy, d; are bounded because e'’,e~' and
es(W:4) s upper and lower bounded.

Critical: These two quantities are related to the variance of stochastic estima-
tors in terms of w, and v;, respectively. Both quantities have a normalization
term e ore” V1.

Lemma 5.28 Under Assumption 5.17 and B¢ = 1, we have

2.2
;0%

2

1 1
BOn V1 F (Wi v) (W = wo)l <B [ S11we = wall3 = S wee = will3] +

Proof. The proof is a simple application of Lemma 3.3. O

If the SPGD update is used, we can use Lemma 3.6 giving us
T 1 2 2
z, (Weat = Wa) +7(Wepp) —7(W,) < 0 (Ilw; — W*”z — || W1 — W*“z)
t

1
— =W — Wey ”2
2n, 2

Then,
T 1 2 2
z, (W — W) +7(W;) —r(w,) < ﬁ(HWt - W*||2 = lwegr — W*Hz)
t

1 2
+2] (W, — W) — 2 lw; = Wertll; +7(We) = r(Weyp)
t

2 2 Ui 2
< 2 (Iwe = Wall5 = W1 = Wel3) + 3||Zt||2 +7(W) = r(Wie1).
t

Taking expectation on both sides, we have

E[TIzVIF(Wt»Vt)T(Wt = w.)] +n:(r(we) — r(w.))

2 2
Und

2

+

<E

1 1
(Uzr(Wt) + §||Wt - W*”%) - (Utr(Wt+1) + §||Wt+1 - W*“%)

If 941 <y and r(w) > 0, then 1,7 (W) < 14417 (Weyp), then the terms in the
square bracket will form a telescoping series over + = 1,...,7T. As a result, the
following analysis will proceed similarly.
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Lemma 5.29 Under Assumption 5.17 (ii), we have
Vo ®(W, vy {t)T(Vt S Dga(V*, Vio1) — Dtp(V*» V) — DLp(Vta Vio1)-
Proof. Recall the definition

D(w,v;4) =exp(s(Wes &) —v) +v
e(v)=e™", Dyl(a,b)=g¢(a)-p(b) —(Ve(b),a-b),

and the update of v;:
v, = arg H{/in @; ®(W;,v; ) + Dy (v, vi-1).
The first-order optimality gives
a;Vo®(we, v &) + Vo(vy) = Vo(ve—p) = 0.
Taking inner product with (v; — v,) and rearranging gives

@ (Va®@(We, V3 8r), ve = vi) = (Vo (vim1) = Vo(vi), ve — Vi)
= D¢(V*, Vio1) — D(ﬁ(v*’ V) — Dtp(vt» Vi-1)

where the last equality holds by three-point identity as in Lemma 3.9. O

Critical: To proceed the analysis, we need to bound E[a; Vo F (W, v,)T (v, —
v,)]. In light of the above lemma, we will bound the following difference in
expectation:

E[(V2F (We, ve) T (vi = vi) = Vo® (W, v &) T (v — vi)].

The challenge lies at v; depends on {;, making the above expectation not equal
to zero.

Lemma 5.30 Assume a; < pe™"'~! for any constant p > 0, then we have
[E[(V2F (Wi, v))T (vi = vi) = Va® (Wi, vii )T (v = vi)]| € @:6°C. (5.84)
where C = (1 + p)(1+c| — ¢p).

Proof. In the following proof, we let ¥;_; denote the filtration (the “information
available”) up to time ¢ — 1.

Let us define z, = e*™34) m, = B, [e*™:¢)|F,_1], and y, = e™*. Let z and 7’
two independent variables so that E[z|F; -] = E[Z’|F;-1] = m;, . Since v; depends
on z;, let us define random functions:
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Yot
CZ[Z+1 ’

he(2) = e (vi(2) = vi) = 30 (D) (v (2) = vs).

yi(z) = vi(z) = —logy,(2)

According to the update of v,, we have y, = y,(z;),v; = v;(z). For the target, we

have
E[(Vo®(W;, i3 &) — Vo F (wy, Vt))T(Vt =vi) | Fi-1]

— E[E; [eS(Wt;é)] _ eS(wt;,(t))e—Vr (V; _ v*) | F-1]
=E[(m; — z1)he(2¢) | Fi-1] = Bz [(m; — 2) e (2)|F7-1].

Since 7’ is an i.i.d. copy of z and independent of z given F;_,
m; =E[z | Fi-1] =E[Z" | Fi-1].
Using the conditional independence,
E[(m; = 2)h:(2) | Fi-1] =E[(Z' = i (2) | Fi-a].
By exchangeability of (z, z") conditional on %;_1,
E[(Z - 2)h(2) | Fi-1] = —E[(z' = 2)h(2) | Fiz1].

Averaging the last two displays gives the standard symmetrization:

B[y = (D) | 1] = 3 B[ = () = b)) | Fia].

Next, we show that /(z) is Lipschitz continuous. By definition,

Yi-1t+ @

vt 1’ he(2) =y (2) (v (2) = va).

yi(z) =

Differentiate with respect to z:

dy;(z) d 1 @ (ye—1 +ay)
— =(y 1 +a) — +1 =
dz (yi-1+ ) dz ((a/tZ ) ) (arz+ 1)2
Using y;(z)(a;z + 1) = y;—1 + a;, we can rewrite this as
dyi(z) _ _ ayi(2)
dz a;z+1°
Since v;(z) = —log y;(z), we have
dvi(z) _ 1 dyi(z) @
dz v:(z) dz az+ 1

As a result,
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dhi(2) _ dy:(2)
dz dz

dvi(2) _ a:y:(2)
dz a;z+1

(ve(2) = vi) +3:(2) (1= (ve(2) = vs)).

Since v;(z), v« € [co, 1], then
|1 = (vi(z) =v)| < L+¢1 = co,

Y1+

and since y;(z) = ol SY-1+ar < (1+p)y;—1, we have

dhy
dz

< aryi-1(1+p)(1+c1 = co),

which means i.e. &, is L;-Lipschitz with
Ly < ary:—1C.
Then, it holds
|z = 2)(he (2) = he(2))] < Ly (2 = 2)* < Carye—1 (2 - 2)%.

Thus,

E[I(Z' — ) (h(2) = he(2)) | Fio1| < CaBly—1(2 = 2)») | Fi-1l

=Cao; ‘2E[Yt—l(z —E[Z])2 | Fi-1] < 2C6Vt5t2,

where the last step uses the definition of §7. Applying this result to (5.86), we have
1 ’ ’
)E[(,Ut - 2)h(2) | 9?1]’ < EE[’(Z = 2)(he(2) = b ()| | Fizr| < Cas6;.

By noting (5.85), we finish the proof. O

Combining Lemma 5.29 and Lemma 5.30, we have the following lemma for one-
step analysis of the v-update.

