
Chapter 5
Advances: Finite-sum Coupled Compositional
Optimization

Abstract In this chapter, we study a novel family of stochastic compositional
optimization problems namely finite-sum coupled compositional optimization
(FCCO), and introduce algorithms for solving them. These algorithms have direct
applications in addressing the empirical X-risk minimization challenges discussed in
Chapter 2. To ensure broad applicability, we examine various settings of this prob-
lem, characterized by different properties of outer and inner functions, including
smooth and non-smooth cases, as well as convex, weakly convex, and non-convex
scenarios. The results presented here also significantly extend and complement those
discussed in Chapter 4. We also discuss how to efficiently optimize compositional
optimized certainty equivalent risks, especially compositional entropic risk.

Coupling reveals depth where composition meets reality!
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5.1. FINITE-SUM COUPLED COMPOSITIONAL OPTIMIZATION

5.1 Finite-sum Coupled Compositional Optimization

Specifically, we focus on the following optimization problem:

min
w∈R𝑑

𝐹 (w) :=
1
𝑛

𝑛∑
𝑖=1

𝑓𝑖
(
E𝜁∼P𝑖𝑔𝑖 (w; 𝜁)

)
, (5.1)

where 𝑔𝑖 (·; 𝜁) : R𝑑 → R𝑑
′ is a stochastic mapping, 𝑓𝑖 (·) : R𝑑′ → R is a determin-

istic function, and P𝑖 denotes the distribution of the random variable 𝜁 .
We refer to this problem as finite-sum coupled compositional optimization

(FCCO). If we interpret 𝑖 as an outer random variable, a distinctive feature that sets
FCCO apart from standard stochastic compositional optimization (SCO) is that each
inner stochastic function 𝑔𝑖 (w; 𝜁) depends on both an inner random variable 𝜁 and an
outer index 𝑖, giving rise to the term coupled. While this problem can be cast as a spe-
cial case of SCO by defining 𝑓 (g) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖) and g(w) = [𝑔1 (w), . . . , 𝑔𝑛 (w)],

the high dimensionality of g due to large 𝑛, along with its stochastic components, sig-
nificantly complicates the construction of unbiased estimators and theoretical anal-
ysis. Therefore, FCCO warrants the development of specialized optimization meth-
ods.

Below, we revisit several applications of FCCO in ML and discuss the properties
of 𝑓𝑖 and 𝑔𝑖 .

Group DRO

In Section 2.2.3, we have formulated the CVaR divergence regularized group DRO
as

min
w,𝜈

1
𝐾𝛼

𝐾∑
𝑖=1

[𝐿𝑖 (w) − 𝜈]+ + 𝜈, (5.2)

where 𝛼 ∈ (0, 1), 𝐿𝑖 (w) = 1
𝑛𝑘

∑𝑛𝑘
𝑗=1 ℓ(w; x𝑖𝑗 , 𝑦

𝑖
𝑗 ) denotes the average loss over data

from the 𝑖-th group. The first term above is an instance of the FCCO objective, where
the outer function 𝑓 (𝑔) = ( [𝑔]1 − [𝑔]2)+ is a convex but non-smooth function of
𝑔, and each inner function 𝑔𝑖 (w, 𝜈) = [𝐿𝑖 (w), 𝜈]> could be convex or non-convex,
smooth or non-smooth depending on applications.

AP Maximization

In Section 2.3.2, the APmaximization has been formulated as the following problem:

min
w

1
𝑛+

∑
x𝑖∈S+

𝑓 (𝑔𝑖 (w)), (5.3)

189



where S+ is the set of 𝑛+ positive examples, 𝑔𝑖 (w) = [𝑔1 (w; x𝑖 ,S), 𝑔2 (w; x𝑖 ,S)]>
is a vector mapping with two components:

𝑔1 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝑔2 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

and 𝑓 (g) = − [g]1
[g]2

is simple function.We can see that 𝑓 is non-convex and smooth if
the loss value is upper bounded and ℓ(0) is lower bounded. The inner mapping 𝑔𝑖 (w)
could be convex (e.g., a linear model) or non-convex (e.g., a deep model), smooth or
non-smooth depending on applications.

Contrastive Representation Learning

The contrastive objective of self-supervised representation learning presented in (2.50),
is the following:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­«𝜀 + 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ .

The outer function 𝑓 (𝑔) = 𝜏 log(𝜀 + 𝑔) is a non-convex function and smooth when
𝜀 is lower bounded. Each inner function 𝑔𝑖 is a non-convex function of w in general.

5.2 Smooth Functions

In this section, we consider a non-convex but smooth objective function 𝐹 (w) with
smooth outer functions. In addition, we assume the inner stochastic functions satisfy
the following conditions throughout this section.

Assumption 5.1. We assume that

(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2
2] ≤ 𝜎2

0 .
(ii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁) − ∇𝑔𝑖 (w)‖2

2] ≤ 𝜎2
2 .

(iii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁)‖2
2] ≤ 𝐺2

2.
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5.2. SMOOTH FUNCTIONS

5.2.1 The SOX Algorithm

The first algorithm for solving FCCO is called SOX, named byStochasticOptimization
ofX-risks. Owing to its ease of implementation and favorable practical performance,
this algorithm is commonly adopted for addressing FCCO. Below, we outline the as-
sumptions necessary for its analysis.

Assumption 5.2. There exist 𝐺1, 𝐿1, 𝐿𝐹 > 0 such that

(i) 𝑓𝑖 : R𝑑′ ↦→ R is 𝐺1-Lipschitz continuous and 𝐿1-smooth;
(ii) 𝐹 : R𝑑 ↦→ R is 𝐿𝐹-smooth;
(iii) 𝐹∗ = minw 𝐹 (w) ≥> −∞.

Similar to that for SCO, we also need to track and estimate the inner functions.
However, the difference is that we need to maintain and update 𝑛 estimators for the
𝑛 inner functions 𝑔𝑖 (w), 𝑖 ∈ [𝑛].

To this end, we maintain 𝑛 sequence of estimators {u𝑖,𝑡 , 𝑡 ∈ [𝑇]}𝑛𝑖=1. At the 𝑡-th
iteration, we draw a set of 𝐵 random indices B𝑡 ⊂ [𝑛] with |B𝑡 | = 𝐵. We update
u𝑖,𝑡 , 𝑖 ∈ [𝑛] by the following:

u𝑖,𝑡 =
{
(1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ), 𝑖 ∈ B𝑡
u𝑖,𝑡−1, o.w. , 𝑡 = 1, . . . , 𝑇, (5.4)

where 𝜁𝑖,𝑡 ∼ P𝑖 is a random variable. We refer to the above estimator as coordinate
moving average estimator. Then, similar to SCMA, a moving average estimator of
the gradient is computed by:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 ,

where z𝑡 =
1

|B𝑡 |
∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ).

Then, the model parameters are updated by:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 .

The detailed steps are presented in Algorithm 14.

Convergence Analysis

Let us first define two notations:

Δ𝑡 = ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 , (5.5)

𝛿𝑡 =
1
𝑛

𝑛∑
𝑖=1



u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2
2 . (5.6)
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Algorithm 14 SOX
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw a batch of samples B𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators

u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) ,

8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute the vanilla gradient estimator z𝑡 = 1

|B𝑡 |
∑
𝑖∈B𝑡 ∇𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
11: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
12: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
13: end for

The descent lemma (Lemma 4.9) remains valid. Next, we analyze the recursion of
Δ𝑡 and 𝛿𝑡 . One point of deviation is that only some randomly selected coordinates
of u are updated and used for computing the gradient estimator z𝑡 . To facilitate the
proof, we introduce a virtual sequence:

ū𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ),∀𝑖 = 1, . . . , 𝑛. (5.7)

This is similar to that is done in the analysis of stochastic coordinate descent method
in Section 3.3. Then, we have

M𝑡 = EB𝑡 ,𝜁 ′𝑡 [z𝑡 ] =
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ).

Critical: Since u𝑡 is a random variable that depends on B𝑡 , hence

EB𝑡 ,𝜁 ′𝑡 [z𝑡 ] ≠
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ).

We first bound the error recursion of 𝛿𝑡 .

Lemma 5.1 Consider the u𝑡 updates in Algorithm 14. Under Assumption 5.1, if 𝛾𝑡 ≤
1, then

E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾𝑡

2𝑛

)
E [𝛿𝑡−1] +

2𝑛𝐺2
2

𝐵𝛾𝑡
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
.

Proof. Since ū𝑖,𝑡 is updated using MA, then similar to (4.6), for all 𝑖 ∈ [𝑛] we have
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5.2. SMOOTH FUNCTIONS

E𝜁𝑖,𝑡 [‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2] ≤ (1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 .

Given 𝑖 ∈ [𝑛], with a probability of 𝐵/𝑛 that 𝑖 ∈ B𝑡 , we have u𝑖,𝑡 = ū𝑖,𝑡 ; otherwise,
u𝑖,𝑡 = u𝑖,𝑡−1. Hence,

E𝜁𝑖,𝑡EB𝑡 [‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2]

=
𝐵

𝑛
E𝜁𝑖,𝑡 [‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2] + (1 − 𝐵

𝑛
)‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2

≤ 𝐵

𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2 +
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
+ (1 − 𝐵

𝑛
)‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2

≤ (1 − 𝐵𝛾𝑡
2𝑛

)2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2
2 +

𝐵𝛾2
𝑡 𝜎

2
0

𝑛
,

where we use the fact 𝐵𝑛 (1 − 𝛾𝑡 )2 + (1 − 𝐵
𝑛 ) ≤ (1 − 𝛾𝑡𝐵

2𝑛 )2. Then, taking expectation
over all randomness on both sides yields

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
≤ (1 − 𝐵𝛾𝑡

2𝑛
)2E

[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
.

Then using the Young’s inequality similar to the proof of Lemma 4.1, we have

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
≤ (1 + 𝐵𝛾𝑡

2𝑛
)(1 − 𝐵𝛾𝑡

2𝑛
)2E

[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2
]

+ (1 + 2𝑛
𝐵𝛾𝑡

) (1 − 𝐵𝛾𝑡
2𝑛

)2E
[
‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛

≤ (1 − 𝐵𝛾𝑡
2𝑛

)E
[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2
]
+

2𝑛𝐺2
2

𝐵𝛾𝑡
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
,

where we use 𝛾𝑡 ≤ 1 < 2𝑛
𝐵 . The desired result follows by taking average over 𝑖 =

1, . . . , 𝑛 on both sides.
ut

Lemma 5.2 (Variance of z𝑡 ) Let 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 . We have

E𝑡
[
‖z𝑡 −M𝑡 ‖2

2
]
≤ 𝜎2.

Proof. First, using the variance bound of the average of 𝐵 independent zero-mean
random variables gives

𝐴1 = E𝑡







 1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ) −
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )





2

2

 ≤
𝐺2

1𝜎
2
2

𝐵
,

and using the variance bound of 𝐵 random variables without replacement yields
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𝐴2 = E𝑡







 1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )





2

2

 ≤
𝐺2

1𝐺
2
2

𝐵

𝑛 − 𝐵
𝑛 − 1

.

As a result,

E𝑡
[
‖z𝑡 −M𝑡 ‖2

2
]

= E𝑡







 1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )





2

2


= 𝐴1 + 𝐴2 ≤

𝐺2
1𝜎

2
2

𝐵
+
𝐺2

1𝐺
2
2

𝐵

𝑛 − 𝐵
𝑛 − 1

:= 𝜎2.

ut

Lemma 5.3 Under Assumptions 5.1 and 5.2, if 𝛽𝑡 ≤ 1, the gradient estimation error
Δ𝑡 can be bounded as

E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E [Δ𝑡−1] +
2𝐿2

𝐹 + 8𝛽2
𝑡𝐺

4
2𝐿

2
1

𝛽𝑡
E

[
‖w𝑡 − w𝑡−1‖2

2
]
+ 8𝛽𝑡𝐿2

1𝐺
2
2E [𝛿𝑡−1]

+ 𝛽2
𝑡𝜎

2 + 4𝐺2
2𝐿

2
1𝛽𝑡𝛾

2
𝑡 𝜎

2
0 ,

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 .

Proof. Since v𝑡 is updated using MA, we apply Lemma 4.7 in light of Lemma 5.2,
yielding

E
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 )E[‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2] (5.8)

+
2𝐿2

𝐹

𝛽𝑡
E[‖w𝑡−1 − w𝑡 ‖2

2] + 4𝛽𝑡E[‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2] + 𝛽2

𝑡𝜎
2.

Next, we bound E[‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2] .

‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 =





1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓 (ū𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓 (𝑔𝑖 (w𝑡 ))




2

2

≤ 𝐺2
2𝐿

2
1
1
𝑛

𝑛∑
𝑖=1

‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

From Lemma 5.1, we have

E𝜁𝑖,𝑡 [‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2] ≤ (1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 ,∀𝑖.

Hence
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E
[
1
𝑛

𝑛∑
𝑖=1

‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2

]
≤ (1 − 𝛾𝑡 )2E

[
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2
2

]
+ 𝛾2

𝑡 𝜎
2
0

≤ (1 − 𝛾𝑡 )2E
[
1
𝑛

𝑛∑
𝑖=1

(2‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2
2 + 2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2)
]
+ 𝛾2

𝑡 𝜎
2
0

≤ 2E[𝛿𝑡−1] + 𝛾2
𝑡 𝜎

2
0 + E

[
2𝐺2

2‖w𝑡−1 − w𝑡 ‖2
2

]
.

As a result,

E[‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2] ≤ 2𝐺2

2𝐿
2
1E[𝛿𝑡−1] + 𝐺2

2𝐿
2
1𝛾

2
𝑡 𝜎

2
0 + E

[
2𝐺4

2𝐿
2
1‖w𝑡−1 − w𝑡 ‖2

2

]
.

Plugging the above results into (5.8) we finish the proof.
ut

For combining the descent lemma and the above lemmas, we present a result
similar to Lemma 4.10, with differences highlighted in boxes.

Lemma 5.4 If 𝜂𝑡 ≤ 1/𝐿, assume that there exist non-negative sequences 𝐴𝑡 , 𝐵𝑡 , Γ𝑡 ,Δ𝑡 , 𝛿𝑡 , 𝑡 ≥
0 satisfying:

(∗)𝐴𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

(♯)Δ𝑡+1 ≤ (1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛽𝑡+1 𝛿𝑡 +
𝐶2𝜂

2
𝑡

𝛽𝑡+1
Γ𝑡 + 𝛽2

𝑡+1𝜎
2 + 𝛽𝑡+1𝛾

2
𝑡+1𝜎

′′2 ,

(�)𝛿𝑡+1 ≤ (1 − 𝛾𝑡+1)𝛿𝑡 +
𝐶3𝜂

2
𝑡

𝛾𝑡+1
Γ𝑡 + 𝛾2

𝑡+1𝜎
′2.

If 𝛽 = 𝜖 2

4𝜎2 , 𝛾 = min( 𝜖 2

8𝐶1𝜎′2 ,
𝜖

2𝜎′′ ), 𝜂 = min( 1
𝐿 ,

𝛽√
4𝐶2

, 𝛾√
8𝐶1𝐶3

), then in order to
guarantee

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2.

the iteration complexity is in the order of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶1𝐶3𝜎

′′

𝜖3 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
.

where 𝐶Υ ≤ 𝐴0 − min𝑡 𝐴𝑡 + 1
2
√
𝐶2
Δ0 +

√
𝐶1
2𝐶3

𝛿0.

Proof. Following similar analysis to Lemma 4.10, we have
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𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + (𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
− 𝐶1𝜂𝑡 )𝛿𝑡+1 ≤ 𝐴𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+
(
𝜂𝑡 +

𝜂𝑡
𝛽𝑡+1

(1 − 𝛽𝑡+1)
)
Δ𝑡 +

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

Γ𝑡 + 𝜂𝑡 (𝛽𝑡+1𝜎
2 + 𝛾2

𝑡+1𝜎
′′2 ) + 𝐶1𝜂𝑡 (𝛿𝑡 − 𝛿𝑡+1)

+ 𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
(1 − 𝛾𝑡+1)𝛿𝑡 +

𝐶3𝐶1𝜂
3
𝑡 (1 + 𝛾𝑡+1)
𝛾2
𝑡+1

Γ𝑡 + 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)𝛾𝑡+1𝜎
′2.

where the terms in the box highlight the difference due to the slight difference in the
recursion of Δ𝑡 . Under similar conditions of 𝛽𝑡+1, 𝛾𝑡+1, 𝜂𝑡 and similar analysis, we
get

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡 + 𝐶1𝜂𝑡 (𝛿𝑡 − 𝛿𝑡+1)

− 𝜂𝑡𝐵𝑡 −
1
2
𝜂𝑡Γ𝑡 + 𝜂𝑡 (𝛽𝑡+1𝜎

2 + 𝛾2
𝑡+1𝜎

′′2 ) + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Since 𝜂𝑡+1 ≤ 𝜂𝑡 , we have

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 + 𝐶1𝜂𝑡+1𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡 + 𝐶1𝜂𝑡𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
1
2
𝜂𝑡Γ𝑡 + 𝜂𝑡 (𝛽𝑡+1𝜎

2 + 𝛾2
𝑡+1𝜎

′′2 ) + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Define Υ𝑡+1 = 𝐴𝑡+1 + 𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + 𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 + 𝐶1𝜂𝑡+1𝛿𝑡+1 , we have

𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ≤ Υ𝑡 − Υ𝑡+1 + 𝜂𝑡 (𝛽𝑡+1𝜎

2 + 𝛾2
𝑡+1𝜎

′′2 ) + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Hence

𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ Υ0 − 𝐴∗ +

𝑇−1∑
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2 + 𝜂𝑡𝛾2

𝑡+1𝜎
′′2

)
.

Next, let us consider 𝜂𝑡 = 𝜂, 𝛽𝑡 = 𝛽, 𝛾𝑡 = 𝛾. Then we have

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤

𝐶Υ

𝑇
+

(
𝛽𝜎2 + 2𝛾𝐶1𝜎

′2 + 𝛾2𝜎′′2)
)
.

Since 𝜂𝑡 = 𝜂, 𝛾𝑡 = 𝛾, 𝛽𝑡 = 𝛽, in order to ensure the RHS is less than 𝜖2, it suffices to
have

𝛽 =
𝜖2

4𝜎2 , 𝛾 = min( 𝜖2

8𝐶1𝜎′2 ,
𝜖

2𝜎′′ ), 𝑇 ≥ 𝐶Υ

4𝜖2𝜂
.

Since
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𝜂 = min( 1
𝐿
,

𝛽
√

4𝐶2
,

𝛾
√

8𝐶1𝐶3
).

Thus the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶2

𝜖2𝛽
,
𝐶Υ

√
𝐶1𝐶3

𝛾𝜖2

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶1𝐶3𝜎

′′

𝜖3 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
where

𝐶Υ = 𝐴0 − 𝐴∗ +
𝜂

𝛽
Δ0 +

𝐶1𝜂

𝛾
𝛿0 + 𝐶1𝜂𝛿0 ≤ 𝐴0 − 𝐴∗ +

1
2
√
𝐶2

Δ0 + 2
√
𝐶1√
8𝐶3

𝛿0.

ut

Finally, we state the convergence of SOX.

Theorem 5.1 Under Assumption 5.1 and 5.2, SOX with 𝛽 = 𝜖 2

4𝜎2 < 1
4𝐿1𝐺2

, 𝛾 =

min( 𝜖 2

64𝐺2
2𝐿

2
1𝜎02 ,

𝑛
2𝐵𝐺1𝐿1𝜎0

), 𝜂 = min( 1
2𝐿𝐹 ,

𝛽

2
√
𝐶2
, 𝐵𝛾

𝑛
√

32𝐶1𝐶3
), can find w𝜏 with 𝜏 ran-

domly sampled from {1, . . . , 𝑇} so that E
[
‖v𝜏 ‖2

2 + ‖∇𝐹 (w𝜏)‖2
2
]
≤ 𝜖2 with an iter-

ation complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿
2
1𝜎0

𝜖3 ,
𝐶Υ𝐿𝐹𝜎

2

𝜖4 ,
𝐶Υ𝐿

3
1𝑛𝜎

2
0

𝜖4𝐵

})
,

where 𝐶1 = 8𝐺2
2𝐿1, 𝐶2 = 4𝐿2

𝐹 + 2, 𝐶3 = 2𝐺2
2, 𝜎

2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 , and 𝐶Υ =

𝑂 (𝐹 (w0) − 𝐹∗ + 1
𝐿𝐹

‖v0 − ∇𝐹 (w0)‖2
2 + 𝐿1

1
𝑛 ‖u0 − 𝑔(w0)‖2

2).

 Why it matters

Theorem 5.1 shows that SOX achieves a complexity dominated by𝑂
(
𝐶Υ𝐿

3
1𝑛𝜎

2
0

𝜖 4𝐵
),

which is comparable to that of SCMA for finding an 𝜖-stationary solution. The
key difference is that the complexity of SOX is scaled by a factor of 𝑛/𝐵, since
it must track and estimate 𝑛 inner functions.

Proof. Assume that 𝜖 is sufficiently small such that 8𝛽2𝐺2
2𝐿

2
1 ≤ 1. We have estab-

lished the following three inequalities:
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(∗) E [𝐹 (w𝑡+1)] ≤ E [𝐹 (w𝑡 )] +
𝜂

2
E[Δ𝑡 ] −

𝜂

2
E

[
‖∇𝐹 (w𝑡 )‖2

2
]
− 𝜂

4
E

[
‖v𝑡 ‖2

2
]
,

(♯) E[Δ𝑡+1] ≤ (1 − 𝛽)E [Δ𝑡 ] +
2𝐿2

𝐹 + 1
𝛽

𝜂2E
[
‖v𝑡 ‖2

2
]
+ 8𝛽𝐿2

1𝐺
2
2E [𝛿𝑡 ]

+ 𝛽2𝜎2 + 4𝐺2
2𝐿

2
1𝛽𝛾

2𝜎2
0 ,

(�) E [𝛿𝑡+1] ≤
(
1 − 𝐵𝛾

2𝑛

)
E [𝛿𝑡 ] +

2𝑛𝐺2
2𝜂

2

𝐵𝛾
E

[
‖v𝑡 ‖2

2
]
+
𝐵𝛾2𝜎2

0
𝑛

.

Let us define 𝛾̄ = 𝐵𝛾
2𝑛 , the last inequality becomes

(�) E [𝛿𝑡+1] ≤ (1 − 𝛾̄) E [𝛿𝑡 ] +
𝐺2

2𝜂
2

𝛾̄
E

[
‖v𝑡 ‖2

2
]
+

4𝑛𝛾̄2𝜎2
0

𝐵
.

Define 𝐴𝑡 = 2(𝐹 (w𝑡 ) − 𝐹 (w∗)) and 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2, Γ𝑡 = ‖v𝑡 ‖2

2 /2, Δ𝑡 =

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2, 𝛿𝑡 =

1
𝑛 ‖u𝑡 − 𝑔(w𝑡 )‖

2
2, and Υ𝑡 = 𝐴𝑡 + 𝜂𝑡−1

𝛽𝑡
Δ𝑡 + 𝐶1𝜂𝑡−1

𝛾̄𝑡
𝛿𝑡 .

Then the three inequalities satisfy that in Lemma 4.10 with 𝐶1 = 8𝐺2
2𝐿

2
1, 𝐶2 =

2(2𝐿2
𝐹 + 1), 𝐶3 = 2𝐺2

2, 𝜎
2 =

𝐺2
1𝜎

2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 , 𝜎

′2 =
4𝑛𝜎2

0
𝐵 , 𝜎′′2 = 4𝐺2

2𝐿
2
1𝜎

2
0 . Then

𝜂, 𝛽, 𝛾̄ satisfy

𝛽 =
𝜖2

4𝜎2 , 𝛾̄ = min
(

𝜖2

8𝐶1𝜎′2 ,
𝜖

2𝜎′′

)
= min

(
𝜖2𝐵

128𝐺2
2𝐿

2
1𝑛𝜎02

,
𝜖

4𝐺2𝐿1𝜎0

)
,

𝜂 = min
(

1
2𝐿𝐹

,
𝛽

√
4𝐶2

,
𝛾̄

√
8𝐶1𝐶3

)
.

Thus the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶1𝐶3𝜎

′′

𝜖3 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿
2
1𝜎0

𝜖3 ,
𝐶Υ𝐿𝐹𝜎

2

𝜖4 ,
𝐶Υ𝐿

3
1𝑛𝜎

2
0

𝜖4𝐵

})
,

where

𝐶Υ

≤ 2(𝐹 (w0) − 𝐹 (w∗)) +
1

2
√
𝐶2

‖v0 − ∇𝐹 (w0)‖2
2 +

√
𝐶1√
2𝐶3

1
𝑛
‖u0 − 𝑔(w0)‖2

2

= 2(𝐹 (w0) − 𝐹 (w∗)) +𝑂
(

1
𝐿𝐹

)
‖v0 − ∇𝐹 (w0)‖2

2 +𝑂 (𝐿1)
1
𝑛
‖u0 − 𝑔(w0)‖2

2.

ut
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5.2.2 Multi-block Single-Probe Variance Reduction

In this subsection, we present a second algorithm for solving FCCO with an im-
proved complexity than that of SOX under a stronger condition on 𝑔𝑖 . We replace
Assumption 5.2 by the following:

Assumption 5.3. There exist 𝐺1, 𝐿1, 𝐿2 > 0 such that

(i) 𝑓𝑖 : R𝑑′ ↦→ R is 𝐺1-Lipschitz continuous and 𝐿1-smooth;
(ii) ∇𝑔𝑖 (·, 𝜁) : R𝑑 ↦→ R𝑑

′ is mean-squared Lipschitz continuous, i.e.,

E𝜁 [‖∇𝑔𝑖 (w, 𝜁) − ∇𝑔𝑖 (w′, 𝜁)‖2
2] ≤ 𝐿2

2‖w − w′‖2
2,∀w,w′;

(iii) 𝐹∗ = minw 𝐹 (w) ≥> −∞.

The idea is to leverage advanced variance reduction for tracking both the inner
functions and the gradient. A straightforward approach is to change the update of
u𝑖,𝑡−1 by using the STORM estimator and do similarly for the gradient estimator. In
particular, one may change the update for u𝑖,𝑡 according to STORM:

u𝑖,𝑡 =
(1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ (1 − 𝛾𝑡 ) (𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

)
)︸                                             ︷︷                                             ︸

error correction

𝑖 ∈ B𝑡

u𝑖,𝑡−1 𝑖 ∉ B𝑡
.

(5.9)

However, this naive approach does not work as the standard error correction term
marked above only accounts for the randomness in 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) but not in the ran-
domness caused by sampling 𝑖 ∈ B𝑡 .

In order to tackle this challenge, we introduce the following estimator termed
multi-block single-probe variance reduction estimator (MSVR):

u𝑖,𝑡 =

{
(1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
𝑖 ∈ B𝑡

u𝑖,𝑡−1 𝑖 ∉ B𝑡
.

(5.10)

The difference from (5.9) lies at the value of 𝛾′𝑡 , which is set as 𝑛−𝐵
𝐵(1−𝛾𝑡 ) + (1 −

𝛾𝑡 ) with 𝐵 = |B𝑡 |. The MSVR estimator can track multiple functional mappings
(𝑔1, 𝑔2, · · · , 𝑔𝑛), simultaneously, while the number of sampled blocks 𝐵1 for probing
can be as small as one. It is notable that when 𝐵 = 𝑛, i.e., all blocks are probed at each
iteration, 𝛾′𝑡 = 1−𝛾𝑡 and MSVR reduces to STORM applied to g(w). The additional
factor in 𝛾′𝑡 , i.e., 𝛼𝑡 = 𝑛−𝐵

𝐵(1−𝛾𝑡 ) is to account for the randomness in the sampled blocks
and noise in those blocks that are not updated.

With u𝑡 , we compute a vanilla gradient estimator by
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z𝑡 =
1
𝐵

∑
𝑖∈B′

𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ),

where B′
𝑡 ⊂ [𝑛] is a mini-batch of 𝐵 indices independent of B𝑡 .

Similar to SCST, we apply another STORM estimator to estimate

M𝑡 = EB′
𝑡 ,𝜁

′
𝑡
[z𝑡 ] =

1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ),

with an extra vanilla gradient estimator at previous iteration:

z̃𝑡−1 =
1
𝐵

∑
𝑖∈B′

𝑡

∇𝑔𝑖 (w𝑡−1; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1).

This is computed by the following sequence:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1). (5.11)

Then we use v𝑡 to update the model parameter. The full steps are presented in Algo-
rithm 15.

Critical: We use an independent batch B′
𝑡 because z𝑡 depends on u𝑡 , which

depends on B𝑡 . If we use the same batch B𝑡 to compute z𝑡 , then

M𝑡 = EB𝑡 ,𝜁 ′𝑡

[
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
]

= EB𝑡 ,𝜁 ′𝑡

[
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 )
]
=

1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (ū𝑖,𝑡 ).

where ū𝑡 independent ofB𝑡 is defined in (5.12). However, we cannot construct
an unbiased estimator of M𝑡−1 since ū𝑡−1 is not available in the algorithm.

An alternative approach is that we use u𝑡−1 and u𝑡−2 to compute z𝑡 and z̃𝑡−1,
respectively, with B𝑡 , i.e.,

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1)

z̃𝑡−1 =
1
𝐵

∑
𝑖∈B𝑡

∇𝑔𝑖 (w𝑡−1; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−2),

and compute v𝑡 by

v𝑡 = (1 − 𝛽𝑡 )v𝑡 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1).
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Algorithm 15 MSVR
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw two batches of samples B𝑡 , B′

𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators

u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖
(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B′

𝑡
∇𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
11: Compute the extra vanilla gradient estimator z̃𝑡−1 = 1

𝐵

∑
𝑖∈B′

𝑡
∇𝑔𝑖 (w𝑡−1; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1 )
12: Update the STORM gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 ) (z𝑡 − z̃𝑡−1 )
13: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
14: end for

The converge analysis can be performed similarly with slight modifications.

Convergence Analysis

We first analyze the error recursion of

𝛿𝑡 =
1
𝑛
‖u𝑡 − g(w𝑡 )‖2

2 :=
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

Similar to the analysis of SOX, we introduce virtual sequences ū𝑖,𝑡 ,∀𝑖 :

ū𝑖,𝑡 = (1−𝛾𝑡 )u𝑖,𝑡−1 +𝛾𝑡𝑔𝑖
(
w𝑡 ; 𝜁𝑖,𝑡

)
+𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
,∀𝑖. (5.12)

Lemma 5.5 Consider the u𝑡 updates in Algorithm 15. Under Assumption 5.1 and
5.3 (ii), by setting 𝛾′𝑡 = 𝑛−𝐵

𝐵(1−𝛾𝑡 ) + (1 − 𝛾𝑡 ), for 𝛾𝑡 ≤ 1
2 , we have:

E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾𝑡

𝑛

)
E [𝛿𝑡−1] +

2𝐵
𝑛
𝛾2
𝑡 𝜎

2
0 +

12𝑛𝐺2
2

𝐵
E

[
‖w𝑡 − w𝑡−1‖2] .

Proof. Let us consider a fixed 𝑖 ∈ [𝑛]. With a probability 𝐵/𝑛 that 𝑖 ∈ B𝑡 , we have
u𝑖,𝑡 = ū𝑖,𝑡 ; otherwise u𝑖,𝑡 = u𝑖,𝑡−1. Hence,

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
=
𝐵

𝑛
E

[
‖ū𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]︸                    ︷︷                    ︸

𝐴1

+(1 − 𝐵

𝑛
) E

[
‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡 )‖2

2
]︸                       ︷︷                       ︸

𝐴2

.

201



Note that the first term 𝐴1 in the R.H.B. can be bounded similarly as in Lemma 4.12
for using the STORM estimator by building a recursion with ‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2.
However, there exists the second term due to the randomness of B𝑡 , which can be
decomposed as

𝐴2 = E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1) + 𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2
2]

= E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2
2]︸                          ︷︷                          ︸

𝐴21

+E[‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2
2]︸                           ︷︷                           ︸

𝐴22

+ E[2(u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))> (𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 ))]︸                                                        ︷︷                                                        ︸
𝐴23

.

The first two terms in RHS (𝐴21 and 𝐴22) can be easily handled. The difficulty comes
from the third term, which cannot be simply bounded by using Young’s inequality. If
doing so, it will end up with a non-diminishing error of u𝑖,𝑡 . To combat this difficulty,
we use the additional factor brought by 𝛾′𝑡 (𝑔𝑖

(
w𝑡 ; 𝜉𝑖𝑡

)
−𝑔𝑖

(
w𝑡−1; 𝜉𝑖𝑡

)
) in 𝐴1 to cancel

𝐴23. This is more clear by the following decomposition of 𝐴1.

𝐴1 = E[‖(1 − 𝛾𝑡 )(u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))︸                                ︷︷                                ︸
𝐴11

+𝛼𝑡 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))︸                       ︷︷                       ︸
𝐴12

+ 𝛾𝑡 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ))︸                          ︷︷                          ︸
𝐴13

+ 𝛾′𝑡 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜉𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))︸                                                                ︷︷                                                                ︸
𝐴14

‖2
2],

where 𝛼𝑡 = 𝛾′𝑡 + 𝛾𝑡 − 1. Since E𝑡 [𝐴13] = 0,E𝑡 [𝐴14] = 0, then we have

𝐴1 ≤E[‖𝐴11 + 𝐴12‖2
2] + E

[
‖𝐴13 + 𝐴14‖2

2
]
.

In light of the above decomposition, we can bound E[‖𝐴11 + 𝐴12‖2
2] ≤ E[‖𝐴11‖2

2 +
‖𝐴12‖2

2+2𝐴>
11𝐴12] and E[‖𝐴13+𝐴14‖2

2] ≤ 2E[‖𝐴13‖2
2] +2E[‖𝐴14‖2

2]. The resulting
term E[2𝐴>

11𝐴12] has a negative sign as 𝐴23. Hence, by carefully choosing 𝛾′𝑡 , we
can cancel both terms. Specifically, we have
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5.2. SMOOTH FUNCTIONS

𝐵

𝑛
𝐴1 ≤ 𝐵

𝑛

(
E[‖𝐴11‖2

2 + ‖𝐴12‖2
2 + 2𝐴>

11𝐴12] + 2E[‖𝐴13‖2
2] + 2E[‖𝐴14‖2

2]
)

= E
[
𝐵

𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2

]
+ E

[
𝐵

𝑛
𝛼2
𝑡 ‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2

]
+ E

[
𝐵

𝑛
2𝛼𝑡 (1 − 𝛾𝑡 )(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))

]
+ E

[
𝐵

𝑛
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 )

2
2

]
+ E

[
𝐵

𝑛
2𝛾′𝑡

2 

(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))


2

2

]
.

Combining the upper bounds of 𝐴1 and 𝐴2, we have

𝐵

𝑛
𝐴1 +

𝑛 − 𝐵
𝑛

𝐴2

≤ E[ 𝐵
𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2 +
𝐵

𝑛
𝛼2
𝑡 ‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2]

+ E
[
𝐵

𝑛
2𝛼𝑡 (1 − 𝛾𝑡 ) (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))

]
+ E

[
𝐵

𝑛
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 )

2
2

]
+ E

[
𝐵

𝑛
2(𝛾′𝑡 )2 

(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))



2
2

]
+ E

[
𝑛 − 𝐵
𝑛

‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2
2] + E[ 𝑛 − 𝐵

𝑛
‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2

2

]
+ E

[
𝑛 − 𝐵
𝑛

2(u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1))> (𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 ))
]
.

Since 𝐵
𝑛 2𝛼𝑡 (1− 𝛾𝑡 ) = 2 𝐵𝑛

(𝑛−𝐵)
𝐵(1−𝛾𝑡 ) (1− 𝛾𝑡 ) = 2 𝑛−𝐵𝑛 , then cross terms will cancel out.

The remaining terms can be merged and handled separately. First,

E
[
𝐵

𝑛
(1 − 𝛾𝑡 )2‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2 +
𝑛 − 𝐵
𝑛

‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2
2

]
≤ (1 − 𝐵

𝑛
𝛾𝑡 )E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2],

where we use 𝐵
𝑛 (1− 𝛾𝑡 )2 + 𝑛−𝐵

𝑛 ≤ 1− 2𝐵
𝑛 𝛾𝑡 +

𝐵
𝑛 𝛾

2
𝑡 ≤ 1− 𝐵

𝑛 𝛾𝑡 due to 𝛾𝑡 < 1. Second

𝐵

𝑛
𝛼2
𝑡 ‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2] +
𝑛 − 𝐵
𝑛

‖𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 )‖2
2

≤
(
𝐵

𝑛

(𝑛 − 𝐵)2

𝐵2 (1 − 𝛾𝑡 )2 + 𝑛 − 𝐵
𝑛

)
𝐺2

2‖w𝑡 − w𝑡−1‖2
2 ≤ 4𝑛 − 4𝐵

𝐵
𝐺2

2‖w𝑡 − w𝑡−1‖2
2,
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wherewe use 𝐵𝑛
(𝑛−𝐵)2

𝐵2 (1−𝛾𝑡 )2 + 𝑛−𝐵𝑛 ≤ 𝑛−𝐵
𝑛

(
(𝑛−𝐵)
𝐵(1−𝛾𝑡 )2 + 1

)
≤ 𝑛−𝐵

𝑛

(
4(𝑛−𝐵)
𝐵 + 4

)
= 4𝑛−4𝐵

𝐵

due to 𝛾𝑡 ≤ 1/2. Third,

E
[
𝐵

𝑛
2𝛾′2𝑡



(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ) + 𝑔𝑖 (w𝑡−1))


2

2

]
≤ 𝐵

𝑛
2𝛾′2𝑡E

[ 

(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )


2

2

]
≤ 𝐵

𝑛
2
(

𝑛 − 𝐵
𝐵(1 − 𝛾𝑡 )

+ 1 − 𝛾𝑡
)2
𝐺2

2‖w𝑡 − w𝑡−1‖2
2 ≤ 8𝑛 − 4𝐵

𝐵
𝐺2

2‖w𝑡 − w𝑡−1‖2
2,

where we use 𝐵
𝑛 2( 𝑛−𝐵

𝐵(1−𝛾𝑡 ) + 1 − 𝛾𝑡 )2 ≤ 𝐵
𝑛 2( 2(𝑛−𝐵)

𝐵 + 1)2 ≤ 𝐵
𝑛 2( 2𝑛−𝐵

𝐵 )2 =
2(2𝑛−𝐵) (2𝑛−𝐵)

𝑛𝐵 ≤ 8𝑛−4𝐵
𝐵 .