Lemma 5.31 Under Assumption (5.17) (ii), we have
Ela,VaF (Wi, v))T (v = vi)] S E[D o(va, vi—1) = Dy (ve, v,) + Ca?6?].  (5.87)

Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.14 Suppose Assumption 5.17 holds. Let 8, = 1,1, = nay, a; < pe™ "1,
then SCENT guarantees that
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T
E Z a; (F(we,ve) = F(W., vy))
t=1

1
%le W||% +D,(vi,v0) +E

e

Proof. Since n; = na;, from Lemma 5.28, we obtain

2 2
770’,0}]

2
W1 —W*”z )

1
Ela;ViF(w;, Vt)T(Wz -w)] <E|—llw - W”% il

2n 2n
Combining this with Lemma 5.31, we have

Ela; (Vi F(w;, Vt)T(Wt - W.) + Vo F(wy, Vt)T(Vt = v)l

1 1

<E Z“Wt - W“% - E”WHI - W*”% + D(P(V*’ Vio1) — Dcp(V*, Vt)]
2.2

+E| 1% +Ca,26t2].

By the joint convexity of F(w, v), we have
@ (F(We,vi) = F(Wa, vi) < @ (ViF (Wi, v) T (W = W) + Vo F (Wi, vi) T (v = ).

Combining the last two inequalities and summing over ¢ = 1, ..., T, we have

T
E| Y a(F(Wive) = F(W., )

t=1

1 2
< E”Wl = W[5+ Dy(ve,vo) +E

We present two corollaries of the above theorem.

Corollary 5.2 Suppose Assumption 5.17 holds. Let B; = 1,n; = nay;, a; = <

@
NT
pe~ V=1 for some constant p > 0, then SCENT guarantees that

DO CZV

E[(Fi(Wr) = Fi(w))] < —=+—

T T

where w = Lo Do = 5=||lw; — 24D d
T="7 0= 7,V W*||2+ w(V*,Vo)a"

n Zszl 0'z2 + ZtT:l C6,2

V=E
2T T

273



Proof. Plugging a; = a/VT into Theorem 5.14, we have

() aV

(F(we,ve) — F(We,vy)) +—.

Z o oNT T
Using Fi(w) = min, F(w,v), F|(w,) = F(w.,v.) and the Jensen inequality, we
can finish the proof. O

@ Why it matters

Since &;, o are finite, the above result implies a convergence rate of O(1/VT)
for SCENT.

Corollary 5.3 Suppose Assumption 5.17 holds. Let B; = 1,n; = nay, ay = “—=—
if % Zthl e V=1 > § almost surely, then SCENT guarantees that

D() aV

[Fl (WT) F (W* a\/_S ﬁ

Zz Wy
[e73

where W = and

t 1

V=

T ,-2vi_1,2 T -2vi1 52
E nzz:l e oy + t=1 Ce ™ ]61 .
2T T

Proof. Let @; = . From Theorem 5.14, we have

Z,lz

E

zT: a; ZT] & (F(We,vy) = F(w., V*))l

>

t=1

Wi = w3 + Dy (ve, vo) +E

+ Z C01262

Since ¥, @, =Y, %;H > aVTS, then

2,7||W1 W||%+D(,D(V*’ o) aV

+ .
aVTS TS

Applying the joint convexity of F(w,v) and F; = min, F(w,v), we can finish the
proof. O

T
E Z @ (F(wy,ve) — F(w,, V*))l
t=1
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@ Why it matters

Under the stated setting, SCENT reduces to SCGD with y; = ‘/ﬁ ~. Since S can

be lower bounded by a constant, the above corollary implies O(1/VT) conver-
gence rate for SCGD to minimize log-E-Exp.

Analysis of the Variance Terms

Since the final convergence bound depends on the variance terms o2, 52, we would
like to provide further analysis on them.
Let us introduce some notations:

2w ) = es(w;f)’ wu(w) = logEges(w;{), (5.88)
m; = Eges(w';n, My = pu(w;) = logm,. (5.89)
For the analysis, we make two reasonable assumptions.
(Elz(w:)1)?

. 2
Assumption 5.18. Assume there exist constants k, o> such that (i) B [M] <

« for all w; (ii) E||e* ™€)~ #Vs(w,; £)||> < o for all t;
Critical: These assumptions are necessary. In next section, we show that

the dependence on « is unavoidable. The second assumption is the standard
bounded stochastic gradient assumption for optimizing F} (w).

Lemma 5.32 (Dual Variance Term) Under Assumption 5.18, we have

82 < 2(k - Dm, (F(w,, Vee1) = F(Wa,v.) + 1). (5.90)

¢ Why it matters

When F(w;, v;_1)—F(W., v.) — 0, the variance term in the convergence bound
caused by the stochastic update of v, will be dominated by 2(x — 1)m,. Large m;
can be mitigated by choosing small «;.

Proof. Recall that
6? = E{t I:eivtil (Z(W;; {t) - m,)z]
By Assumption 5.18(1),
Var(z(w;;0)) < (k — l)mtz.

Hence
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62 = 7V Var(z(w;3 0)) < (k= De ™ 'm? = (k = Dmy - (mge™ 1),
Let 7,1 := mye™""-'. By the definition:
F(w;,vi_1) = Bes WiVt 4y | =F 4 v,
Since 7_; = €'°8™M V-1 we have
F(wi,vi1) —(T+ ) =F-1+vio1 — (L +logmy) =71 —log#—1 — 1.
Using r < 2(r — logr) for all r > 0 yields
Frot < 2(F(We,vee1) — (1 + ) +1).

Since w, minimizes u(w), we have u; = u(w;) > u(w,) and thus (1 + u;) >
(1+ p(wy)) = F(w.,,v.), implying

F(we,vic1) = (1 +uy) < F(We,vimy) — F(Wa, vi).
As a result, we have
Frot < 2(F(We,vim1) = F(Wa, vi) +1). (5.91)
Combining this with the bound of 62, we complete the proof. |
Lemma 5.33 (Primal Variance Term) Under Assumption 5.18, we have

of <40 (F(we,ve) = F(W,,v.) +1)°,

@ Why it matters

When F(w;,v;) — F(W.,v.) — 0, the variance term in the convergence bound
caused by the stochastic update of w; will be dominated by O (o "?).