Combining the above results, we have

E
[
‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2

2
]
≤ (1 − 𝐵

𝑛
𝛾𝑡 )E[‖u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)‖2

2]

+ 12𝑛 − 8𝐵
𝐵

𝐺2
2‖w𝑡 − w𝑡−1‖2

2 +
𝐵

𝑛
2𝛾2
𝑡 𝜎

2
0 .

Averaging over 𝑖 = 1, . . . , 𝑛 concludes the proof. ut

Lemma 5.6 Consider the u𝑡 updates in Algorithm 15. Suppose that Assumption 5.1
and 5.3 hold. With 𝛾𝑡 ≤ 1

2 and 𝛾′𝑡 = 𝑛−𝐵
𝐵(1−𝛾𝑡 ) + (1 − 𝛾𝑡 ), we have

E
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 6𝐵𝛾2

𝑡 𝜎
2
0 + 6𝐵𝛾2

𝑡 E[𝛿𝑡−1] +
10𝑛2𝐺2

2
𝐵

E
[
‖w𝑡 − w𝑡−1‖2

2
]
.

Proof. Since ‖u𝑡 − u𝑡−1‖2
2 =

∑𝑛
𝑖=1 ‖u𝑖,𝑡 − u𝑖,𝑡−1‖2

2, with a probability 𝐵/𝑛 we have
u𝑖,𝑡 = ū𝑖,𝑡 and a probability 1 − 𝐵/𝑛 we have u𝑖,𝑡 = u𝑖,𝑡−1, then

E
[
‖u𝑡 − u𝑡−1‖2

2
]

=
𝐵

𝑛

𝑛∑
𝑖=1

E
[

 − 𝛾𝑡u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) ) 

2
2

]
≤ 𝐵

𝑛

𝑛∑
𝑖=1

E
[
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − u𝑖,𝑡−1


2

2 + 2(𝛾′𝑡 )2 

𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡
)

2

2

]
≤ 𝐵

𝑛

𝑛∑
𝑖=1

E
[
2𝛾2
𝑡



𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − u𝑖,𝑡−1


2

2

]
+ 2𝐵(𝛾′𝑡 )2𝐺2

2 ‖w𝑡 − w𝑡−1‖2
2 .

To the first term on the RHS, we use the Young’s inequality and Lipschitz continuity
of 𝑔𝑖:
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E
[

𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − u𝑖,𝑡−1



2
2

]
≤ 3E

[

𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 )

2
2

]
+ 3E

[
‖𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1)‖2

2 + 3


𝑔𝑖 (w𝑡−1) − u𝑖,𝑡−1



2
2

]
≤ 3𝜎2

0 + 3𝐺2
2E

[
‖w𝑡 − w𝑡−1‖2

2 + 3


𝑔𝑖 (w𝑡−1) − u𝑖,𝑡−1



2
2

]
.

Combining the above results, we have

E
[
‖u𝑡 − u𝑡−1‖2

2
]

≤ 6𝐵𝛾2
𝑡 𝜎

2
0 + 6𝐵𝛾2

𝑡 E [𝛿𝑡−1] + 2𝐵𝐺2
2 (3𝛾2

𝑡 + (𝛾′𝑡 )2)E
[
‖w𝑡 − w𝑡−1‖2

2
]
.

With 𝛾𝑡 ≤ 1
2 , we have 𝛾′𝑡 ≤ 2𝑛

𝐵 , which yields (3𝛾2
𝑡 + (𝛾′𝑡 )2) ≤ 5𝑛2

𝐵2 . ut

Next, we analyze error recursion of Δ𝑡 := ‖v𝑡 −M𝑡 ‖2
2.

Lemma 5.7 Consider the v𝑡 updates in Algorithm 15 and suppose that Assump-
tion 5.1 and 5.3 hold. Then we have

E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E[Δ𝑡−1] +
24𝐺2

2𝐿
2
1𝐵𝛾

2
𝑡

𝑛
E[𝛿𝑡−1]

+
(
4𝐿2

2𝐺
2
1 +

40𝐺4
2𝐿

2
1𝑛

𝐵

)
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+ 2𝛽2

𝑡𝜎
2 +

24𝐺2
2𝐿

2
1𝐵

𝑛
𝛾2
𝑡 𝜎

2
0 ,

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2

𝐵
𝑛−𝐵
𝑛−1 .

Proof. Similar to Lemma 5.2, we have E𝑡 [‖z𝑡 − M𝑡 ‖2
2] ≤ 𝜎2. Since v𝑡 = (1 −

𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1), applying Lemma 4.11, we have

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 + E𝑡 [2‖z𝑡 − z̃𝑡−1‖2
2] + 2𝛽2

𝑡𝜎
2.

To bound E𝑡 [‖z𝑡 − z̃𝑡−1‖2
2], we have

E𝑡 [‖z𝑡 − z̃𝑡−1‖2
2]

≤ 2E𝑡


1
𝐵

∑
𝑖∈B′

𝑡



∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ) − ∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1)


2

2


+ 2E𝑡


1
𝐵

∑
𝑖∈B′

𝑡



∇𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1) − ∇𝑔𝑖 (w𝑡−1; 𝜁 ′𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡−1)


2

2


≤ 2𝐺2

2𝐿
2
1E𝑡


1
𝐵

∑
𝑖∈B′

𝑡

‖u𝑖,𝑡 − u𝑖,𝑡−1‖2
2

 + 2𝐿2
2𝐺

2
1‖w𝑡 − w𝑡−1‖2

2

= 2𝐺2
2𝐿

2
1E𝑡

[
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − u𝑖,𝑡−1‖2
2

]
+ 2𝐿2

2𝐺
2
1‖w𝑡 − w𝑡−1‖2

2,
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where the last inequality follows the Assumption 5.3.
As a result, we have

E[Δ𝑡 ] ≤(1 − 𝛽𝑡 )E[Δ𝑡−1] +
4𝐺2

2𝐿
2
1

𝑛
E

[
‖u𝑡 − u𝑡−1‖2

2
]
+ 4𝐿2

2𝐺
2
1E

[
‖w𝑡−1 − w𝑡 ‖2

2
]

+ 2𝛽2
𝑡𝜎

2.

Combining with the result in Lemma 5.6, i.e.,

E
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 6𝐵𝛾2

𝑡 𝜎
2
0 + 6𝐵𝛾2

𝑡 E[𝛿𝑡−1] +
10𝑛2𝐺2

2
𝐵

E
[
‖w𝑡 − w𝑡−1‖2

2
]
.

we have

E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E[Δ𝑡−1] +
24𝐵𝐺2

2𝐿
2
1

𝑛
𝛾2
𝑡 E[𝛿𝑡−1]

+
(
4𝐿2

2𝐺
2
1 +

40𝐺4
2𝐿

2
1𝑛

𝐵

)
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+ 2𝛽2

𝑡𝜎
2 +

24𝐵𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0

𝑛
,

which completes the proof.
ut

Lemma 5.8 For the update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 , 𝑡 ≥ 0, if 𝜂𝑡 ≤ 1/(2𝐿𝐹) we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝐺2
2𝐿

2
1𝜂𝑡𝛿𝑡 + 𝜂𝑡Δ𝑡 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

(5.13)

Proof. It follows directly from Lemma 4.9 by noting that

‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 = ‖v𝑡 −M𝑡 +M𝑡 − ∇𝐹 (w𝑡 )‖2

2

≤ 2Δ𝑡 + 2






1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 ) −
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w𝑡 )∇ 𝑓𝑖 (𝑔𝑖 (w𝑡 ))





2

2

≤ 2Δ𝑡 +
2𝐺2

2𝐿
2
1

𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

Taking expectation over all randomness on both sides yields the desired result. ut

Now we state the convergence theorem for MSVR.

Theorem 5.2 Suppose that Assumption 5.1 and 5.3 hold. Let 𝛽 = 𝑂 ( 𝜖 𝜂𝐿1
√
𝑛

𝜎
√
𝐵

), 𝛾 =

min
(
𝜖 𝜂𝐿1𝑛
𝜎0𝐵

, 1
)
, 𝜂 = min

(
1

2𝐿𝐹 , 𝑂 ( 𝜖
√
𝐵

𝐿1𝜎
√
𝑛
), 𝑂 ( 𝜖 𝐵

𝐿2
1𝜎0𝑛

), 𝑂 ( 𝐵
𝑛𝐿1

)
)
. Then MSVR can

find w𝜏 that is sampled randomly from {0, . . . , 𝑇 − 1} satisfying
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E
[
‖v𝜏 ‖2

2 + ‖∇𝐹 (w𝜏)‖2
2
]
≤ 𝑂 (𝜖).

with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿1𝑛

𝜖2𝐵
,
𝐶Υ𝐿1𝜎

√
𝑛

𝜖3
√
𝐵

,
𝐶Υ𝐿

2
1𝜎0𝑛

𝜖3𝐵

})
.

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) , 𝐶Υ = 𝑂 (𝐹 (w0) − 𝐹∗ + 𝐵
𝑛𝐿2

1 𝜂
Δ0 + 𝐵

𝑛𝐿2
1 𝜂
𝛿0).

 Why it matters

Theorem 5.2 indicates that when the initial estimators u0 and v0 have an esti-
mation error in the order of 𝑂 (𝜖) such that 𝐶Υ is 𝑂 (1), MSVR attains a better
complexity than SOX for finding an 𝜖-stationary solution under stronger assump-
tions of the mean-Lipschitz continuity of 𝑔 and ∇𝑔. Its complexity is comparable
to that of SCST in Theorem 4.4, up to a factor of 𝑛/𝐵.

Proof. We have established the following:

(∗) 𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝐺2
2𝐿

2
1𝜂𝑡𝛿𝑡 + 𝜂𝑡Δ𝑡 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

(♯)E[Δ𝑡 ] ≤ (1 − 𝛽𝑡 )E[Δ𝑡−1] +
24𝐵𝐺2

2𝐿
2
1

𝑛
𝛾2
𝑡 E[𝛿𝑡−1]

+
(
4𝐿2

2𝐺
2
1 +

40𝐺4
2𝐿

2
1𝑛

𝐵

)
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+ 2𝛽2

𝑡𝜎
2 +

24𝐵𝐺2
2𝐿

2
1𝜎

2
0

𝑛
𝛾2
𝑡 ,

(�)E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾𝑡

𝑛

)
E [𝛿𝑡−1] +

2𝐵
𝑛
𝛾2
𝑡 𝜎

2
0 +

12𝑛𝐺2
2

𝐵
E

[
‖w𝑡 − w𝑡−1‖2] .

In order to apply Lemma 4.15, we let 𝐴𝑡 = 𝐹 (w𝑡 ) − 𝐹∗, 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2/2, Γ𝑡 =

‖v𝑡 ‖2
2/4, 𝛿𝑡 = 𝐿2

1𝐺
2
2𝛿𝑡 , 𝛾̄𝑡 =

𝐵𝛾𝑡
𝑛 . Then the following three inequalities

(∗)E[𝐴𝑡+1] ≤ E[𝐴𝑡 + 𝜂𝑡Δ𝑡 + 𝜂𝑡𝛿𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡 ]
(♯)E [Δ𝑡+1] ≤ E[(1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛾̄

2
𝑡+1𝛿𝑡 + 𝐶2𝜂

2
𝑡 Γ𝑡 + 𝛽2

𝑡+1𝜎
2 + 𝛾̄2

𝑡+1𝜎
′2],

(�)E
[
𝛿𝑡+1

]
≤ E[(1 − 𝛾̄𝑡+1)𝛿𝑡 + 𝐶3𝜂

2
𝑡 Γ𝑡 + 𝛾̄2

𝑡+1𝜎
′′2] .

hold with 𝐶1 = 𝑂 (𝑛/𝐵), 𝐶2 = 𝑂 (𝐿2
1𝑛/𝐵 + 𝐿2

2), 𝐶3 = 𝑂 (𝐿2
1𝑛/𝐵), 𝜎2 =

𝐺2
1𝜎

2
2

𝐵 +
𝐺2

1𝐺
2
2 (𝑛−𝐵)

𝐵(𝑛−1) ), 𝜎′2 = 𝑂 (𝐿2
1𝜎

2
0 𝑛/𝐵), 𝜎′′2 = 𝑂 (𝐿2

1𝜎
2
0 𝑛/𝐵). Following the settings in

Lemma 4.15, we can finish the proof with
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𝑓𝑖 𝑔𝑖 𝐹

Lipschitz
continuity

Weak
convexity Monotonicity Lipschitz

continuity
Weak

convexity Smoothness Weak convexity (𝜌)

5.5(i) 𝐺1 𝜌1 𝜕 𝑓 ≥ 0 𝐺2 𝜌2 - 𝐺1𝜌2
√
𝑑′ + 𝜌1𝐺

2
2

5.5(ii) 𝐺1 𝜌1
𝜕 𝑓 ≥ 0

or 𝜕 𝑓 ≤ 0 𝐺2 - 𝐿2 𝐺1𝐿2
√
𝑑′ + 𝜌1𝐺

2
2

Table 5.1: Conditions of 𝑓𝑖 and 𝑔𝑖 to make 𝐹 (w) = 1
𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w)) weakly convex,

where 𝑔𝑖 : R𝑑 → R𝑑
′ and 𝑓𝑖 : R𝑑′ → R.

𝜂 = min
(

1
𝐿
,

𝜖

4
√
𝐶2𝜎

,
𝜖
√
𝐶2

8𝐶3𝜎′ ,
𝜖

8
√
𝐶3𝜎′′ ,

√
𝐶2

4𝐶3
√
𝐶1

)
= min

(
1

2𝐿𝐹
, 𝑂

(
𝜖

𝐿1𝜎

√
𝐵

𝑛

)
, 𝑂

(
𝜖𝐵

𝐿2
1𝜎0𝑛

)
, 𝑂

(
𝐵

𝑛𝐿1

))
,

𝛽 =
𝜖𝜂

√
2𝐶2

2𝜎
= 𝑂

(
𝜖𝜂𝐿1

2𝜎

√
𝑛

𝐵

)
,

𝛾̄ = min
(
𝜖𝜂

√
𝐶2

𝜎′ ,
𝜖𝜂

√
𝐶3

𝜎′′ ,
𝐶2

2𝐶3𝐶1

)
= min

(
𝑂

(
𝜖𝜂

𝜎0

)
, 𝑂

(
𝐵

𝑛

))
,

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝐿1𝑛

𝜖2𝐵
,
𝐶Υ𝐿1𝜎

√
𝑛

𝜖3
√
𝐵

,
𝐶Υ𝐿

2
1𝜎0𝑛

𝜖3𝐵

})
.

where 𝐶Υ = 𝐹 (w0) − 𝐹∗ + 1
4𝐶2𝜂

Δ0 + 1
4𝐶3𝜂

𝛿0.
ut

5.3 Non-Smooth Weakly Convex Functions

In this section, we consider non-smooth weakly convex functions, where either the
outer function or the inner function are non-smooth. The group DRO objective (5.2)
falls into this category. Another instance is the two-way partial AUC maximization
problem as discussed in Section 6.4.3.

Assumption 5.4. We assume that

(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2
2] ≤ 𝜎2

0 .
(ii) E𝜁∼P𝑖 [‖G𝑖 (w; 𝜁)‖2

2] ≤ 𝐺2
2 for any G𝑖 (w; 𝜁) ∈ 𝜕𝑔𝑖 (w; 𝜁).

The second condition above implies that 𝑔𝑖 is 𝐺2-Lipschitz continuous.

Assumption 5.5. We assume either of the following conditions holds:

(i) 𝑓𝑖 is 𝜌1-weakly convex, 𝐺1-Lipschitz continuous, and 𝜕 𝑓𝑖 (𝑔) ≥ 0 ∀𝑔; 𝑔𝑖 is 𝜌2-
weakly convex.
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(ii) 𝑓𝑖 is 𝜌1-weakly convex, 𝐺1-Lipschitz continuous, and 𝜕 𝑓𝑖 (𝑔) ≥ 0 or 𝜕 𝑓𝑖 (𝑔) ≤ 0
∀𝑔; and 𝑔𝑖 is 𝐿2-smooth.

We first characterize the conditions on 𝑓𝑖 and 𝑔𝑖 to induce weak convexity of 𝐹.

Lemma 5.9 Under Assumption 5.4 and 5.5, the objective function 𝐹 is 𝜌-weakly
convex for some 𝜌 > 0. If Assumption 5.5(i) holds, then 𝜌 = 𝐺1𝜌2

√
𝑑′ + 𝜌1𝐺

2
2 and

if Assumption 5.5(ii) holds, then 𝜌 = 𝐺1𝐿2
√
𝑑′ + 𝜌1𝐺

2
2.

Proof. The weak convexity of 𝑓𝑖 implies that for any v𝑖 ∈ 𝜕 𝑓𝑖 (𝑔𝑖 (w)):

𝑓𝑖 (𝑔𝑖 (w′)) ≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑔𝑖 (w′) − 𝑔𝑖 (w)) − 𝜌1

2
‖𝑔𝑖 (w′) − 𝑔𝑖 (w)‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑔𝑖 (w′) − 𝑔𝑖 (w)) −
𝜌1𝐺

2
2

2
‖w − w′‖2

2.

Let us first prove the weak convexity under Assumption 5.5(i). Since 𝑔𝑖 is 𝜌2-
weakly convex, we have for any𝑈𝑖 ∈ 𝜕𝑔𝑖 (w)

𝑔𝑖 (w′) − 𝑔𝑖 (w) ≥ 𝑈>
𝑖 (w′ − w) − 𝜌2

2
‖w′ − w‖2

21. (5.14)

where 1 denotes a vector of all ones. Since v𝑖 ≥ 0, we have

𝑓𝑖 (𝑔𝑖 (w′)) ≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑈>
𝑖 (w′ − w) − 𝜌2

2
‖w − w′‖2

21) −
𝜌1𝐺

2
2

2
‖w − w′‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + (𝑈𝑖v𝑖)> (w′ − w) −
𝐺1

√
𝑑′𝜌2 + 𝜌1𝐺

2
2

2
‖w − w′‖2

2

Since 𝑈𝑖v𝑖 ∈ 𝜕𝑔𝑖 (w)𝜕 𝑓𝑖 (𝑔𝑖 (w)), the above inequality indicates that 𝑓𝑖 (𝑔𝑖 (w)) is 𝜌-
weakly convex, where 𝜌 = 𝐺1

√
𝑑′𝜌2 + 𝜌1𝐺

2
2. As a result, 𝐹 (w) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w))

is 𝜌-weakly convex.
Next, we prove the weak convexity of 𝐹 under Assumption 5.5(ii). Due to the

smoothness of 𝑔(·) we have

𝑔(w) − 𝑔(w′) ≤ ∇𝑔(w′)> (w − w′) + 𝐿2

2
‖w − w′‖2

21,

𝑔(w) − 𝑔(w′) ≥ ∇𝑔(w′)> (w − w′) − 𝐿2

2
‖w − w′‖2

21.
(5.15)

If 𝜕 𝑓𝑖 (𝑔𝑖 (w)) ≥ 0, we use the second inequity above and follow the same steps
as before to prove the 𝜌-weak convexity of 𝐹 with 𝜌 = 𝐺1

√
𝑑′𝐿2 + 𝜌1𝐺

2
2. If

𝜕 𝑓𝑖 (𝑔𝑖 (w)) ≤ 0, we will use the first inequality above to get:
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Algorithm 16 SONX
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u0
2: w1 = w0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw a batch of samples B𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators by

v1: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )
v2: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute z𝑡 = 1

𝐵

∑
𝑖∈B′

𝑡
𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ) � check text for discussion
11: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
12: end for

𝑓𝑖 (𝑔𝑖 (w′)) ≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (𝑔𝑖 (w′) − 𝑔𝑖 (w)) − 𝜌1

2
‖𝑔𝑖 (w′) − 𝑔𝑖 (w)‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + v>𝑖 (∇𝑔𝑖 (w)> (w′ − w) + 𝐿2

2
‖w − w′‖2

21) −
𝜌1𝐺

2
2

2
‖w − w′‖2

2

≥ 𝑓𝑖 (𝑔𝑖 (w)) + (∇𝑔𝑖 (w)v𝑖)> (w′ − w) −
𝐺1

√
𝑑′𝐿2 + 𝜌1𝐺

2
2

2
‖w − w′‖2

2.

This concludes the proof. ut

5.3.1 SONX for Non-smooth Inner Functions

Since we do not assume smoothness for the overall objective function, the key differ-
ence from the previous two sections is that we no longer have the descent lemma in
Lemma 4.9, hence cannot leverage the MA or STORM gradient estimators. Conse-
quently, we employ the vanilla gradient estimator z𝑡 to update the model parameter
w𝑡+1. The updating steps are summarized in Algorithm 16, referred to as SONX.
The two options correspond to different strategies for updating the inner function
value estimators: v1 uses a coordinate MA estimator, while v2 adopts the MSVR
estimator.

For ease of presentation, we compute the vanilla gradient estimator z𝑡 using a
batch B′

𝑡 independent from B𝑡 :

z𝑡 =
1
𝐵

∑
𝑖∈B′

𝑡

𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ).
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

However, for SONX-v1 with MA estimator, we can indeed use the same vanilla
gradient estimator z𝑡 as in SOX:

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ).

An alternative method for using both options is to compute z𝑡 by

z𝑡 =
1
𝐵

∑
𝑖∈B𝑡

𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡−1).

Convergence Analysis

Similar to Section 3.1.4, we state the convergence using the Moreau envelope of 𝐹:

𝐹𝜆 (w) := min
u
𝐹 (u) + 1

2𝜆
‖u − w‖2

2.

Recall the definition:

prox𝜆𝐹 (w) = arg min
u
𝐹 (u) + 1

2𝜆
‖u − w‖2

2.

We first present a result similar to Lemma 3.5 for standard SGD to account for
the bias of z𝑡 .

Lemma 5.10 Suppose Assumption 5.4 and 5.5 hold. Let 𝜌̄ = 𝜌 + 𝜌2𝐺1 + 2𝜌1𝐺
2
2.

Consider the step update of SONX, we have

E𝜁 ′𝑡 ,B′
𝑡
[𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) +

𝜂2
𝑡 𝜌̄𝐺

2

2
− 𝜂𝑡

2
‖∇𝐹1/𝜌̄ (w𝑡 )‖2

2

+ 𝜌̄𝜂𝑡
𝑛

𝑛∑
𝑖=1

[
2𝐺1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2 + 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2

]
.

If 𝑓𝑖 is further 𝐿1-smooth, then

E𝜁 ′𝑡 ,B′
𝑡
[𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) +

𝜂2
𝑡 𝜌̄𝐺

2

2
− 𝜂𝑡

2
‖∇𝐹1/𝜌̄ (w𝑡 )‖2

2

+ 𝜌̄𝜂𝑡
𝑛

𝑛∑
𝑖=1

[
𝐿1

2
‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2 + 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

]
.

where 𝐺2 = 𝐺2
1𝐺

2
2.

If u𝑖,𝑡 = 𝑔𝑖 (w𝑡 ), i.e., there is no bias in z𝑡 , then the terms in the square bracket
are gone, the above lemma reduces to Lemma 3.4.

Proof. Define ŵ𝑡 := prox𝐹/𝜌̄ (w𝑡 ) and E𝑡 [·] = E𝜁 ′𝑡 ,B′
𝑡
[·]. First,
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E𝑡 [‖z𝑡 ‖2
2] ≤ E𝑡

[
1
𝐵

∑
𝑖∈B𝑡

‖𝜕𝑔𝑖 (w𝑡 , 𝜁 ′𝑖,𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 )‖2
2

]
≤ E𝑡

[
1
𝐵

∑
𝑖∈B𝑡

‖𝜕𝑔𝑖 (w𝑡 , 𝜁 ′𝑖,𝑡 )‖2
2𝐺

2
1

]
≤ 𝐺2

2𝐺
2
1 = 𝐺2.

Following Lemma 3.4, we have

E𝑡 [𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) + 𝜌̄𝜂𝑡 (E𝑡 [z𝑡 ])> (ŵ𝑡 − w𝑡 ) +
𝜂2
𝑡 𝜌̄𝐺

2

2
. (5.16)

Next we bound the termE𝑡 [z𝑡 ]> (ŵ𝑡−w𝑡 ) on the RHS of (5.16). Note thatE𝑡 [z𝑡 ] =
1
𝑛

∑𝑛
𝑖=1 𝜕𝑔𝑖 (w𝑡 )𝜕 𝑓𝑖 (u𝑖,𝑡 ). For a given 𝑖 ∈ [𝑛], we have

𝑓𝑖 (𝑔𝑖 (ŵ𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 )
(𝑎)
≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ) −

𝜌1

2
‖𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ‖2

2

≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ) − 𝜌1‖𝑔𝑖 (ŵ𝑡 ) − 𝑔𝑖 (w𝑡 )‖2
2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2

≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (ŵ𝑡 ) − u𝑖,𝑡 ) − 𝜌1𝐺
2
2‖ŵ𝑡 − w𝑡 ‖2

2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

(𝑏)
≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )>

[
𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 + 𝜕𝑔𝑖 (w𝑡 )> (ŵ𝑡 − w𝑡 ) −

𝜌2

2
‖ŵ𝑡 − w𝑡 ‖2

2

]
− 𝜌1𝐺

2
2‖ŵ𝑡 − w𝑡 ‖2

2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

(𝑐)
≥ 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) + 𝜕 𝑓𝑖 (u𝑖,𝑡 )>𝜕𝑔𝑖 (w𝑡 )> (ŵ𝑡 − w𝑡 )

− ( 𝜌2𝐺1

2
+ 𝜌1𝐺

2
2)‖ŵ𝑡 − w𝑡 ‖2

2 − 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2,

where (a) follows from the 𝜌1-weak-convexity of 𝑓𝑖 , (b) follows from that 𝜕 𝑓𝑖 (·) ≥ 0
and the weak convexity of 𝑔𝑖 , (c) is due to ‖𝜕 𝑓𝑖 (u𝑖,𝑡 )‖2 ≤ 𝐺1. When 𝜕 𝑓𝑖 (·) ≤ 0 and
𝑔𝑖 is smooth, we can bound similarly with 𝜌2 in the last inequality replaced by 𝐿2.

Then rearranging the above inequality and averaging over 𝑖 yields

E𝑡 [z𝑡 ]> (ŵ𝑡 − w𝑡 ) =
1
𝑛

𝑛∑
𝑖=1

𝜕 𝑓𝑖 (u𝑖,𝑡 )>𝜕𝑔𝑖 (w𝑡 )> (ŵ𝑡 − w𝑡 )

≤ 1
𝑛

𝑛∑
𝑖=1

[
𝑓𝑖 (𝑔𝑖 (ŵ𝑡 )) − 𝑓𝑖 (𝑔𝑖 (w𝑡 )) + 𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 )

− 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) + ( 𝜌2𝐺1

2
+ 𝜌1𝐺

2
2)‖ŵ𝑡 − w𝑡 ‖2

2 + 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

]
.

(5.17)
Due to the 𝜌-weak convexity of 𝐹 (w), we have that 𝐹 (w) + 𝜌̄

2 ‖w𝑡 − w‖2
2 is (𝜌̄ − 𝜌)-

strongly convex. Then
[
𝐹 (w𝑡 )+ 𝜌̄2 ‖w𝑡−w𝑡 ‖2

2

]
−

[
𝐹 (ŵ𝑡 )+ 𝜌̄2 ‖w𝑡−ŵ𝑡 ‖2

2

]
≥ 𝜌̄−𝜌

2 ‖ŵ𝑡−

w𝑡 ‖2
2. It follows that:
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

1
𝑛

𝑛∑
𝑖=1

[
𝑓𝑖 (𝑔𝑖 (ŵ𝑡 )) − 𝑓𝑖 (𝑔𝑖 (w𝑡 ))

]
= 𝐹 (ŵ𝑡 ) − 𝐹 (w𝑡 )

=

[
𝐹 (ŵ𝑡 ) +

𝜌̄

2
‖w𝑡 − ŵ𝑡 ‖2

2

]
−

[
𝐹 (w𝑡 ) +

𝜌̄

2
‖w𝑡 − w𝑡 ‖2

2

]
− 𝜌̄

2
‖w𝑡 − ŵ𝑡 ‖2

2

≤ ( 𝜌
2
− 𝜌̄)‖w𝑡 − ŵ𝑡 ‖2

2

(5.18)

Combining inequality (5.17), (5.16) and (5.18) yields

E𝑡 [𝐹1/𝜌̄ (w𝑡+1)] ≤ 𝐹1/𝜌̄ (w𝑡 ) +
𝜂2
𝑡 𝜌̄𝐺

2

2
− 𝜌̄2𝜂𝑡

2
‖w𝑡 − ŵ𝑡 ‖2

2

+ 𝜌̄𝜂𝑡
𝑛

𝑛∑
𝑖=1

[
𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 ) − 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 )

+ 𝜌1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2
2

]
.

We finish the proof by noting that ‖∇𝐹1/𝜌̄ (w𝑡 )‖2 = 𝜌̄‖w𝑡 − ŵ𝑡 ‖2, using

𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 ) − 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) ≤ 2𝐺1‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2,

if 𝑓𝑖 is 𝐺1-Lipschitz continuous, or using

𝑓𝑖 (𝑔𝑖 (w𝑡 )) − 𝑓𝑖 (u𝑖,𝑡 ) − 𝜕 𝑓𝑖 (u𝑖,𝑡 )> (𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ) ≤
𝐿1

2
‖𝑔𝑖 (w𝑡 ) − u𝑖,𝑡 ‖2

2,

if 𝑓𝑖 is 𝐿1-smooth. ut

Convergence of SONX-v1

Recall the definition:

𝛿𝑡 =
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2
2.

Let us also define:

𝛿′𝑡 =
1
𝑛

𝑛∑
𝑖=1

‖u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )‖2.

From Lemma 5.10, the key is to bound 𝛿𝑡 and 𝛿′𝑡 .

Lemma 5.11 Consider the update of SONX-v1, under Assumptions 5.4 and 5.5, with
constant parameters 𝛾𝑡 = 𝛾 ≤ 1 and 𝜂𝑡 = 𝜂, we have
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E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾

4𝑛

)2𝑡
𝛿0 +

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 .

E
[
𝛿′𝑡

]
≤

(
1 − 𝐵𝛾

4𝑛

) 𝑡
𝛿′0 +

4𝑛𝐺2
2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0.

Proof. From the proof of Lemma 5.1, we have

E
[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2

2

]
≤

(
1 − 𝐵𝛾𝑡

2𝑛

)
E

[

u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)


2

2

]
+

2𝑛𝐺2
2

𝐵𝛾𝑡
E

[
‖w𝑡−1 − w𝑡 ‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛

≤
(
1 − 𝐵𝛾𝑡

2𝑛

)
E

[

u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)


2

2

]
+

2𝑛𝐺2
2𝜂

2
𝑡−1

𝐵𝛾𝑡
E

[
‖z𝑡−1‖2

2
]
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛

≤
(
1 − 𝐵𝛾𝑡

4𝑛

)2
E

[

u𝑖,𝑡−1 − 𝑔𝑖 (w𝑡−1)


2

2

]
+

2𝑛𝐺4
2𝐺

2
1𝜂

2
𝑡−1

𝐵𝛾𝑡
+
𝐵𝛾2

𝑡 𝜎
2
0

𝑛
.

Applying the above inequality recursively for 𝛾𝑡 = 𝛾 and 𝜂𝑡 = 𝜂, we obtain

E
[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2

2

]
≤

(
1 − 𝐵𝛾

4𝑛

)2𝑡 

u𝑖,0 − 𝑔𝑖 (w0)


2

2 +
𝑡−1∑
𝑗=0

(
1 − 𝐵𝛾

4𝑛

)2 𝑗
(
2𝑛𝐺4

2𝐺
2
1𝜂

2

𝐵𝛾
+
𝐵𝛾2𝜎2

0
𝑛

)
≤

(
1 − 𝐵𝛾

4𝑛

)2𝑡 

u𝑖,0 − 𝑔𝑖 (w0)


2

2 +
8𝑛2𝐺4

2𝐺
2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 ,

where we use

𝑡−1∑
𝑗=0

(1 − 𝛼)2 𝑗 ≤
∞∑
𝑗=0

(1 − 𝛼)2 𝑗 =
1

1 − (1 − 𝛼)2 =
1

𝛼(2 − 𝛼) ≤ 1
𝛼
,∀𝛼 ∈ (0, 1).

Averaging the above inequality over 𝑖, we prove the first result in the lemma.
It follows

E
[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2

]
≤

√
E

[

u𝑖,𝑡 − 𝑔𝑖 (w𝑡 )

2
2

]
≤

√(
1 − 𝐵𝛾

4𝑛

)2𝑡 

u𝑖,0 − 𝑔𝑖 (w0)


2

2 +
8𝑛2𝐺4

2𝐺
2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0

≤
(
1 − 𝐵𝛾

4𝑛

) 𝑡 

u𝑖,0 − 𝑔𝑖 (w0)




2 +
4𝑛𝐺2

2𝐺1𝜂

𝐵𝛾
+ 2𝛾1/2𝜎0.

Averaging the above result, we prove the second result. ut
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Theorem 5.3 (Convergence of SONX-v1 with Lipschitz 𝑓𝑖) Consider SONX-v1,
and suppose Assumption 5.4 and 5.5 hold and 𝑓𝑖 is 𝐺1-Lipschitz continuous. Let
𝜂𝑡 = 𝜂 = 𝑂 ( 𝐵𝜖 6

𝑛𝜎2
0
), 𝛾𝑡 = 𝛾 = 𝑂 ( 𝜖 4

𝜎2
0
). Then after 𝑇 = 𝑂 ( 𝑛𝜎

2
0

𝐵𝜖 8 ) iterations, we have
E[‖∇𝐹1/𝜌̄ (w𝑡 )‖2

2] ≤ 𝑂 (𝜖2).

Proof. From Lemma 5.10, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[2
∑𝑇
𝑡=1 (𝐹1/𝜌̄ (w𝑡 ) − 𝐹1/𝜌̄ (w𝑡+1))

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 4𝜌̄𝐺1E
[
1
𝑇

𝑇∑
𝑡=1

𝛿′𝑡

]
+ 2𝜌̄𝜌1E

[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
.

Next, we bound the last two terms. From Lemma 5.11, we have

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
≤ 1
𝑇

𝑇∑
𝑡=1

(
1 − 𝐵𝛾

4𝑛

)2𝑡
𝛿0 +

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 .

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿′𝑡

]
≤ 1
𝑇

𝑇∑
𝑡=1

(
1 − 𝐵𝛾

4𝑛

) 𝑡
𝛿′0 +

4𝑛𝐺2
2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0.

Since
∑𝑇
𝑡=1 (1 − 𝜇)𝑡 ≤ 1

𝜇 for 𝜇 ∈ (0, 1), we have

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
≤ 4𝑛𝛿0

𝐵𝛾𝑇
+

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0 .

E

[
1
𝑇

𝑇∑
𝑡=1

𝛿′𝑡

]
≤

4𝑛𝛿′0
𝐵𝛾𝑇

+
4𝑛𝐺2

2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0.

From Proposition 3.2, we have

𝑇∑
𝑡=1

(𝐹1/𝜌̄ (w𝑡 ) − 𝐹1/𝜌̄ (w𝑡+1)) = 𝐹1/𝜌̄ (w1) − 𝐹1/𝜌̄ (w𝑇+1) ≤ 𝐹 (w1) − 𝐹 (w∗).

Combining the above results, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[
2(𝐹 (w1) − 𝐹∗)

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 4𝜌̄𝐺1

(4𝑛𝛿′0
𝐵𝛾𝑇

+
4𝑛𝐺2

2𝐺1𝜂

𝐵𝛾
+ 2

√
𝛾𝜎0

)
+ 2𝜌̄𝜌1

(
4𝑛𝛿0

𝐵𝛾𝑇
+

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0

)
.

Plugging the order of 𝜂, 𝛾, we finish the proof.
ut
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Theorem 5.4 (Convergence of SONX-v1 with smooth 𝑓𝑖) Consider SONX-v1, and
suppose Assumption 5.1 and 5.5 hold and 𝑓𝑖 is 𝐿1-smooth. Let 𝜂𝑡 = 𝜂 = 𝑂 ( 𝐵𝜖 3

𝑛𝜎2
0
),

𝛾𝑡 = 𝛾 = 𝑂 ( 𝜖 2

𝜎2
0
), then after 𝑇 = 𝑂 ( 𝑛𝜎

2
0

𝐵𝜖 5 ) iterations, we have E[‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2] ≤

𝑂 (𝜖2).

Proof. By using the result for smooth 𝑓𝑖 in Lemma 5.10, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[2
∑𝑇
𝑡=1 (𝐹1/𝜌̄ (w𝑡 ) − 𝐹1/𝜌̄ (w𝑡+1))

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 𝜌̄(𝐿1 + 2𝜌1)E
[
1
𝑇

𝑇∑
𝑡=1

𝛿𝑡

]
.

Plugging the bounds for the first and last term in the RHS, we have

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (w𝑡 )‖2
2

]
≤ E

[
2(𝐹 (w1) − 𝐹∗)

𝜂𝑇

]
+ 𝜂𝜌̄𝐺2

+ 𝜌̄(𝐿1 + 2𝜌1)
(
4𝑛𝛿0

𝐵𝛾𝑇
+

8𝑛2𝐺4
2𝐺

2
1𝜂

2

𝐵2𝛾2 + 4𝛾𝜎2
0

)
.

Plugging the order of 𝜂, 𝛾, we finish the proof.
ut

Convergence of SONX-v2

Similar to the first option, we need to bound 𝛿𝑡 , 𝛿′𝑡 first.

Lemma 5.12 Under Assumption 5.4, 5.5, by setting 𝛾𝑡 = 𝛾 ≤ 1
2 , 𝜂𝑡 = 𝜂, 𝛾′𝑡 =

𝑛−𝐵
𝐵(1−𝛾) + (1 − 𝛾), we have:

E [𝛿𝑡 ] ≤
(
1 − 𝐵𝛾

2𝑛

)2𝑡
𝛿0 + 4𝛾𝜎2

0 +
24𝑛2𝐺4

2𝐺
2
1𝜂

2

𝐵2𝛾
,

E
[
𝛿′𝑡

]
≤

(
1 − 𝐵𝛾

2𝑛

) 𝑡
𝛿′0 + 2𝛾1/2𝜎0 +

5𝑛𝐺2
2𝐺1𝜂

𝐵𝛾1/2 .

Proof is omitted as it is similar to that of Lemma 5.11 but based on Lemma 5.5.

Theorem 5.5 (Convergence of SONX-v2) Consider SONX-v2, and suppose As-
sumption 5.4, and 5.5 hold.

• If 𝑓𝑖 is 𝐺1-Lipschitz continuous, by setting 𝜂 = 𝑂 ( 𝐵𝜖 4

𝑛𝜎0
), 𝛾 = 𝑂 ( 𝜖 4

𝜎2
0
), then after

𝑇 = 𝑂 ( 𝑛𝜎0
𝐵𝜖 6 ) iterations, we have E[‖∇𝐹1/𝜌̄ (x𝑡 )‖2

2] ≤ 𝜖2.
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• If 𝑓𝑖 is further 𝐿1-smooth, by setting 𝜂 = 𝑂 ( 𝐵𝜖 2

𝑛𝜎0
), 𝛾 = 𝑂 ( 𝜖 2

𝜎2
0
), then the complexity

reduces to 𝑇 = 𝑂 ( 𝑛𝜎0
𝐵𝜖 4 ).

The proof follows similarly to that of Theorem 5.3 and Theorem 5.4 and is left as
an exercise for interested readers.

5.3.2 SONEX for Non-smooth Outer functions

When 𝑓𝑖 is Lipschitz continuous and non-smooth, the best complexity derived in last
subsection is 𝑂 (𝑛/(𝐵𝜖6)). Can we further improve the complexity when the inner
functions are smooth? We present a method and its analysis in this section.

Let us make the following assumptions.

Assumption 5.6. We assume that

(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2
2] ≤ 𝜎2

0
(ii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁) − ∇𝑔𝑖 (w)‖2

2] ≤ 𝜎2
2

(iii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁)‖2
2] ≤ 𝐺2

2.

Assumption 5.7. The following conditions hold:

(i) 𝑓𝑖 is 𝜌1-weakly convex, 𝐺1-Lipschitz continuous,
(ii) 𝑔𝑖 is 𝐿2-smooth and 𝐺2-Lipschitz continuous.

Moreau Envelope Smoothing of the outer function

A classical approach of improving the convergence for non-smooth functions in con-
vex optimization is smoothing, i.e., first smoothing the function and then using an
optimizer for solving the resulting smoothed function. We define the Moreau enve-
lope smoothing of 𝑓𝑖 as follows:

𝑓𝑖 (𝑔) = min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + 𝑓𝑖 (u), (5.19)

where 𝜌̄1 > 𝜌1. We present a lemma below regarding 𝑓𝑖 .

Lemma 5.13 If 𝑓𝑖 is 𝐺1-Lipschitz continuous and 𝜌1-weakly convex, then 𝑓𝑖 is 𝐿̄1-
smooth and 𝐺1 Lipschitz continuous, where 𝐿̄1 = 𝜌̄1 (2𝜌̄1−𝜌1 )

(𝜌̄1−𝜌1 ) .

Proof. Define prox 𝑓𝑖/𝜌̄1
(𝑔) = arg minu∈R𝑑′

𝜌̄1
2 ‖u − 𝑔‖2

2 + 𝑓𝑖 (u). We have

∇ 𝑓𝑖 (𝑔) = 𝜌̄1 (𝑔 − prox 𝑓𝑖/𝜌̄1
(𝑔)).

Due to the optimality condition of prox 𝑓𝑖/𝜌̄1
(𝑔), we have
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𝜌̄1 (𝑔 − prox 𝑓𝑖/𝜌̄1
(𝑔)) ∈ 𝜕 𝑓𝑖 (prox 𝑓𝑖/𝜌̄1

(𝑔)).

Hence,∇ 𝑓𝑖 (𝑔) ∈ 𝜕 𝑓𝑖 (prox 𝑓𝑖/𝜌̄1
(𝑔)), which implies ‖∇ 𝑓𝑖 (𝑔)‖ ≤ 𝐺1. The smoothness

of 𝑓𝑖 follows from Proposition 3.1. ut

Relationship with Nesterov Smoothing

When 𝑓𝑖 is a convex function, its Moreau envelope smoothing is also equivalent to
the well-known Nesterov smoothing. To see this, let 𝑓 ∗𝑖 denote the convex conjugate
of 𝑓𝑖 , i.e., 𝑓 ∗𝑖 (u) = max𝑔∈R𝑑′ u>𝑔 − 𝑓𝑖 (𝑔). Since 𝑓𝑖 is convex, we have 𝑓𝑖 (𝑔) =
maxu∈U u>𝑔 − 𝑓 ∗𝑖 (u), where U = dom( 𝑓 ∗𝑖 ) is bounded as ‖𝜕 𝑓𝑖 (𝑔)‖ ≤ 𝐺1. As a
result,

𝑓𝑖 (𝑔) = min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + 𝑓𝑖 (u) = min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + max
u′∈U

u′>u − 𝑓 ∗𝑖 (u′).

By Sion’s minimax theorem, we can switch the min and max. Hence,

𝑓𝑖 (𝑔) = max
u′∈U

min
u∈R𝑑′

𝜌̄1

2
‖u − 𝑔‖2

2 + u′>u − 𝑓 ∗𝑖 (u′).

By solving the minimization over u and plugging the optimal solution into the ex-
pression, we get

𝑓𝑖 (𝑔) = max
u′∈U

𝑔>u′ − 𝑓 ∗𝑖 (u′) − 1
2𝜌̄1

‖u′‖2
2. (5.20)

This is known as Nesterov smoothing of the function 𝑓𝑖 (𝑔). When 𝜌̄1 is sufficiently
large, we can prove that 𝑓𝑖 is sufficiently close to 𝑓𝑖 .

Example

Example 5.1. Let us consider the Nesterov smoothing of the hinge function
𝑓 (𝑥) = [𝑥]+. Let 𝜌̄1 = 1/𝜀 for some small 𝜀 � 1. Then, the Nesterov smooth-
ing of the hinge function is

𝑓 (𝑥) = max
𝑢∈[0,1]

𝑢𝑥 − 𝜀

2
𝑢2 =


𝑥 − 𝜀

2 if 𝑥 ≥ 𝜀
𝑥2

2𝜀 if 0 < 𝑥 < 𝜀
0 o.w.

.

This is also known as the smoothed hinge function.
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Solving the smoothed problem

With a smoothed outer function 𝑓𝑖 , we consider optimizing the following problem
with some proper value of 𝜌̄1:

min
w
𝐹̄ (w) :=

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)). (5.21)

Following Lemma 4.3, 𝐹̄ (·) is smooth with a smoothness parameter 𝐿̄𝐹 = 𝐺1𝐿2 +
𝐺2

2 𝐿̄1.
The key concern is how the convergence of solving the above problem translates

to the convergence of solving the original problem (5.1). To address this question,
we introduce a new convergence measure, named approximate 𝜖-stationarity.

Definition 5.1 (Approximate 𝜖-stationary solution) A point w is an approximate
𝜖-stationary solution to the original problem (5.1), if there exists (u1, . . . , u𝑛) and
𝜆𝑖 ∈ 𝜕 𝑓 (u𝑖),∀𝑖 such that 




1

𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)𝜆𝑖







2

≤ 𝜖, (5.22)

‖u𝑖 − 𝑔𝑖 (w)‖2 ≤ 𝑂 (𝜖),∀𝑖. (5.23)

We note that this condition is closely related to theKKT condition of the following
equivalent constrained formulation of the original problem (5.1):

min
w,u

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (u𝑖) (5.24)

s.t. 𝑔𝑖 (w) = u𝑖 ,∀𝑖. (5.25)

The Lagrangian function of this constrained formulation is given by

𝐹 (w, u, 𝜆) = 1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (u𝑖) +
𝑛∑
𝑖=1

𝜆>𝑖 (𝑔𝑖 (w) − u𝑖).

A solution (w, u, 𝜆) satisfies the KKT condition, if

1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)𝜆𝑖 = 0, 𝜆𝑖 ∈ 𝜕 𝑓𝑖 (u𝑖)

u𝑖 = 𝑔𝑖 (w).

Hence, an approximate 𝜖-stationary solution satisfies the KKT condition approxi-
mately when 𝜖 � 1.

If 𝑓𝑖 is 𝐿1-smooth, an approximate 𝜖-stationary solution is also a standard 𝑂 (𝜖)-
stationary solution. To see this, we have
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Algorithm 17 SONEX
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, v0, u0
2: w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Draw a batch of samples B𝑡 ⊂ [𝑛]
5: for 𝑖 ∈ B𝑡 do
6: Draw two samples 𝜁𝑖,𝑡 ∼ P𝑖
7: Update the inner function value estimators by

v1: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )
v2: u𝑖,𝑡 = (1 − 𝛾𝑡 )u𝑖,𝑡−1 + 𝛾𝑡𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
+ 𝛾′𝑡

(
𝑔𝑖

(
w𝑡 ; 𝜁𝑖,𝑡

)
− 𝑔𝑖

(
w𝑡−1; 𝜁𝑖,𝑡

) )
8: end for
9: Set u𝑖,𝑡 = u𝑖,𝑡−1, 𝑖 ∉ B𝑡
10: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B′

𝑡
∇𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 )∇ 𝑓𝑖 (u𝑖,𝑡 )
11: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
12: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
13: end for






1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (𝑔𝑖 (w))







2

=






1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (𝑔𝑖 (w)) − 1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (u𝑖) +
1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (u𝑖)







2

≤ 1
𝑛

𝑛∑
𝑖=1

𝐺2𝐿1‖u𝑖 − 𝑔𝑖 (w)‖2 + 𝜖 ≤ 𝑂 (𝜖).

The following proposition states that an 𝜖-stationary solution to the smoothed
problem (5.21) is an approximate 𝜖-stationary solution to the original problem when
𝜌̄1 is sufficiently large.

Proposition 5.1 Let w be an 𝜖-stationary solution to (5.21), when 𝜌̄1 = 1/𝜖 , then w
is also an approximate 𝜖-stationary solution to (5.1).

Proof. Given that w be an 𝜖-stationary solution to (5.21), we have




1
𝑛

𝑛∑
𝑖=1

∇𝑔𝑖 (w)∇ 𝑓𝑖 (𝑔𝑖 (w))







2

≤ 𝜖 .

We define u𝑖 = prox 𝑓𝑖/𝜌̄1
(𝑔𝑖 (w)) = arg minu 𝑓𝑖 (u) + 𝜌̄1

2 ‖u − 𝑔𝑖 (w)‖2
2 and 𝜆𝑖 =

∇ 𝑓𝑖 (𝑔𝑖 (w)). Since ∇ 𝑓𝑖 (𝑔𝑖 (w)) ∈ 𝜕 𝑓𝑖 (prox 𝑓𝑖/𝜌̄1
(𝑔𝑖 (w))) = 𝜕 𝑓𝑖 (u𝑖). As a result, we

have 𝜆𝑖 ∈ 𝜕 𝑓𝑖 (u𝑖) and


 1
𝑛

∑𝑛
𝑖=1 ∇𝑔𝑖 (w)𝜆𝑖




2 ≤ 𝜖 .

Due to the optimality condition of u𝑖 , we have 𝑔𝑖 (w) − u𝑖 ∈ 𝜕 𝑓𝑖 (u𝑖)/𝜌̄1. Since 𝑓𝑖
is 𝐺1-Lipschitz continuous and 𝜌̄1 ≥ 1/𝜖 , hence, ‖u𝑖 − 𝑔𝑖 (w)‖2 ≤ 𝑂 (𝜖). ut
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5.3. NON-SMOOTH WEAKLY CONVEX FUNCTIONS

Next, we discuss algorithms and complexities for solving the smoothed problem
when 𝜌̄1 = 1/𝜖 . Since both inner and outer functions of the smoothed problem are
smooth, we can leverage themoving average gradient estimators.We present detailed
steps for solving the smoothed problem in Algorithm 17, which is referred to as
SONEX.

A step in implementing SONEX for solving the smoothed problem (5.21) is the
calculation of ∇ 𝑓𝑖 (u𝑖,𝑡 ), which amounts to solving a proximal mapping of 𝑓𝑖 , i.e.,

prox 𝑓𝑖/𝜌̄1
(u𝑖,𝑡 ) = arg min

u∈R𝑑′
𝜌̄1

2
‖u − u𝑖,𝑡 ‖2

2 + 𝑓𝑖 (u).

In fact, ∇ 𝑓𝑖 (u𝑖,𝑡 ) = 𝜌̄1 (u𝑖,𝑡 − prox 𝑓𝑖/𝜌̄1
(u𝑖,𝑡 )).

Convergence of SONEX-v1

Finally, we present the complexity of SONEX-v1 for finding an 𝜖-stationary solution
to the smoothed problem when 𝜌̄1 = 1/𝜖 .

Corollary 5.1 (Convergence of SONEX-v1) Under Assumptions 5.6 and 5.7, if we
set u0 such that 1

𝑛E[
∑𝑛
𝑖=1 ‖u𝑖,0 − 𝑔𝑖 (w0)‖2

2] ≤ 𝑂 (𝜖), 𝛽 = 𝑂 ( 𝜖 2

𝜎2 ), 𝛾 = 𝑂 ( 𝜖 4

𝜎2
0
), 𝜂 =

min(𝜖, 𝑂 (𝛽𝜖), 𝑂 ( 𝐵𝜖 𝛾𝑛 )), 𝜌̄1 = 1/𝜖 > 𝜌1, then SONEX-v1 finds an approximate
𝑂 (𝜖)-stationary solution to the original problem (5.1) with a complexity of𝑂 ( 𝑛𝜎

2
0

𝐵𝜖 7 ).

Proof. The proof can be completed by using the convergence result of SOX with
noting the order of 𝐿̄1 = 𝑂 ( 𝜌̄1) = 𝑂 (1/𝜖) and 𝐿𝐹 = 𝑂 ( 𝐿̄1) = 𝑂 (1/𝜖). ut

Convergence of SONEX-v2

SONEX-v2 is a combination of SOX andMSVR, i.e., with u𝑡 sequence fromMSVR
and v𝑡 from SOX.

Theorem 5.6 (Convergence of SONEX-v2) Under Assumptions 5.6 and 5.7, if
we set u1 such that 1

𝑛E[
∑𝑛
𝑖=1 ‖u𝑖,0 − 𝑔𝑖 (w0)‖2

2] ≤ 𝑂 (𝜖3/𝜎0), 𝛽 = 𝑂 ( 𝜖 2

𝜎2 ), 𝛾 =

𝑂 ( 𝜖 2

𝜎2
0
), 𝜂 = min(𝑂 (𝜖), 𝑂 (𝛽𝜖), 𝑂 ( 𝐵

√
𝛾𝜖

𝑛 )) and 𝜌̄1 = 1
𝜖 > 𝜌1, then SONEX-v2 finds

an approximate 𝜖-stationary solution to the original problem (5.1) with a complexity
of

𝑇 = 𝑂

(
max

{
1
𝜖3 ,

𝜎2

𝜖5 ,
𝑛𝜎0

𝐵𝜖5

})
,

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. The proof is similar to that of Theorem 4.3 except that the � inequality in
Lemma 4.10 is replaced by the following for usingMSVRestimators (see Lemma 5.5):
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(�) E [𝛿𝑡+1] ≤ E[(1 − 𝛾̄)𝛿𝑡 + 𝐶3𝜂
2Γ𝑡 + 𝛾̄2𝜎′2],

where 𝛾̄= 𝐵𝛾𝑛 , 𝜎
′2 =

2𝑛𝜎2
0

𝐵 , 𝐶3 = 𝑂 (𝑛/𝐵)
We only highlight the changes below and leave details as an exercise. First, the

condition on 𝜂 in Lemma 4.10 is changed to

𝜂 ≤ 𝑂
(

1
𝐿
,
𝛽

√
𝐶2
,

√
𝛾̄

𝐶1𝐶3

)
.

The settings on 𝛽, 𝛾̄ remain the same as 𝛽 = 𝑂 ( 𝜖 2

𝜎2 ), 𝛾̄ = 𝑂 ( 𝜖 2

𝐶1𝜎′2 ). The iteration
complexity becomes:

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ
√
𝐶2

𝜖2𝛽
,
𝐶Υ

√
𝐶1𝐶3√
𝛾̄𝜖2

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶3𝐶1𝜎

′

𝜖3

})
.

and 𝐶Υ is changed to

𝐶Υ = 𝐴0 − 𝐴∗ +
𝜂

𝛽
Δ0 +

𝐶1𝜂

𝛾̄
𝛿0 ≤ 𝐴0 − 𝐴∗ +𝑂

(
1

√
𝐶2

)
Δ0 +𝑂

( √
𝐶1√
𝐶3𝛾̄

)
𝛿0

= 𝐴0 − 𝐴∗ +𝑂
(

1
√
𝐶2

)
Δ0 +𝑂

(
𝐶1𝜎

′
√

8𝐶3𝜖

)
𝛿0.

Then, as in the proof of Theorem 5.1, we substitute 𝐶1 = 𝑂 ( 𝐿̄2
1), 𝐶2 = 𝑂 ( 𝐿̄2

𝐹),
𝐶3 = 𝑂 (𝑛/𝐵), 𝜎2 =

𝐺2
1𝜎

2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) , and 𝜎′2 = 𝑂 (𝑛𝜎2
0 /𝐵) into the above

complexity expression and 𝐶Υ, and obtain

𝑇 = 𝑂

(
max

{
𝐶Υ 𝐿̄𝐹
𝜖2 ,

𝐶Υ 𝐿̄𝐹𝜎
2

𝜖4 ,
𝐶Υ𝑛𝐿̄

2
1𝜎0

𝐵𝜖3

})
,

𝐶Υ ≤ 𝑂 (𝐹 (w0) − 𝐹̄∗) +𝑂
(

1
𝐿̄𝐹

)
Δ0 +𝑂

(
𝐿̄2

1𝜎0

𝜖

)
𝛿0.

We finish the proof by noting that 𝐿̄1 = 𝑂 (1/𝜖) and 𝐿̄𝐹 = 𝑂 (1/𝜖) and 𝐶Υ = 𝑂 (1)
if 𝛿0 ≤ 𝑂 (𝜖3/𝜎0).

ut

5.4 Convex inner and outer functions

In Chapter 3, we discussed standard stochastic convex optimization and estab-
lished the iteration complexities of various algorithms. For general convex problems,
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5.4. CONVEX INNER AND OUTER FUNCTIONS

Algorithm 18 ALEXR
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛼𝑡 }𝑇𝑡=1, 𝜃 ∈ [0, 1]; starting points w0, y1 ∈ Y1 ×

· · · × Y𝑛
2: Let w1 = w0
3: for 𝑡 = 1, . . . , 𝑇 − 1 do
4: Sample a batch B𝑡 ⊂ {1, . . . , 𝑛}, | B𝑡 | = 𝐵
5: for each 𝑖 ∈ S𝑡 do
6: Draw a sample 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
7: Compute 𝑔̃𝑖,𝑡 = 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) + 𝜃 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) )
8: Update 𝑦𝑖,𝑡+1 = arg max𝑦𝑖 ∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖 ) − 1

𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 )

}
9: end for
10: For each 𝑖 ∉ B𝑡 , 𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡
11: Compute the vanilla gradient estimator z𝑡 = 1

𝐵

∑
𝑖∈B𝑡 [𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 ) ]>𝑦𝑖,𝑡+1

12: Update w𝑡+1 = arg minw

{
z>𝑡 w + 1

2𝜂𝑡 ‖w − w𝑡 ‖2
2 + 𝑟 (w)

}
13: end for

stochastic gradient descent (SGD) achieves a complexity of 𝑂 (1/𝜖2), while for 𝜇-
strongly convex problems, its complexity improves to 𝑂 (1/(𝜇𝜖)). These analyses
rely on the assumption of unbiased stochastic gradient estimators, which does not
hold for convex compositional optimization problems.

In this section, we introduce stochastic algorithms for a family of convex FCCO
problems, where both the inner and outer functions are convex. We establish that
these algorithms attain the same order of iteration complexities as SGD in standard
stochastic convex optimization. In particular, let us consider a regularized convex
FCCO:

min
w∈R𝑑

𝐹 (w) :=
1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)) + 𝑟 (w), (5.26)

where 𝑔𝑖 (w) = E𝜁∼P𝑖 [𝑔𝑖 (w; 𝜁)], the outer and inner functions satisfy the following
assumption.

Assumption 5.8. The following conditions hold:

(i) 𝑓𝑖 is convex, 𝐺1-Lipschitz continuous, and 𝜕 𝑓𝑖 (·) ≥ 0.
(ii) 𝑔𝑖 is convex and 𝐺2-Lipschitz continuous.
(iii) 𝑟 is 𝜇-strongly convex for some 𝜇 ≥ 0.

Group DRO (5.2) could satisfy the above assumption when the individual loss
function is convex and Lipschitz with respect to the model parameter. Two-way par-
tial AUCmaximization considered in Section 6.4.3 is another example satisfying the
above assumption when the loss function is convex and Lipschitz continuous.

Let 𝑓 ∗𝑖 denote the convex conjugate of 𝑓𝑖 . We can write 𝑓𝑖 (𝑔𝑖 (w)) as

𝑓𝑖 (𝑔𝑖 (w)) = max
𝑦𝑖∈Y𝑖

(𝑦>𝑖 𝑔𝑖 (w) − 𝑓 ∗𝑖 (𝑦𝑖),
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where Y𝑖 = dom( 𝑓 ∗1 ). Since 0 ≤ 𝜕 𝑓𝑖 (·) and ‖𝜕 𝑓𝑖 (·)‖ ≤ 𝐺1, hence Y𝑖 is a compact
set following from Lemma 1.8.

Then, we can convert (5.26) into an equivalent minimax optimization problem:

min
w∈R𝑑

max
y∈Y

1
𝑛

𝑛∑
𝑖=1

(𝑦>𝑖 𝑔𝑖 (w) − 𝑓 ∗𝑖 (𝑦𝑖)) + 𝑟 (w), (5.27)

where y = (𝑦1, . . . , 𝑦𝑛)>, Y = Y1 × · · · Y𝑛. Thus, the above problem is convex-
concave problem under Assumption 5.8.

We introduce a method to optimize the above minimax problem. However, there
are several unique challenges: (i) updating all coordinates of y is difficult because it is
computationally prohibitive to traverse all data points 𝑖 = 1, . . . , 𝑛 at each iteration;
(ii) we only have access to stochastic evaluations of the functions 𝑔𝑖 (w; 𝜁), which
limits our ability to update both the corresponding coordinate of y and the parameter
w.

5.4.1 The ALEXR Algorithm

To present the algorithm, we assume a strongly convex prox-function 𝜓𝑖 for the 𝑖-th
coordinate and impose the following conditions.

Assumption 5.9. Suppose 𝜓𝑖 is differentiable and obeys the following conditions

(i) 𝜓𝑖 is 𝜇𝜓-strongly convex with respect to ‖·‖2, i.e.,𝜓𝑖 (𝑦) ≥ 𝜓𝑖 (𝑦′)+∇𝜓𝑖 (𝑦′)> (𝑦−
𝑦′) + 𝜇𝜓

2 ‖𝑦 − 𝑦′‖2
2.

(ii) 𝐷 𝑓 ∗𝑖
(𝑦, 𝑦′) ≥ 𝜌𝐷𝜓𝑖 (𝑦, 𝑦′) for some 𝜌 ≥ 0.

(iii) The following proximal mapping can be easily computed:

𝑦𝑖,𝑡+1 = arg max
𝑦𝑖∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 )

}
.

A meta-algorithm, termed ALEXR, is presented in Algorithm 18. ALEXR em-
ploys stochastic block-coordinate proximal mirror ascent to update y, using the prox-
function 𝜓𝑖 for the 𝑖-th coordinate, and applies stochastic proximal gradient descent
to update w. Below, we consider different choices of the prox-functions 𝜓𝑖 and the
corresponding updates for 𝑦𝑖,𝑡+1.

ALEXR-v1 for smooth 𝑓𝑖: using 𝜓𝑖 = 𝑓 ∗𝑖

When 𝑓𝑖 is 𝐿1-smooth, its convex conjugate 𝑓 ∗𝑖 is 1/𝐿1-strongly convex. We can use
𝜓𝑖 = 𝑓 ∗𝑖 to define a Bregman divergence 𝐷𝜓𝑖 (𝑦, 𝑦′) = 𝐷 𝑓 ∗𝑖

(𝑦, 𝑦′).

224



5.4. CONVEX INNER AND OUTER FUNCTIONS

Critical: In this case, Assumption 5.9 (i) and (ii) hold with 𝜇𝜓 = 1/𝐿1, and
𝜌 = 1.

Let us consider the update of 𝑦𝑖,𝑡+1, which becomes:

𝑦𝑖,𝑡+1 = arg max
𝑦𝑖∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝐷 𝑓 ∗𝑖

(𝑦𝑖 , 𝑦𝑖,𝑡 )
}
,∀𝑖 ∈ B𝑡 . (5.28)

The following lemma provides an efficient way to compute 𝑦𝑖,𝑡+1, which also builds
the connection to the sequence of u𝑖,𝑡 in SOX and MSVR.

Lemma 5.14 Let u𝑖,𝑡−1 ∈ 𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 ). Then for 𝑖 ∈ B𝑡 we have 𝑦𝑖,𝑡+1 = ∇ 𝑓𝑖 (u𝑖,𝑡 ),
where u𝑖,𝑡 = 1

1+𝛼𝑡 u𝑖,𝑡−1 + 𝛼𝑡
1+𝛼𝑡 𝑔̃𝑖,𝑡 .

Proof. For the problem (5.28), we have

𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −
1
𝛼𝑡
𝐷 𝑓 ∗𝑖

(𝑦𝑖 , 𝑦𝑖,𝑡 )

= 𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −
1
𝛼𝑡

( 𝑓 ∗𝑖 (𝑦𝑖) − 𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )> (𝑦𝑖 − 𝑦𝑖,𝑡 ) − 𝑓 ∗𝑖 (𝑦𝑖,𝑡 ))

= 𝑦>𝑖 (𝑔̃𝑖,𝑡 +
1
𝛼𝑡
𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )) − (1 + 1

𝛼𝑡
) 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝜕 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )>𝑦𝑖,𝑡 +

1
𝛼𝑡
𝑓 ∗𝑖 (𝑦𝑖,𝑡 ).

Hence 𝑦𝑖,𝑡+1 ∈ arg max𝑦𝑖∈Y𝑖 𝑦>𝑖 (
𝛼𝑡

1+𝛼𝑡 𝑔̃𝑖,𝑡 +
1

1+𝛼𝑡 𝜕 𝑓
∗
𝑖 (𝑦𝑖,𝑡 )) − 𝑓 ∗𝑖 (𝑦𝑖). If we define

u𝑖,𝑡 = 𝛼𝑡
1+𝛼𝑡 𝑔̃𝑖,𝑡 +

1
1+𝛼𝑡 𝜕 𝑓

∗
𝑖 (𝑦𝑖,𝑡 ), we have

𝑓 (u𝑖,𝑡 ) = max
𝑦𝑖∈Y𝑖

𝑦>𝑖 u𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) = 𝑦>𝑖,𝑡+1u𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖,𝑡+1).

Hence, u𝑖,𝑡 ∈ arg maxu 𝑦
>
𝑖,𝑡+1u − 𝑓𝑖 (u) and therefore 𝑦𝑖,𝑡+1 = ∇ 𝑓𝑖 (u𝑖,𝑡 ). ut

If 𝑓𝑖 is a Legendre function such that ∇ 𝑓 −1
𝑖 = ∇ 𝑓 ∗𝑖 (see Lemma 1.8). Then, we can

derive the following equivalent update of u sequence such that 𝑦𝑖,𝑡 = ∇ 𝑓𝑖 (u𝑖,𝑡−1).

u𝑖,𝑡 =
{ 1

1+𝛼𝑡 u𝑖,𝑡−1 + 𝛼𝑡
1+𝛼𝑡 𝑔̃𝑖,𝑡 , if 𝑖 ∈ B𝑡

u𝑖,𝑡−1 o.w. . (5.29)

When 𝜃 = 0, the equivalent u update (5.64) becomes:

u𝑖,𝑡 = (1 − 𝛼𝑡
1 + 𝛼𝑡

)u𝑖,𝑡−1 +
𝛼𝑡

1 + 𝛼𝑡
𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ),∀𝑖 ∈ B𝑡 . (5.30)

This is the same as the moving average estimator in SOX with 𝛾𝑡 = 𝛼𝑡/(1 + 𝛼𝑡 ).
Using the equivalent u sequence, the stochastic gradient estimator becomes z𝑡 =
1
𝐵

∑
𝑖∈B𝑡 [𝜕𝑔𝑖 (𝑥𝑡 ; 𝜁 ′𝑖,𝑡 )]>∇ 𝑓𝑖 (u𝑖,𝑡 ). If the regularizer 𝑟 is not present, the update of

the model parameter becomes w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 . In this case, ALEXR with 𝜃 = 0 is
the same as SOX with 𝛽𝑡 = 1. We will prove its convergence for convex and strongly
convex regularizer 𝑟.
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When 𝜃 > 0, the equivalent u update (5.64) becomes:

u𝑖,𝑡 = (1 − 𝛼𝑡
1 + 𝛼𝑡

)u𝑖,𝑡−1 +
𝛼𝑡

1 + 𝛼𝑡
𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) +

𝜃𝛼𝑡
1 + 𝛼𝑡

(𝑔𝑖 (w𝑡 ; 𝜁𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑡 )).
(5.31)

This is similar to the MSVR estimator with 𝛾𝑡 = 𝛼𝑡
1+𝛼𝑡 and 𝛾′𝑡 = 𝜃𝛼𝑡

1+𝛼𝑡 . However,
the key difference is that 𝛾′𝑡 in MSVR is larger than 1, while it is smaller than 1 in
ALEXR for convex problems. In practice, setting 𝛾′𝑡 < 1 is a better choice. We will
prove a better convergence of ALEXR with 𝜃 ∈ (0, 1) for a strongly convex 𝑟.

ALEXR-v2 for non-smooth 𝑓𝑖: using a quadratic function 𝜓𝑖 (·)

When 𝑓𝑖 is non-smooth, we cannot use 𝑓 ∗𝑖 as the prox function. In this case, we will
use a smooth and strongly convex 𝜓𝑖 . a quadratic function 𝜓𝑖 (𝑦) = 1

2 ‖𝑦‖2
2.

Critical: In this case, Assumption 5.9 (i) holds with 𝜇𝜓 = 1, and Assump-
tion 5.9 (ii) holds with 𝜌 = 0.

Example

Example 5.2. For the update of 𝑦𝑖,𝑡+1, consider the example 𝑓𝑖 (·) = [ · ]+, as
used in GDRO and TPAUC maximization. In this case, the conjugate 𝑓 ∗𝑖 (𝑦)
is the indicator function of the interval [0, 1]. Consequently, 𝑦𝑖,𝑡+1 can be
computed as:

𝑦𝑖,𝑡+1 = arg max
𝑦𝑖∈[0,1]

{
𝑦>𝑖 𝑔̃𝑖,𝑡 −

1
2𝛼𝑡

(𝑦𝑖 − 𝑦𝑖,𝑡 )2
}
= Π[0,1] (𝑦𝑖,𝑡 − 𝛼𝑡 𝑔̃𝑖,𝑡 ),∀𝑖 ∈ B𝑡 ,

where Π[0,1] (·) projects the input into the range of [0, 1].

5.4.2 Technical Lemmas

To facilitate the analysis, we define (w∗, y∗) as the saddle point to the minimax prob-
lem and
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𝐹 (w, y) = 1
𝑛

𝑛∑
𝑖=1

𝑦>𝑖 𝑔𝑖 (w) − 𝑓 ∗𝑖 (𝑦𝑖) + 𝑟 (w),

𝑔̃𝑡 = (𝑔̃1,𝑡 , . . . , 𝑔̃𝑛,𝑡 )>,

𝑦̄𝑖,𝑡+1 = arg max
𝑦𝑖∈Y𝑖

{
𝑦>𝑖 𝑔̃𝑖,𝑡 − 𝑓 ∗𝑖 (𝑦𝑖) −

1
𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 )

}
,∀𝑖 ∈ [𝑛]

𝐷𝜓 (y, y′) =
𝑛∑
𝑖=1

𝐷𝜓𝑖 (𝑦𝑖 , 𝑦′𝑖).

Note that ȳ𝑡+1 is a virtual sequence, which is updated for all coordinates from y𝑡
making it independent of B𝑡 .

We make the following assumption regarding the stochastic estimators.

Assumption 5.10. We assume that
(i) E𝜁∼P𝑖 [‖𝑔𝑖 (w; 𝜁) − 𝑔𝑖 (w)‖2

2] ≤ 𝜎2
0 .

(ii) E𝜁∼P𝑖 [‖∇𝑔𝑖 (w; 𝜁) − ∇𝑔𝑖 (w)‖2
2] ≤ 𝜎2

2 .
(iii) E𝑖∼U𝑛

[

𝑦𝑖∇𝑔𝑖 (w) − 1
𝑛

∑𝑛
𝑖=1 𝑦𝑖∇𝑔𝑖 (w)



2
2

]
≤ 𝛿2 for any fixed y, where U𝑛 de-

notes a uniform distribution.

Lemma 5.15 The following holds for any w, y ∈ Y after the 𝑡-th iteration of Algo-
rithm 18.

𝐹 (w𝑡+1, y) − 𝐹 (w, ȳ𝑡+1) (5.32)

≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 − ( 1

2𝜂𝑡
+ 𝜇

2
) ‖w − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2

+ 𝐴𝑡 (y) + 𝐵𝑡 (y) + 𝐶𝑡 (w),

where

𝐴𝑡 (y) =
1
𝑛𝛼𝑡

𝐷𝜓 (y, y𝑡 ) − ( 1
𝑛𝛼𝑡

+ 𝜌
𝑛
)𝐷𝜓 (y, ȳ𝑡+1) −

1
𝑛𝛼𝑡

𝐷𝜓 (ȳ𝑡+1, y𝑡 )

𝐵𝑡 (y) =
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

𝐶𝑡 (w) = 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w).

Proof. Following Lemma 3.10, for all 𝑖 ∈ [𝑛] the dual update rule implies that for
any 𝑦 ∈ Y it holds

𝑔̃>𝑖,𝑡 (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) + 𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) − 𝑓 ∗𝑖 (𝑦𝑖)

≤ 1
𝛼𝑡
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 ) − ( 1

𝛼𝑡
+ 𝜌)𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̄𝑖,𝑡+1) −

1
𝛼𝑡
𝐷𝜓𝑖 ( 𝑦̄𝑖,𝑡+1, 𝑦𝑖,𝑡 ).