Proof.

of =Egllexp(s(Wi: &) = vo) Vs(wes )31,
=By [ H7)| exp(s(wis &) — ) Vs(Wei Z)IR] < rfo?,

where r; = e# ™, Similar to (5.91), we have show that
re < 2(F (W, ve) — F(We,vi) +1).
Hence,

of <40 (F(we,ve) = F(Wa,v.) +1)°,
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Algorithm 22 The SCENT Algorithm for solving CERM
1: Initialize wy, v, step sizes 1, and a;, p(v) =e™".
2: fort=1...,T-1do
3: Sample B, c {1, ..., n} with |B,| = B

4: for eachi € B; do

5: Sample &i ¢, &/, ~ Pi

6: Update v; , = argmin, exp(s; (W3 &ir) — V) + v+ iD(p(v, Vit-1)
7 end for

8:  Computez; = 3 Yieg, exp(si(We; &/,) = vir)Vsi(Wis &/ ,)

9: Compute v, = (1 = B¢) Vi1 + B2

10: Update w;1 = Wy — 17,V
11: end for

5.5.2.2 Compositional Entropic Risk Minimization

In this section, we extend the results to solving compositional entropic risk mini-
mization (CERM):

min Fi (w) = ) log (B, explsi (w: )
i=1

via its equivalent min-min formulation:

n

1
min min F(w, v) ;= — Z{EKNPL. exp(s;(w; &) —vi) +v;}.
w \4 n N

i=1

The difference from Log-E-Exp is that there are multiple v;,i = 1,...,n, which
needs to be updated using stochastic block coordinate method. The technique has
been used in algorithms presented in previous sections of this chapter.

We present an extension of SCENT to solving CERM in Algorithm 22. The major
change lies at the stochastic block coordinate update of v in Step 5. This extension
is analogous to SOX for FCCO, employing stochastic block-coordinate updates for
the inner estimators. Indeed, SOX applied to CERM can be recovered as a special
case of SCENT by choosing the coordinate-wise step size a; ; = 13”7 - e~ Vit-1 using
an argument similar to (5.83).

Convergence analysis for convex problems
Let us define some notations:

D (W, vis &) = exp(si(Wes &) —vi) +v;
Fi(w;,vi) = Bpop, [®i(W;,vi50)]
(W, v.) = argmin F(w, v).

w,v
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Similar as before, v; . = log[E;.p, exp(s;(W.;))]. Since we deal with stochastic
block coordinate update, we introduce a virtual sequence v;, where

_ . 1 .
Vi = arg mvlneXp(Si(Wz; lip) = V) +v+ a—Dq;(v, Vii-1), Vi
t

Following Lemma 5.26, we have

. 1 ) atevi,t—l

Vid = ——————¢"" 1 4 ————exp(s; (W5 4)), Vi.
e 1+a,e"r¥t-le 1+ a eV p(si(We; 4r)), Vi
Assumption 5.19. Assume that the following conditions hold:

(i) s;(w; ) is convex;
(ii) the loss function is bounded such that s;(w; () € [co,c1], VW, , 1.
(iii) there exists G such that B ||Vs; (w;, §)||%] < G%Vt,i

Define oy ¢, 6; ¢ as
O-iz,[ = E»{i’,t"Pi ” eXp(si (wh {1{,[) - Vi,l)Vsi (WI7 g;,z) ”%] > VI7 t,
61‘2,1 = By, P, [e” Vit |eSi(Wt;_(i,r) ~Eg-p; [eSi(Wt;_(i)] |2]’ Vi, t.
Similar to Lemma 5.27, the following lemma can be proved.
Lemma 5.34 Under Assumption 5.19, if vo € [co, c1] then v, € [co, c1], V.

Similar to Lemma 5.28, we have the following lemma regarding one-step update
of w;.

Lemma 5.35 Under Assumption (5.19) and B; = 1, we have

2,2
+ 19

E[n:ViF(w;, ‘_’t)T(Wt -w.)| <E 7

1 2 1 2
§||Wz -w.l3 - §||Wz+1 - w3

2 _1vyn 2
where oy = 4 2, 0y,

Proof. We first bound E, [ ||z, ||§ | F:-1], where E; denotes the expectation over ran-
domness in 7-th iteration given w;, v,_j.

2

2

l ’ !
’_ Z eXp(Si(W,;é'i’t) - Vi,t)VSi(Wﬁé’i,;)

B i€B;

3 Y k| =1y
i=1

i€B;

1 7 ’
Et[”%”%] =E, B Z CXP(Si(Wt§§i,t) - Vi,t)VSi(Wt§§i,z)

i€B;

=Es..Eq18,.4

il

<Es.

Since v; ; = v;;, Vi € By, we have
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1 _ , _
= Z V(Di(wt,vi,t;{iz) =ViF(w;, 7).
B ieB ’

E (2] =Bz 4.8,

Then following Lemma 3.3, we can finish the proof. O
Next, we analyze the update of ;.

Lemma 5.36 Under Assumption (5.19) (ii) and a; < min; pe™"'~1, we have
_ _ 1
Ela;V2F (Wi, ) (7 = v)] < 2B [Dy (v vi1) = Dy (v, vi)| + Caj6y.

where Dy (vi,v;) = Y Do (Vi viy) and 67 = % o 5%.

Proof. By applying Lemma 5.30 and Lemma 5.29 for each coordinate of v; ;, we
have

Ela,VaF;(We, 7i0) " (e = Vi)l < Dy (Vioss Vise—1) = Dy (Viws Vip) + Cal 87, Vi

i,t?
Averaging the above inequality over i = 1,.. ., n, we have
n
ST (5 1 = 2
Ela;VoF (W, v;) ' (Ve —vi)] < r_l Z (Dtp(Vi,*, Vig—1) — D¢(Vi,*, Vi,t)) + Ca;6;.

i=1

(5.92)

Due to the randomness of B;, we have
B B _ .
E[Dw(Vi,*’ Vi,t)] =E (1 - ;)D¢(Vi,*’ Vi,t—l) + ;Dw(vi,*, Vi,t) , Vi.
Hence

E

1
n ZZ (D (Vs Vig-1) = Do (Vi s, Vi,z))l

n
=1
1
n

M=

=E

n n
Dy(vis,Vig-1) = 5D (Vi Vig) + (5 = DD o (Vis, Vii-1)
B B

13

—_

s |

1
=—E
B

(Do (Viws Vig-1) = Do (Vi s, Vi,z))l .
=1

Combining this with (5.92), we finish the proof. |
Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.15 Suppose Assumption 5.19 holds. Let 8; = 1,1, = na;, and a; =

\/—"T < pmin; e~ %=1 then SCENT guarantees that

279



D(P(v*7v0) aV

1
E[(Fi(Wr) = Fi(w.))] < wy — w2 + 20 eV
2naNT 2 aBNT NT
r T 2 T 2
Where V_VT: Z’?wt’andV:E[nzé:T]‘ O + t:l,z-‘C&r:I )

¢ Why it matters

In order to achieve an e-optimal solution, the above convergence bound implies
the following complexity:

T=0

”Wl _W*”g D<p(V*’ VO)2 Cl’2V2
n202€2 a2B2e? €2 .