Averaging this inequality over 𝑖 = 1, . . . , 𝑛.
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1
𝑛

𝑛∑
𝑖=1
𝑔̃>𝑖,𝑡 (𝑦𝑖,𝑡 − 𝑦̄𝑖,𝑡+1) +

1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 (𝑦𝑖) (5.33)

≤ 1
𝑛𝛼𝑡

𝐷𝜓 (y, y𝑡 ) − ( 1
𝑛𝛼𝑡

+ 𝜌
𝑛
)𝐷𝜓 (y, ȳ𝑡+1) −

1
𝑛𝛼𝑡

𝐷𝜓 (ȳ𝑡+1, y𝑡 ).

According to Lemma 3.6, the primal update rule implies that

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) (5.34)

≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 − ( 1

2𝜂𝑡
+ 𝜇

2
) ‖w − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 .

By the definition of 𝐹 (w, y), we have

𝐹 (w𝑡+1, y) − 𝐹 (w, ȳ𝑡+1)

=
1
𝑛

𝑛∑
𝑖=1

𝑦>𝑖 𝑔𝑖 (w𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 (𝑦𝑖) + 𝑟 (w𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑦̄>𝑖,𝑡+1𝑔𝑖 (w)

+ 1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) − 𝑟 (w)

=
1
𝑛

𝑛∑
𝑖=1

𝑔𝑖 (w𝑡+1)> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) +
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) −
1
𝑛

𝑛∑
𝑖=1

𝑓 ∗𝑖 (𝑦𝑖)

+ 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w))> 𝑦̄𝑖,𝑡+1 + 𝑟 (w𝑡+1) − 𝑟 (w).

Combining the equation above with (5.34) and (5.33), we can finish the proof. ut

Next, we bound the three terms 𝐴𝑡 (y), 𝐵𝑡 (y), 𝐶𝑡 (w) separately.

Lemma 5.16 Let 𝜏𝑡 = 1/𝛼𝑡 . For y that possibly depends on all randomness in the
algorithm and any 𝜆0 > 0, we have

E[𝐴𝑡 (y)] = E
[ 𝜏𝑡
𝑛
𝐷𝜓 (y, y𝑡 ) −

𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y, ȳ𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
(5.35)

≤ E

[
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y, y𝑡+1)
]
− 𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+ E

[
𝜆0 (𝜏𝑡 + 𝜌)

𝑛
(𝐷𝜓 (y, ŷ𝑡 ) − 𝐷𝜓 (y, ŷ𝑡+1))

]
+ (𝑛 − 𝐵)(𝜏𝑡 + 𝜌)

2𝜇𝜓𝜆0𝑛𝐵
E

[
𝑛∑
𝑖=1



∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2

]
,

where the sequence {ŷ𝑡 }𝑡 , ŷ𝑡 ∈ Y is virtual. In addition, for y∗, we have
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E[𝐴𝑡 (y∗)] = E
[ 𝜏𝑡
𝑛
𝐷𝜓 (y∗, y𝑡 ) −

𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y∗, ȳ𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
(5.36)

≤ E

[
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y∗, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y∗, y𝑡+1)
]
− 𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
.

Proof.

𝜏𝑡
𝑛
𝐷𝜓 (y, y𝑡 ) −

𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y, ȳ𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 ) (5.37)

=
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y, y𝑡+1) −
𝜏𝑡
𝑛
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

+
(
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y, y𝑡+1) −
𝜏𝑡 + 𝜌
𝑛

𝐷𝜓 (y, ȳ𝑡+1) +
(𝐵 − 𝑛)(𝜏𝑡 + 𝜌)

𝑛𝐵
𝐷𝜓 (y, y𝑡 )

)
.

For bounding the last three terms, we consider the following:

1
𝐵
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡+1) −

1
𝑛
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̄𝑖,𝑡+1) +

(𝐵 − 𝑛)
𝑛𝐵

𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 ) (5.38)

=
1
𝐵

(
𝜓𝑖 (𝑦𝑖) − 𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡+1)> (𝑦𝑖 − 𝑦𝑖,𝑡+1)

)
− 1
𝑛

(
𝜓𝑖 (𝑦𝑖) − 𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1)> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

)
+ (𝐵 − 𝑛)

𝑛𝐵

(
𝜓𝑖 (𝑦𝑖) − 𝜓𝑖 (𝑦𝑖,𝑡 ) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )> (𝑦𝑖 − 𝑦𝑖,𝑡 )

)
=

[
1
𝑛

(
𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) −

𝑛

𝐵
𝜓𝑖 (𝑦𝑖,𝑡+1) +

𝑛 − 𝐵
𝐵

𝜓𝑖 (𝑦𝑖,𝑡 )
)]

+
[

1
𝐵
∇𝜓𝑖 (𝑦𝑖,𝑡+1)>𝑦𝑖,𝑡+1 −

1
𝑛
∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1)> 𝑦̄𝑖,𝑡+1 +

(𝐵 − 𝑛)
𝑛𝐵

∇𝜓𝑖 (𝑦𝑖,𝑡 )>𝑦𝑖,𝑡
]

+ 1
𝑛
(− 𝑛
𝐵
∇𝜓𝑖 (𝑦𝑖,𝑡+1) + ∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝐵

∇𝜓𝑖 (𝑦𝑖,𝑡 ))>𝑦𝑖︸                                                                    ︷︷                                                                    ︸
♯

.

Taking expectation over B𝑡 for the first two terms in the brackets of the above bound
will give zeros. This is because that both 𝑦̄𝑖,𝑡+1 and 𝑦𝑖,𝑡 are independent of B𝑡 such
that

EB𝑡 [𝜓𝑖 (𝑦𝑖,𝑡+1)] =
𝐵

𝑛
𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝑛

𝜓𝑖 (𝑦𝑖,𝑡 ),

EB𝑡
[
∇𝜓𝑖 (𝑦𝑖,𝑡+1)>𝑦𝑖,𝑡+1

]
=
𝐵

𝑛
∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1)> 𝑦̄𝑖,𝑡+1 +

𝑛 − 𝐵
𝑛

∇𝜓𝑖 (𝑦𝑖,𝑡 )>𝑦𝑖,𝑡 ,

EB𝑡
[
∇𝜓𝑖 (𝑦𝑖,𝑡+1)

]
=
𝐵

𝑛
∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝑛

∇𝜓𝑖 (𝑦𝑖,𝑡 ).

Next, we bound the ♯ term. When y = y∗, expectation of ♯ is also zero which
proves (5.36).
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When y is possibly random, let us apply Lemma 3.13 to the update 𝑦̂𝑖,𝑡+1 =
arg min𝑣 −Δ>

𝑖,𝑡 𝑣 + 𝜆0𝐷𝜓𝑖 (𝑣, 𝑦̂𝑖,𝑡 ),∀𝑖 (𝜆0 to be determined), where

Δ𝑖,𝑡 := − 𝑛
𝐵
∇𝜓𝑖 (𝑦𝑖,𝑡+1) + ∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) +

𝑛 − 𝐵
𝐵

∇𝜓𝑖 (𝑦𝑖,𝑡 )

is a martingale sequence due to

EB𝑡 [(∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))] =
𝐵

𝑛
(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )).

We have

E[♯] ≤ E
[
𝜆0

𝑛
(𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡 ) − 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡+1))

]
+ 1

2𝑛𝜇𝜓𝜆0
E

[

Δ𝑖,𝑡

2
2

]
.

Note that EB𝑡 [(∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))] = 𝐵
𝑛 (∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )) such that

EB𝑡

[

Δ𝑖,𝑡

2
2

]
= EB𝑡




(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )) −
𝑛

𝐵
(∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )




2

2

≤ 𝑛2

𝐵2EB𝑡


∇𝜓𝑖 (𝑦𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )



2
2 −



(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))


2

2

≤ 𝑛

𝐵



∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2 −


(∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 ))



2
2 .

Thus, we have

E[♯] ≤ E
[
𝜆0

𝑛
(𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡 ) − 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖,𝑡+1))

]
+ 𝑛 − 𝐵

2𝜇𝜓𝜆0𝑛𝐵
E

[

∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2

]
.

Averaging (5.38) multiplied by 𝜏𝑡 + 𝜌 and combining (5.37) finishes the proof. ut

Lemma 5.17 Suppose 𝜓𝑖 is 𝜇𝜓-strongly convex. For any 𝜆2, 𝜆3, 𝜆4, 𝜆5 > 0 and y
that possibly depends on all randomness in the algorithm, we have

E[𝐵𝑡 (y)] =
1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) ≤ E[Γ𝑡+1 − 𝜃Γ𝑡 ] (5.39)

+
(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]

𝜇𝜓𝑛
+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4

+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
+
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
+
𝜃𝜎2

0𝜆5

2𝜇𝜓

+ 1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜃

𝑛𝜆5
E[𝐷𝜓 (y, y̆𝑡 ) − 𝐷𝜓 (y, y̆𝑡+1)],
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where Γ𝑡 := 1
𝑛

∑𝑛
𝑖=1 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖 − 𝑦𝑖,𝑡 ) and y̆𝑡 , ỹ𝑡 are some virtual se-

quences. In addition, we have

E[𝐵𝑡 (y∗)] =
1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖,∗ − 𝑦̄𝑖,𝑡+1) ≤ E[Γ∗
𝑡+1 − 𝜃Γ∗

𝑡 ] (5.40)

+
(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]

𝜇𝜓𝑛
+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4

+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
,

where Γ∗
𝑡 := 1

𝑛

∑𝑛
𝑖=1 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖,∗ − 𝑦𝑖,𝑡 ).

Proof. Since

𝑔̃𝑖,𝑡 = 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) + 𝜃 (𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )),

we have

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑖,𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) (5.41)

=
1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)︸                                                       ︷︷                                                       ︸
I

+ 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)︸                                                        ︷︷                                                        ︸
II

+ 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 )) + 𝜃 (𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)︸                                                                                ︷︷                                                                                ︸
III

.

Define

¤𝑦𝑖,𝑡+1 := arg max
𝑣∈Y𝑖

{𝑣> ((1+𝜃)𝑔𝑖 (w𝑡 )−𝜃𝑔𝑖 (w𝑡−1))− 𝑓 ∗𝑖 (𝑣)−
1
𝛼𝑡
𝐷𝜓𝑖 (𝑣, 𝑦𝑖,𝑡 )},∀𝑖 ∈ [𝑛] .

This update differs from that of 𝑦̄𝑖,𝑡+1 in that it uses full gradients instead of stochastic
gradients. We decompose the I term in (5.41) as
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I =
1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

=
1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> ( ¤𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1)︸                                                           ︷︷                                                           ︸
I1

+ 1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))>𝑦𝑖︸                                         ︷︷                                         ︸
I2

− 1 + 𝜃
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> ¤𝑦𝑖,𝑡+1︸                                             ︷︷                                             ︸
I3

.

Taking expectation over 𝜁𝑖,𝑡 ,∀𝑖 will make E𝜁𝑡 [I3] = 0. Below, we will bound I1 and
I2.

I1 ≤ 1 + 𝜃
𝑛

𝑛∑
𝑖=1



𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )

2



 ¤𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1




2 .

Since 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦𝑖,𝑡 ) is 𝜇𝜓-strongly convex, Lemma 3.8 implies that

‖ ¤𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1‖2

≤ 𝛼𝑡
𝜇𝜓

(
(1 + 𝜃)



𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )

2 + 𝜃


𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )




2

)
Hence

E𝜁𝑡 [I1] ≤
(1 + 𝜃)𝛼𝑡
𝑛𝜇𝜓

·

𝑛∑
𝑖=1

E
[
(1 + 1.5𝜃)



𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 )

2
2 + 0.5𝜃



𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 )


2

2

]
≤

(1 + 𝜃) (1 + 2𝜃)𝜎2
0𝛼𝑡

𝜇𝜓
. (5.42)

Next, let us handle I2. Let us define an auxiliary sequence {ỹ𝑡 }𝑡≥1,

𝑦̃𝑖,𝑡+1 = arg min
𝑣∈Y𝑖

{(𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝑔𝑖 (w𝑡 ))>𝑣 +
1
𝜆2
𝐷𝜓𝑖 (𝑣, 𝑦̃𝑖,𝑡 )},

where 𝜆2 > 0. Lemma 3.13 implies that

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))>𝑦𝑖 ≤
1
𝜆2

E[𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̃𝑖,𝑡 ) − 𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̃𝑖,𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
.

Averaging over 𝑖 = 1, . . . , 𝑛 and multiplying (1 + 𝜃) yields a bound of I2:
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E[I2] ≤
1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
.

As a result, the I term in (5.41) can be bounded as

E[I] ≤ 1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
+
(1 + 𝜃)(1 + 2𝜃)𝜎2

0𝛼𝑡

𝜇𝜓
.

(5.43)

Similarly, the II term in (5.41) can be bounded as

E[II] ≤ 𝜃

𝑛𝜆5
E[𝐷𝜓 (y, y̆𝑡 ) − 𝐷𝜓 (y, y̆𝑡+1)] +

𝜃𝜆5𝜎
2
0

2𝜇𝜓
+
𝜃 (0.5 + 1.5𝜃)𝜎2

0𝛼𝑡

𝜇𝜓
. (5.44)

where

𝑦̆𝑖,𝑡+1 = arg min
𝑣∈Y𝑖

{(𝑔𝑖 (w𝑡−1) − 𝑔𝑖 (w𝑡−1; 𝜁𝑖,𝑡 ))>𝑣 + 𝜆5𝐷𝜓𝑖 (𝑣, 𝑦̆𝑖,𝑡 )},∀𝑖.

Next, let us bound III. Recall Γ𝑡 := 1
𝑛

∑𝑛
𝑖=1 (𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖 − 𝑦𝑖,𝑡 ). For

any 𝜆3, 𝜆4 > 0, III can be rewritten as

III = Γ𝑡+1 − 𝜃Γ𝑡 +
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖,𝑡+1 − 𝑦̄𝑖,𝑡+1)

− 𝜃

𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡−1))> (𝑦𝑖,𝑡 − 𝑦̄𝑖,𝑡+1)

≤ Γ𝑡+1 − 𝜃Γ𝑡 +
𝐺2

2 ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝜆3 ‖y𝑡+1 − ȳ𝑡+1‖2

2
2𝑛

+
𝐺2

2𝜃 ‖w𝑡 − w𝑡−1‖2
2

2𝜆4
+
𝜆4𝜃 ‖y𝑡 − ȳ𝑡+1‖2

2
2𝑛

.

Note that 𝑦𝑖,𝑡+1 = 𝑦̄𝑖,𝑡+1 if 𝑖 ∈ B𝑡 and 𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 otherwise. Then, ‖y𝑡+1 − ȳ𝑡+1‖2
2 ≤

‖y𝑡 − ȳ𝑡+1‖2
2 such that

III ≤ Γ𝑡+1 − 𝜃Γ𝑡 +
𝐺2

2 ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃 ‖w𝑡 − w𝑡−1‖2
2

2𝜆4
(5.45)

+
(𝜆3 + 𝜆4𝜃)𝐷𝜓 (ȳ𝑡+1, y𝑡 )

𝜇𝜓𝑛
.

Combining (5.43), (5.45), (5.44), we have
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E[𝐵𝑡 (y)] ≤ E[Γ𝑡+1 − 𝜃Γ𝑡 ]

+ 1 + 𝜃
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜃

𝑛𝜆5
E[𝐷𝜓 (y, y̆𝑡 ) − 𝐷𝜓 (y, y̆𝑡+1)]

+
(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]

𝜇𝜓𝑛
+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4

+
(1 + 𝜃)𝜆2𝜎

2
0

2𝜇𝜓
+
𝜃𝜎2

0𝜆5

2𝜇𝜓
+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
.

ut

Lemma 5.18 When 𝜃 = 0, for any 𝜆2, 𝜆4 ≥ 0 and y that possibly depends on all
randomness in the algorithm, we have

E[𝐵𝑡 (y)] =
1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) ≤
𝐺2

2E
[
‖w𝑡+1 − w𝑡 ‖2

2
]

4𝜆4
+ 4𝜆4𝐺

2
1

+ 1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
+
𝜎2

0𝛼𝑡

𝜇𝜓
. (5.46)

Proof. For ALEXR with 𝜃 = 0, we have 𝑔̃𝑖,𝑡 = 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ). Then, for any 𝜆4 > 0 we
have

1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) =
1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
+ 1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
. (5.47)

We bound the first term on the RHS by Young’s inequality:

1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
≤ 1
𝑛

𝑛∑
𝑖=1

(
𝐺2

2‖w𝑡+1 − w𝑡 ‖2
2

4𝜆4
+ 𝜆4



𝑦𝑖 − 𝑦̄𝑖,𝑡+1


2

2

)
≤
𝐺2

2‖w𝑡+1 − w𝑡 ‖2
2

4𝜆4
+ 4𝐺2

1.

The second term in (5.47) can be bounded similarly as (5.43) by:

1
𝑛

𝑛∑
𝑖=1

E
[
(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ))> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1)

]
≤ 1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
+
𝜎2

0𝛼𝑡

𝜇𝜓
.

Combining the above inequalities together, we have
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1
𝑛

𝑛∑
𝑖=1

E(𝑔𝑖 (w𝑡+1) − 𝑔̃𝑡 )> (𝑦𝑖 − 𝑦̄𝑖,𝑡+1) ≤
𝐺2

2E
[
‖w𝑡+1 − w𝑡 ‖2

2
]

4𝜆4
+ 4𝜆4𝐺

2
1

+ 1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ𝑡 ) − 𝐷𝜓 (y, ỹ𝑡+1)] +
𝜆2𝜎

2
0

2𝜇𝜓
+
𝜎2

0𝛼𝑡

𝜇𝜓
.

ut

Lemma 5.19 If 𝑔𝑖 is 𝐿2-smooth and 𝜂 ≤ 1
2𝐺1𝐿2

, then

E[𝐶𝑡 (w∗)] = E

[
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗)
]

(5.48)

≤ 𝜂𝜎2 + 1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

If 𝑔𝑖 is 𝐺2-Lipschitz continuous, then

E[𝐶𝑡 (w∗)] = E

[
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗)
]

(5.49)

≤ 𝜂(𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

where 𝜎2 =
𝐺2

1𝜎
2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. We define Δ𝑡 := 1
𝐵

∑
𝑖∈B𝑡 [𝜕𝑔𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )]>𝑦𝑖,𝑡+1 − 1

𝑛

∑𝑛
𝑖=1 [𝜕𝑔𝑖 (w𝑡 )]> 𝑦̄𝑖,𝑡+1.

Similar to Lemma 5.2, we have E𝑡 [‖Δ𝑡 ‖2
2] ≤ 𝜎2. To proceed, we have

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗)

=
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ))> 𝑦̄𝑖,𝑡+1 +
1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1

+ 1
𝑛

𝑛∑
𝑖=1

( [𝜕𝑔𝑖 (w𝑡 )]> 𝑦̄𝑖,𝑡+1 + Δ𝑡 )> (w∗ − w𝑡+1).

Since 𝑔𝑖 is convex and Y𝑖 ⊂ R𝑛+ as 𝜕 𝑓𝑖 ≥ 0, we have

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡 ) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 ≤ 1
𝑛

𝑛∑
𝑖=1

[∇𝑔𝑖 (w𝑡 )]> (w𝑡 − w∗)> 𝑦̄𝑖,𝑡+1.

Adding the above two inequalities, we have
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1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1 − z>𝑡 (w𝑡+1 − w∗) (5.50)

≤ 1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − ∇𝑔𝑖 (w𝑡 )> (w𝑡+1 − w𝑡 ))> 𝑦̄𝑖,𝑡+1 +
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − w𝑡+1).

If 𝑔𝑖 is 𝐿2-smooth, the first term in (5.50) can be bounded by

1
𝑛

𝑛∑
𝑖=1

(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − ∇𝑔𝑖 (w𝑡 )> (w𝑡+1 − w𝑡 ))> 𝑦̄𝑖,𝑡+1

≤ 𝐺1

𝑛

𝑛∑
𝑖=1



𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − ∇𝑔𝑖 (w𝑡 )> (w𝑡+1 − w𝑡 )




2 ≤ 𝐺1𝐿2

2
‖w𝑡+1 − w𝑡 ‖2

2 .

(5.51)

To bound the second term in (5.50), we note that EB𝑡 ,𝜁𝑡 [Δ𝑡 ] = 0. Let us define
ŵ𝑡+1 = arg minw w> 1

𝑛

∑𝑛
𝑖=1 [∇𝑔𝑖 (w𝑡 )]> 𝑦̄𝑖,𝑡+1 + 1

2𝜂 ‖w − w𝑡 ‖2
2 + 𝑟 (w). Then we have

E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − w𝑡+1)

]
= E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − ŵ𝑡+1 + ŵ𝑡+1 − w𝑡+1)

]
= E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (ŵ𝑡+1 − w𝑡+1)

]
,

where we use the fact that

E

[
1
𝑛

𝑛∑
𝑖=1

Δ>
𝑡 (w∗ − ŵ𝑡+1)

]
= E

[
1
𝑛

𝑛∑
𝑖=1

EB𝑡 ,𝜁 ′𝑡 [Δ𝑡 ]
> (w∗ − ŵ𝑡+1)

]
= 0.

According to Lemma 1.7 we have

E[Δ>
𝑡 (ŵ𝑡+1 − w𝑡+1)] ≤

𝜂

1 + 𝜇𝜂E ‖Δ𝑡 ‖2
2 ≤ 𝜂𝜎2

1 + 𝜇𝜂 . (5.52)

Then, combining (5.50), (5.51) and (5.52) leads to

1
𝑛

𝑛∑
𝑖=1

E[(𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗))> 𝑦̄𝑖,𝑡+1] − Ez>𝑡 (w𝑡+1 − w∗)

≤ 𝜂𝜎2

1 + 𝜇𝜂 + 𝐿2𝐺1

2
‖w𝑡+1 − w𝑡 ‖2

2 ,

which finishes the first part by noting the condition on 𝜂.
If 𝑔𝑖 is 𝐺2-Lipschitz continuous, we have
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𝐺1

𝑛

𝑛∑
𝑖=1

‖𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w𝑡 ) − 𝜕𝑔𝑖 (w𝑡 )(w𝑡+1 − w𝑡 )‖2 (5.53)

≤ 2𝐺1𝐺2 ‖w𝑡+1 − w𝑡 ‖2 ≤ 𝜂4𝐺2
1𝐺

2
2 +

1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

Combining (5.50), (5.52), and (5.53), we get

1
𝑛

𝑛∑
𝑖=1

E[𝑔𝑖 (w𝑡+1) − 𝑔𝑖 (w∗)> 𝑦̄𝑖,𝑡+1] − Ez>𝑡 (w𝑡+1 − w∗)

≤ 𝜂(𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂

‖w𝑡+1 − w𝑡 ‖2
2 .

ut

5.4.3 Strongly convex objectives

In this section, we derive a complexity of 𝑂 (1/𝜖) under the the following condition.

Assumption 5.11. We assume that the function 𝑟 is 𝜇-strongly convex (𝜇 > 0) and
each 𝑓𝑖 is 𝐿1-smooth, both with respect to the Euclidean norm ‖ · ‖2.

With this assumption, theminimax problem becomes strongly convex and strongly
concave since the dual 𝑓 ∗𝑖 is 1/𝐿1-strongly convex with respect to ‖ · ‖2. In this case,
we will establish the convergence of 𝜇‖w − w∗‖2

2.

Critical: Under Assumption 5.11, parts (i) and (ii) of Assumption 5.9 hold
for both variants of ALEXR. For ALEXR-v1, we have 𝜇𝜓 = 1/𝐿1 and 𝜌 = 1,
whereas for ALEXR-v2, we have 𝜇𝜓 = 1 and 𝜌 = 1/𝐿1. Hence, the following
theorem holds for both variants of ALEXR.

Let us introduce a few notations:

𝑎 =
𝜖 𝜇𝜓𝜌

24𝜎2
0
, 𝑏1 = 3(𝜎2 + 4𝐺2

1𝐺
2
2), 𝑏2 = 3𝜎2.

Theorem 5.7 Suppose Assumptions 5.8, 5.10 and 5.11 hold.

• If 𝑔𝑖 is 𝐺2-Lipschitz continuous, by setting 𝛼 = 1−𝜃
𝜌(𝜃−(1−𝐵/𝑛) ) , 𝜂 = 1−𝜃

𝜃𝜇 and

𝜃 = max

{
1 −

𝑎 𝐵𝑛
1 + 𝑎 , 1 − 𝜇𝜖

𝑏1 + 𝜇𝜖

}
.

ALEXR finds a solution w𝑇+1 such that E[𝜇‖w𝑇+1 − w∗‖2
2] ≤ 𝜖 with an iteration

complexity of

237



𝑇 = 𝑂

(
1

1 − 𝜃 log(3Υ/𝜖)
)
= 𝑂̃

(
max

(
𝑛

𝐵
,
(𝜎2 + 𝐺2

1𝐺
2
2)

𝜇𝜖
,
𝑛𝜎2

0
𝐵𝜖𝜇𝜓𝜌

))
.

• If 𝑔𝑖 is further 𝐿2-smooth, by setting 𝛼 = 1−𝜃
𝜌(𝜃−(1−𝐵/𝑛) ) , 𝜂 = 1−𝜃

𝜃𝜇 and

𝜃 = max

{
1 −

𝑎 𝐵𝑛
1 + 𝑎 , 1 − 𝜇𝜖

𝑏2 + 𝜇𝜖
, 1 − 𝜇

2𝐺1𝐿2 + 𝜇

}
,

for sufficiently small 𝜖 , ALEXR finds a solution w𝑇+1 such that E[𝜇‖w𝑇+1 −
w∗‖2

2] ≤ 𝜖 with an iteration complexity of

𝑇 = 𝑂

(
1

1 − 𝜃 log(3Υ/𝜖)
)
= 𝑂̃

(
max

(
𝐺1𝐿2

𝜇
,
𝑛

𝐵
,
𝜎2

𝜇𝜖
,
𝑛𝜎2

0
𝐵𝜖𝜇𝜓𝜌

))
.

where Υ = 𝜇
2 ‖w1 − w∗‖2

2 +
2𝜌
𝐵 𝐷𝜓 (y∗, y1) and 𝜎2 =

𝐺2
1𝜎

2
2

𝐵 + 𝐺2
1𝐺

2
2 (𝑛−𝐵)

𝐵(𝑛−1) .

 Why it matters

For smooth functions 𝑔𝑖 , the iteration complexity is improved in the sense that
the 𝑂 (1/𝜖) dependence is scaled by the variance of the stochastic estimators. In
contrast, for non-smooth 𝑔𝑖 , the complexity always has a term 𝐺2

1𝐺
2
2

𝜇𝜖 independent
of variance.

Proof. We first consider non-smooth 𝑔𝑖 . Combining (5.32), (5.36) for 𝐴𝑡 (y∗), (5.40)
for 𝐵𝑡 (y∗), (5.49) for 𝐶𝑡 (w∗) together we have

E[𝐹 (w𝑡+1, y∗) − 𝐹 (w∗, ȳ𝑡+1)]

≤ 1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 − ( 1

2𝜂𝑡
+ 𝜇

2
) ‖w∗ − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2

+ E

[
𝜏𝑡 + 𝜌

(
1 − 𝐵

𝑛

)
𝐵

𝐷𝜓 (y∗, y𝑡 ) −
𝜏𝑡 + 𝜌
𝐵

𝐷𝜓 (y∗, y𝑡+1)
]
− 𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+ E[Γ∗

𝑡+1 − 𝜃Γ∗
𝑡 ] +

(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]
𝜇𝜓𝑛

+
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+
𝐺2

2𝜃E ‖w𝑡 − w𝑡−1‖2
2

2𝜆4
+
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓

+ 𝜂𝑡 (𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

Define Υ1,𝑡 := 1
2 ‖w∗ − w𝑡 ‖2

2 and Υ2,𝑡 = 1
𝐵𝐷𝜓 (y∗, y𝑡 ). Since

𝐹 (w𝑡+1, y∗) −𝐹 (w∗, ȳ𝑡+1) ≥ 𝐹 (w𝑡+1, y∗) −𝐹 (w∗, y∗) +𝐹 (w∗, y∗) −𝐹 (w∗, ȳ𝑡+1) ≥ 0,

multiplying the above inequality by 𝜃−𝑡 on both sides, we have
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0 ≤ 𝜃−𝑡E
[

1
𝜂𝑡
Υ1,𝑡 + (𝜏𝑡 + 𝜌(1 − 𝐵

𝑛
)))Υ2,𝑡 − 𝜃Γ∗

𝑡

]
(5.54)

− 𝜃−𝑡E
[
( 1
𝜂𝑡

+ 𝜇)Υ1,𝑡+1 + (𝜏𝑡 + 𝜌)Υ2,𝑡+1 − Γ∗
𝑡+1

]
− 𝜃−𝑡 ( 1

2𝜂𝑡
E ‖w𝑡+1 − w𝑡 ‖2

2 +
𝜏𝑡
𝑛
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
) + 𝜃−𝑡

(𝜆3 + 𝜆4𝜃)E[𝐷𝜓 (ȳ𝑡+1, y𝑡 )]
𝜇𝜓𝑛

+ 𝜃−𝑡
𝐺2

2E ‖w𝑡+1 − w𝑡 ‖2
2

2𝜆3
+ 𝜃−𝑡

𝐺2
2𝜃E ‖w𝑡 − w𝑡−1‖2

2
2𝜆4

+ 𝜃−𝑡 1
4𝜂𝑡

E ‖w𝑡+1 − w𝑡 ‖2
2

+ 𝜃−𝑡
(
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
+ 𝜂𝑡 (𝜎2 + 4𝐺2

1𝐺
2
2)

)
.

Let

1
𝜂𝑡−1

+ 𝜇 =
1
𝜂𝑡𝜃

, (𝜏𝑡−1 + 𝜌) =
1
𝜃
(𝜏𝑡 + 𝜌(1 − 𝐵

𝑛
)). (5.55)

Hence,

𝑇∑
𝑡=1

{
𝜃−𝑡

[
1
𝜂𝑡
Υ1,𝑡 + (𝜏𝑡 + 𝜌(1 − 𝐵

𝑛
)))Υ2,𝑡 − 𝜃Γ∗

𝑡

]
−𝜃−𝑡

[
( 1
𝜂𝑡

+ 𝜇)Υ1,𝑡+1 + (𝜏𝑡 + 𝜌)Υ2,𝑡+1 − Γ∗
𝑡+1

]}
≤

𝑇∑
𝑡=1

{
𝜃−(𝑡−1)

[
( 1
𝜂𝑡−1

+ 𝜇)Υ1,𝑡 + (𝜏𝑡−1 + 𝜌)Υ2,𝑡 − Γ∗
𝑡

]
−𝜃−𝑡

[
( 1
𝜂𝑡

+ 𝜇)Υ1,𝑡+1 + (𝜏𝑡 + 𝜌)Υ2,𝑡+1 − Γ∗
𝑡+1

]}
=

[
( 1
𝜂0

+ 𝜇)Υ1,1 + (𝜏0 + 𝜌)Υ2,1 − Γ1

]
− 𝜃−𝑇

[
( 1
𝜂𝑇

+ 𝜇)Υ1,𝑇+1 + (𝜏𝑇 + 𝜌)Υ2,𝑇+1 − Γ𝑇+1

]
.

Since

− Γ𝑇+1 ≥ −1
𝑛

𝑛∑
𝑖=1

𝐺2‖w𝑇+1 − w𝑇 ‖2‖𝑦𝑖,∗ − 𝑦𝑖,𝑇+1‖2

≥ −1
𝑛

𝑛∑
𝑖=1

(
𝐺2

2𝐵

𝑛(𝜌 + 𝜏𝑇 )𝜇𝜓
‖w𝑇+1 − w𝑇 ‖2

2 +
𝑛𝜇𝜓 (𝜌 + 𝜏𝑇 )

4𝐵
‖𝑦𝑖,∗ − 𝑦𝑖,𝑇+1‖2

2)

≥ −(
𝐺2

2𝐵

2𝑛(𝜌 + 𝜏𝑇 )𝜇𝜓
‖w𝑇+1 − w𝑇 ‖2

2 +
𝜌 + 𝜏𝑇

2
Υ2,𝑇+1). (5.56)
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Summing (5.54) over 𝑡 = 1, . . . , 𝑇 and utilizing the above two inequalities, we have

𝜃−𝑇E
[
( 1
𝜂𝑇

+ 𝜇)Υ1,𝑇+1 +
𝜌 + 𝜏𝑇

2
Υ2,𝑇+1

]
≤

[
( 1
𝜂0

+ 𝜇)Υ1,1 + (𝜏0 + 𝜌)Υ2,1 − Γ1

]
+

𝜃−𝑇𝐺2
2𝐵

2𝑛(𝜌 + 𝜏𝑇 )𝜇𝜓
E‖w𝑇+1 − w𝑇 ‖2

2 − E

[
𝑇∑
𝑡=1

𝜃−𝑡

2
( 1
𝜂𝑡

−
𝐺2

2
𝜆3

−
𝐺2

2
𝜆4

− 1
2𝜂𝑡

) ‖w𝑡+1 − w𝑡 ‖2
2

]
− E

[
𝑇∑
𝑡=1

𝜃−𝑡

𝑛
( 1
𝛼𝑡

− 𝜆3 + 𝜆4𝜃

𝜇𝜓
)𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+

𝑇∑
𝑡=1

𝜃−𝑡
(
(1 + 3.5𝜃 + 3.5𝜃2)𝜎2

0𝛼𝑡

𝜇𝜓
+ 𝜂𝑡 (𝜎2 + 4𝐺2

1𝐺
2
2)

)
,

wherewe use the fact
∑𝑇
𝑡=1 ‖w𝑡 − w𝑡−1‖2

2 ≤ ∑𝑇+1
𝑡=1 ‖w𝑡 − w𝑡−1‖2

2 =
∑𝑇
𝑡=1 ‖w𝑡+1 − w𝑡 ‖2

2.
Let 𝜂𝑡 = 𝜂, 𝛼𝑡 = 1

𝜏𝑡
= 𝛼, 𝜆3 = 𝜆4 = 8𝜂𝐺2

2. If 𝛼 ≤ 𝜇𝜓
16𝜂𝐺2

2
(to be verfied later),

we have 𝜏 ≥ 4𝜂𝐺2
2𝐵

𝑛𝜇𝜓
. As a result, 𝐺2

2𝐵

2𝑛(𝜌+𝜏𝑡 )𝜇𝜓 ≤ 1
8𝜂 and 1

𝛼𝑡
≥ 16𝜂𝐺2

2
𝜇𝜓

. Then the terms
related to ‖w𝑡+1 − w𝑡 ‖ and 𝐷𝜓 (ȳ𝑡+1, y𝑡 ) is less than zero. As a result,[

( 1
𝜂
+ 𝜇)Υ1,𝑇+1 + ( 𝜌

2
+ 1

2𝛼
)Υ2,𝑇+1

]
≤ 𝜃𝑇

[
( 1
𝜂
+ 𝜇)Υ1,1 + ( 1

𝛼
+ 𝜌)Υ2,1

]
+

𝑇∑
𝑡=1

𝜃𝑇−𝑡
(
8𝜎2

0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

)
≤ 𝜃𝑇

[
( 1
𝜂
+ 𝜇)Υ1,1 + ( 1

𝛼
+ 𝜌)Υ2,1

]
+ 1

1 − 𝜃

(
8𝜎2

0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

)
.

Due to the relationship between 𝜂, 𝛼 and 𝜃 in (5.55), we have

𝜃 =
1

1 + 𝜇𝜂 =
1 + 𝛼𝜌(1 − 𝐵/𝑛)

1 + 𝛼𝜌 ≥ 1
1 + 𝛼𝜌

𝛼 =
1 − 𝜃

𝜌(𝜃 − (1 − 𝐵/𝑛)) , 𝜂 =
1 − 𝜃
𝜃𝜇

.

Then, we have
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𝜇Υ1,𝑇+1

]
=

𝜇𝜂

1 + 𝜂𝜇 (
1
𝜂
+ 𝜇)Υ1,𝑇+1

≤ 𝜃𝑇𝜇
[
Υ1,1 +

(1 + 𝛼𝜌)𝜂
𝛼(1 + 𝜂𝜇)Υ2,1

]
+ 1

1 − 𝜃
𝜂𝜇

1 + 𝜂𝜇

(
8𝜎2

0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

)
= 𝜃𝑇Υ +

8𝜎2
0𝛼

𝜇𝜓
+ 𝜂(𝜎2 + 4𝐺2

1𝐺
2
2)

≤ 𝜃𝑇Υ + 1 − 𝜃
𝜌(𝜃 − (1 − 𝐵/𝑛))

8𝜎2
0

𝜇𝜓
+ 1 − 𝜃

𝜃𝜇
(𝜎2 + 4𝐺2

1𝐺
2
2),

where Υ = 𝜇Υ1,1 + 𝜇 (1+𝛼𝜌)𝜂
𝛼(1+𝜂𝜇)Υ2,1.

To let the RHS be less than 𝜖 , it is sufficient to have

𝑇 ≥ 1
1 − 𝜃 log(3Υ/𝜖) ≥ −1

log(𝜃) log(3Υ/𝜖) ⇒ 𝜃𝑇Υ ≤ 𝜖/3,

𝜃 ≥ 1 −
𝜖 𝜇𝜓𝜌𝐵/(24𝜎2

0 𝑛)
1 + 𝜖𝜇𝜓𝜌/(24𝜎2

0 )
⇒ 1 − 𝜃

𝜌(𝜃 − (1 − 𝐵/𝑛))
8𝜎2

0
𝜇𝜓

≤ 𝜖/3,

𝜃 ≥ 1
1 + 𝜇𝜖/(3(𝜎2 + 4𝐺2

1𝐺
2
2))

⇒ 1 − 𝜃
𝜃𝜇

(𝜎2 + 4𝐺2
1𝐺

2
2) ≤

𝜖

3
.

As a result,

𝑇 = 𝑂

(
1

1 − 𝜃 log(3Υ/𝜖)
)
= 𝑂̃

(
max

( (𝜎2 + 𝐺2
1𝐺

2
2)

𝜇𝜖
,
𝑛

𝐵
,
𝑛𝜎2

0
𝐵𝜖𝜇𝜓𝜌

))
.

Finally, we verify that if 𝜖2 ≤ 9(𝜎2+4𝐺2
1𝐺

2
2 )𝜎

2
0

2𝐺2
2

, then it holds that

𝛼 ≤
𝜇𝜓𝜖

24𝜎2
0
=
𝜇𝜓𝜖

2

24𝜎2
0 𝜖

≤
𝜇𝜓3(𝜎2 + 4𝐺2

1𝐺
2
2)

16𝐺2
2𝜖

≤
𝜇𝜓𝜃𝜇

16𝐺2
2 (1 − 𝜃)

=
𝜇𝜓

16𝜂𝐺2
2
.

Since 𝛼𝜌 ≤ 𝑂 (1), we have

(1 + 𝛼𝜌)𝜂
(1 + 𝜇𝜂)𝛼 ≤ 2

𝜂

𝛼
≤ 2

𝜌

𝜇
,

thus Υ1,1 + (1+𝛼𝜌)𝜂
𝛼(1+𝜇𝜂)Υ2,1 ≤ Υ1,1 + 2𝜌

𝜇 Υ2,1. Thus, Υ ≤ 𝜇Υ1,1 + 2𝜌Υ2,1.
For smooth 𝑔𝑖 , the proof is similar by using (5.48) instead of using (5.49). Hence,

𝜂𝑡 (𝜎2+4𝐺2
1𝐺

2
2) becomes 𝜂𝑡 (𝜎2) and there is additional condition 𝜂𝑡 ≤ 1

2𝐺1𝐿2
, which

transfers to a condition on 𝜃. ut
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5.4.4 Convex objectives with non-smooth outer functions

In this section, we only consider ALEXR-v2 for solving convex objectives with
non-smooth 𝑓𝑖 . For ALEXR-v2, we have that 𝜓 is 1-smooth and 1-strongly convex.
Hence, we have

(𝑛 − 𝐵)(𝜏 + 𝜌)
2𝜇𝜓𝜆0𝑛𝐵

E

[
𝑛∑
𝑖=1



∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )


2

2

]
(5.57)

≤ (𝑛 − 𝐵)(𝜏 + 𝜌)
2𝜆0𝑛𝐵

E

[
𝑛∑
𝑖=1



𝑦̄𝑖,𝑡+1 − 𝑦𝑖,𝑡


2

2

]
≤ (𝑛 − 𝐵)(𝜏 + 𝜌)

𝜆0𝑛𝐵
E

[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
.

Theorem 5.8 Suppose Assumption 5.9 holds with 𝜌 = 0, 𝜇𝜓 = 1, and Assump-
tions 5.8, 5.10 hold. If 𝑔𝑖 is 𝐺2-Lipschitz continuous, setting 𝜃 = 0 and

𝛼 =
𝜖

6𝜎2
0
, 𝜂 =

𝜖

6(𝜎2 + 8𝐺2
1𝐺

2
2)
,

ALEXR-v2 returns an 𝜖-optimal solution w̄𝑇 =
∑𝑇
𝑡=1 w𝑡/𝑇 in expectation with a

complexity of

𝑇 = 𝑂

(
𝜎2 + 𝐺2

1𝐺
2
2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

Ω𝜎2
0

𝑛𝜖2

)
.

where Ω is a constant such that E[𝐷𝜓 (y∗𝑇 , y1)] ≤ Ω ≤ 𝑂 (𝐺2
1𝑛), and y∗𝑇 =

arg maxy∈Y1×···×Y𝑛 𝐹 (w̄𝑇 , y).

 Why it matters

In the worst case, the complexity is 𝑂
(
𝐺2

1𝐺
2
2

𝜖 2 + 𝑛𝐺2
1𝜎

2
0

𝐵𝜖 2

)
. This will match the

lower bounds established in next section.

Proof. Combining (5.35) with (5.57) yields

E
[ 𝑇∑
𝑡=1

𝐴𝑡 (y)
]
≤ 𝜏

𝐵
E[𝐷𝜓 (y, y1)] −

𝜏

𝑛
E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
+ 𝜆0𝜏

𝑛
E𝐷𝜓 (y, ŷ1)

(5.58)

+ (𝑛 − 𝐵)𝜏
𝜆0𝑛𝐵

E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]

(5.59)

Adding this inequality with (5.32), (5.46), and (5.49) over 𝑡 = 1, . . . , 𝑇 , we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]
≤ 1

2𝜂
‖w∗ − w1‖2

2 −
1
2𝜂

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+ 𝜏

𝐵
E[𝐷𝜓 (y, y1)] −

𝜏

𝑛
E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
+ 𝜆0𝜏

𝑛
E𝐷𝜓 (y, ŷ1)

+ (𝑛 − 𝐵)𝜏
𝜆0𝑛𝐵

E

[
𝑇∑
𝑡=1

𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
,

+
𝐺2

2
4𝜆4

E

[
𝑇∑
𝑡=1

‖w𝑡+1 − w𝑡 ‖2
2

]
+ 4𝜆4𝑇𝐺

2
1 +

1
𝑛𝜆2

E[𝐷𝜓 (y, ỹ1)]

+
𝜆2𝜎

2
0

2
𝑇 + 𝜎2

0𝛼𝑇,

+ 𝜂𝑇 (𝜎2 + 4𝐺2
1𝐺

2
2) +

1
4𝜂

𝑇∑
𝑡=1

E ‖w𝑡+1 − w𝑡 ‖2
2 .

If we set𝜆0 = 𝑛−𝐵
𝐵 and 𝐺2

2
4𝜆4

= 1
4𝜂 , we observe that the terms involvingE

[∑𝑇
𝑡=1 ‖w𝑡+1 − w𝑡 ‖2]

and E
[∑𝑇

𝑡=1 𝐷𝜓 (ȳ𝑡+1, y𝑡 )
]
cancel out, leaving us with the following:

E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]

≤ 1
2𝜂

‖w∗ − w1‖2
2 +

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 1
𝑛𝜆2

)
E𝐷𝜓 (y, y1)

+ 𝜂𝑇 (𝜎2 + 8𝐺2
1𝐺

2
2) +

𝜆2𝜎
2
0

2
𝑇 + 𝜎2

0𝛼𝑇.

Let y = y∗𝑇 = arg max 𝐹 (w̄𝑇 , y). Since 1
𝑇

∑𝑇
𝑡=1 𝐹 (w𝑡+1, y) ≥ 𝐹 (w̄𝑇 , y∗𝑇 ) = 𝐹 (w̄𝑇 )

and 𝐹 (w∗, ȳ𝑡+1) ≤ 𝐹 (w∗, y∗), we have

E
[
𝐹 (w̄𝑇 ) − 𝐹 (w∗)

]
≤ 1

2𝜂𝑇
‖w∗ − w1‖2

2 +
1
𝑇

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 1
𝑛𝜆2

)
Ω

+ 𝜂(𝜎2 + 8𝐺2
1𝐺

2
2) +

𝜆2𝜎
2
0

2
+ 𝜎2

0𝛼. (5.60)

Let

𝛼 =
𝜖

6𝜎2
0
, 𝜆2 =

𝜖

3𝜎2
0
, 𝜂 =

𝜖

6(𝜎2 + 8𝐺2
1𝐺

2
2)
,

𝑇 ≥ 𝑂
(
max

( ‖w1 − w∗‖2
2

12𝜂𝜖
,
Ω(1 + 𝜆0𝐵/𝑛)

6𝐵𝜖𝛼
,

Ω
6𝑛𝜆2𝜖

))
.

Then, the RHS of (5.60) is less than 𝜖 . As a result, the complexity is in the order of
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𝑂

(
max

(
𝜎2 + 𝐺2

1𝐺
2
2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

Ω𝜎2
0

𝑛𝜖2

))
.

ut

Theorem 5.9 Suppose Assumption 5.9 holds with 𝜌 = 0, 𝜇𝜓 = 1, Assumptions 5.8, 5.10
hold. If 𝑔𝑖 is 𝐺2-Lipschitz continuous and 𝐿2-smooth, for sufficiently small 𝜖 , setting
𝜃 = 1 and

𝛼 =
𝜖

64𝜎2
0
, 𝜂 = min

(
𝜖

8𝜎2 ,
1

2𝐺1𝐿2

)
ALEXR-v2 returns an 𝜖-optimal solution w̄𝑇 =

∑𝑇
𝑡=1 w𝑡/𝑇 in expectation with a

complexity of

𝑇 = 𝑂

(
𝐺1𝐿2

𝜖
,
𝜎2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

Ω𝜎2
0

𝑛𝜖2

)
.

where Ω and y∗𝑇 are defined similarly as in last theorem.

 Why it matters

For smooth functions 𝑔𝑖 , the iteration complexity is improved in the sense that
the 𝑂 (1/𝜖2) dependence is scaled by the variance of the stochastic estimators.
In contrast, for non-smooth 𝑔𝑖 , the complexity always includes a term 𝐺2

1𝐺
2
2

𝜖 2 ,
regardless of the variance.

Proof. The proof is similar to that of previous theorem except that we use (5.39)
instead of (5.46), and using (5.48) instead of using (5.49). Additionally, we use

𝑇∑
𝑡=1

(Γ𝑡+1 − Γ𝑡 ) = Γ𝑇+1 − Γ1 ≤ 1
𝑛

𝑛∑
𝑖=1

𝐺2‖w𝑇+1 − w𝑇 ‖2‖𝑦𝑖 − 𝑦𝑖,𝑇+1‖2 (5.61)

≤
𝐺2

2𝐵

2𝑛𝜏
‖w𝑇+1 − w𝑇 ‖2

2 +
𝜏𝑛/𝐵
𝑛

𝐷𝜓 (y, y𝑇+1).

Combining this with (5.39), we have

E
[ 𝑇∑
𝑡=1

𝐵𝑡 (y)
]
≤
𝐺2

2𝐵

2𝑛𝜏
E[‖w𝑇+1 − w𝑇 ‖2

2] +
𝜏

𝐵
E[𝐷𝜓 (y, y𝑇+1)] (5.62)

+ 2
𝑛𝜆2

E[𝐷𝜓 (y, ỹ1)] +
(𝜆3 + 𝜆4)

𝑛

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+
𝐺2

2
2𝜆3

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+
𝐺2

2
2𝜆4

𝑇∑
𝑡=1

E[‖w𝑡 − w𝑡−1‖2
2] + 8𝜎2

0𝛼𝑇 + 𝜆2𝜎
2
0𝑇 +

𝜎2
0𝜆5

2
𝑇 + 1

𝑛𝜆5
E[𝐷𝜓 (y, y̆1)] .

Summing the inequalities in (5.32), (5.58), (5.62), and (5.49) over 𝑡 = 1, . . . , 𝑇 , we
have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]
≤ 1

2𝜂
‖w∗ − w1‖2

2 −
1
2𝜂

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+ 𝜏

𝐵
E[𝐷𝜓 (y, y1) − 𝐷𝜓 (y, y𝑇+1)] −

𝜏

𝑛

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+ 𝜆0𝜏

𝑛
E𝐷𝜓 (y, ŷ1) +

(𝑛 − 𝐵)𝜏
𝜆0𝑛𝐵

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
,

+
𝐺2

2𝐵

2𝑛𝜏
E[‖w𝑇+1 − w𝑇 ‖2

2] +
𝜏

𝐵
E[𝐷𝜓 (y, y𝑇+1)]

+ 2
𝑛𝜆2

E[𝐷𝜓 (y, ỹ1)] +
(𝜆3 + 𝜆4)

𝑛

𝑇∑
𝑡=1

E
[
𝐷𝜓 (ȳ𝑡+1, y𝑡 )

]
+
𝐺2

2
2𝜆3

𝑇∑
𝑡=1

E[‖w𝑡+1 − w𝑡 ‖2
2]

+
𝐺2

2
2𝜆4

𝑇∑
𝑡=1

E[‖w𝑡 − w𝑡−1‖2
2] + 8𝜎2

0𝛼𝑇 + 𝜆2𝜎
2
0𝑇 +

𝜎2
0𝜆5

2
𝑇 + 1

𝑛𝜆5
E[𝐷𝜓 (y, y̆1)],

+ 1
4𝜂

𝑇∑
𝑡=1

E ‖w𝑡+1 − w𝑡 ‖2
2 + 𝜂𝑇𝜎2.

Similarly as before, if we let 𝜆0 = 2(𝑛−𝐵)
𝐵 ,

𝐺2
2

2𝜆3
=
𝐺2

2
2𝜆4

= 1
16𝜂 , 𝜆3 +𝜆4 = 16𝜂𝐺2

2 ≤ 𝜏/2,

and 𝐺2
2𝐵

2𝑛𝜏 ≤ 1
8𝜂 , we observe that all the cumulated terms cancel out, leaving us the

following:

E
[ 𝑇∑
𝑡=1

𝐹 (w𝑡+1, y) − 𝐹 (w∗, ȳ𝑡+1)
]
≤

1
2𝜂

‖w∗ − w1‖2
2 +

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 2
𝑛𝜆2

+ 1
𝑛𝜆5

)
E𝐷𝜓 (y, y1)

+ 𝜂𝑇𝜎2 + 8𝜎2
0𝛼𝑇 + 𝜆2𝜎

2
0𝑇 +

𝜎2
0𝜆5

2
𝑇.

Let y = y∗𝑇 = arg max 𝐹 (w̄𝑇 , y). Since 1
𝑇

∑𝑇
𝑡=1 𝐹 (w𝑡+1, y) ≥ 𝐹 (w̄𝑇 , y∗𝑇 ) = 𝐹 (w̄𝑇 )

and 𝐹 (w∗, ȳ𝑡+1) ≤ 𝐹 (w∗, y∗), we have

E
[
𝐹 (w̄𝑇 ) − 𝐹 (w∗)

]
≤ 1

2𝜂𝑇
‖w∗ − w1‖2

2 +
1
𝑇

(
𝜏(1 + 𝜆0𝐵/𝑛)

𝐵
+ 2
𝑛𝜆2

+ 1
𝑛𝜆5

)
Ω

+ 𝜂(𝜎2) + 8𝜎2
0𝛼 + 𝜆2𝜎

2
0 +

𝜎2
0𝜆5

2
. (5.63)

Let
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Fig. 5.1: Relationship between different algorithms for FCCO.

𝛼 =
𝜖

64𝜎2
0
, 𝜆2 =

𝜖

8𝜎2
0
, 𝜆5 =

𝜖

4𝜎2
0
, 𝜂 = min

(
𝜖

8𝜎2 ,
1

2𝐺1𝐿2

)
𝑇 ≥ 𝑂

(
max

( ‖w1 − w∗‖2
2

32𝜂𝜖
,
Ω(1 + 𝜆0𝐵/𝑛)

8𝐵𝜖𝛼
,

Ω
4𝑛𝜆2𝜖

,
Ω

8𝑛𝜆5𝜖

))
.

Then the conditions 16𝜂𝐺2
2 ≤ 𝜏/2, 𝐺

2
2𝐵

2𝑛𝜏 ≤ 1
8𝜂 hold for sufficiently small 𝜖 , and the

RHS of (5.63) is less than 𝜖 . As a result, the complexity is in the order of

𝑂

(
max

(
𝐺1𝐿2

𝜖
,
𝜎2

𝜖2 ,
Ω𝜎2

0
𝐵𝜖2 ,

𝜎2
0Ω

𝑛𝜖2

))
.

ut
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Critical: The convergence results above remain valid for ALEXR-v2 even
when the outer functions 𝑓𝑖 are smooth. If 𝑓𝑖 is a smooth Legendre function,
ALEXR-v1 can also be applied and its convergence can be established. The
key is to note that

∇𝜓𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇𝜓𝑖 (𝑦𝑖,𝑡 )



2
2 =



∇ 𝑓 ∗𝑖 ( 𝑦̄𝑖,𝑡+1) − ∇ 𝑓 ∗𝑖 (𝑦𝑖,𝑡 )


2

2 =


ū𝑖,𝑡 − u𝑖,𝑡−1



2
2 ,

where u𝑖,𝑡−1 is defined in Lemma 5.14 and ū𝑖,𝑡 is a virtual sequence similar
to u𝑖,𝑡 (5.64) except that all coordinates are updated by:

ū𝑖,𝑡 =
1

1 + 𝛼𝑡
u𝑖,𝑡−1 +

𝛼𝑡
1 + 𝛼𝑡

𝑔̃𝑖,𝑡 ,∀𝑖. (5.64)

Then, similar to the analysis of SOX, we can establish a bound of∑𝑇
𝑡=1

∑𝑛
𝑖=1 E[



ū𝑖,𝑡 − u𝑖,𝑡−1


2

2] and use it to prove the convergence of ALEXR-
v1. However, it remains unclear whether ALEXR-v1 provides any conver-
gence advantage over ALEXR-v2 when 𝑓𝑖 are smooth.

5.4.5 Double-loop ALEXR for weakly convex inner functions

ALEXR can be also useful for solving non-convex FCCO with convex outer func-
tions and weakly convex inner functions. In particular, we consider the following
non-convex problem:

min
w

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)) + 𝑟 (w),

where 𝑔𝑖 : R𝑑 → R𝑑
′ and 𝑓𝑖 : R𝑑′ → R satisfy the following conditions:

Assumption 5.12. Assume

(i) 𝑓𝑖 is convex, 𝐺1-Lipschitz continuous and 𝜕 𝑓 (𝑔) ≥ 0.
(ii) each dimension of 𝑔𝑖 is 𝜌2-weakly convex and 𝐺2-Lipschitz continuous.
(iii) 𝑟 (w) is a convex function.

The key idea is to solve the following quadratic problem sequentially:

w𝑡+1 ≈ arg min 𝐹̄ (w,w𝑡 ) :=
1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔𝑖 (w)) + 𝜌̄
2
‖w − w𝑡 ‖2

2,

where 𝜌̄ > 𝜌, with 𝜌 being the weak-convexity parameter of 𝐹 (w). We can employ
ALEXR to solveminw 𝐹̄ (w,w𝑡 ) approximately up to an 𝜖-level. This yields a double-
loop scheme.
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𝑓𝑖 𝑔𝑖 𝑟 F Algorithm Convergence Measure Complexity Theorem

sm - 0 ncx, sm SOX Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 4

)
Thm. 5.1

sm mss 0 ncx MSVR Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 3

)
Thm. 5.2

sm - pm ncx, sm SOX Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 4

)
Thm. 5.1

sm mss pm ncx MSVR Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 3

)
Thm. 5.2

wc, nd wc 0 ncx SONX (v1) Nearly Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 8

)
Thm. 5.3

sm, nd wc 0 ncx SONX (v1) Nearly Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 5

)
Thm. 5.4

wc, nd wc 0 ncx SONX (v2) Nearly Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 6

)
Thm. 5.5

sm, nd wc 0 ncx SONX (v2) Nearly Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 4

)
Thm. 5.5

wc, pm sm 0 ncx SONEX (v1) Approx. Stationary 𝑂
(
𝑛𝜎2

0
𝐵𝜖 7

)
Cor. 5.1

wc, pm sm 0 ncx SONEX (v2) Approx. Stationary 𝑂
(
𝑛𝜎0
𝐵𝜖 5

)
Thm. 5.6

nd, cvx, 𝑓 ∗𝑖 pm sm, cvx cvx, pm cx ALEXR (v2) Obj. Gap 𝑂
(
max

(
𝜎2

𝜖 2 ,
𝑛𝜎2

0
𝐵𝜖 2

))
Thm. 5.9

nd, cvx, 𝑓 ∗𝑖 pm cvx cvx, pm cx ALEXR (v2) Obj. Gap 𝑂
(
max

(
1
𝜖 2 ,

𝑛𝜎2
0

𝐵𝜖 2

))
Thm. 5.8

sm, nd, cvx cvx scx, pm cx ALEXR Dist. Gap 𝑂
(
max

(
1
𝜇𝜖 ,

𝑛𝜎2
0

𝐵𝜖

))
Thm.5.7

sm, nd, cvx sm, cvx scx, pm cx ALEXR Dist. Gap 𝑂
(
max

(
𝜎2

𝜇𝜖 ,
𝑛𝜎2

0
𝐵𝜖

))
Thm.5.7

sm, nd, cvx, 𝑓 ∗𝑖 pm wc cx, pm ncx ALEXR-DL Nearly Stationary 𝑂
(
max

(
1
𝜖 4 ,

𝑛𝜎2
0

𝐵𝜖 4

))
-

nd, cvx, 𝑓 ∗𝑖 pm wc cx, pm ncx ALEXR-DL Approx. Stationary 𝑂
(
max

(
1
𝜖 5 ,

𝑛𝜎2
0

𝐵𝜖 5

))
-

Table 5.2: Complexity of solving FCCO 𝐹 (w) = 1
𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w)) + 𝑟 (w) under dif-

ferent conditions of 𝑓𝑖 and 𝑔𝑖 , where 𝑓𝑖 is a deterministic Lipschitz continuous and
𝑔𝑖 is mean Lipschitz continuous. pms means ”proximal mapping is simple to com-
pute”, mss mean “mean squared smoothness”, and ALEXR-DL denotes a double-
loop method that employs ALEXR in the inner loop.

We highlight the key results as follows. If each 𝑓𝑖 is non-smooth, the double loop
method achieves a sample complexity of 𝑂

(
𝑛𝜎2

0
𝐵𝜖 6

)
for finding a nearly 𝜖-stationary

solution. The analysis can be found in (Zhou et al., 2025).
If each 𝑓𝑖 is 𝐿1-smooth, the sample complexity improves to𝑂

(
𝑛𝐿1𝜎

2
0

𝐵𝜖 4

)
for obtain-

ing a nearly 𝜖-stationary solution. This result further implies that, for non-smooth 𝑓𝑖 ,
we may apply the Nesterov smoothing 𝑓𝑖 in (5.20) with 𝜌̄1 = 1/𝜖 , so that 𝑓𝑖 becomes
𝐿1 = 𝜌̄1-smooth. Hence, Proposition 5.1 implies that the double-loop ALEXR algo-
rithm can find an approximate 𝜖-stationary stationary solution of 𝐹 (w) with a sample
complexity𝑂

(
𝑛𝐿1𝜎

2
0

𝐵𝜖 4

)
= 𝑂

(
𝑛𝜎2

0
𝐵𝜖 5

)
. The analysis can be found in (Chen et al., 2025b).

Finally, we summarize the sample complexities of all methods introduced in this
chapter in Table 5.2, and illustrate the relationship between different methods in Fig-
ure 5.1.
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Algorithm 19 Abstract Stochastic Update Scheme for Convex FCCO
1: Initialize affine subspaces 𝔛0, 𝔜0, 𝔤0, 𝔊0
2: for 𝑡 = 0, 1, . . . , 𝑇 − 1 do
3: Sample a batch B𝑡 ⊂ {1, . . . , 𝑛}, | B𝑡 | = 𝐵
4: for each 𝑖 ∈ B𝑡 do
5: Sample 𝜁𝑖,𝑡 , 𝜁𝑖,𝑡 from P𝑖
6: 𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 + span{𝑔𝑖 ( 𝑥̂; 𝜁𝑖,𝑡 ) | 𝑥̂ ∈ 𝔛𝑡 }
7:

𝔜(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡 +span
{
arg max

𝑦𝑖

{
𝑦𝑖 𝑔̂

(𝑖) − 𝑓 ∗𝑖 (𝑦𝑖 ) −
1
𝛼
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂ (𝑖) )

}
| 𝑔̂ (𝑖) ∈ 𝔤 (𝑖)𝑡+1, 𝑦̂

(𝑖) ∈ 𝔜(𝑖)
𝑡

}
8: end for
9: For each 𝑖 ∉ S𝑡 , 𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 ,𝔜

(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡

10: 𝔊𝑡+1 = 𝔊𝑡 + span
{ 1
𝐵

∑
𝑖∈B𝑡 𝑦̂

(𝑖)∇𝑔𝑖 ( 𝑥̂; 𝜁𝑖,𝑡 ) | 𝑥̂ ∈ 𝔛𝑡 , 𝑦̂ ∈ 𝔜𝑡+1
}

11: 𝔛𝑡+1 = 𝔛𝑡 + span
{
arg min𝑥

{
𝐺̂>𝑥 + 𝑟 (𝑥 ) + 1

2𝜂 ‖𝑥 − 𝑥̂ ‖2
2

}
| 𝑥̂ ∈ 𝔛𝑡 , 𝐺̂ ∈ 𝔊𝑡+1

}
12: end for

5.4.6 Lower Bounds

In this section, we prove that the complexities of ALEXR for strongly convex and
convex FCCO problems are nearly optimal by establishing the matching lower
bounds.

What is a lower bound?

A lower bound states: for any algorithm in a certain class, there exists a“hard”
optimization problem such that the algorithm cannot converge faster than a
specified rate.

Lower bounds for convex optimization are typically derived under the standard
oracle model, where the algorithm has access only to first-order information—either
exact gradients in the deterministic setting or unbiased stochastic gradients in the
stochastic setting. In the latter case, a classical result by Nemirovski and Yudin es-
tablishes that no stochastic algorithm using unbiased gradient oracles can achieve a
convergence rate faster than𝑂 (1/

√
𝑇) in terms of the objective gap after𝑇 iterations.

For strongly convex problems, this lower bound improves to 𝑂 (1/𝑇). Nevertheless,
these lower bounds do not apply to convex FCCO problems or to ALEXR, because
the algorithm does not have access to unbiased stochastic gradients.

Below, we establish lower bounds for an abstract stochastic update scheme de-
scribed in Algorithm 19, where the symbol “+” denotes Minkowski addition. We
consider an oraclemodel that, upon receiving a query point, returns unbiased stochas-
tic function values and stochastic gradients of the inner functions 𝑔𝑖 , as well as the
solution to the proximal mirror-descent update of 𝑓 ∗𝑖 with respect to a proximal func-
tion 𝜓𝑖 . Since there are 𝑛 inner functions in total, we assume that at each iteration
the algorithm is allowed to access information from only 𝐵 randomly selected in-
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Fig. 5.2: Visualization of 𝑓 (left) and 𝐹 (right) in (5.65).

ner functions. Algorithm 19 is sufficiently general to encompass ALEXR, as well as
SOX and MSVR.

Theorem 5.10 Consider the abstract scheme (Algorithm 19) with an initialization
𝔛 (𝑖)

0 = {0}, 𝔜(𝑖)
0 = {0}, 𝔤 (𝑖)0 = ∅, 𝔊(𝑖)

0 = ∅.
• There exists a convex FCCO problem (5.26) with smooth 𝑓𝑖 and 𝜇-strongly con-

vex 𝑟 such that any algorithm in the abstract scheme requires at least 𝑇 = Ω
(
𝑛𝜎2

0
𝐵𝜖

)
iterations to find an 𝑥 that satisfies E

[ 𝜇
2 ‖𝑥 − 𝑥∗‖2

2
]
≤ 𝜖 or E[𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 .

• There exists a convex FCCO problem (5.26) with non-smooth 𝑓𝑖 such that any
algorithm in the abstract scheme requires at least 𝑇 = Ω

(
𝑛𝜎2

0
𝐵𝜖 2

)
iterations to find an

𝑥 that satisfies E[𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 .

 Why it matters

In light of this theorem,we see that ALEXR (v1/v2) attains a nearly optimal com-
plexity up to a logarithmic factor for solving strongly convex FCCO problems,

as its upper bounds are 𝑂̃
(
max

(
1
𝜇𝜖 ,

𝑛𝜎2
0

𝐵𝜖

))
. Moreover, ALEXR-v2 achieves the

optimal complexity for solving convex FCCO problems with non-smooth outer
functions.

Proof. We construct the hard problems for (i) smooth 𝑓𝑖; and (ii) non-smooth 𝑓𝑖
separately.

(i) Smooth 𝑓𝑖 and strongly convex 𝑟: Consider the following strongly convex
FCCO problem
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min
𝑥∈X

𝐹 (𝑥) = 1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑔𝑖 (𝑥)) + 𝑟 (𝑥),

𝑓 (𝑢) =

(𝜈 − 1)𝑢 + 1

2 (𝜈 − 1)2 + 𝜈 − 1 − 𝜈2

2 , 𝑢 ∈ (−∞,−1)
1
2 (𝑢 + 𝜈)2 − 𝜈2

2 , 𝑢 ∈ [−1, 1]
(1 + 𝜈)𝑢 + 1

2 (1 + 𝜈)2 − 1 − 𝜈 − 𝜈2

2 , 𝑢 ∈ (1,∞)
, 𝑟 (𝑥) = 1

4𝑛
‖𝑥‖2

2 ,

(5.65)

where X = [−1, 1]𝑛, the outer function 𝑓 : R → R is smooth and Lipschitz
continuous for some 𝜈 ∈ (0, 1/2). Besides, the inner function 𝑔𝑖 : R𝑛 → R is
𝑔𝑖 (𝑥) = E𝜁∼P [𝑔𝑖 (𝑥; 𝜁)] and 𝑔𝑖 (𝑥; 𝜁) = 𝑥𝑖 + 𝜁 , where 𝜁 follows a distribution P de-
fined below:

P :

{
Pr(𝜁 = −𝜈) = 1 − 𝑝,
Pr(𝜁 = 𝜈(1 − 𝑝)/𝑝) = 𝑝

, where 𝑝 :=
𝜈2

𝜎2
0
< 1.

We will determine the values of 𝜈 later. We can verify that

E𝜁 [|𝑔𝑖 (𝑥; 𝜁) − 𝑔𝑖 (𝑥) |2] = E𝜁 [𝜁2] = 𝜈2 (1 − 𝑝) + 𝜈
2 (1 − 𝑝)2

𝑝
=
𝜈2 (1 − 𝑝)

𝑝
≤ 𝜎2

0 .

By the definition of convex conjugate, for any 𝑦𝑖 ∈ R we have

𝑓 ∗ (𝑦𝑖) = max
{

sup
𝑢<−1

{
𝑢𝑦𝑖 −

(
(𝜈 − 1)𝑢 + 1

2
(𝜈 − 1)2 + 𝜈 − 1 − 𝜈2

2

)}
,

sup
−1≤𝑢≤1

{
𝑢𝑦𝑖 −

1
2
(𝑢 + 𝜈)2 + 𝜈

2

2

}
, (5.66)

sup
𝑢>1

{
𝑢𝑦𝑖 −

(
(1 + 𝜈)𝑢 + 1

2
(1 + 𝜈)2 − 1 − 𝜈 − 𝜈2

2

)}}
=

{
+∞, 𝑦𝑖 ∈ (−∞, 𝜈 − 1) ∪ (𝜈 + 1,∞)
1
2 (𝑦𝑖 − 𝜈)2, 𝑦𝑖 ∈ [𝜈 − 1, 𝜈 + 1] .

(5.67)

We define 𝐹𝑖 (𝑥𝑖) := 𝑓 (𝑔𝑖 (𝑥)) + 1
4 [𝑥𝑖]2 such that 𝐹 (𝑥) = 1

𝑛

∑𝑛
𝑖=1 𝐹𝑖 (𝑥𝑖). Let 𝑥∗ =

arg min𝑥∈X 𝐹 (𝑥). Since the problem is separable over the coordinates, we have 𝑥𝑖,∗ =
arg min𝑥∈[−1,1] 𝐹𝑖 (𝑥𝑖). Thus, we have 𝑥𝑖,∗ = − 2𝜈

3 and 𝐹𝑖 (𝑥𝑖,∗) = − 𝜈2

3 .
Since P𝑖 = P in the “hard” problem (5.65), the abstract scheme (Algorithm 19)

only needs to sample shared 𝜁𝑡 , 𝜁𝑡 ∼ P for all coordinates 𝑖 ∈ S𝑡 in the 𝑡-th iteration.
For any 𝑖 ∈ [𝑛], suppose that 𝔤 (𝑖)𝜏 = ∅ or {−𝜈}, 𝔜(𝑖)

𝜏 = {0}, 𝔛 (𝑖)
𝜏 = {0} for all 𝜏 ≤ 𝑡.

Note that when 𝔤 (𝑖)𝜏 = ∅, it means that the corresponding 𝑦 (𝑖) will not be updated.
Then,

• If 𝑖 ∉ B𝑡 , the abstract scheme (Algorithm 19) leads to

𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈}, 𝔜(𝑖)
𝑡+1 = {0}, 𝔛 (𝑖)

𝑡+1 = {0}.
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• If 𝑖 ∈ B𝑡 and 𝜁𝑡 = −𝜈, the abstract scheme (Algorithm 19) proceeds as

𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 + span
{
𝑥𝑖 + 𝜁𝑡 | 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑡

}
,

𝔜(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡

+ span

{
arg max

𝑦𝑖∈[𝜈−1,𝜈+1]

{
𝑦𝑖 𝑔̂𝑖 −

1
2
(𝑦𝑖 − 𝜈)2 − 1

𝛼
𝐷𝜓𝑖 (𝑦𝑖 , 𝑦̂𝑖)

}
| 𝑔̂𝑖 ∈ 𝔤 (𝑖)𝑡+1, 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡

}
,

𝔛 (𝑖)
𝑡+1 = 𝔛 (𝑖)

𝑡

+ span

{
arg min
𝑥𝑖∈[−1,1]

{
1
𝐵
𝑦̂𝑖𝑥𝑖 +

1
4𝑛

[𝑥𝑖]2 + 1
2𝜂

(𝑥𝑖 − 𝑥𝑖)2
}
| 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡+1, 𝑥𝑖 ∈ 𝔛 (𝑖)
𝑡

}
.

Then, we can derive that 𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈}, 𝔜(𝑖)
𝑡+1 = {0}, and 𝔛 (𝑖)

𝑡+1 = {0}.
To sum up, given the event

⋂𝑡
𝜏=1{𝔤

(𝑖)
𝜏 = ∅ or {−𝜈}, 𝔜(𝑖)

𝜏 = {0}, 𝔛 (𝑖)
𝜏 = {0}},

we can make sure that {𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈} ∧ 𝔜(𝑖)
𝑡+1 = {0} ∧ 𝔛 (𝑖)

𝑡+1 = {0}} for the
abstract scheme inAlgorithm 19when one of the followingmutually exclusive events
happens:

• Event I: 𝑖 ∉ B𝑡 ;
• Event II: 𝑖 ∈ B𝑡 and 𝜁𝑡 = −𝜈.

Note that the random variable 𝜁𝑡 is independent of B𝑡 . Thus, the probability of the
event 𝐸 (𝑖)

𝑡+1 := {𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈} ∧ 𝔜(𝑖)
𝑡+1 = {0} ∧ 𝔛 (𝑖)

𝑡+1 = {0}} conditioned on⋂𝑡
𝜏=1 𝐸

(𝑖)
𝜏 can be bounded as

Pr

[
𝐸 (𝑖)
𝑡+1 |

𝑡⋂
𝜏=1

𝐸 (𝑖)
𝜏

]
= P

[{
𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈} ∧𝔜(𝑖)

𝑡+1 = {0} ∧ 𝔛 (𝑖)
𝑡+1 = {0}

}
|
𝑡⋂
𝜏=1

𝐸 (𝑖)
𝜏

]
≥ P [{𝑖 ∉ B𝑡 }] + P [{{𝑖 ∈ B𝑡 } ∧ {𝜁𝑡 = −𝜈}}]
= P [{𝑖 ∉ B𝑡 }] + P [{𝑖 ∈ B𝑡 }] P [{𝜁𝑡 = −𝜈}]

=

(
1 − 𝐵

𝑛

)
+ 𝐵
𝑛
(1 − 𝑝) = 1 − 𝐵𝑝

𝑛
.

Since B𝑡 and 𝜁𝑡 in different iterations 𝑡 are mutually independent, we have

Pr
[
𝐸 (𝑖)
𝑇

]
≥ P

[
𝑇−1⋂
𝑡=0

𝐸 (𝑖)
𝑡+1

]
=
𝑇−1∏
𝑡=0

P

[
𝐸 (𝑖)
𝑡+1 |

𝑡⋂
𝑡=1

𝐸 (𝑖)
𝑡

]
=

(
1 − 𝐵𝑝

𝑛

)𝑇
> 3/4 − 𝑇𝐵𝑝

𝑛
,

where the last inequality is due to the Bernoulli inequality (1+𝑥)𝑟 ≥ 1+𝑟𝑥 for every
integer 𝑟 ≥ 1 and 𝑥 ≥ −1.