For simplicity of discussion, let us consider a setting of 7 such that the first term
matches the second term. As a result, the complexity becomes:

Dy (vi,v0)?  a?V?

r=0 a’B2e? €?

Insight 1: Since oy, d; are finite, and D ,(v.,vp) = O(n), if @ « \/m the
above result implies an iteration complexity of O(5%;) for SCENT.

Insight 2: When the loss s;(w;;{) > 0 is large, the term e~ ""*-! becomes very
small, suggesting that the step size parameter @ should be chosen small so as to
mitigate the large variance term ;. In contrast, when the loss s;(W;; ) < 0 is
small, the term e~"i*-! can become large, allowing « to be set relatively larger,

which helps offset the large distance measure D , (V. vo).

Proof. Since n; = na;, from Lemma 5.35, we obtain

_ 1 1 na20'2
E[a;ViF(W;, %) (w, —w.)] <E Z”Wt - W”% - %”WHI - W*”% + t2 -
Adding this to the inequality in Lemma 5.36, we have
Ela; (ViF (Wi, 7)) (W, = W.) + VaF (W, v,) T (v = v.))]
1 1 1 1
<E [anz - w3 - %HWM — w5+ EDtp(v*’ Viol) — ED"’(V*’ Vz)]
2.2
E[" Ty c ,265]

By the joint convexity of F(w, v), we have
@i (F(W;, v;) = F(Wa, v.) < @i (ViF (W, 7)) (W, = W) + Vo F (W, v,) T (7, = 7).

Combining the last two inequalities and summing over ¢ = 1, ..., T, we have
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

E

T
D (F(W¥) = F(W.,v.)
t=1

1 , 1
< EHW] - W||2 + ED¢(V*,V()) +E

T T]CKZO'Z T
4N Cals?
2 -t
t=1 t=1

Since Fy(w,) = F(W,,v,), and F;(w,;) < F(w,,V,), we have

E

T
D (Fi(w) - Fl<w*>>l
t=1

T

o nejo? 252
t
tzgl > + E Caj;6;

t=1

1 , 1
< EHWI -wl;+ EDsa(V*,V()) +E

Plugging the value of @;, we finish the proof.

5.5.2.3 Why SCENT is better than ASGD?

In this section, we provide theoretical insight into why SCENT outperforms ASGD
for entropic risk minimization. The key distinction between the two methods lies in
their updates of the dual variable v: SCENT employs a stochastic proximal mirror
descent (SPMD) update, whereas ASGD relies on a standard SGD update. Accord-
ingly, our analysis focuses exclusively on the v-update while keeping w fixed. In
particular, we consider the following problem:

min F(v) := Ezes(g)_” +v, (5.93)
1 ¢

where we omit w in s(().

Recall the definitions z = ¢*¢), m = E[z], r(v) = me™ = e’ as used
previously, and the facts v, = argmin,, F(v) =logm, F(v.) =me™ ™ + v, =1+ v,.
Recall the SPMD update:

Vi-1
Vi — ; Vi-l 4 Le‘Y(é).
1+ ae-! 1+ a;e¥-1

e

Let us define an important quantity to characterize the difficulty of the problem:
E[z%]
K= 3>
(ElzD

which is known as second-order moment ratio. Larger « indicates heavier tails or
higher variability relative to the mean.
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A Clean Bound of SPMD

The optimality gap can be written as
Fv)-F(Wv,) =me” +v—-(1+v,) =r(v)—logr(v)—1. (5.94)

We assume s(¢) € [co, c1] and without loss of generality we assume c¢; < 0. If not,
we can define s'(¢) = s(0) —c1,2 = %) and F'(v') = E[z’¢””'] + v'. Then
F(v)-=F(v.) =F' (V') —min F'(v) if v =v' — ¢y.

Lemma 5.37 (Self-bounding inequality) For all r > 0,
r < 2(r—1logr). (5.95)
Equivalently, for all v € R,
r(v) <2(F(v) = F(v.) +1). (5.96)

Proof. If0 <r < 2,thenr <2 < 2(r —logr) since r —logr > 1 forall r > 0. If
r > 2,thenlogr < r/2, hence r —logr > r/2,i.e. r < 2(r — logr). Substituting

r = r(v) and using (5.94) yields (5.96). m|

Theorem 5.16 Suppose s({) € [co,ci] < 0 holds. By setting a; = ,/% <
min(m, p) for sufficiently large T, SPMD guarantees that

el

T T
(5.97)

T
LS BIF () - F)l < Mz\/c (k=D -ro+rologro) | Flvo) = F(v),
t=1

where C = (1 + p)(1 + ¢y — co), and rg = r(vg) = ¥,

¢ Why it matters

When vy > v, (over-estimation), then 1 — rg + rologro = O(1), the dom-
inating term becomes 0(\/?). This upper bound characterizes the intrinsic
complexity of SPMD, which depends on the second-order moment ratio «. If

5(£)) ~ N(ps, 02), then k = ¢+, which does not depend on the exponential of
the mean ug but rather e%s.

Proof. From Lemma 5.31, we obtain the SPMD averaged bound

D(P(V*’ VO)

Gr =
T aT

T
ZE[F(V,) —F(v)] <

t=1

+ CaV, (5.98)

Nl -

where
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

T
V= 1 ZE[étZ], 6; =E[e™"'(z; —m)*] = e Var(z).

r t=1
Since e~ "1-1 = r(v;_1)/m, we can rewrite
V= Var_(z) . l ZT:E[r(vt,])]. (5.99)
m T P

By Lemma 5.37,

! E[F(vi-1) — F(v.) + 1]

IR
1~

el
i

T

D Elr(vi-n)] <
t=1 t
1

T
=21+ Z]E[F(V,_l) ~FOv)l|.

=1
Next, observe the index shift:

T-1

D BIF(vi-1) = F(v)] = E[F(v0) = F(v)] + ) | E[F(v,) = F(v.)]
t=1

t=1

T
<E[F(v0) = F(v)] + ) E[F(n) - F(v.)].

t=1

Dividing by T yields
T
1 E[F(vo) = F(v.)] = =
T;E[F(vt_l) —F(vy)] < - +Gr. (5.100)
Combining this with (5.99) we have
y < 2Var@ (1 +Gr+ E[F(VO)T_ Fv)] ) . (5.101)
m

Plugging (5.101) into (5.98) yields

T < 1+GT+ T

G <D¢(v*,vo)+2ca\/ar(z)( - E[F(VO)_F(V*)]).
aT m

Ifa <

m 2C a Var(z)
= 4C Var(z)°’ m

then

< %, and therefore
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G < 2D ,(vs, vo) R 4Ca Var(z) (1 N E[F(vo) = F(v)]

aT m T
2D (v, vo) N 4Ca Var(z) N F(vp) — F(vs)
N aT m T ’

Optimizing the right-hand side over « (assuming 7 is large enough) gives:

ZE[F(V;) - F(V*)] < 4\/5\/CD90(V*» Vo)Var(Z) N F(VO) — F(V*).
mT T

N =

T
1=1
With rg = r(vg) = €70,

1
Dy(vi,vo) =™ —e " +e (v — ) = —(1 —ro+rolog ro).
m

Since Var(z)/m? = k — 1, thus the convergence upper bound becomes

4\/5\/C(K—1)(1—Tr0+rologro) . F(Vo);F(V*).