Thus, if 𝑇 < 𝑛
4𝐵𝑝 we have Pr

[
𝐸 (𝑖)
𝑇

]
> 1

2 . Let us set 𝜈 = 3
√

2𝜖 such that 𝑝 = 𝜈2

𝜎2
0
=

18𝜖
𝜎2

0
. For any 𝑖 ∈ [𝑛] and any output 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑇 , we have
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5.4. CONVEX INNER AND OUTER FUNCTIONS

E
[ (
𝑥𝑖 − 𝑥𝑖,∗

)2
]
= E

[
I
𝐸

(𝑖)
𝑇

(
𝑥𝑖 − 𝑥𝑖,∗

)2 + I
𝐸

(𝑖)
𝑇

(
𝑥 (𝑖) − 𝑥𝑖,∗

)2
]

≥ E
[
I
𝐸

(𝑖)
𝑇

(
𝑥𝑖 − 𝑥𝑖,∗

)2
]

= E
[
I
𝐸

(𝑖)
𝑇

(
𝑥𝑖,∗

)2
]
= Pr

[
𝐸 (𝑖)
𝑇

] (
𝑥𝑖,∗

)2
>

2𝜈2

9
= 4𝜖,

where I𝐸 denotes the indicator function of an event 𝐸. Moreover, we have

E[𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)] = E
[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

)
+ I

𝐸
(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
≥ E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= Pr[𝐸 (𝑖)

𝑇 ]
(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

)
>
𝜈2

6
> 𝜖.

Since the derivations above hold for arbitrary 𝑖 ∈ [𝑛] and the 𝑟 (𝑥) in (5.65) is 1
2𝑛 -

strongly convex (𝜇 = 1
2𝑛 ), we can derive that

E
[ 𝜇
2
‖𝑥 − 𝑥∗‖2

2

]
= E

[
1
4𝑛

‖𝑥 − 𝑥∗‖2
2

]
=

1
4𝑛

𝑛∑
𝑖=1

E
[ (
𝑥𝑖 − 𝑥𝑖,∗

)2
]
> 𝜖,

E [𝐹 (𝑥) − 𝐹 (𝑥∗)] =
1
𝑛

𝑛∑
𝑖=1

E
[
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

]
> 𝜖.

Thus, to find an output 𝑥 that satisfies E
[ 𝜇

2 ‖𝑥 − 𝑥∗‖2
2
]
≤ 𝜖 or E [𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 ,

the abstract scheme requires at least 𝑇 ≥ 𝑛
4𝐵𝑝 =

𝑛𝜎2
0

72𝐵𝜖 iterations.
(ii) Non-smooth 𝑓𝑖: Let 𝑔𝑖 (𝑥) = E𝜁 [𝑥𝑖 + 𝜁] = 𝑥𝑖 be defined the same as in the

smooth case. Let 𝐹𝑖 (𝑥𝑖) := 𝑓 (𝑔𝑖 (𝑥)) + 𝛼
2 [𝑥𝑖]2 = 𝛽max{𝑥𝑖 ,−𝜈} + 𝛼

2 [𝑥𝑖]2 such that
𝐹 (𝑥) = 1

𝑛

∑𝑛
𝑖=1 𝐹𝑖 (𝑥𝑖), where 𝛼, 𝛽 > 0. Let the domain X be [−2𝜈, 2𝜈]𝑛. Hence, 𝑓

is 𝛽-Lipschitz continuous and 𝐹 is 𝛼-strongly convex. By the definition of convex
conjugate, we have 𝑓 (𝑔̂𝑖) = max𝑦𝑖∈[0,𝛽 ] {𝑦𝑖 𝑔̂𝑖 − 𝜈(𝛽 − 𝑦𝑖)} .

Since the problem is separable over the coordinates, we have

𝑥𝑖,∗ = arg min
𝑥∈[−2𝜈,2𝜈 ]

𝐹𝑖 (𝑥𝑖) = arg min
𝑥𝑖∈[−2𝜈,2𝜈 ]

{
𝛽max{𝑥𝑖 ,−𝜈} +

𝛼

2
[𝑥𝑖]2

}
.

Considering

𝐹𝑖 (𝑥𝑖) =
{
𝛽𝑥𝑖 + 𝛼

2 [𝑥𝑖]2 𝑥𝑖 ≥ −𝜈
−𝛽𝜈 + 𝛼

2 [𝑥𝑖]2 𝑥𝑖 < −𝜈
,

we have
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𝑥𝑖,∗ =

{
−𝛽/𝛼 if 𝛼 > 𝛽/𝜈
−𝜈 if 𝛼 ∈ 𝛽

𝜈 [0, 1]
, 𝐹𝑖 (𝑥𝑖,∗) ≤

{
−𝛽2/(2𝛼) if 𝛼 > 𝛽/𝜈
−𝛽𝜈/2 if 𝛼 ∈ 𝛽

𝜈 [0, 1] .

Since 𝐹𝑖 (0) = 0, we can derive that 𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗) ≥ 1
2 min{𝛽𝜈, 𝛽2/𝛼}. Consider

an arbitrary 𝑖 ∈ [𝑛]. Suppose that 𝔤 (𝑖)𝜏 = ∅ or {−𝜈}, 𝔛 (𝑖)
𝜏 = {0}, 𝔜(𝑖)

𝜏 = {0} for all
𝜏 ≤ 𝑡.

• If 𝑖 ∉ B𝑡 , the abstract scheme (Algorithm 19) leads to

𝔤 (𝑖)𝑡+1 = ∅ or {−𝜈}, 𝔜(𝑖)
𝑡+1 = {0}, 𝔛 (𝑖)

𝑡+1 = {0}.

• If 𝑖 ∈ B𝑡 , the abstract scheme (Algorithm 19) proceeds as

𝔤 (𝑖)𝑡+1 = 𝔤 (𝑖)𝑡 + span
{
𝑥𝑖 + 𝜁𝑡 | 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑡

}
,

𝔜(𝑖)
𝑡+1 = 𝔜(𝑖)

𝑡

+ span

{
arg max
𝑦𝑖∈[0,𝛽 ]

{
𝑦𝑖 𝑔̂𝑖 − 𝜈(𝛽 − 𝑦𝑖) −

1
𝛼
𝐷𝜓 (𝑦𝑖 , 𝑦̂𝑖)

}
| 𝑔̂𝑖 ∈ 𝔤 (𝑖)𝑡+1, 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡

}
,

𝔛 (𝑖)
𝑡+1 = 𝔛 (𝑖)

𝑡

+ span

{
arg min

𝑥𝑖∈[−2𝜈,2𝜈 ]

{
1
𝐵
𝑦̂𝑖𝑥𝑖 +

1
𝑛
[𝑥𝑖]2 + 1

2𝜂
(𝑥𝑖 − 𝑥𝑖)2

}
| 𝑦̂𝑖 ∈ 𝔜(𝑖)

𝑡+1, 𝑥𝑖 ∈ 𝔛 (𝑖)
𝑡

}
.

Due to the same reason as in the smooth 𝑓𝑖 case, the probability of the event 𝐸 (𝑖)
𝑇

:=
{𝔤 (𝑖)𝑇 = ∅ or {−𝜈} ∧𝔜(𝑖)

𝑇 = {0} ∧ 𝔛 (𝑖)
𝑇 = {0}} can be bounded as

Pr
[
𝐸 (𝑖)
𝑇

]
≥ P

[
𝑇−1⋂
𝑡=0

𝐸 (𝑖)
𝑡+1

]
=
𝑇−1∏
𝑡=0

P

[
𝐸 (𝑖)
𝑡+1 |

𝑡⋂
𝑡=1

𝐸 (𝑖)
𝑡

]
=

(
1 − 𝐵𝑝

𝑛

)𝑇
> 3/4 − 𝑇𝐵𝑝

𝑛
.

Thus, if 𝑇 < 𝑛
4𝐵𝑝 we have P

[
𝐸 (𝑖)
𝑇

]
> 1

2 . Let us set 𝛽 = 𝐺1, 𝜈 = 4𝜖
𝐺1

such that

𝑝 := 𝜈2

𝜎2
0
= 16𝜖 2

𝐺2
1𝜎

2
0
. For any 𝑖 ∈ [𝑛] and any output 𝑥𝑖 ∈ 𝔛 (𝑖)

𝑇 , we have

E[𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)] = E
[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

)
+ I

𝐸
(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
≥ E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= E

[
I
𝐸

(𝑖)
𝑇

(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

) ]
= Pr[𝐸 (𝑖)

𝑇 ]
(
𝐹𝑖 (0) − 𝐹𝑖 (𝑥𝑖,∗)

)
> min{𝛽𝜈, 𝛽2/𝛼}/4 = 𝜖 .

Since the derivations above hold for arbitrary 𝑖 ∈ [𝑛], we can derive that
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

E[𝐹 (𝑥) − 𝐹 (𝑥∗)] =
1
𝑛

𝑛∑
𝑖=1

E[𝐹𝑖 (𝑥𝑖) − 𝐹𝑖 (𝑥𝑖,∗)] > 𝜖.

Thus, to find an output 𝑥 that satisfies E[𝐹 (𝑥) − 𝐹 (𝑥∗)] ≤ 𝜖 , the abstract scheme
requires at least 𝑇 ≥ 𝑛

4𝐵𝑝 =
𝑛𝐺2

1𝜎
2
0

64𝐵𝜖 2 iterations. ut

Critical: From the proof of the non-smooth case, we can see that even when
the overall objective is strongly convex, the lower bound complexity is still𝑇 =

Ω
(
𝑛𝜎2

0
𝐵𝜖 2

)
as long as 𝑓𝑖 is non-smooth. This behavior contrasts with standard

strongly stochastic optimization with an optimal complexity of 𝑂 (1/𝜖) and
highlights a fundamental challenge in solving compositional problems.

5.5 Stochastic Optimization of Compositional OCE

The goal of this section is to present and analyze stochastic algorithms for solving
compositional OCE (COCE) risk minimization as introduced in Chapter 3. In par-
ticular, we consider the following abstract problem:

min
w∈R𝑑 ,𝝂∈R𝑛

𝐹 (w, 𝝂) :=
1
𝑛

𝑛∑
𝑖=1

𝐹𝑖 (w, 𝜈𝑖), (5.68)

where

𝐹𝑖 (w, 𝜈𝑖) = E𝜁∼P𝑖 [Φ𝑖 (w, 𝜈𝑖; 𝜁)], Φ𝑖 (w, 𝜈𝑖; 𝜁) = 𝜏𝜙∗
(
𝑠𝑖 (w; 𝜁) − 𝜈𝑖

𝜏

)
+ 𝜈𝑖 ,

where 𝜏 > 0 is a constant.
In the special case when 𝜙∗ (·) = [·]+/𝛼 for some 𝛼 ∈ (0, 1), the general COCE

minimization problem reduces to

min
w,𝝂

𝐹 (w, 𝝂) :=
1
𝑛

𝑛∑
𝑖=1

E𝜁∼P𝑖
[𝑠𝑖 (w; 𝜁) − 𝜈𝑖]+

𝛼
+ 𝜈𝑖 . (5.69)

We refer to this problem as the compositional CVaRminimization (CCVaR) prob-
lem. The direct one-way partial AUC optimization problem (2.39) can be reformu-
lated as an instance of CCVaR minimization as shown in (6.26).

In the special case when 𝜙∗ (·) = exp(·) − 1, the problem (5.68) reduces to

min
w
𝐹 (w) :=

1
𝑛

𝑛∑
𝑖=1

𝜏 log
(
E𝜁∼P𝑖 exp

(
𝑠𝑖 (w; 𝜁)

𝜏

))
. (5.70)
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Algorithm 20 The ASGD Algorithm for solving (5.68)
1: Initialize w0, 𝝂0, step sizes 𝜂𝑡 and 𝛾𝑡
2: for 𝑡 = 0, 1 . . . , 𝑇 − 1 do
3: Sample B𝑡 ⊂ {1, . . . , 𝑛} and | B𝑡 | = 𝐵
4: for each 𝑖 ∈ B𝑡 do
5: Update 𝜈𝑖,𝑡+1 = 𝜈𝑖,𝑡 − 𝛾𝑡𝜕2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )
6: end for
7: Compute z𝑡 = 1

𝐵

∑
𝑖∈B𝑡 𝜕1Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )

8: Update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
9: end for

We refer to this problem as the compositional entropic riskminimization (CERM)
problem. The cross-entropy loss for multi-class classification, the listwise cross-
entropy loss for ranking, the indirect one-way partial AUC loss for imbalanced classi-
fication, and the contrastive losses for representation learning discussed in Chapter 2
are all instances of the CERM problem. In particular, for cross-entropy loss mini-
mization, the proposed framework becomes especially relevant when the number of
classes is very large, so that the normalization term in the loss cannot be computed
efficiently. This setting naturally motivates the stochastic algorithms developed in
this section.

Although we can cast the CERM problem into a special instance of FCCO, there
remain some gaps to be filled. (i) For the convex CERM problem with a convex loss
function 𝑠𝑖 (·; 𝜁), the ALEXR algorithm and its convergence analysis are not directly
applicable, since the outer function 𝑓 (·) = 𝜏 log(·) is not convex, as required by
ALEXR. Consequently, a convergence rate of 𝑂 (1/𝜖2) for solving convex CERM
remains to be developed. (ii) For the CCVaR problem, the optimal solution of 𝝂
given w is typically difficult to derive in closed form, and hence the problem cannot
be reduced to an instance of FCCO. As a result, previous analyses for FCCO do not
directly apply. We address these gaps in this section.

5.5.1 A Basic Algorithm

For optimizing the general COCEminimization problem, we present a basic stochas-
tic algorithm in Algorithm 20. It alternates the stochastic block-coordinate update for
𝝂 and a SGD update for w, which is referred to as ASGD. Below, we present its con-
vergence analysis for both convex and non-convex loss functions.

5.5.1.1 Convex loss

For notational simplicity, we set 𝜏 = 1 throughout the analysis.

Assumption 5.13. 𝑠𝑖 (·, 𝜁) is a convex function.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Lemma 5.20 𝐹 (w, 𝝂) is jointly convex in terms of (w>, 𝝂>)> if 𝑠𝑖 (·; 𝜁) is convex.

Proof. We prove that Φ𝑖 (w, 𝜈𝑖; 𝜁) is jointly convex in terms of (w>, 𝜈𝑖)>. Then the
convexity of 𝐹 (w, 𝝂) follows. Let u = (w>, 𝜈)>. Consider u1, u2, 𝛼 ∈ [0, 1], and
ū = 𝛼u1 + (1 − 𝛼)u2. Then

Φ𝑖 (ū; 𝜁) = 𝜙∗ (𝑠𝑖 (w̄; 𝜁) − 𝜈̄) + 𝜈̄.

If 𝑠𝑖 (·; 𝜁) is convex, we have 𝑠𝑖 (w̄; 𝜁) ≤𝑖 (w1; 𝜁) + (1 − 𝛼)𝑠𝑖 (w2; 𝜁). Since 𝜙∗ (·) is
non-decreasing (cf. Lemma 2.3), we have

𝜙∗ (𝑠𝑖 (w̄; 𝜁) − 𝜈̄) ≤ 𝜙∗ (𝛼(𝑠𝑖 (w1; 𝜁) − 𝜈1) + (1 − 𝛼) (𝑠𝑖 (w2; 𝜁) − 𝜈2)).

Since 𝜙∗ (·) is convex, we further have

𝜙∗ (𝛼(𝑠𝑖 (w1; 𝜁) − 𝜈1) + (1 − 𝛼)(𝑠𝑖 (w2; 𝜁) − 𝜈2))
≤ 𝛼𝜙∗ (𝑠𝑖 (w1; 𝜁) − 𝜈1) + (1 − 𝛼)𝜙∗ (𝑠𝑖 (w2; 𝜁) − 𝜈2).

As a result,

Φ𝑖 (ū; 𝜁) ≤ 𝛼Φ𝑖 (u1; 𝜁) + (1 − 𝛼)Φ𝑖 (u2; 𝜁),

which proves the convexity of Φ𝑖 (u; 𝜁).
ut

Assumption 5.14. Assume that either of the following conditions hold:

• (i) 𝐹 (w, 𝝂) is smooth satisfying:

‖∇1𝐹 (w, 𝝂)‖2
2 + ‖∇2𝐹 (w, 𝝂)‖2

2 ≤ 2𝐿𝐹 (𝐹 (w, 𝝂) − 𝐹 (w∗, 𝝂∗)),

• (ii) 𝐹 (w, 𝝂) non-smooth such that for any v1 ∈ 𝜕1𝐹 (w, 𝝂), v2,𝑖 ∈ 𝜕2𝐹𝑖 (w, 𝜈𝑖) it
holds

‖v1‖2
2 ≤ 𝐺2

1, |v2,𝑖 |2 ≤ 𝐺2
2,

where w∗, 𝝂∗ denotes an optimal solution to (5.68), and ∇1𝐹 (w, 𝝂)(𝜕1𝐹 (w, 𝝂)), and
∇2𝐹 (w, 𝝂)(𝜕2𝐹 (w, 𝝂)) denote (partial) gradients with respect to w, 𝝂, respectively.

Critical: For CERM, the smoothness assumption is satisfied when 𝑠𝑖 (w; 𝜁) is
bounded, Lipschitz, and smooth. For CCVaR, the non-smoothness assumption
is satisfied when 𝑠𝑖 (w; 𝜁) is bounded and Lipschitz.

Assumption 5.15 (Bounded Variance). There exist 𝜎2
1 , 𝜎

2
2 , 𝛿

2 such that
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E𝜁 ‖∇1Φ𝑖 (w, 𝜈𝑖; 𝜁) − ∇1𝐹𝑖 (w, 𝜈𝑖)‖2
2 ≤ 𝜎2

1 , ∀𝑖 ∈ [𝑛],
E𝜁 ‖∇2Φ𝑖 (w, 𝜈𝑖; 𝜁) − ∇2𝐹𝑖 (w, 𝜈𝑖)‖2

2 ≤ 𝜎2
2 , ∀𝑖 ∈ [𝑛],

1
𝑛

𝑛∑
𝑖=1

‖∇1𝐹𝑖 (w, 𝜈𝑖) − ∇1𝐹 (w, 𝝂)‖2
2 ≤ 𝛿2.

In the non-smooth case, the gradients above are replaced by subgradients. The sub-
sequent analysis proceeds analogously.

Lemma 5.21 Let 𝐷2
w,0 := E‖w0 − w∗‖2

2 and 𝜂𝑡 = 𝜂, we have

1
𝑇

𝑇−1∑
𝑡=0

(2E[∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗)] − 𝜂E‖∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2
2) ≤

𝐷2
w,0

𝜂𝑇
+ 𝜂𝜎2.

where 𝝂𝑡 = (𝜈1,𝑡 , . . . , 𝜈𝑛,𝑡 )> and 𝜎2 =
𝜎2

1
𝐵 + 𝛿2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. Let E𝑡 denote the expectation over the random samples in the 𝑡-th iteration.
First, we note that E𝑡 [z𝑡 ] = ∇1𝐹 (w𝑡 , 𝝂𝑡 ). Similar to Lemma 5.2, we have

E𝑡 ‖z𝑡 − ∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2
2

= E𝑡

[



z𝑡 − 1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) +
1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) − ∇1𝐹 (w𝑡 , 𝝂𝑡 )




2

2

]
= E𝑡

[



z𝑡 − 1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )




2

2

]
+ E𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

𝜕1𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) − ∇1𝐹 (w𝑡 , 𝝂𝑡 )




2

2

]
≤
𝜎2

1
𝐵

+ 𝛿
2 (𝑛 − 𝐵)
𝐵(𝑛 − 1) := 𝜎2.

Due to the update of w, we have

‖w𝑡+1 − w∗‖2
2 = ‖w𝑡 − w∗‖2

2 − 2𝜂z>𝑡 (w𝑡 − w∗) + 𝜂2‖z𝑡 ‖2
2.

Then,

E‖w𝑡+1 − w∗‖2
2 ≤ E‖w𝑡 − w∗‖2

2 − 2𝜂E[∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗)] (5.71)
+ 𝜂2E‖∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2

2 + 𝜂2𝜎2.

Summing over 𝑡 = 0, . . . , 𝑇 − 1 and rearranging it finishes the proof. ut

Lemma 5.22 Let 𝐷2
𝜈,0 := E‖𝝂0 − 𝝂∗‖2

2 and 𝛾𝑡 = 𝛾, we have

1
𝑇

𝑇−1∑
𝑡=0

(2E[∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗)] − 𝛾𝑛E‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2
2) ≤

𝐷2
𝜈,0

𝛾𝐵𝑇
+ 𝛾𝜎2

2 .
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Proof. Let E𝑡 denote the expectation over the random samples in the 𝑡-th iteration.
Note that E𝑡 [∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )] = ∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) and E𝑡 ‖∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 ) −
∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )‖2

2 ≤ 𝜎2
0 for each 𝑖 ∈ [𝑛] (For those 𝑖 ∉ B𝑡 , ∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 ) are not

explicitly computed). For each 𝑖 ∈ [𝑛], we have

E‖𝜈𝑖,𝑡+1 − 𝜈𝑖,∗‖2
2

= (1 − 𝐵

𝑛
)E‖𝜈𝑖,𝑡 − 𝜈𝑖,∗‖2

2 +
𝐵

𝑛
E‖𝜈𝑖,𝑡 − 𝛾∇2Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 ) − 𝜈𝑖,∗‖2

2

≤ E‖𝜈𝑖,𝑡 − 𝜈𝑖,∗‖2
2 −

2𝛾𝐵
𝑛

E[∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )> (𝜈𝑖,𝑡 − 𝜈𝑖,∗)] +
𝛾2𝐵

𝑛
E‖∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )‖2

2

+
𝛾2𝜎2

2 𝐵

𝑛
.

Summing over 𝑖 ∈ [𝑛] leads to

E‖𝝂𝑡+1 − 𝝂∗‖2
2 = E‖𝝂𝑡 − 𝝂∗‖2

2 −
2𝛾𝐵
𝑛

E
[ 𝑛∑
𝑖=1

∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )> (𝜈𝑖,𝑡 − 𝜈𝑖,∗)
]

+ 𝛾
2𝐵

𝑛
E
[ 𝑛∑
𝑖=1

‖∇2𝐹𝑖 (w𝑡 , 𝝂𝑖,𝑡 )‖2
2

]
+ 𝛾2𝜎2

2 𝐵. (5.72)

Since

∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗) =
1
𝑛

𝑛∑
𝑖=1

∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 ) (𝜈𝑖,𝑡 − 𝜈𝑖,∗)

‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2
2 =

1
𝑛2

𝑛∑
𝑖=1

‖∇2𝐹𝑖 (w𝑡 , 𝜈𝑖,𝑡 )‖2
2,

plugging these into (5.73) we have

E‖𝝂𝑡+1 − 𝝂∗‖2
2 ≤ E‖𝝂𝑡 − 𝝂∗‖2

2 − 2𝛾𝐵E
[
∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗)

]
+ 𝛾2𝑛𝐵E

[
‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2

2

]
+ 𝛾2𝜎2

2 𝐵. (5.73)

Summing over 𝑡 = 0, . . . , 𝑇 − 1 and rearranging it finishes the proof. ut

Theorem 5.11 (Smooth case) Suppose Assumption 5.13, 5.14(i) and 5.15 hold. If
we set 𝛾 = min{ 1

2𝑛𝐿𝐹 ,
𝜖

2𝜎2
2
}, 𝜂 = min{ 1

2𝐿𝐹 ,
𝜖

2𝜎2 } and 𝑇 = max( 2𝐷2
w,0
𝜂𝜖 ,

2𝐷2
𝜈,0

𝛾𝐵𝜖 ), then
ASGD guarantees that

E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗))
]
≤ 𝜖 .
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The iteration complexity is

𝑇 = 𝑂

(
max

{
𝐷2

w,0𝐿𝐹

𝜖
,
𝑛𝐷2

𝜈,0𝐿𝐹

𝐵𝜖
,
𝐷2

w,0𝜎
2
1

𝜖2 ,
𝐷2
𝜈,0𝜎

2
2

𝐵𝜖2

})
,

where 𝜎2 =
𝜎2

1
𝐵 + 𝛿2 (𝑛−𝐵)

𝐵(𝑛−1) .

Proof. From Lemma 5.21 and Lemma 5.22, we have

1
𝑇

𝑇−1∑
𝑡=0

(2E∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗) − 𝜂E‖∇1𝐹 (w𝑡 , 𝜈𝑡 )‖2
2) ≤

𝐷2
w,0

𝜂𝑇
+ 𝜂𝜎2,

1
𝑇

𝑇−1∑
𝑡=0

(2E∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗) − 𝛾𝑛E‖∇2𝐹 (w𝑡 , 𝜈𝑡 )‖2
2) ≤

𝐷2
𝜈,0

𝛾𝐵𝑇
+ 𝛾𝜎2

2 .

If 𝐹 is smooth and 𝜂 ≤ 1
2𝐿𝐹 and 𝛾𝑛 ≤ 1

2𝐿𝐹 ,

𝜂‖∇1𝐹 (w𝑡 , 𝝂𝑡 )‖2
2 + 𝛾𝑛‖∇2𝐹 (w𝑡 , 𝝂𝑡 )‖2

2 ≤ 1
2𝐿𝐹

(
‖∇1𝐹 (w, 𝝂)‖2

2 + ‖∇2𝐹 (w, 𝝂)‖2
2

)
≤ 𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗),

where the last inequality uses the Lemma 1.5(b).
On the other hand, the joint convexity of 𝐹 implies

𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗) ≤ ∇1𝐹 (w𝑡 , 𝝂𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂∗).

Then combining the above inequalities, we have

E

[
1
𝑇

𝑇−1∑
𝑡=0

[𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗)]
]
≤
𝐷2

w,0

2𝜂𝑇
+ 𝜂𝜎

2

2
+
𝐷2
𝜈,0

2𝛾𝐵𝑇
+
𝛾𝜎2

2
2
.

In order to let the RHS above be less than 𝜖 , we set 𝛾 = min{ 1
2𝑛𝐿𝐹 ,

𝜖
2𝜎2

2
} and 𝜂 =

min{ 1
2𝐿𝐹 ,

𝜖
2𝜎2 }, and 𝑇 ≥ max( 2𝐷2

w,0
𝜂𝜖 ,

2𝐷2
𝜈,0

𝛾𝐵𝜖 ). As a result, the complexity is the in the
order of

𝑇 = 𝑂

(
max

{
𝐷2

w,0𝐿𝐹

𝜖
,
𝑛𝐷2

𝜈,0𝐿𝐹

𝐵𝜖
,
𝐷2

w,0𝜎
2

𝜖2 ,
𝐷2
𝜈,0𝜎

2
2

𝐵𝜖2

})
.

ut

Theorem 5.12 (Non-smooth case) Suppose Assumption 5.13, 5.14(ii) and 5.15
hold. If we set 𝛾 = 𝜖

2(𝐺2
2+𝜎

2
2 )
, 𝜂 = 𝜖

2(𝐺2
1+𝜎2 ) and 𝑇 = max( 2𝐷2

w,0
𝜂𝜖 ,

2𝐷2
𝜈,0

𝛾𝐵𝜖 ), then ASGD
guarantees that

E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗))
]
≤ 𝜖 .
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The iteration complexity is

𝑇 = 𝑂

(
max

{
𝐷2

w,0 (𝐺2
1 + 𝜎2)
𝜖2 ,

𝐷2
𝜈,0 (𝐺2

2 + 𝜎2
2 )

𝐵𝜖2

})
.

We leave the proof as an exercise for the reader.

 Why it matters

Since 𝐹 (w, 𝝂) is jointly convex in (w, 𝝂), the above two theorems imply con-
vergence of the objective with respect to the primary variable w, i.e., 𝐹1 (w) =
min𝝂 𝐹 (w, 𝝂). In particular, if we define the averaged iterate w̄𝑇 = 1

𝑇

∑𝑇−1
𝑡=0 w𝑡 ,

we have

E[𝐹1 (w̄𝑇 ) − 𝐹1 (w∗)] ≤ E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹1 (w𝑡 ) − 𝐹1 (w∗))
]

≤ E

[
1
𝑇

𝑇−1∑
𝑡=0

(𝐹 (w𝑡 , 𝝂𝑡 ) − 𝐹 (w∗, 𝝂∗))
]
≤ 𝜖 .

5.5.1.2 Non-convex loss

If 𝑠𝑖 (w, 𝜁) is non-convex, we consider two different cases: (1) smooth case and (2)
non-smooth weakly convex case. If 𝐹 (w, 𝝂) is smooth in terms of w, 𝝂 and is strongly
convex in terms of 𝝂 (e.g, compositional entropic risk or COCE with 𝜒2 divergence
for 𝜙(·)), we can follow the analysis in Chapter 4 [Section 4.5] to design an algorithm
and an analysis to prove the convergence for finding an 𝜖-stationary point of 𝐹1 (w) =
min𝝂 𝐹 (w; 𝝂). We leave this as an exercise for the reader.

Below, we analyze the convergence of ASGD for non-smooth weakly convex
losses. We also assume 𝜙∗ is non-smooth such that it covers the CCVaR minimiza-
tion.
Assumption 5.16. Suppose the following conditions hold:
• 𝑠𝑖 (w; 𝜁) is 𝜌0-weakly convex with respect to w, and E𝜁 [‖𝜕𝑠𝑖 (w; 𝜁)‖2

2] ≤ 𝐺2
ℓ;

• Assume | 𝜕𝜙
∗ (𝑞)
𝜕𝑞 | ≤ 𝐺0 for any 𝑞 = 𝑠𝑖 (w, 𝜁) − 𝜈𝑖 .

Lemma 5.23 𝐹 (w, 𝜈) is 𝜌-weakly convex with respect to (w, 𝝂), where 𝜌 = 𝜌0𝐺0.

Proof. We first prove that 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) is weakly convex in terms of (w, 𝜈𝑖), i.e.
there exists 𝜌 > 0 such that 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) + 𝜌

2 ‖w‖2
2 + 𝜌

2 𝜈
2
𝑖 is jointly convex in

terms of w, 𝜈𝑖 .
Since 𝑠𝑖 (w; 𝜁) is 𝜌0-weakly convex, we have that 𝑞(w, 𝜈𝑖 , 𝜁) = 𝑠𝑖 (w, 𝜁) − 𝜈𝑖 is

𝜌0-weakly convex in terms of v𝑖 = (w, 𝜈𝑖):

𝑞(v𝑖 , 𝜁) ≥ 𝑞(v′𝑖 , 𝜁) + 𝜕𝑞(v′𝑖 , 𝜁)> (v𝑖 − v′𝑖) −
𝜌0

2
‖v′𝑖 − v𝑖 ‖2

2,∀v𝑖 , v′𝑖 .
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For any 𝜁 , we abbreviate 𝑞(v𝑖; 𝜁) as 𝑞(v𝑖). Since 𝜙∗ is convex and monotonically
non-decreasing, for any 𝜔 ∈ 𝜕𝜙∗ (𝑞(v′𝑖)) ∈ [0, 𝐺0] we have

𝜙∗ (𝑞(v𝑖)) ≥ 𝜙∗ (𝑞(v′𝑖)) + 𝜔(𝑞(v𝑖) − 𝑞(v′𝑖))

≥ 𝜙∗ (𝑞(v′𝑖)) + 𝜔(𝜕𝑞(v′𝑖)> (v𝑖 − v′𝑖) −
𝜌0

2
‖v𝑖 − v′𝑖 ‖2

2)

≥ 𝜙∗ (𝑞(v′𝑖)) + 𝜕𝜙∗ (𝑞(v′𝑖))> (v𝑖 − v′𝑖) −
𝐺0𝜌0

2
‖v𝑖 − v′𝑖 ‖2

2.

The above inequality implies that 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) is 𝜌 = 𝐺0𝜌0-weakly convex in
terms of (w, 𝜈𝑖), i.e., E𝜁 𝜙∗ (𝑠𝑖 (w; 𝜁) − 𝜈𝑖) + 𝜌

2 (‖w‖2
2 + |𝜈𝑖 |2) is convex. As a result

𝐹 (w, 𝝂) + 𝜌
2 ‖w‖2

2 +
𝜌
2 ‖𝝂‖2

2 is jointly convex in terms of (w, 𝝂). ut

Similar to the SGD for weakly convex objectives in Chapter 3[Section 3.1.4], we
use the Moreau envelope of 𝐹 (w; 𝝂). In particular, let v = (w>, 𝝂>)> and consider
some 𝜌̄ > 𝜌, we define:

𝐹1/𝜌̄ (v) = min
u
𝐹 (u) + 𝜌̄

2
‖u − v‖2

2, (5.74)

prox𝐹/𝜌̄ (v) := arg min
u
𝐹 (u) + 𝜌̄

2
‖u − v‖2

2. (5.75)

Convergence Analysis

Lemma 5.24 Under Assumption 5.16, we have

E𝑡 [‖z𝑡 ‖2
2] ≤ 𝐺2

1, |𝜕2𝐹𝑖 (w, 𝜈𝑖) |2 ≤ 𝐺2
2,

where 𝐺2
1 = 𝐺2

0𝐺
2
ℓ , and 𝐺

2
2 = (1 + 𝐺0)2.

Proof. For the first part,

E𝑡 [‖z𝑡 ‖2
2] = E𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

𝜕1Φ𝑖 (w𝑡 , 𝜈𝑖,𝑡 ; 𝜁𝑖,𝑡 )




2

2

]
≤ 𝐺2

0𝐺
2
ℓ .

For the second part,

|𝜕2𝐹𝑖 (w, 𝜈𝑖) |2 =

����E𝜁 [ − 𝜕𝜙∗ (𝑞(w, 𝜈𝑖; 𝜁))
𝜕𝑞

+ 1
] ����2 ≤ (1 + 𝐺0)2.

ut

Lemma 5.25 Under Assumption (5.16), let v𝑡 = (w>
𝑡 , 𝝂

>
𝑡 )>, for one iteration of

ASGD, we have
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E𝑡 [𝐹1/𝜌̄ (v𝑡+1)] ≤ 𝐹1/𝜌̄ (v𝑡 ) + 𝜌̄𝜂𝑡 (𝐹 (v̄𝑡 ) − 𝐹 (v𝑡 ) +
𝜌

2
‖v𝑡 − v̄𝑡 ‖2

2)

+
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2
,

where v̄𝑡 = prox𝐹/𝜌̄ (v𝑡 ).
Proof. Let E𝑡 denote the expectation over the random samples at the 𝑡-th iteration
conditioned on that in all previous iterations.

E𝑡 [𝐹1/𝜌̄ (v𝑡+1)] ≤ E𝑡

[
𝐹 (v̄𝑡 ) +

𝜌̄

2
‖v𝑡+1 − v̄𝑡 ‖2

2

]
≤ 𝐹 (v̄𝑡 ) +

𝜌̄

2
E𝑡 [‖w𝑡 − 𝜂𝑡z𝑡 − w̄𝑡 ‖2

2 + ‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2
2]

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
E𝑡 [‖w𝑡 − 𝜂𝑡z𝑡 − w̄𝑡 ‖2

2] +
𝜌̄

2
E𝑡 [‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2

2]

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
‖w𝑡 − w̄𝑡 ‖2

2 + 𝜌̄𝜂𝑡E𝑡 [(w̄𝑡 − w𝑡 )>𝜕1𝐹 (w𝑡 , 𝜈𝑡 )] +
𝜌̄𝜂2
𝑡𝐺

2
1

2

+ 𝜌̄
2
E𝑡 [‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2

2]

where the last step uses E𝑡 [z𝑡 ] = 𝜕1𝐹 (w𝑡 , 𝝂𝑡 ) and E[‖z𝑡 ‖2
2] ≤ 𝐺2

1.
Similar to (5.73), we can prove that

E𝑡 ‖𝝂𝑡+1 − 𝝂̄𝑡 ‖2
2 = ‖𝝂𝑡 − 𝝂̄𝑡 ‖2

2 − 2𝛾𝑡𝐵𝜕2𝐹 (w𝑡 , 𝝂𝑡 )> (𝝂𝑡 − 𝝂̄𝑡 ) + 𝛾2
𝑡𝐺

2
2𝐵.

Let 𝛾𝑡𝐵 = 𝜂𝑡 , combining the above we have

E𝑡 [𝐹1/𝜌̄ (v𝑡+1)]

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
‖v𝑡 − v̄𝑡 ‖2

2 + 𝜌̄𝜂𝑡E𝑡 [(v̄𝑡 − v𝑡 )>𝜕𝐹 (v𝑡 )] +
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2

≤ 𝐹 (v̄𝑡 ) +
𝜌̄

2
‖v𝑡 − v̄𝑡 ‖2

2 + 𝜌̄𝜂𝑡E𝑡 [(v̄𝑡 − v𝑡 )>𝜕𝐹 (v𝑡 )] +
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2

≤ 𝐹1/𝜌̄ (v𝑡 ) + 𝜌̄𝜂𝑡 (𝐹 (v̄𝑡 ) − 𝐹 (v𝑡 ) +
𝜌

2
‖v𝑡 − v̄𝑡 ‖2

2) +
𝜌̄𝜂2
𝑡 (𝐺2

1 + 𝐺2
2/𝐵)

2
.

where the last step uses the definition of 𝐹1/𝜌̄ (v𝑡 ) and the 𝜌-weak convexity of 𝐹.
Rearranging this inequality finishes the proof.

ut
Theorem 5.13 Suppose Assumption (5.16) holds and 𝐹∗ = inf 𝐹 (w, 𝝂) ≥ ∞, by
setting 𝜌̄ = 2𝜌, 𝜂 = 𝜖2/(2𝜌̄(𝐺2

1 + 𝐺2
2/𝐵)), 𝛾 = 𝜂/𝐵 and 𝑇 ≥ 4(𝐹 (w0 ,𝝂0 )−𝐹∗ )

𝜖 2𝜂
, ASGD

guarantees that

E
[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹1/𝜌̄ (v𝑡 )‖2
2

]
≤ 𝜖2
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with a complexity of 𝑇 = 𝑂
(
𝜌(𝐺2

1+𝐺
2
2/𝐵)

𝜖 4

)
.