Comparison with SGD.

Benefit under the noise setting

In order to control the variance, we consider projected SGD. Let IIj., ] denote
projection onto [cg, ¢1]. The projected SGD update is

vier = Migge (i =@ &), go=1-ze™, (5.102)

where {z;};>0 are i.i.d. copies of z and @’ > 0 is a constant step size. Note that
Elg: [vi] =VF(vi) =1—-me™™.
We present a corollary of Theorem 3.5 for SGD to minimize F(v) below.

Corollary 5.4 Suppose s({) € [co, c1] holds and F(-) is L-smooth in the range of

[co. c1]. Let {v;} follow (5.102). If n < L, Then

T
G3OP = lZJE[F(V,) “F(v)] < Co=v)” | .
g T £ 2a'T

where
T

T-1 -1
2(5;)2 _ Va;(z) ZE[e‘ZV'].
t=0 t=0

7’

v =2
T
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

We quantify the smoothness on the bounded domain of the objective, which in-
troduces an exponential constant.

Lemma 5.38 On [co, c1], the function F(v) = me™" + v is L-smooth with

L= sup F’'(v)= sup me™V =me < =¢"™,

ve[co,ci] ve[eo,ci]

Proof. We have F”'(v) = me™”, which is decreasing in v, so the maximum over

[co, c1] is attained at cy. |
Theorem 5.17 By choosing the optimal o’ = l\;% < % = % SGD’s upper
bound becomes

_ . -1

G35P < V2|vg — vu| "€ "T (5.103)

where k = E[z%]/(E[z])>.

Proof. The proof follows Corollary 5.4 by noting that V' < Var(z)e > and
Var(z) = m?(k = 1) = e?(k = 1). O

¢ Why it matters

By comparing the convergence bound of SPMD with that of SGD, the resulting

ratio is: 1

Vo — valer——eo”

Notably, this ratio becomes exponentially small in regimes where v, > ¢, high-
lighting the superior efficiency of SPMD.

Benefit under the noiseless setting

We further show that, even in the noiseless setting, the dependence of the GD up-
date on |vg — v.| is unavoidable, whereas the PMD update does not exhibit such
dependence when v > v..

In the noiseless setting, where m = E[e* ¢4 )] is known, the gradient descent (GD)
iteration becomes:

Vietl = v —@'VF(v;) = v — /(1 —me™), t >0, (5.104)
where @’ > 0 is a step size. For deterministic PMD, its update is equivalent to (cf.

Lemma 5.26):
yeta

Yl = (5.105)

1+am’
where y; = e™".

Lemma 5.39 (GD vs PMD) Assume vy > v.. Let {v;}:>0 follow (5.104) with o’ <
1. Then in order to have |VF (v;)| < €, then we need at least
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L Yo~ ve—logrg)
a/

(5.106)

In contrast, for deterministic PMD update (5.105), in order to ensure |VF(v;)| < €.

it suffices that
o Fogﬂl - rOI/G)w

log(1 + am) (5.107)

Proof. Recall the definitionr(v) = me™ = e~ V. Wehave |[VF(v)| = |[1-r(v)|.
From (5.104),
Vel = v —a' (1= e 7").

If v, > vi, then vy — vi = v, —vi —@’(1 — ™) > 0 provided @’ < 1. Let
ry = "~ > (. Then, from GD update we have

Fee1 = re® 17 < p e < ppe® UFD),

In order to have ||VF (v;)||3 < €2, it is necessary to have r, > 1 — €. Hence, we need
1

log —= vo— v« —logl
atleast 1 > —% = (1“9).

a/
For deterministic PMD update (5.105), since r; = my; we have

lI-€

1= re—1
Fr+l Cl+am’
Taking absolute value yields
IVF(v:)|
VF =—,
| (Vi+)] (1+am)
Solving |VF (v;)| < |[VF(vo)|/(1 + am)’ < € yields (5.107). O

@ Why it matters

Deterministic GD needs at least Q((vyp — v.)/a@’) steps to enter a constant-
accuracy region, whereas PMD reduces |VF (v;)| geometrically with rate (1 +

am)~!, yielding a complexity of order O ( log % , which does not scale

Tog Ty
with vo due to [1 —rg| = |1 — &% < 1.

Indeed, in the noiseless setting for PMD, taking the formal limit @ — oo yields
y1 — 1/m thus vi — v,. This highlights that the PMD update is an implicit,

geometry-matched step.

5.5.2.4 An Optimal bound for SPMD

In fact, we can improve the convergence rate of SPMD to O (KT’I), which matches
a lower bound to be established. The key is just to use a specially designed learning
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

rate scheme «;. Recall the SPMD update:
e = —, Viz1, (5.108)

where y,_| = e "1, z; = €541,

Lemma 540 Let S; = Z;:I z; and Z; = Sy /t. Initialize y| = 1/z; (or equivalently
a1 = o) and for t > 2 choose

@ = = . (5.109)

Then forallt > 1,

s
o= ov= —logy = 1og(7’) = logZ,. (5.110)
t

In particular, v, is the exact minimizer of the empirical objective

I?,(v) = Z;e Y +v since argmyinf,(v)zlogzt.

Proof. We prove (5.110) by induction. For t = 1, y; = 1/z; = 1/8; holds by ini-
tialization. Assume y;_; = (t — 1)/S;-1. Then (5.109) gives a; = 1/S;_1, and the
recursion (5.108) yields

t—1 1 t

Vv, = Sr-1 + Se-1 S _ t _ t
t = = = = -
1+ Sfil —St_|+zf S[_l + 2 St

-1
Thus y; =1/S; and v, = —logy, = log(S;/t) = logZ;. O
Assumption 5.20. Assume s(¢) is o-2-subgaussian, i.e.,

E[et()-E(@D] < L2 yieR.

This includes Bernoulli distribution (indeed, if s({) € [co, c1] a.s., then s({) —
E[s()] is (¢1 — co)?/4-subgaussian by Hoeffding’s lemma).

Since ~ar(z)

EE = K 1, we have

Var(z) _ (k = 1)m?