Proof. Since 𝐹 (v) + 𝜌̄
2 ‖v − v𝑡 ‖2

2 is ( 𝜌̄ − 𝜌)-strongly convex and have a minimum
solution at v̄𝑡 , then we have

𝐹 (v𝑡 ) − 𝐹 (v̄𝑡 ) −
𝜌

2
‖v𝑡 − v̄𝑡 ‖2

2

= (𝐹 (v𝑡 ) +
𝜌̄

2
‖v𝑡 − v𝑡 ‖2

2) − (𝐹 (v̄𝑡 ) +
𝜌̄

2
‖v̄𝑡 − v𝑡 ‖2

2) + ( 𝜌̄
2
− 𝜌

2
)‖v𝑡 − v̄𝑡 ‖2

2

≥ ( 𝜌̄ − 𝜌)
2

‖v𝑡 − v̄𝑡 ‖2
2 +

( 𝜌̄ − 𝜌)
2

‖v𝑡 − v̄𝑡 ‖2
2 = ( 𝜌̄ − 𝜌)‖v𝑡 − v̄𝑡 ‖2

2

=
𝜌̄ − 𝜌
𝜌̄2 ‖∇𝐹1/𝜌̄ (v𝑡 )‖2

2.

Combining this result with that in Lemma 5.25 and noting that 𝜌̄ = 2𝜌, 𝜂𝑡 = 𝜂, we
have

E
[
1
𝑇

𝑇−1∑
𝑡=0

‖∇𝐹1/𝜌̄ (v𝑡 )‖2
2

]
≤

2(𝐹1/𝜌̄ (v0) − 𝐹∗)
𝜂𝑇

+ 𝜌̄𝜂(𝐺2
1 + 𝐺2

2/𝐵)

≤ 2(𝐹 (v0) − 𝐹∗)
𝜂𝑇

+ 𝜌̄𝜂(𝐺2
1 + 𝐺2

2/𝐵)

By setting 𝜂 = 𝜖2/(2𝜌̄(𝐺2
1+𝐺2

2/𝐵)) and𝑇 ≥ 4(𝐹 (v0 )−𝐹∗ )
𝜖 2𝜂

, we haveE[‖∇𝐹1/𝜌̄ (v𝜏)‖2
2] ≤

𝜖2 for a randomly selected 𝜏 ∈ {0, . . . , 𝑇 − 1}. ut

5.5.2 A Geometry-aware Algorithm for Entropic Risk

Although last section presents a general algorithm for solving COCE risk minimiza-
tion, it may exhibits numerical instability issue and slow convergence when solving
compositional entropic risk minimization:

min
w

min
𝜈

[
𝐹 (w, 𝜈) = 1

𝑛

𝑛∑
𝑖=1

{E𝜁 exp(𝑠𝑖 (w; 𝜁) − 𝜈𝑖) − 1 + 𝜈𝑖}
]

=min
w

1
𝑛

𝑛∑
𝑖=1

log
(
E𝜁 exp(𝑠𝑖 (w; 𝜁))

)
.

The numerical instability issue is caused by dealing with exponential functions, e.g.,
exp(𝑠𝑖 (w; 𝜁) −𝜈𝑖), in calculation of stochastic gradients of 𝜈𝑖 . The slow convergence
arises because the standard SGD update for 𝜈𝑖 fails to exploit the geometric structure
of the problem.
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

5.5.2.1 Stochastic Optimization of Log-E-Exp

We first consider a simplified problem where there is only one component 𝑛 = 1,
i.e.,

min
w
𝐹1 (w) := log

(
E𝜁 exp(𝑠(w; 𝜁))

)
. (5.76)

The KL-regularized DRO problem (2.14) is a special case. It is also known as log-
E-Exp, a more general form of the log-Sum-Exp function, where the middle “E”
denotes an expectation and highlights the associated computational challenges.

Application of SCGD

At the beginning of Section 4.1, we treat this problem as a special case of stochastic
compositional optimization (SCO), where the outer function is 𝑓 (·) = log(·) and the
inner function is 𝑔(w) = E𝜁 [exp(𝑠(w; 𝜁))]. Let us first apply the SCGD algorithm.
The key updates are presented below:

𝑢𝑡 = (1 − 𝛾𝑡 )𝑢𝑡−1 + 𝛾𝑡 exp(𝑠(w𝑡 ; 𝜁𝑡 )),

z𝑡 =
1
𝑢𝑡

exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ))∇𝑠(w𝑡 ; 𝜁 ′𝑡 ),

w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 ,

(5.77)

where 𝑢𝑡 is an estimator of the inner function value 𝑔(w𝑡 ) and z𝑡 = ∇ 𝑓 (𝑢𝑡 )∇𝑔(w𝑡 ; 𝜁 ′𝑡 )
is a gradient estimator of w𝑡 .

From a practitioner’s perspective, the algorithm can be readily implemented and
applied to real applications. However, from a theoretical perspective, several open
problems remain. In particular: (1) Can we establish an 𝑂 (1/𝜖2) convergence rate
for this algorithm to find an 𝜖-optimal solution when 𝑠(w; 𝜁) is convex? (2) If yes,
what are the practical advantages of this algorithm compared with the ASGDmethod
presented in the previous section?

Wait! Shouldn’t we established the convergence rate of SCGD in Chapter 4? It is
true that we presented a convergence analysis of the above algorithm for non-convex
problems under proper conditions, however, it remains an open problem to establish
the complexity of 𝑂 (1/𝜖2) for finding an 𝜖-optimal solution under the convexity
of 𝑠(w; 𝜁). A naive analysis of SCGD for convex problems yields a complexity of
𝑂 (1/𝜖4) (see Wang et al. (2017a)).

A Novel Algorithm

To address these open questions, we present a novel algorithm based on the min-min
reformulation of log-E-exp, i.e.,
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min
w

min
𝜈
𝐹 (w, 𝜈) := E𝜁 exp(𝑠(w; 𝜁) − 𝜈) + 𝜈. (5.78)

where we ignored the constant −1 in the objective. As proved in Lemma 5.20,
𝐹 (w; 𝜈) is jointly convex in terms of w, 𝜈 when 𝑠(w; 𝜁) is convex.

Motivation

The key novelty of our design is a geometry-aware algorithm for solving the equiv-
alent min-min optimization (5.78). Let us first discuss the motivation. One challenge
for solving the min-min optimization problem is that the objective function 𝐹 (w, 𝜈)
could have exponentially large smoothness constant in terms of 𝜈. We will formally
analyze this phenomenon in next section. Hence, a vanilla gradient method that uses
the firs-order approximation of 𝐹 will inevitably impacted by the large smoothness
parameter.

To mitigate the adverse effects of a large smoothness parameter with respect to
𝜈, we resort to the classical approach of employing a proximal mapping. Proximal
mappings have been widely used to handle a non-smooth function in composite ob-
jectives consisting of a smooth loss and a non-smooth regularizer. This approach
enables optimization algorithms to retain the favorable convergence properties of
smooth optimization and often leads to faster convergence despite the presence of
non-smooth terms. Analogously, even when a function is smooth but characterized
by a very large smoothness parameter, applying its proximal mapping can effectively
alleviate the negative impact of this large smoothness constant.

However, there is an important distinction from classical proximal methods,
which typically rely on direct access to the function of interest for computing the
proximal mapping. In our setting, we cannot directly apply the proximal mapping of
𝐹 (w, 𝜈). Instead, we only have access to a stochastic estimator

Φ(w, 𝜈; 𝜁) = 𝑒𝑠 (w;𝜁 )−𝜈 + 𝜈,

defined for a random sample 𝜁 . As a result, it becomes necessary to explicitly account
for the noise introduced by this stochastic approximation.

Algorithm

To account for the stochastic noise, we introduce a Bregman divergence 𝐷𝜑 (·, ·) and
update 𝜈𝑡 according to the following scheme:

𝜈𝑡 = arg min
𝜈

Φ(w𝑡 , 𝜈; 𝜁𝑡 ) +
1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑡−1), (5.79)

where 𝜁𝑡 ∼ P is a random sample and 𝛼𝑡 > 0 is a step size parameter. We refer
to this step as stochastic proximal mirror descent (SPMD) update. To respect the
geometry of the stochastic objective Φ(w𝑡 , 𝜈; 𝜁𝑡 ), we construct a tailored Bregman
divergence induced by the function 𝜑(𝜈) = 𝑒−𝜈 , namely,
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5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

Algorithm 21 The SCENT Algorithm for solving Log-E-Exp (5.76)
1: Initialize w1, 𝜈0, step sizes 𝜂𝑡 and 𝛼𝑡 , 𝜑 (𝜈) = 𝑒−𝜈 .
2: for 𝑡 = 1 . . . , 𝑇 − 1 do
3: Sample 𝜁𝑡 , 𝜁 ′

𝑡

4: Update 𝜈𝑡 = arg min𝜈 exp(𝑠 (w𝑡 ; 𝜁𝑡 ) − 𝜈) + 𝜈 + 1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑡−1 )

5: Compute z𝑡 = exp(𝑠 (w𝑡 ; 𝜁 ′
𝑡 ) − 𝜈𝑡 )∇𝑠 (w𝑡 ; 𝜁 ′

𝑡 )
6: Compute v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
7: Update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
8: end for

𝐷𝜑 (𝜈, 𝜈𝑡−1) = 𝑒−𝜈 − 𝑒−𝜈𝑡−1 + 𝑒−𝜈𝑡−1 (𝜈 − 𝜈𝑡−1). (5.80)

Once we have 𝜈𝑡 , we compute a vanilla gradient estimator by

z𝑡 = exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 ). (5.81)

If the problem is non-convex, we compute a moving-average estimator v𝑡 = (1 −
𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 and then update the model parameter w𝑡+1. We present the full steps
in Algorithm 21, which is referred to SCENT.

SCGD is just a special case of SCENT

To see the connection with SCGD, we present the following lemma.

Lemma 5.26 The update of 𝜈𝑡 defined by (5.79) can be computed by

𝑒𝜈𝑡 =
1

1 + 𝛼𝑡𝑒𝜈𝑡−1
𝑒𝜈𝑡−1 + 𝛼𝑡𝑒

𝜈𝑡−1

1 + 𝛼𝑡𝑒𝜈𝑡−1
exp(𝑠(w𝑡 ; 𝜁𝑡 )). (5.82)

If 𝑦𝑡 = 𝑒−𝜈𝑡 , we have
𝑦𝑡 =

𝑦𝑡−1 + 𝛼𝑡
1 + 𝛼𝑡𝑒𝑠 (w𝑡 ;𝜁𝑡 )

.

Proof. We compute the gradient of the problem (5.79) and set it to zero for
computing 𝜈𝑡 , i.e.,

− exp(𝑠(w𝑡 ; 𝜁𝑡 ) − 𝜈𝑡 ) + 1 + 1
𝛼𝑡

(−𝑒−𝜈𝑡 + 𝑒−𝜈𝑡−1 ) = 0.

Solving this equation finishes the proof. ut

If we define 𝑢𝑡 = 𝑒𝜈𝑡 and 𝛾′𝑡 =
𝛼𝑡𝑒

𝜈𝑡−1
1+𝛼𝑡𝑒𝜈𝑡−1 , then the updates of SCENT (𝛽𝑡 = 1)

are equivalent to
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𝑢𝑡 = (1 − 𝛾′𝑡 )𝑢𝑡−1 + 𝛾′𝑡 exp(𝑠(w𝑡 ; 𝜁𝑡 ))

z𝑡 =
1
𝑢𝑡

exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ))∇𝑠(w𝑡 ; 𝜁 ′𝑡 ),

w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 .

(5.83)

Comparing this update with that of SCGD (5.77), the key difference lies in
the choice of the moving-average parameter: SCENT adopts an adaptive pa-
rameter 𝛾′𝑡 = 𝛼𝑡𝑒

𝜈𝑡−1
1+𝛼𝑡𝑒𝜈𝑡−1 , whereas SCGD uses a non-adaptive 𝛾𝑡 . If we set

𝛼𝑡 =
𝛾𝑡

1−𝛾𝑡 𝑒
−𝜈𝑡−1 , then the updates of SCENT reduce to that of SCGD.

Convergence analysis for convex problems

Since z𝑡 = ∇w exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 ), we have

E𝜁 ′𝑡 [z𝑡 ] = ∇wE𝜁 ′𝑡 [exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )] = ∇1𝐹 (w𝑡 , 𝜈𝑡 ).

Let w∗, 𝜈∗ be the optimal solution:

(w∗, 𝜈∗) = arg min
w,𝜈

𝐹 (w, 𝜈).

It is straightforward to derive 𝜈∗ = log[E exp(𝑠(w∗; 𝜁))].
Assumption 5.17. Assume that the following conditions hold:

(i) 𝑠(w; 𝜁) is convex;
(ii) the loss function is bounded such that 𝑠(w; 𝜁) ∈ [𝑐0, 𝑐1],∀w, 𝜁 .
(iii) there exists 𝐺 such that E𝜁 ‖∇𝑠(w𝑡 , 𝜁)‖2

2] ≤ 𝐺2,∀𝑡.

Critical: To relax the second assumption, we can assume that w is restricted
to a bounded domainW and 𝑠(w; 𝜁) is regular. In practice, we always enforce
the boundness of w𝑡 through either projection onto W or using a regularizer
𝑟 (w). The update of w𝑡+1 can be modified as the SPGD update:

w𝑡+1 = arg min
w

z>𝑡 w + 𝑟 (w) + 1
𝜂𝑡

‖w − w𝑡 ‖2
2.

The analysis can be performed similarly.

Lemma 5.27 Under Assumption 5.17(ii), 𝜈∗ ∈ [𝑐0, 𝑐1] and if 𝜈0 ∈ [𝑐0, 𝑐1] then
𝜈𝑡 ∈ [𝑐0, 𝑐1],∀𝑡.

Proof. 𝜈∗ ∈ [𝑐0, 𝑐1] can be seen from 𝜈∗ = log[E exp(𝑠(w∗; 𝜁))]. The second result
can be easily seen from the update of 𝑒𝜈𝑡 as in (5.82) by induction. ut

268



5.5. STOCHASTIC OPTIMIZATION OF COMPOSITIONAL OCE

For the ease of analysis, we define two quantities to capture the variance terms
caused by using stochastic estimators.

𝜎2
𝑡 := E𝜁 ′𝑡 ‖ exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 )‖2

2],
𝛿2
𝑡 := E𝜁𝑡 [𝑒−𝜈𝑡−1 |𝑒𝑠 (w𝑡 ;𝜁𝑡 ) − E𝜁 [𝑒𝑠 (w𝑡 ;𝜁 ) ] |2] .

Under Assumption 5.17 (ii) and (iii), 𝜎𝑡 , 𝛿𝑡 are bounded because 𝑒𝜈𝑡 , 𝑒𝜈𝑡−1 and
𝑒𝑠 (w𝑡 ;𝜁𝑡 ) is upper and lower bounded.

Critical: These two quantities are related to the variance of stochastic estima-
tors in terms of w𝑡 and 𝜈𝑡 , respectively. Both quantities have a normalization
term 𝑒−𝜈𝑡 or 𝑒−𝜈𝑡−1 .

Lemma 5.28 Under Assumption 5.17 and 𝛽𝑡 = 1, we have

E[𝜂𝑡∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗)] ≤ E
[
1
2
‖w𝑡 − w∗‖2

2 −
1
2
‖w𝑡+1 − w∗‖2

2

]
+
𝜂2
𝑡𝜎

2
𝑡

2
.

Proof. The proof is a simple application of Lemma 3.3. ut

If the SPGD update is used, we can use Lemma 3.6 giving us

z>𝑡 (w𝑡+1 − w∗) + 𝑟 (w𝑡+1) − 𝑟 (w∗) ≤
1

2𝜂𝑡
(‖w𝑡 − w∗‖2

2 − ‖w𝑡+1 − w∗‖2
2)

− 1
2𝜂𝑡

‖w𝑡 − w𝑡+1‖2
2.

Then,

z>𝑡 (w𝑡 − w∗) + 𝑟 (w𝑡 ) − 𝑟 (w∗) ≤
1

2𝜂𝑡
(‖w𝑡 − w∗‖2

2 − ‖w𝑡+1 − w∗‖2
2)

+ z>𝑡 (w𝑡 − w𝑡+1) −
1

2𝜂𝑡
‖w𝑡 − w𝑡+1‖2

2 + 𝑟 (w𝑡 ) − 𝑟 (w𝑡+1)

≤ 1
2𝜂𝑡

(‖w𝑡 − w∗‖2
2 − ‖w𝑡+1 − w∗‖2

2) +
𝜂𝑡
2
‖z𝑡 ‖2

2 + 𝑟 (w𝑡 ) − 𝑟 (w𝑡+1).

Taking expectation on both sides, we have

E[𝜂𝑡∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗)] + 𝜂𝑡 (𝑟 (w𝑡 ) − 𝑟 (w∗))

≤ E
[(
𝜂𝑡𝑟 (w𝑡 ) +

1
2
‖w𝑡 − w∗‖2

2

)
−

(
𝜂𝑡𝑟 (w𝑡+1) +

1
2
‖w𝑡+1 − w∗‖2

2

)]
+
𝜂2
𝑡𝜎

2
𝑡

2
.

If 𝜂𝑡+1 ≤ 𝜂𝑡 and 𝑟 (w) ≥ 0, then 𝜂𝑡𝑟 (w𝑡+1) ≤ 𝜂𝑡+1𝑟 (w𝑡+1), then the terms in the
square bracket will form a telescoping series over 𝑡 = 1, . . . , 𝑇 . As a result, the
following analysis will proceed similarly.
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Lemma 5.29 Under Assumption 5.17 (ii), we have

𝛼𝑡∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 )> (𝜈𝑡 − 𝜈∗) ≤ 𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 ) − 𝐷𝜑 (𝜈𝑡 , 𝜈𝑡−1).

Proof. Recall the definition

Φ(w𝑡 , 𝜈; 𝜁𝑡 ) = exp(𝑠(w𝑡 ; 𝜁𝑡 ) − 𝜈) + 𝜈
𝜑(𝜈) = 𝑒−𝜈 , 𝐷𝜑 (𝑎, 𝑏) = 𝜑(𝑎) − 𝜑(𝑏) − 〈∇𝜑(𝑏), 𝑎 − 𝑏〉,

and the update of 𝜈𝑡 :

𝜈𝑡 = arg min
𝜈
𝛼𝑡Φ(w𝑡 , 𝜈; 𝜁𝑡 ) + 𝐷𝜑 (𝜈, 𝜈𝑡−1).

The first-order optimality gives

𝛼𝑡∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 ) + ∇𝜑(𝜈𝑡 ) − ∇𝜑(𝜈𝑡−1) = 0.

Taking inner product with (𝜈𝑡 − 𝜈∗) and rearranging gives

𝛼𝑡 〈∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 ), 𝜈𝑡 − 𝜈∗〉 = 〈∇𝜑(𝜈𝑡−1) − ∇𝜑(𝜈𝑡 ), 𝜈𝑡 − 𝜈∗〉
= 𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 ) − 𝐷𝜑 (𝜈𝑡 , 𝜈𝑡−1)

where the last equality holds by three-point identity as in Lemma 3.9. ut

Critical: To proceed the analysis, we need to bound E[𝛼𝑡∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 −
𝜈∗)]. In light of the above lemma, we will bound the following difference in
expectation:

E[(∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗) − ∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 )> (𝜈𝑡 − 𝜈∗)] .

The challenge lies at 𝜈𝑡 depends on 𝜁𝑡 , making the above expectation not equal
to zero.

Lemma 5.30 Assume 𝛼𝑡 ≤ 𝜌𝑒−𝜈𝑡−1 for any constant 𝜌 > 0, then we have

|E[(∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗) − ∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 )> (𝜈𝑡 − 𝜈∗)] | ≤ 𝛼𝑡𝛿2
𝑡𝐶. (5.84)

where 𝐶 = (1 + 𝜌)(1 + 𝑐1 − 𝑐0).

Proof. In the following proof, we let F𝑡−1 denote the filtration (the “information
available”) up to time 𝑡 − 1.

Let us define 𝑧𝑡 = 𝑒𝑠 (w𝑡 ;𝜁𝑡 ) , 𝑚𝑡 = E𝜁 [𝑒𝑠 (w𝑡 ;𝜁 ) |F𝑡−1], and 𝑦𝑡 = 𝑒−𝜈𝑡 . Let 𝑧 and 𝑧′
two independent variables so that E[𝑧 |F𝑡−1] = E[𝑧′ |F𝑡−1] = 𝑚𝑡 . Since 𝜈𝑡 depends
on 𝑧𝑡 , let us define random functions:
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𝑦𝑡 (𝑧) =
𝑦𝑡−1 + 𝛼𝑡
𝛼𝑡 𝑧 + 1

, 𝜈𝑡 (𝑧) = − log 𝑦𝑡 (𝑧)

ℎ𝑡 (𝑧) = 𝑒−𝜈𝑡 (𝑧)
(
𝜈𝑡 (𝑧) − 𝜈∗

)
= 𝑦𝑡 (𝑧)

(
𝜈𝑡 (𝑧) − 𝜈∗

)
.

According to the update of 𝜈𝑡 , we have 𝑦𝑡 = 𝑦𝑡 (𝑧𝑡 ), 𝜈𝑡 = 𝜈𝑡 (𝑧). For the target, we
have

E[(∇2Φ(w𝑡 , 𝜈𝑡 ; 𝜁𝑡 ) − ∇2𝐹 (w𝑡 , 𝜈𝑡 ))> (𝜈𝑡 − 𝜈∗) | F𝑡−1]
= E[E𝜁 [𝑒𝑠 (w𝑡 ;𝜁 ) ] − 𝑒𝑠 (w𝑡 ;𝜁𝑡 ) )𝑒−𝜈𝑡

(
𝜈𝑡 − 𝜈∗

)
| F𝑡−1]

= E[(𝑚𝑡 − 𝑧𝑡 )ℎ𝑡 (𝑧𝑡 ) | F𝑡−1] = E𝑧 [(𝑚𝑡 − 𝑧)ℎ𝑡 (𝑧) |F𝑡−1] .
(5.85)

Since 𝑧′ is an i.i.d. copy of 𝑧 and independent of 𝑧 given F𝑡−1,

𝑚𝑡 = E[𝑧 | F𝑡−1] = E[𝑧′ | F𝑡−1] .

Using the conditional independence,

E
[
(𝑚𝑡 − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
= E

[
(𝑧′ − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
.

By exchangeability of (𝑧, 𝑧′) conditional on F𝑡−1,

E
[
(𝑧′ − 𝑧)ℎ𝑡 (𝑧′) | F𝑡−1

]
= −E

[
(𝑧′ − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
.

Averaging the last two displays gives the standard symmetrization:

E
[
(𝑚𝑡 − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1

]
=

1
2
E
[
(𝑧′ − 𝑧)

(
ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)

)
| F𝑡−1

]
. (5.86)

Next, we show that ℎ(𝑧) is Lipschitz continuous. By definition,

𝑦𝑡 (𝑧) =
𝑦𝑡−1 + 𝛼𝑡
𝛼𝑡 𝑧 + 1

, ℎ𝑡 (𝑧) = 𝑦𝑡 (𝑧)
(
𝜈𝑡 (𝑧) − 𝜈∗

)
.

Differentiate with respect to 𝑧:

𝑑𝑦𝑡 (𝑧)
𝑑𝑧

= (𝑦𝑡−1 + 𝛼𝑡 )
𝑑

𝑑𝑧

(
(𝛼𝑡 𝑧 + 1)−1) = −𝛼𝑡 (𝑦𝑡−1 + 𝛼𝑡 )

(𝛼𝑡 𝑧 + 1)2 .

Using 𝑦𝑡 (𝑧) (𝛼𝑡 𝑧 + 1) = 𝑦𝑡−1 + 𝛼𝑡 , we can rewrite this as

𝑑𝑦𝑡 (𝑧)
𝑑𝑧

= − 𝛼𝑡 𝑦𝑡 (𝑧)
𝛼𝑡 𝑧 + 1

.

Since 𝜈𝑡 (𝑧) = − log 𝑦𝑡 (𝑧), we have

𝑑𝜈𝑡 (𝑧)
𝑑𝑧

= − 1
𝑦𝑡 (𝑧)

𝑑𝑦𝑡 (𝑧)
𝑑𝑧

=
𝛼𝑡

𝛼𝑡 𝑧 + 1
.

As a result,
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𝑑ℎ𝑡 (𝑧)
𝑑𝑧

=
𝑑𝑦𝑡 (𝑧)
𝑑𝑧

(
𝜈𝑡 (𝑧) − 𝜈∗

)
+ 𝑦𝑡 (𝑧)

𝑑𝜈𝑡 (𝑧)
𝑑𝑧

=
𝛼𝑡 𝑦𝑡 (𝑧)
𝛼𝑡 𝑧 + 1

(
1 − (𝜈𝑡 (𝑧) − 𝜈∗)

)
.

Since 𝜈𝑡 (𝑧), 𝜈∗ ∈ [𝑐0, 𝑐1], then��1 − (𝜈𝑡 (𝑧) − 𝜈∗)
�� ≤ 1 + 𝑐1 − 𝑐0,

and since 𝑦𝑡 (𝑧) = 𝑦𝑡−1+𝛼𝑡
𝛼𝑡 𝑧+1 ≤ 𝑦𝑡−1 + 𝛼𝑡 ≤ (1 + 𝜌)𝑦𝑡−1, we have����𝑑ℎ𝑡𝑑𝑧 ���� ≤ 𝛼𝑡 𝑦𝑡−1 (1 + 𝜌)(1 + 𝑐1 − 𝑐0),

which means i.e. ℎ𝑡 is 𝐿𝑡 -Lipschitz with

𝐿𝑡 ≤ 𝛼𝑡 𝑦𝑡−1𝐶.

Then, it holds��(𝑧′ − 𝑧) (ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)) �� ≤ 𝐿𝑡 (𝑧′ − 𝑧)2 ≤ 𝐶𝛼𝑡 𝑦𝑡−1 (𝑧′ − 𝑧)2.

Thus,

E
[��(𝑧′ − 𝑧) (ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)) | F𝑡−1

]
≤ 𝐶𝛼𝑡E[𝑦𝑡−1 (𝑧′ − 𝑧)2) | F𝑡−1]

= 𝐶𝛼𝑡 · 2E[𝑦𝑡−1 (𝑧 − E[𝑧])2 | F𝑡−1] ≤ 2𝐶𝛼𝑡𝛿2
𝑡 ,

where the last step uses the definition of 𝛿2
𝑡 . Applying this result to (5.86), we have���E[

(𝜇𝑡 − 𝑧)ℎ𝑡 (𝑧) | F𝑡−1
] ��� ≤ 1

2
E
[��(𝑧′ − 𝑧) (ℎ𝑡 (𝑧) − ℎ𝑡 (𝑧′)) �� | F𝑡−1

]
≤ 𝐶𝛼𝑡𝛿2

𝑡 .

By noting (5.85), we finish the proof. ut

Combining Lemma 5.29 and Lemma 5.30, we have the following lemma for one-
step analysis of the 𝜈-update.

Lemma 5.31 Under Assumption (5.17) (ii), we have

E[𝛼𝑡∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗)] ≤ E[𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 ) + 𝐶𝛼2
𝑡 𝛿

2
𝑡 ] . (5.87)

Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.14 Suppose Assumption 5.17 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , 𝛼𝑡 < 𝜌𝑒−𝑣𝑡−1 ,
then SCENT guarantees that
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E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Proof. Since 𝜂𝑡 = 𝜂𝛼𝑡 , from Lemma 5.28, we obtain

E[𝛼𝑡∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗)] ≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 +

𝜂𝛼2
𝑡 𝜎

2
𝑡

2

]
.

Combining this with Lemma 5.31, we have

E[𝛼𝑡 (∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗))]

≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈𝑡−1) − 𝐷𝜑 (𝜈∗, 𝜈𝑡 )

]
+ E

[
𝜂𝛼2

𝑡 𝜎
2
𝑡

2
+ 𝐶𝛼2

𝑡 𝛿
2
𝑡

]
.

By the joint convexity of 𝐹 (w, 𝜈), we have

𝛼𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) ≤ 𝛼𝑡 (∇1𝐹 (w𝑡 , 𝜈𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝜈𝑡 )> (𝜈𝑡 − 𝜈∗)).

Combining the last two inequalities and summing over 𝑡 = 1, . . . , 𝑇 , we have

E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

ut

We present two corollaries of the above theorem.

Corollary 5.2 Suppose Assumption 5.17 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , 𝛼𝑡 = 𝛼√
𝑇
<

𝜌𝑒−𝑣𝑡−1 for some constant 𝜌 > 0, then SCENT guarantees that

E [(𝐹1 (w̄𝑇 ) − 𝐹1 (w∗))] ≤
𝐷0

𝛼
√
𝑇
+ 𝛼𝑉√

𝑇
.

where w̄𝑇 =
∑𝑇
𝑡=1 w𝑡
𝑇 , 𝐷0 = 1

2𝜂 ‖w1 − w∗‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) and

𝑉 = E

[
𝜂
∑𝑇
𝑡=1 𝜎

2
𝑡

2𝑇
+

∑𝑇
𝑡=1 𝐶𝛿

2
𝑡

𝑇

]
.
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Proof. Plugging 𝛼𝑡 = 𝛼/
√
𝑇 into Theorem 5.14, we have

E

[
1
𝑇

𝑇∑
𝑡=1

(𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]
≤ 𝐷0

𝛼
√
𝑇
+ 𝛼𝑉√

𝑇
.

Using 𝐹1 (w) = min𝜈 𝐹 (w, 𝜈), 𝐹1 (w∗) = 𝐹 (w∗, 𝜈∗) and the Jensen inequality, we
can finish the proof. ut

 Why it matters

Since 𝛿𝑡 , 𝜎𝑡 are finite, the above result implies a convergence rate of 𝑂 (1/
√
𝑇)

for SCENT.

Corollary 5.3 Suppose Assumption 5.17 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , 𝛼𝑡 = 𝛼𝑒−𝜈𝑡−1√
𝑇

,
if 1
𝑇

∑𝑇
𝑡=1 𝑒

−𝜈𝑡−1 ≥ 𝑆 almost surely, then SCENT guarantees that

E [𝐹1 (ŵ𝑇 ) − 𝐹1 (w∗)] ≤
𝐷0

𝛼
√
𝑇𝑆

+ 𝛼𝑉̄
√
𝑇𝑆

.

where ŵ𝑇 =
∑
𝑡 𝛼𝑡w𝑡∑𝑇
𝑡=1 𝛼𝑡

and

𝑉̄ = E

[
𝜂
∑𝑇
𝑡=1 𝑒

−2𝜈𝑡−1𝜎2
𝑡

2𝑇
+

∑𝑇
𝑡=1 𝐶𝑒

−2𝜈𝑡−1𝛿2
𝑡

𝑇

]
.

Proof. Let 𝛼̂𝑡 = 𝛼𝑡∑𝑇
𝑡=1 𝛼𝑡

. From Theorem 5.14, we have

E

[
𝑇∑
𝑡=1

𝛼𝑡

𝑇∑
𝑡=1

𝛼̂𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 + 𝐷𝜑 (𝜈∗, 𝜈0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Since
∑𝑇
𝑡=1 𝛼𝑡 =

∑𝑇
𝑡=1

𝛼𝑒−𝜈𝑡−1√
𝑇

≥ 𝛼
√
𝑇𝑆, then

E

[
𝑇∑
𝑡=1

𝛼̂𝑡 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗))
]
≤

1
2𝜂 ‖w1 − w‖2

2 + 𝐷𝜑 (𝜈∗, 𝜈0)

𝛼
√
𝑇𝑆

+ 𝛼𝑉̄
√
𝑇𝑆

.

Applying the joint convexity of 𝐹 (w, 𝜈) and 𝐹1 = min𝜈 𝐹 (w, 𝜈), we can finish the
proof. ut
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 Why it matters

Under the stated setting, SCENT reduces to SCGD with 𝛾𝑡 = 𝛼√
𝑇+𝛼 . Since 𝑆 can

be lower bounded by a constant, the above corollary implies 𝑂 (1/
√
𝑇) conver-

gence rate for SCGD to minimize log-E-Exp.

Analysis of the Variance Terms

Since the final convergence bound depends on the variance terms 𝜎2
𝑡 , 𝛿

2
𝑡 , we would

like to provide further analysis on them.
Let us introduce some notations:

𝑧(w; 𝜁) = 𝑒𝑠 (w;𝜁 ) , 𝜇(w) = logE𝜁 𝑒𝑠 (w;𝜁 ) , (5.88)

𝑚𝑡 = E𝜁 𝑒𝑠 (w𝑡 ;𝜁 ) , 𝜇𝑡 = 𝜇(w𝑡 ) = log𝑚𝑡 . (5.89)

For the analysis, we make two reasonable assumptions.

Assumption 5.18. Assume there exist constants 𝜅, 𝜎′2 such that (i)E
[

E[𝑧 (w;𝜁 )2 ]
(E[𝑧 (w;𝜁 ) ] )2

]
≤

𝜅 for all w; (ii) E‖𝑒𝑠 (w𝑡 ;𝜁 ′ )−𝜇𝑡∇𝑠(w𝑡 ; 𝜁 ′)‖2 ≤ 𝜎′2 for all 𝑡;

Critical: These assumptions are necessary. In next section, we show that
the dependence on 𝜅 is unavoidable. The second assumption is the standard
bounded stochastic gradient assumption for optimizing 𝐹1 (w).

Lemma 5.32 (Dual Variance Term) Under Assumption 5.18, we have

𝛿2
𝑡 ≤ 2(𝜅 − 1)𝑚𝑡

(
𝐹 (w𝑡 , 𝜈𝑡−1) − 𝐹 (w∗, 𝜈∗) + 1

)
. (5.90)

 Why it matters

When 𝐹 (w𝑡 , 𝜈𝑡−1)−𝐹 (w∗, 𝜈∗) → 0, the variance term in the convergence bound
caused by the stochastic update of 𝜈𝑡 will be dominated by 2(𝜅−1)𝑚𝑡 . Large 𝑚𝑡
can be mitigated by choosing small 𝛼𝑡 .

Proof. Recall that
𝛿2
𝑡 = E𝜁𝑡

[
𝑒−𝜈𝑡−1

(
𝑧(w𝑡 ; 𝜁𝑡 ) − 𝑚𝑡

)2
]

By Assumption 5.18(i),

Var(𝑧(w𝑡 ; 𝜁)) ≤ (𝜅 − 1)𝑚2
𝑡 .

Hence
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𝛿2
𝑡 = 𝑒

−𝜈𝑡−1 Var(𝑧(w𝑡 ; 𝜁)) ≤ (𝜅 − 1)𝑒−𝜈𝑡−1𝑚2
𝑡 = (𝜅 − 1)𝑚𝑡 · (𝑚𝑡𝑒−𝜈𝑡−1 ).

Let 𝑟𝑡−1 := 𝑚𝑡𝑒−𝜈𝑡−1 . By the definition:

𝐹 (w𝑡 , 𝜈𝑡−1) = E𝑒𝑠 (w𝑡 ;𝜁 )−𝜈𝑡−1 + 𝜈𝑡−1 = 𝑟𝑡−1 + 𝜈𝑡−1.

Since 𝑟𝑡−1 = 𝑒log𝑚𝑡−𝜈𝑡−1 , we have

𝐹 (w𝑡 , 𝜈𝑡−1) − (1 + 𝜇𝑡 ) = 𝑟𝑡−1 + 𝜈𝑡−1 − (1 + log𝑚𝑡 ) = 𝑟𝑡−1 − log 𝑟𝑡−1 − 1.

Using 𝑟 ≤ 2(𝑟 − log 𝑟) for all 𝑟 > 0 yields

𝑟𝑡−1 ≤ 2
(
𝐹 (w𝑡 , 𝜈𝑡−1) − (1 + 𝜇𝑡 ) + 1

)
.

Since w∗ minimizes 𝜇(w), we have 𝜇𝑡 = 𝜇(w𝑡 ) ≥ 𝜇(w∗) and thus (1 + 𝜇𝑡 ) ≥
(1 + 𝜇(w∗)) = 𝐹 (w∗, 𝜈∗), implying

𝐹 (w𝑡 , 𝜈𝑡−1) − (1 + 𝜇𝑡 ) ≤ 𝐹 (w𝑡 , 𝜈𝑡−1) − 𝐹 (w∗, 𝜈∗).