Var(z7) =
ar(Zr) T T

Since Lemma 5.40 gives vz = log Zr, in light of (5.94) we can write

F(vr) - F(v,) = —

i X _
—1+log(Z—T)=—+logQT—1, 0r =L, (5.111)
ir m Or m

Note that E[Q7] = 1 and Var(Q7) = (k — 1)/T.
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Let Ur == Qr — 1 = (Zr — m)/m. Then E[Ur] = 0 and E[UZ] = (k — 1)/T.
Define

1
gu) = —— +log(1+u)—1,Yu > -1
1+u
so that by (5.111) we have F(vy) — F(v.) = g(Ur).

Lemma 5.41 Forallu > —%,

g(u) < 2u”.

Proof. Define h(u) := 2u* — g(u) for u > —1. Since g’ (u) = we have

—u
(14u)?°

’ _ _ u _ _ 1
I (1) = 4u —(1+u)2—u(4 (1+u)2).

For u > —%, (1+u)? > 3—‘, hence (1+1_u)’ < 4. Therefore h’'(u) < 0 foru € [—%,O]

and A’ (u) > 0 for u > 0. Thus & attains its minimum over [—%, o) at u = 0, where
h(0) = 0. Hence h(u) > 0 on [—%, ), i.e., g(u) < 2u? there. O

Lemma 5.42 Let z; > 0 i.i.d. with finite k. Then
- T
P(Qr < 1/2) =P(zZr < m/2) < exp( - 8_K)

Proof. For any A > 0, by Chernoff bound,
T T
P(Zzi < TTm) = P(e_’lz"r:l > e_’le/z) < e’le/z(E[e_’lz]) .
i=1

Usinge™ <1 —x+x2/2 forx > 0,

22 22
Ble™] < 1-m+ SB[ < exp( _am+ ?]E[zz]).

Therefore
P(zr £ m/2) < exp(T(/lm/Z —Am + gE[zz])) = exp( - T(/l—m - /l—zE[Zz]))-

Choose A = m/(2E[z?]) to get the exponent —Tm?/(8E[z?]) = —T/(8«). o
Lemma 5.43 If s is o->-subgaussian, then

m?E[z?] = (B[e*])’Ele™>] < &7
Proof. Let u=E[s] and X =5 — y. Then E[X] = 0 and z = ¢ = e#eX. Thus

m*E[z7?] = (e"E[eX])2 (eTE[e™X]) = (]E[ex])zE[e_zx].
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

By subgaussianity,

E[ex] < 602/2’ E[efzx] < 8(22)02/2 :620‘2‘

2 2 2
Hence m’E[z72] < 7 27 =37, O

Theorem 5.18 Under Assumption 5.20, the SPMD iterate vy produced by a; =
ve—1/(t = 1) satisfies

2(k=1)
T

3 2 T
E[F(vr) - F(v.)] < + 37 exp(—m). (5.112)

In particular, since the second term is exponentially small in T |k,
B[F(vr) - F(v.)] = O(x/T),
for every o--subgaussian s({).

Proof. Since F(vr) — F(v.) = g(Ur), we split the expectation on the events {Ur >
—1/2} and {Ur < -1/2}:

Elg(Ur)] =Elg(Ur){Ur = -1/2}] +E[¢(Ur){Ur < —1/2}].
On {Ur > —1/2}, Lemma 5.41 yields

Var(z)  2(x—1)
mT T

Elg(Ur){Ur > —-1/2}] < 2E[U3] = 2 Var(Qr) =2
On {Ur < —1/2} we have Q7 < 1/2, and since logQ7 — 1 < 0,

1 1
g(Ur) = —+logQr—1< —.
YT or ger Or
Hence, by Cauchy—Schwarz,

1/2

Elg(Ur)1{Ur < -1/2}] < E[Q7'1{Qr < 1/2}] < (E[Q72]) /" P(Qr < 1/2)"2.

By Jensen inequality and Lemma 5.43,

E[Q;%] = m*E[z;2] < m*B[z72] < 3.

By Lemma 5.42, P(Q7 < 1/2) < exp(-=T/(8«)). Therefore,
; T
Blg(Un1{Ur < ~1/2}] < 37 exp( - = ).
16«

Combining the two pieces proves (5.112). O
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A Distribution-free lower bound

Indeed, we can show that O (K—;]) is an optimal bound by establishing matching a

lower bound for a black-box oracle model where the underlying distribution of z is
unknown and for any query v the oracle returns

D(v;) =ze "+, g(v;) =V, ®(v;)=1-ze".
Since

2(8) =" (@(v: ) —v) =e"(1 - g(v:0)),

hence, any T-query algorithm can reconstruct 7 i.i.d. samples zi,...,z7 from P.
Thus, it suffices to prove the lower bound in the standard i.i.d. sampling model for z.
Let us define a distribution class. For k > 2, define

Ep[2’]
szz:P: zZO,O<Ep[z]<00,(EIIZ—[ZZ])2§K}.

Equivalently, Varp(z)/(Ep|[z])? < k—1.For P € P, letm(P) = Ep[z] and v.(P) =
log m(P).

Lemma 5.44 Let ¢(u) =e ™ +u—1. Then $(0) = ¢’(0) =0 and ¢"' (u) = e ™. In
particular, for all |u| < 1,

p(u) > — u’. (5.113)

Proof. On the interval [-1,1], ¢”(u) = e™ > e~!, so ¢ is e~ !-strongly convex
n [—1, 1]. Since ¢(0) = ¢’(0) = 0, strong convexity implies ¢(u) > "T_IMZ for all
lu| < 1. O

Lemma 5.45 Let ¢(u) = e ™™ +u— 1. Fix vog < vy and let A == v| — vy. Define
H(v) = ¢(v —vo) + ¢(v — v1).

Then H is strictly convex and its unique minimizer v' lies in (vo, vi). Moreover, if

A <1, then

-1
. e 2

> — A°. .
inf H(v) = A (5.114)

Proof. We have ¢’ (u) =1 —e¢7" and ¢’ (u) = e ™ > 0, hence H is strictly convex
with
H») =¢' (v=v)+¢'(v=v)) =2—e ") — v,

At the endpoints,

H' (vo) =2-1-e" ™) =1-¢2 <0,  H'(v))=2-e "1 =1-¢">0.

290



5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Since H’ is strictly increasing (because H”” > 0), there is a unique root v e (vo, v1)
and thus inf, cg H(v) = inf, c[y,,v,] H(V).

Assume A < 1. Then forall v € [vg, vi] we have |[v —vg| < A< land|v-v| <
A<1.0n[-1,1],¢"(u) =e™ > e, s0¢p(u) > %uz for all |u| < 1. Therefore,
for all v € [vg, v1],

H(v) > %((V o)+ (v - vl)z).

Minimizing the RHS over v yields inf, ((v — v9)> + (v — v1)?) = A?/2, hence
infyer H(v) 2 &A% O
Lemma 5.46 (Le Cam’s Two-point Method) Let Py, P, be two distributions and

let Lo(+), L1(+) be nonnegative loss functions. For any estimator @ measurable w.r.t.
the data,

#PO’P‘) inf(Lo(a) + Li(a)). (5.115)

Proof. Let M = (Py+ P1)/2 and write dPy = (1+ f) dM, dP; = (1 - f) dM where
|f] < 1and f |fldM = TV (Py, Py). Then for any (possibly random) decision A,

max{Ep,[Lo(a)], Ep,[Li(a)]} >

B [Lo(A)] + B [Li()] = [ (Lo(A)(1+ )+ Li(A)(1 = 1) de
= [ ((Lata)+ Li(a) + £(Loa) - Li(a)) ant
> [ {(2o(a) + LaCa) = 171 (L) + Li(a))) ant
- [ (o) + Lican( - i) am

> inf(Lo(@) + Li(a) [ (=17 dm
= (1= TV(Po. P) inf(Loa) + Li(a).

Taking half and using max{x, y} > (x + y)/2 yields (5.115). |

The final distribution-free suboptimality lower bound is stated in the following
theorem.

Theorem 5.19 Let z = ¢5¢) > 0 with m(P) = Ep[z] and v.(P) = logm(P). For
K > 2, define

E 2
szz{P: 7220, 0<Ep[z] < o0, plZ] <K}.

Eplz]®> ~

Let Fp(v) :=m(P)e™ +v and v.(P) = argmin,, Fp(v). Then there exists an abso-
lute constant ¢ > 0 such that for all T > «, any (possibly adaptive) algorithm using
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T value/gradient oracle calls and outputting v satisfies

sup Ep[Fp(3) - Fp(v(P))] > ¢ <=1,
PePy T

(5.116)

Proof. We construct two strictly positive hard instances in P,. Fix € € (0, 1] and
define two distributions supported on {&, «}:

Py P(z=«) =pi, P(z=¢)=1-p;, i €{0,1},
where
1 1
po=-  pr=poth, h =

 8VkT

Since T > k, we have h < ﬁ so p1 € (0,1).
Next we show that P§, PY € $,. For a generic p € (0,1) and support {e, k},
define
E[2]  pk*+ (1 - p)&?
E[z]*  (pk+(1 —p)s)z.

Letu :=¢&/k € (0,1/«] c (0, 1]. Then

Re(p) =

2
Rg(p)sz)uz'
(p+ (1= pu)

We claim R.(p) < %for all u € [0, 1]. Indeed,

2

(p+(1=pu) = p(p+1-pu?)

=p>+2p(1 = plu+ (1 -p)’u® - p> = p(1 - p)u’

— (1 —p)u(2p +(1- 2p)u) > 0
because u € [0,1] and 2p + (1 — 2p)u > min{2p, 1} > 0. Thus R.(p) < 1/p.
Since pg = 1/« and py > pg, we have 1/p; < «, hence R.(p;) < « and therefore
P, Py € Py

Next, we compute the separation A between v.’s. Let m{ = Ep# [z] = e+pi(k—&)

and v{ = logm?. Then

1
my —m§ = h(k—¢&) > h(k—-1), mg=8+p0(/<—s)=l+(l——)s€ [1,2].
K

Hence

mf—m§)> 1 h(k—1) «-1
T2 2 32VkT
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where we used log(1+x) > x/2 forx € [0, 1/2] and the fact that h(fn—%g) < hk < 1/8.
In particular, A < hk < 1/8 < 1.

Next, we show the lower bound of inf,, ((Fo(v) - Fo(v§)) + (Fi(v) — Fi (vf))).
Under P{ the objective is F;(v) = m{e™"+v and the optimal value is F; (v{) = 1+v7.
Thus the suboptimality can be written as

F(v) = Fi(vf) = e’ 7+ (v=vF) = 1 = ¢(v — vf), d(u)=e“+u—1.
Let v(‘)E < vf andsetu = v — vg. Then

¢(v—vg) +d(v —vi) = d(u) + ¢(u — A).

The function u — @(u) + ¢(u — A) is convex and its minimizer lies in [0, A]. Since
A <1, applying Lemma 5.45 gives

-1
d(u) +d(u—A) > %AZ.
Therefore,
-1
igf((Fo(v) — Fo(vE)) + (F1(v) —Fl(vf))) > "’TAQ. (5.117)

Next, we show the total variation between P(‘)g, and Pf is bounded. Because the
two distributions differ only in the Bernoulli parameter,

1 -
KL(PE, PY) =p010gI;—(l) +(1 - po)log 7 p?.

Using the bound KL(P, Q) < x*(P,Q) and the fact that for Bernoulli measures

2 _ h?
x-(P§, PY) = Sri—p We get
h2
KL(PZ,P?) < ——.
pi(1=p1)
Since h < %, we have p; < po+h < % < %, hence 1 — p; > 1/4, and also

p1 = po = 1/k. Therefore pi(1 —py) > ﬁ and
KL(P§, PY) < 4xh*.

For T i.i.d. samples, this gives

1
KL((P)®". (PD)®T) = TKL(P§. PY) < 4«Th* = —.

By Pinsker’s inequality,
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TV((PE)®T, (P9)®T) < \/%KL((Pg)@’T, (Pe)eT) <

Finally, we apply Lemma 5.46 to Po = (P§)®”, Py = (Pf)®" and losses
Li(v) = Fi(v) - Fi(v{) 2 0.
Using (5.117) and TV < 1/4 yields for any estimator v,

1-TV e! , 3 ', 3e!
Ep: [Fi(V) - Fi(v®)] > R Ry C i
iefot) rel ) - FOP] 2 — 47 8 4 32

A

oo A2 s (Kk=D)? —1 .
Substituting A* > {55757 2= sze7 (Since k > 2) gives

3 k—1
E & Fi — Fi £ > °
s, Bre (RO = FROD] > Gres 77
Since P¢, P¢ € Py, this implies (5.116) with ¢ = = O

5.6 History and Notes

Finite-sum coupled compositional optimization (FCCO) was first formalized in our
work (Qi et al., 2021c) for optimizing average precision, an empirical estimator of
the area under the precision—recall curve. We proposed the SOAP algorithm for AP
maximization and established the first complexity bound of O (%) for finding an
e-stationary solution. Their algorithm is closely related to SOX, but differs in that it
does not employ a moving-average gradient estimator. The framework was demon-
strated on applications including image classification and molecular property predic-
tion for drug discovery. The analysis of SOAP draws inspiration from the original
SCGD analysis Wang et al. (2017a), while significantly improving upon its O (1/€®)
complexity with the a better hyper-parameter setting, leading to Theorem 4.1.

To accelerate convergence, we subsequently adopted the moving average gradi-

ent estimator for FCCO (Wang et al., 2022). While this approach achieves a com-
plexity order of O (#), it does not benefit from the variance reduction gained by

using mini-batches to estimate inner function values. The limitation arises because
we treat all inner functions as a single vector variable and compute a sparse unbiased
stochastic estimator for this vector; consequently, the estimator does not enjoy the
advantages of inner mini-batching. This improved rate and analysis was inspired by
the stochastic compositional momentum method (Ghadimi et al., 2020).
Subsequently, we proposed the SOX algorithm-a significant advancement for
solving FCCO (Wang and Yang, 2022), encompassing new design, theoretical analy-

2
sis, and practical applications. In that work, we established a complexity of O (2—3{)
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for SOX to find an e-stationary solution in non-convex smooth FCCO problems. It
integrates the analysis of stochastic block coordinate update of the u sequences with
that of stochastic compositional momentum method.

Building on this, we developed a double-loop restarted algorithm that utilizes
SOX in the inner loop to address non-convex problems under the u-PL (Polyak-
Lojasiewicz) condition, i.e., |[VF (w)ll% > u(F(w) — miny F(w)). This approach

2
noy
u’Be

yields an improved complexity of O ( ) for finding an e-optimal solution. This

2
nop
u’Be

result further implies a complexity of O ( ) for strongly convex FCCO prob-

2
lems and O (2;:2) for convex FCCO problems, requiring no assumptions on the in-

dividual convexity of inner and outer functions beyond the overall convexity of the
objective. The improved convergence analysis under the PL condition for the double-
loop restarted algorithm was inspired by our prior work on stochastic compositional
optimization for distributionally robust learning (Qi et al., 2021b). A comparable
complexity bound of O(#) for a single-loop algorithm in the context of Stochastic
Convex Optimization (SCO) under the PL condition was subsequently established in
(Jiang et al., 2023), which considers the application of SCO in training energy-based
models.

Furthermore, for convex FCCO instances where the outer function is both convex
and monotonically non-decreasing and the inner functions are convex, (Wang and
Yang, 2022) reformulated the problem as a convex-concave min-max optimization
problem and established a complexity of O (’;—fi) under a weak duality convergence
measure. Finally, when a u-strongly convex regularizer is present, the complexity is

}’l(T2 . . . . .
further refined to O (,12_305) for finding an e-optimal solution in terms of Euclidean

distance to the optimum. This analysis was mostly inspired by (Zhang and Lan,
2024), which is the first work that establishes the optimal complexity for solving con-
vex SCO where the outer function is both convex and monotonically non-decreasing
and the inner function is convex.

Later, Jiang et al. (2022) proposed the Multi-Block-Single-Probe Variance Reduc-
tion (MSVR) algorithm for FCCO, establishing improved complexity bounds over
SOX by leveraging the mean squared smoothness of the inner functions. For non-

convex smooth FCCO problems, MSVR improves the complexity to O (Z—‘:‘;) for

identifying an e-stationary solution.
For objectives satisfying the u-PL condition, a double-loop restarted MSVR al-

no
uBe

gorithm achieves an improved complexity of O ( ) to find an e-optimal solution.

noyg
uBe

Consequently, this approach yields a complexity of O ( ) for strongly convex

FCCO problems and O (Z—‘S) for convex FCCO problems.

The analysis for non-smooth weakly convex FCCO and the SONX (v2) algorithm
was studied in our work (Hu et al., 2024b). This work established a complexity of

o (;—Z‘;) for finding a nearly e-stationary solution for weakly convex inner and outer
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functions. A similar analysis for a special case of weakly-convex SCO was conducted
in (Zhu et al., 2023c). When the outer function is smooth, the complexity is improved

in this book to O (';—‘:ﬁ{) The SONEX algorithm for solving weakly convex FCCO

with non-smooth outer functions was proposed in our work (Chen et al., 2025b).
The ALEXR algorithm and its analysis for convex FCCO instances appeared in

our work (Wang and Yang, 2023), where the outer function is both convex and mono-

tonically non-decreasing and the inner functions are convex. For the first time, we

established a complexity of O ( %) for finding an e-optimal solution of convex

FCCO. Our analysis of the stochastic block coordinate update for the dual variables
is primarily informed by the framework in Alacaoglu et al. (2025), which addresses
convex-concave minimax problems with bilinear structures. The extrapolation for the
gradient of the dual variable is inspired by (Zhang et al., 2021). It is worth mention-
ing that for strongly convex FCCO with smooth outer functions, we only established
the convergence of ALEXR for the Euclidean distance to the optimum. However, it
is possible to establish the convergence for the objective gap and even the duality gap
following our work on strongly-convex strongly-concave min-max optimization (Yan
et al., 2020b).

In (Wang and Yang, 2023), we also established the lower bounds for convex FCCO
and strongly convex FCCO, which matches the upper bounds. Our derivation of the
lower bound for convex FCCO with non-smooth outer functions builds upon the
construction presented in (Zhang and Lan, 2024) for SCO.

The double-loop ALEXR was developed in Chen et al. (2025b), which was mostly
inspired by a line of work on weakly-convex concave min-max problems (Rafique
et al., 2018; Yan et al., 2020b; Zhang et al., 2022). (Rafique et al., 2018) is the first
work that proves the convergence for weakly-convex (strongly)-concave problems.
Yan et al. (2020b) simplified the algorithm for weakly-convex strongly-concave prob-
lems with u-strong concavity on the dual variable and established a complexity of
O(ﬁ) for finding an nearly e-stationary point. The later work (Zhang et al., 2022)

improved the complexity to O ( ﬁ) with a simple change on the number of iteration
for the inner loop.

The non-convex analysis of ASGD for compositional CVaR minimization first ap-
peared in (Zhu et al., 2022b) for one-way partial AUC optimization. The geometric-
aware algorithm SCENT for CERM and its analysis were developed in (Wei et al.,
2026). It remains an interesting problem to conduct fine-grained analysis of SCENT
for non-convex problems.

A more general framework than FCCO is the so-called conditional stochastic op-
timization (CSO), defined as:

minEe [fe (B¢je[g(w: . 6)])]

This paradigm was formally introduced by Hu et al. (2020), who analyzed a biased
SGD (BSGD) algorithm employing a large inner mini-batch and a constant outer
mini-batch. For non-convex smooth problems, using an inner batch size of O (e~2)
results in an iteration complexity of O(e~#), which translates to a total sample com-
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plexity of O(e~%). This performance is inferior to that of SOX when n/B < €~2. For
convex and p-strongly convex CSO problems, an inner batch size of O (e™!) yields
iteration complexities of O(e~2) and O (u~2e™!), respectively. Notably, the latter
complexity is likewise worse than that of restarted SOX when n/B < O(e!).
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