As a result, we have

𝑟𝑡−1 ≤ 2
(
𝐹 (w𝑡 , 𝜈𝑡−1) − 𝐹 (w∗, 𝜈∗) + 1

)
. (5.91)

Combining this with the bound of 𝛿2
𝑡 , we complete the proof. ut

Lemma 5.33 (Primal Variance Term) Under Assumption 5.18, we have

𝜎2
𝑡 ≤ 4𝜎′2 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) + 1

)2
.

 Why it matters

When 𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) → 0, the variance term in the convergence bound
caused by the stochastic update of w𝑡 will be dominated by 𝑂 (𝜎′2).

Proof.

𝜎2
𝑡 = E𝜁 ′𝑡 ‖ exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜈𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 )‖2

2],
= E𝜁 ′𝑡 [𝑒

2(𝜇𝑡−𝜈𝑡 ) ‖ exp(𝑠(w𝑡 ; 𝜁 ′𝑡 ) − 𝜇𝑡 )∇𝑠(w𝑡 ; 𝜁 ′𝑡 )‖2
2] ≤ 𝑟2

𝑡 𝜎
′2,

where 𝑟𝑡 = 𝑒𝜇𝑡−𝜈𝑡 . Similar to (5.91), we have show that

𝑟𝑡 ≤ 2
(
𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) + 1

)
.

Hence,

𝜎2
𝑡 ≤ 4𝜎′2 (𝐹 (w𝑡 , 𝜈𝑡 ) − 𝐹 (w∗, 𝜈∗) + 1

)2
.

ut
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Algorithm 22 The SCENT Algorithm for solving CERM
1: Initialize w1, 𝝂0, step sizes 𝜂𝑡 and 𝛼𝑡 , 𝜑 (𝜈) = 𝑒−𝜈 .
2: for 𝑡 = 1 . . . , 𝑇 − 1 do
3: Sample B𝑡 ⊂ {1, . . . , 𝑛} with | B𝑡 | = 𝐵
4: for each 𝑖 ∈ B𝑡 do
5: Sample 𝜁𝑖,𝑡 , 𝜁 ′

𝑖,𝑡 ∼ P𝑖
6: Update 𝜈𝑖,𝑡 = arg min𝜈 exp(𝑠𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝜈) + 𝜈 + 1

𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑖,𝑡−1 )

7: end for
8: Compute z𝑡 = 1

𝐵

∑
𝑖∈B𝑡 exp(𝑠𝑖 (w𝑡 ; 𝜁 ′

𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′
𝑖,𝑡 )

9: Compute v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
10: Update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
11: end for

5.5.2.2 Compositional Entropic Risk Minimization

In this section, we extend the results to solving compositional entropic risk mini-
mization (CERM):

min
w
𝐹1 (w) :=

1
𝑛

𝑛∑
𝑖=1

log
(
E𝜁∼P𝑖 exp(𝑠𝑖 (w; 𝜁))

)
via its equivalent min-min formulation:

min
w

min
𝝂
𝐹 (w, 𝝂) :=

1
𝑛

𝑛∑
𝑖=1

{E𝜁∼P𝑖 exp(𝑠𝑖 (w; 𝜁) − 𝜈𝑖) + 𝜈𝑖}.

The difference from Log-E-Exp is that there are multiple 𝜈𝑖 , 𝑖 = 1, . . . , 𝑛, which
needs to be updated using stochastic block coordinate method. The technique has
been used in algorithms presented in previous sections of this chapter.

We present an extension of SCENT to solving CERM in Algorithm 22. The major
change lies at the stochastic block coordinate update of 𝝂 in Step 5. This extension
is analogous to SOX for FCCO, employing stochastic block-coordinate updates for
the inner estimators. Indeed, SOX applied to CERM can be recovered as a special
case of SCENT by choosing the coordinate-wise step size 𝛼𝑡 ,𝑖 = 𝛾𝑡

1−𝛾𝑡 𝑒
−𝜈𝑖,𝑡−1 , using

an argument similar to (5.83).

Convergence analysis for convex problems

Let us define some notations:

Φ𝑖 (w𝑡 , 𝜈𝑖; 𝜁) = exp(𝑠𝑖 (w𝑡 ; 𝜁𝑡 ) − 𝜈𝑖) + 𝜈𝑖
𝐹𝑖 (w𝑡 , 𝜈𝑖) = E𝜁∼P𝑖 [Φ𝑖 (w𝑡 , 𝜈𝑖; 𝜁)]
(w∗, 𝝂∗) = arg min

w,𝝂
𝐹 (w, 𝝂).
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Similar as before, 𝜈𝑖,∗ = log[E𝜁∼P𝑖 exp(𝑠𝑖 (w∗; 𝜁))]. Since we deal with stochastic
block coordinate update, we introduce a virtual sequence 𝝂̄𝑡 , where

𝜈̄𝑖,𝑡 = arg min
𝜈

exp(𝑠𝑖 (w𝑡 ; 𝜁𝑖,𝑡 ) − 𝜈) + 𝜈 +
1
𝛼𝑡
𝐷𝜑 (𝜈, 𝜈𝑖,𝑡−1),∀𝑖

Following Lemma 5.26, we have

𝑒 𝜈̄𝑖,𝑡 =
1

1 + 𝛼𝑡𝑒𝜈𝑖,𝑡−1
𝑒𝜈𝑖,𝑡−1 + 𝛼𝑡𝑒

𝜈𝑖,𝑡−1

1 + 𝛼𝑡𝑒𝜈𝑖,𝑡−1
exp(𝑠𝑖 (w𝑡 ; 𝜁𝑡 )),∀𝑖.

Assumption 5.19. Assume that the following conditions hold:

(i) 𝑠𝑖 (w; 𝜁) is convex;
(ii) the loss function is bounded such that 𝑠𝑖 (w; 𝜁) ∈ [𝑐0, 𝑐1],∀w, 𝜁 , 𝑖.
(iii) there exists 𝐺 such that E𝜁 ‖∇𝑠𝑖 (w𝑡 , 𝜁)‖2

2] ≤ 𝐺2,∀𝑡, 𝑖
Define 𝜎𝑖,𝑡 , 𝛿𝑖,𝑡 as

𝜎2
𝑖,𝑡 := E𝜁 ′𝑖,𝑡∼P𝑖 ‖ exp(𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )‖2

2],∀𝑖, 𝑡,

𝛿2
𝑖,𝑡 := E𝜁𝑖,𝑡∼P𝑖 [𝑒−𝜈𝑖,𝑡−1 |𝑒𝑠𝑖 (w𝑡 ;𝜁𝑖,𝑡 ) − E𝜁𝑖∼P𝑖 [𝑒𝑠𝑖 (w𝑡 ;𝜁𝑖 ) ] |2],∀𝑖, 𝑡.

Similar to Lemma 5.27, the following lemma can be proved.

Lemma 5.34 Under Assumption 5.19, if 𝝂0 ∈ [𝑐0, 𝑐1] then 𝝂𝑡 ∈ [𝑐0, 𝑐1],∀𝑡.

Similar to Lemma 5.28, we have the following lemma regarding one-step update
of w𝑡 .

Lemma 5.35 Under Assumption (5.19) and 𝛽𝑡 = 1, we have

E[𝜂𝑡∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗)] ≤ E
[
1
2
‖w𝑡 − w∗‖2

2 −
1
2
‖w𝑡+1 − w∗‖2

2

]
+
𝜂2
𝑡𝜎

2
𝑡

2
,

where 𝜎2
𝑡 = 1

𝑛

∑𝑛
𝑖=1 𝜎

2
𝑖,𝑡 .

Proof. We first bound E𝑡 [‖z𝑡 ‖2
2 | F𝑡−1], where E𝑡 denotes the expectation over ran-

domness in 𝑡-th iteration given w𝑡 , 𝜈𝑡−1.

E𝑡 [‖z𝑡 ‖2
2] = E𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

exp(𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )




2

2

]
= EB𝑡 ,𝜁𝑡E𝜁 ′𝑡 | B𝑡 ,𝜁𝑡

[



 1
𝐵

∑
𝑖∈B𝑡

exp(𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 ) − 𝜈𝑖,𝑡 )∇𝑠𝑖 (w𝑡 ; 𝜁 ′𝑖,𝑡 )




2

2

]
≤ EB𝑡 ,𝜁𝑡

[
1
𝐵

∑
𝑖∈B𝑡

𝜎2
𝑖,𝑡

]
=

1
𝑛

𝑛∑
𝑖=1

𝜎2
𝑖,𝑡 .

Since 𝜈̄𝑖,𝑡 = 𝜈𝑖,𝑡 ,∀𝑖 ∈ B𝑡 , we have
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E𝑡 [z𝑡 ] = E𝜁 ′𝑡 ,𝜁𝑡 ,B𝑡

[
1
𝐵

∑
𝑖∈B𝑡

∇Φ𝑖 (w𝑡 , 𝜈̄𝑖,𝑡 ; 𝜁 ′𝑖,𝑡 )
]
= ∇1𝐹 (w𝑡 , 𝝂̄𝑡 ).

Then following Lemma 3.3, we can finish the proof. ut

Next, we analyze the update of 𝜈̄𝑡 .

Lemma 5.36 Under Assumption (5.19) (ii) and 𝛼𝑡 ≤ min𝑖 𝜌𝑒−𝜈𝑖,𝑡−1 , we have

E[𝛼𝑡∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗)] ≤
1
𝐵
E

[
𝐷𝜑 (𝝂∗, 𝝂𝑡−1) − 𝐷𝜑 (𝝂∗, 𝝂𝑡 )

]
+ 𝐶𝛼2

𝑡 𝛿
2
𝑡 .

where 𝐷𝜑 (𝝂∗, 𝝂𝑡 ) =
∑𝑛
𝑖=1 𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 ) and 𝛿2

𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝛿

2
𝑖,𝑡 .

Proof. By applying Lemma 5.30 and Lemma 5.29 for each coordinate of 𝜈̄𝑖,𝑡 , we
have

E[𝛼𝑡∇2𝐹𝑖 (w𝑡 , 𝜈̄𝑖,𝑡 )> (𝜈̄𝑖,𝑡 − 𝜈𝑖,∗)] ≤ 𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 ) + 𝐶𝛼2
𝑡 𝛿

2
𝑖,𝑡 ,∀𝑖.

Averaging the above inequality over 𝑖 = 1, . . . , 𝑛, we have

E[𝛼𝑡∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗)] ≤
1
𝑛

𝑛∑
𝑖=1

(
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 )

)
+ 𝐶𝛼𝑡𝛿2

𝑡 .

(5.92)

Due to the randomness of B𝑡 , we have

E[𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 )] = E
[
(1 − 𝐵

𝑛
)𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) +

𝐵

𝑛
𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 )

]
,∀𝑖.

Hence

E

[
1
𝑛

𝑛∑
𝑖=1

(
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈̄𝑖,𝑡 )

) ]
= E

[
1
𝑛

𝑛∑
𝑖=1

(
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) −

𝑛

𝐵
𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 ) + ( 𝑛

𝐵
− 1)𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1)

)]
=

1
𝐵
E

[
𝑛∑
𝑖=1

(𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡−1) − 𝐷𝜑 (𝜈𝑖,∗, 𝜈𝑖,𝑡 ))
]
.

Combining this with (5.92), we finish the proof. ut

Finally, we state the convergence result of SCENT in the following theorem.

Theorem 5.15 Suppose Assumption 5.19 holds. Let 𝛽𝑡 = 1, 𝜂𝑡 = 𝜂𝛼𝑡 , and 𝛼𝑡 =
𝛼√
𝑇
< 𝜌min𝑖 𝑒−𝑣𝑖,𝑡−1 , then SCENT guarantees that
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E [(𝐹1 (w̄𝑇 ) − 𝐹1 (w∗))] ≤
1

2𝜂𝛼
√
𝑇
‖w1 − w∗‖2

2 +
𝐷𝜑 (𝝂∗, 𝝂0)
𝛼𝐵

√
𝑇

+ 𝛼𝑉√
𝑇
.

where w̄𝑇 =
∑𝑇
𝑡=1 w𝑡
𝑇 , and 𝑉 = E

[
𝜂

∑𝑇
𝑡=1 𝜎

2
𝑡

2𝑇 +
∑𝑇
𝑡=1𝐶𝛿

2
𝑡

𝑇

]
.

 Why it matters

In order to achieve an 𝜖-optimal solution, the above convergence bound implies
the following complexity:

𝑇 = 𝑂

(
‖w1 − w∗‖4

2
𝜂2𝛼2𝜖2 +

𝐷𝜑 (𝝂∗, 𝝂0)2

𝛼2𝐵2𝜖2 + 𝛼
2𝑉2

𝜖2

)
.

For simplicity of discussion, let us consider a setting of 𝜂 such that the first term
matches the second term. As a result, the complexity becomes:

𝑇 = 𝑂

(
𝐷𝜑 (𝝂∗, 𝝂0)2

𝛼2𝐵2𝜖2 + 𝛼
2𝑉2

𝜖2

)
.

Insight 1: Since 𝜎𝑡 , 𝛿𝑡 are finite, and 𝐷𝜑 (𝝂∗, 𝝂0) = 𝑂 (𝑛), if 𝛼 ∝
√
𝑛/𝐵, the

above result implies an iteration complexity of 𝑂 ( 𝑛
𝐵𝜖 2 ) for SCENT.

Insight 2: When the loss 𝑠𝑖 (w𝑡 ; 𝜁) ≥ 0 is large, the term 𝑒−𝜈𝑖,𝑡−1 becomes very
small, suggesting that the step size parameter 𝛼 should be chosen small so as to
mitigate the large variance term 𝛿𝑡 . In contrast, when the loss 𝑠𝑖 (w𝑡 ; 𝜁) < 0 is
small, the term 𝑒−𝜈𝑖,𝑡−1 can become large, allowing 𝛼 to be set relatively larger,
which helps offset the large distance measure 𝐷𝜑 (𝝂∗, 𝝂0).

Proof. Since 𝜂𝑡 = 𝜂𝛼𝑡 , from Lemma 5.35, we obtain

E[𝛼𝑡∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗)] ≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 +

𝜂𝛼2
𝑡 𝜎

2
𝑡

2

]
.

Adding this to the inequality in Lemma 5.36, we have

E[𝛼𝑡 (∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗))]

≤ E
[

1
2𝜂

‖w𝑡 − w‖2
2 −

1
2𝜂

‖w𝑡+1 − w∗‖2
2 +

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂𝑡−1) −

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂𝑡 )

]
+ E

[
𝜂𝛼2

𝑡 𝜎
2
𝑡

2
+ 𝐶𝛼2

𝑡 𝛿
2
𝑡

]
.

By the joint convexity of 𝐹 (w, 𝜈), we have

𝛼𝑡 (𝐹 (w𝑡 , 𝝂̄𝑡 ) − 𝐹 (w∗, 𝝂∗) ≤ 𝛼𝑡 (∇1𝐹 (w𝑡 , 𝝂̄𝑡 )> (w𝑡 − w∗) + ∇2𝐹 (w𝑡 , 𝝂̄𝑡 )> (𝝂̄𝑡 − 𝝂∗)).

Combining the last two inequalities and summing over 𝑡 = 1, . . . , 𝑇 , we have
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E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹 (w𝑡 , 𝝂̄𝑡 ) − 𝐹 (w∗, 𝝂∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 +

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Since 𝐹1 (w∗) = 𝐹 (w∗, 𝝂∗), and 𝐹1 (w𝑡 ) ≤ 𝐹 (w𝑡 , 𝝂̄𝑡 ), we have

E

[
𝑇∑
𝑡=1

𝛼𝑡 (𝐹1 (w𝑡 ) − 𝐹1 (w∗))
]

≤ 1
2𝜂

‖w1 − w‖2
2 +

1
𝐵
𝐷𝜑 (𝝂∗, 𝝂0) + E

[
𝑇∑
𝑡=1

𝜂𝛼2
𝑡 𝜎

2
𝑡

2
+

𝑇∑
𝑡=1

𝐶𝛼2
𝑡 𝛿

2
𝑡

]
.

Plugging the value of 𝛼𝑡 , we finish the proof.
ut

5.5.2.3 Why SCENT is better than ASGD?

In this section, we provide theoretical insight into why SCENT outperforms ASGD
for entropic risk minimization. The key distinction between the two methods lies in
their updates of the dual variable 𝜈: SCENT employs a stochastic proximal mirror
descent (SPMD) update, whereas ASGD relies on a standard SGD update. Accord-
ingly, our analysis focuses exclusively on the 𝜈-update while keeping w fixed. In
particular, we consider the following problem:

min
𝜈
𝐹 (𝜈) := E𝜁 𝑒𝑠 (𝜁 )−𝜈 + 𝜈, (5.93)

where we omit w in 𝑠(𝜁).
Recall the definitions 𝑧 := 𝑒𝑠 (𝜁 ) , 𝑚 := E[𝑧], 𝑟 (𝜈) := 𝑚𝑒−𝜈 = 𝑒𝜈∗−𝜈 as used

previously, and the facts 𝜈∗ = arg min𝜈 𝐹 (𝜈) = log𝑚, 𝐹 (𝜈∗) = 𝑚𝑒−𝜈∗ + 𝜈∗ = 1 + 𝜈∗.
Recall the SPMD update:

𝑒𝜈𝑡 =
1

1 + 𝛼𝑡𝑒𝜈𝑡−1
𝑒𝜈𝑡−1 + 𝛼𝑡𝑒

𝜈𝑡−1

1 + 𝛼𝑡𝑒𝜈𝑡−1
𝑒𝑠 (𝜁𝑡 ) .

Let us define an important quantity to characterize the difficulty of the problem:

𝜅 =
E[𝑧2]
(E[𝑧])2 ,

which is known as second-order moment ratio. Larger 𝜅 indicates heavier tails or
higher variability relative to the mean.
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A Clean Bound of SPMD

The optimality gap can be written as

𝐹 (𝜈) − 𝐹 (𝜈∗) = 𝑚𝑒−𝜈 + 𝜈 − (1 + 𝜈∗) = 𝑟 (𝜈) − log 𝑟 (𝜈) − 1. (5.94)

We assume 𝑠(𝜁) ∈ [𝑐0, 𝑐1] and without loss of generality we assume 𝑐1 ≤ 0. If not,
we can define 𝑠′ (𝜁) = 𝑠(𝜁) − 𝑐1, 𝑧

′ = 𝑒𝑠
′ (𝜁 ) and 𝐹′ (𝜈′) = E[𝑧′𝑒−𝜈′ ] + 𝜈′. Then

𝐹 (𝜈) − 𝐹 (𝜈∗) = 𝐹′ (𝜈′) − min 𝐹′ (𝜈) if 𝜈 = 𝜈′ − 𝑐1.

Lemma 5.37 (Self-bounding inequality) For all 𝑟 > 0,

𝑟 ≤ 2 (𝑟 − log 𝑟). (5.95)

Equivalently, for all 𝜈 ∈ R,

𝑟 (𝜈) ≤ 2
(
𝐹 (𝜈) − 𝐹 (𝜈∗) + 1

)
. (5.96)

Proof. If 0 < 𝑟 ≤ 2, then 𝑟 ≤ 2 ≤ 2(𝑟 − log 𝑟) since 𝑟 − log 𝑟 ≥ 1 for all 𝑟 > 0. If
𝑟 ≥ 2, then log 𝑟 ≤ 𝑟/2, hence 𝑟 − log 𝑟 ≥ 𝑟/2, i.e. 𝑟 ≤ 2(𝑟 − log 𝑟). Substituting
𝑟 = 𝑟 (𝜈) and using (5.94) yields (5.96). ut

Theorem 5.16 Suppose 𝑠(𝜁) ∈ [𝑐0, 𝑐1] ≤ 0 holds. By setting 𝛼𝑡 =
√
𝐷𝜑 (𝜈∗ ,𝜈0 )𝑚
2𝐶𝑇Var(𝑧) ≤

min( 𝑚
4𝐶Var(𝑧) , 𝜌) for sufficiently large 𝑇 , SPMD guarantees that

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤ 4
√

2

√
𝐶 (𝜅 − 1)

(
1 − 𝑟0 + 𝑟0 log 𝑟0

)
𝑇

+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)
𝑇

.

(5.97)
where 𝐶 = (1 + 𝜌)(1 + 𝑐1 − 𝑐0), and 𝑟0 = 𝑟 (𝜈0) = 𝑒𝜈∗−𝜈0 .

 Why it matters

When 𝜈0 � 𝜈∗ (over-estimation), then 1 − 𝑟0 + 𝑟0 log 𝑟0 = 𝑂 (1), the dom-
inating term becomes 𝑂 (

√
𝜅
𝑇 ). This upper bound characterizes the intrinsic

complexity of SPMD, which depends on the second-order moment ratio 𝜅. If
𝑠(𝜁)) ∼ N (𝜇𝑠 , 𝜎2

𝑠 ), then 𝜅 = 𝑒𝜎
2
𝑠 , which does not depend on the exponential of

the mean 𝜇𝑠 but rather 𝑒𝜎
2
𝑠 .

Proof. From Lemma 5.31, we obtain the SPMD averaged bound

𝐺̄𝑇 :=
1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤
𝐷𝜑 (𝜈∗, 𝜈0)

𝛼𝑇
+ 𝐶 𝛼𝑉, (5.98)

where
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𝑉 :=
1
𝑇

𝑇∑
𝑡=1

E[𝛿2
𝑡 ], 𝛿2

𝑡 = E
[
𝑒−𝜈𝑡−1 (𝑧𝑡 − 𝑚)2] = 𝑒−𝜈𝑡−1Var(𝑧).

Since 𝑒−𝜈𝑡−1 = 𝑟 (𝜈𝑡−1)/𝑚, we can rewrite

𝑉 =
Var(𝑧)
𝑚

· 1
𝑇

𝑇∑
𝑡=1

E[𝑟 (𝜈𝑡−1)] . (5.99)

By Lemma 5.37,

1
𝑇

𝑇∑
𝑡=1

E[𝑟 (𝜈𝑡−1)] ≤
2
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗) + 1]

= 2

(
1 + 1

𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗)]
)
.

Next, observe the index shift:

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗)] = E[𝐹 (𝜈0) − 𝐹 (𝜈∗)] +
𝑇−1∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)]

≤ E[𝐹 (𝜈0) − 𝐹 (𝜈∗)] +
𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] .

Dividing by 𝑇 yields

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡−1) − 𝐹 (𝜈∗)] ≤
E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇
+ 𝐺̄𝑇 . (5.100)

Combining this with (5.99) we have

𝑉 ≤ 2 Var(𝑧)
𝑚

(
1 + 𝐺̄𝑇 + E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇

)
. (5.101)

Plugging (5.101) into (5.98) yields

𝐺̄𝑇 ≤
𝐷𝜑 (𝜈∗, 𝜈0)

𝛼𝑇
+ 2𝐶𝛼Var(𝑧)

𝑚

(
1 + 𝐺̄𝑇 + E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇

)
.

If 𝛼 ≤ 𝑚
4𝐶 Var(𝑧) , then

2𝐶𝛼Var(𝑧)
𝑚 ≤ 1

2 , and therefore
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𝐺̄𝑇 ≤
2𝐷𝜑 (𝜈∗, 𝜈0)

𝛼𝑇
+ 4𝐶𝛼Var(𝑧)

𝑚

(
1 + E[𝐹 (𝜈0) − 𝐹 (𝜈∗)]

𝑇

)
≤

2𝐷𝜑 (𝜈∗, 𝜈0)
𝛼𝑇

+ 4𝐶𝛼Var(𝑧)
𝑚

+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)
𝑇

.

Optimizing the right-hand side over 𝛼 (assuming 𝑇 is large enough) gives:

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤ 4
√

2
√
𝐶 𝐷𝜑 (𝜈∗, 𝜈0)Var(𝑧)

𝑚𝑇
+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)

𝑇
.

With 𝑟0 := 𝑟 (𝜈0) = 𝑒𝜈∗−𝜈0 ,

𝐷𝜑 (𝜈∗, 𝜈0) = 𝑒−𝜈∗ − 𝑒−𝜈0 + 𝑒−𝜈0 (𝜈∗ − 𝜈0) =
1
𝑚

(
1 − 𝑟0 + 𝑟0 log 𝑟0

)
.

Since Var(𝑧)/𝑚2 = 𝜅 − 1, thus the convergence upper bound becomes

4
√

2

√
𝐶 (𝜅 − 1)

(
1 − 𝑟0 + 𝑟0 log 𝑟0

)
𝑇

+ 𝐹 (𝜈0) − 𝐹 (𝜈∗)
𝑇

.

ut

Comparison with SGD.

Benefit under the noise setting

In order to control the variance, we consider projected SGD. Let Π[𝑐0 ,𝑐1 ] denote
projection onto [𝑐0, 𝑐1]. The projected SGD update is

𝜈𝑡+1 = Π[𝑐0 ,𝑐1 ]
(
𝜈𝑡 − 𝛼′ 𝑔𝑡

)
, 𝑔𝑡 := 1 − 𝑧𝑡𝑒−𝜈𝑡 , (5.102)

where {𝑧𝑡 }𝑡≥0 are i.i.d. copies of 𝑧 and 𝛼′ > 0 is a constant step size. Note that
E[𝑔𝑡 | 𝜈𝑡 ] = ∇𝐹 (𝜈𝑡 ) = 1 − 𝑚𝑒−𝜈𝑡 .

We present a corollary of Theorem 3.5 for SGD to minimize 𝐹 (𝜈) below.

Corollary 5.4 Suppose 𝑠(𝜁) ∈ [𝑐0, 𝑐1] holds and 𝐹 (·) is 𝐿-smooth in the range of
[𝑐0, 𝑐1]. Let {𝜈𝑡 } follow (5.102). If 𝜂 ≤ 1

𝐿 , Then

𝐺̄SGD
𝑇 :=

1
𝑇

𝑇∑
𝑡=1

E[𝐹 (𝜈𝑡 ) − 𝐹 (𝜈∗)] ≤
(𝜈0 − 𝜈∗)2

2𝛼′𝑇
+ 𝛼′𝑉 ′.

where

𝑉 ′ =
𝛼′

𝑇

𝑇−1∑
𝑡=0

(𝛿′𝑡 )2 =
Var(𝑧)
𝑇

𝑇−1∑
𝑡=0

E[𝑒−2𝜈𝑡 ] .
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We quantify the smoothness on the bounded domain of the objective, which in-
troduces an exponential constant.

Lemma 5.38 On [𝑐0, 𝑐1], the function 𝐹 (𝜈) = 𝑚𝑒−𝜈 + 𝜈 is 𝐿-smooth with

𝐿 = sup
𝜈∈[𝑐0 ,𝑐1 ]

𝐹′′ (𝜈) = sup
𝜈∈[𝑐0 ,𝑐1 ]

𝑚𝑒−𝜈 = 𝑚𝑒−𝑐0 = 𝑒𝜈∗−𝑐0 .

Proof. We have 𝐹′′ (𝜈) = 𝑚𝑒−𝜈 , which is decreasing in 𝜈, so the maximum over
[𝑐0, 𝑐1] is attained at 𝑐0. ut

Theorem 5.17 By choosing the optimal 𝛼′ = |𝜈0−𝜈∗ |𝑒𝑐0√
2𝑇Var(𝑧)

≤ 1
𝐿 = 𝑒𝑐0

𝑚 , SGD’s upper
bound becomes

𝐺̄SGD
𝑇 ≤

√
2|𝜈0 − 𝜈∗ | 𝑒𝜈∗−𝑐0

√
𝜅 − 1
𝑇

. (5.103)

where 𝜅 = E[𝑧2]/(E[𝑧])2.

Proof. The proof follows Corollary 5.4 by noting that 𝑉 ′ ≤ Var(𝑧)𝑒−2𝑐0 and
Var(𝑧) = 𝑚2 (𝜅 − 1) = 𝑒2𝜈∗ (𝜅 − 1). ut

 Why it matters

By comparing the convergence bound of SPMD with that of SGD, the resulting
ratio is:

1
|𝜈0 − 𝜈∗ |𝑒𝜈∗−𝑐0

.

Notably, this ratio becomes exponentially small in regimes where 𝜈∗ � 𝑐0, high-
lighting the superior efficiency of SPMD.

Benefit under the noiseless setting

We further show that, even in the noiseless setting, the dependence of the GD up-
date on |𝜈0 − 𝜈∗ | is unavoidable, whereas the PMD update does not exhibit such
dependence when 𝜈0 � 𝜈∗.

In the noiseless setting, where 𝑚 = E[𝑒𝑠 (𝜁 ) ] is known, the gradient descent (GD)
iteration becomes:

𝜈𝑡+1 = 𝜈𝑡 − 𝛼′∇𝐹 (𝜈𝑡 ) = 𝜈𝑡 − 𝛼′
(
1 − 𝑚𝑒−𝜈𝑡

)
, 𝑡 ≥ 0, (5.104)

where 𝛼′ > 0 is a step size. For deterministic PMD, its update is equivalent to (cf.
Lemma 5.26):

𝑦𝑡+1 =
𝑦𝑡 + 𝛼
1 + 𝛼𝑚 , (5.105)

where 𝑦𝑡 = 𝑒−𝜈𝑡 .

Lemma 5.39 (GD vs PMD) Assume 𝜈0 � 𝜈∗. Let {𝜈𝑡 }𝑡≥0 follow (5.104) with 𝛼′ ≤
1. Then in order to have |∇𝐹 (𝜈𝑡 ) | ≤ 𝜖 , then we need at least

285



𝑡 ≥
𝜈0 − 𝜈∗ − log

( 1
1−𝜖

)
𝛼′

. (5.106)

In contrast, for deterministic PMD update (5.105), in order to ensure |∇𝐹 (𝜈𝑡 ) | ≤ 𝜖 .
it suffices that

𝑡 =

⌈ log
(
|1 − 𝑟0 |/𝜖

)
log(1 + 𝛼𝑚)

⌉
. (5.107)

Proof. Recall the definition 𝑟 (𝜈) := 𝑚𝑒−𝜈 = 𝑒𝜈∗−𝜈 . We have |∇𝐹 (𝜈) | = |1−𝑟 (𝜈) |.
From (5.104),

𝜈𝑡+1 = 𝜈𝑡 − 𝛼′
(
1 − 𝑒𝜈∗−𝜈𝑡

)
.

If 𝜈𝑡 ≥ 𝜈∗, then 𝜈𝑡+1 − 𝜈∗ = 𝜈𝑡 − 𝜈∗ − 𝛼′
(
1 − 𝑒𝜈∗−𝜈𝑡

)
≥ 0 provided 𝛼′ ≤ 1. Let

𝑟𝑡 = 𝑒𝜈∗−𝜈𝑡 > 0. Then, from GD update we have

𝑟𝑡+1 = 𝑟𝑡𝑒
𝛼′ (1−𝑟𝑡 ) ≤ 𝑟𝑡𝑒𝛼

′ ≤ 𝑟0𝑒
𝛼′ (𝑡+1) .

In order to have ‖∇𝐹 (𝜈𝑡 )‖2
2 ≤ 𝜖2, it is necessary to have 𝑟𝑡 ≥ 1− 𝜖 . Hence, we need

at least 𝑡 ≥
log 1−𝜖

𝑟0
𝛼′ =

𝜈0−𝜈∗−log
( 1

1−𝜀
)

𝛼′ .
For deterministic PMD update (5.105), since 𝑟𝑡 = 𝑚𝑦𝑡 we have

𝑟𝑡+1 − 1 =
𝑟𝑡 − 1
1 + 𝛼𝑚 .

Taking absolute value yields

|∇𝐹 (𝜈𝑡+1) | =
|∇𝐹 (𝜈𝑡 ) |
(1 + 𝛼𝑚) .

Solving |∇𝐹 (𝜈𝑡 ) | ≤ |∇𝐹 (𝜈0) |/(1 + 𝛼𝑚)𝑡 ≤ 𝜖 yields (5.107). ut

 Why it matters

Deterministic GD needs at least Ω((𝜈0 − 𝜈∗)/𝛼′) steps to enter a constant-
accuracy region, whereas PMD reduces |∇𝐹 (𝜈𝑡 ) | geometrically with rate (1 +
𝛼𝑚)−1, yielding a complexity of order𝑂

(
1

log(1+𝛼𝑚) log 1
𝜖

)
, which does not scale

with 𝜈0 due to |1 − 𝑟0 | = |1 − 𝑒𝜈∗−𝜈0 | ≤ 1.
Indeed, in the noiseless setting for PMD, taking the formal limit 𝛼 → ∞ yields
𝑦1 → 1/𝑚 thus 𝜈1 → 𝜈∗. This highlights that the PMD update is an implicit,
geometry-matched step.

5.5.2.4 An Optimal bound for SPMD

In fact, we can improve the convergence rate of SPMD to 𝑂
(
𝜅−1
𝑇

)
, which matches

a lower bound to be established. The key is just to use a specially designed learning
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rate scheme 𝛼𝑡 . Recall the SPMD update:

𝑦𝑡 =
𝑦𝑡−1 + 𝛼𝑡
1 + 𝛼𝑡 𝑧𝑡

, ∀𝑡 ≥ 1, (5.108)

where 𝑦𝑡−1 = 𝑒−𝜈𝑡−1 , 𝑧𝑡 = 𝑒𝑠 (𝜁𝑡 ) .

Lemma 5.40 Let 𝑆𝑡 :=
∑𝑡
𝑖=1 𝑧𝑖 and 𝑧𝑡 := 𝑆𝑡/𝑡. Initialize 𝑦1 = 1/𝑧1 (or equivalently

𝛼1 = ∞) and for 𝑡 ≥ 2 choose

𝛼𝑡 :=
𝑦𝑡−1

𝑡 − 1
=

1
𝑆𝑡−1

. (5.109)

Then for all 𝑡 ≥ 1,

𝑦𝑡 =
𝑡

𝑆𝑡
, 𝜈𝑡 = − log 𝑦𝑡 = log

( 𝑆𝑡
𝑡

)
= log 𝑧𝑡 . (5.110)

In particular, 𝜈𝑡 is the exact minimizer of the empirical objective

𝐹𝑡 (𝜈) := 𝑧𝑡𝑒
−𝜈 + 𝜈 since arg min

𝜈
𝐹𝑡 (𝜈) = log 𝑧𝑡 .

Proof. We prove (5.110) by induction. For 𝑡 = 1, 𝑦1 = 1/𝑧1 = 1/𝑆1 holds by ini-
tialization. Assume 𝑦𝑡−1 = (𝑡 − 1)/𝑆𝑡−1. Then (5.109) gives 𝛼𝑡 = 1/𝑆𝑡−1, and the
recursion (5.108) yields

𝑦𝑡 =
𝑡−1
𝑆𝑡−1

+ 1
𝑆𝑡−1

1 + 𝑧𝑡
𝑆𝑡−1

=
𝑡
𝑆𝑡−1
𝑆𝑡−1+𝑧𝑡
𝑆𝑡−1

=
𝑡

𝑆𝑡−1 + 𝑧𝑡
=
𝑡

𝑆𝑡
.

Thus 𝑦𝑡 = 𝑡/𝑆𝑡 and 𝜈𝑡 = − log 𝑦𝑡 = log(𝑆𝑡/𝑡) = log 𝑧𝑡 . ut

Assumption 5.20. Assume 𝑠(𝜁) is 𝜎2-subgaussian, i.e.,

E
[
𝑒𝜆(𝑠 (𝜁 )−E[𝑠 (𝜁 ) ] )

]
≤ 𝑒𝜆

2𝜎2/2 ∀𝜆 ∈ R.

This includes Bernoulli distribution (indeed, if 𝑠(𝜁) ∈ [𝑐0, 𝑐1] a.s., then 𝑠(𝜁) −
E[𝑠(𝜁)] is (𝑐1 − 𝑐0)2/4-subgaussian by Hoeffding’s lemma).

Since Var(𝑧)
(E[𝑧 ] )2 = 𝜅 − 1, we have

Var(𝑧𝑇 ) =
Var(𝑧)
𝑇

=
(𝜅 − 1)𝑚2

𝑇
.

Since Lemma 5.40 gives 𝜈𝑇 = log 𝑧𝑇 , in light of (5.94) we can write

𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗) =
𝑚

𝑧𝑇
− 1 + log

( 𝑧𝑇
𝑚

)
=

1
𝑄𝑇

+ log𝑄𝑇 − 1, 𝑄𝑇 :=
𝑧𝑇
𝑚
. (5.111)

Note that E[𝑄𝑇 ] = 1 and Var(𝑄𝑇 ) = (𝜅 − 1)/𝑇 .
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Let 𝑈𝑇 := 𝑄𝑇 − 1 = (𝑧𝑇 − 𝑚)/𝑚. Then E[𝑈𝑇 ] = 0 and E[𝑈2
𝑇 ] = (𝜅 − 1)/𝑇 .

Define
𝑔(𝑢) :=

1
1 + 𝑢 + log(1 + 𝑢) − 1,∀𝑢 > −1

so that by (5.111) we have 𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗) = 𝑔(𝑈𝑇 ).

Lemma 5.41 For all 𝑢 ≥ − 1
2 ,

𝑔(𝑢) ≤ 2𝑢2.

Proof. Define ℎ(𝑢) := 2𝑢2 − 𝑔(𝑢) for 𝑢 > −1. Since 𝑔′ (𝑢) = 𝑢
(1+𝑢)2 , we have

ℎ′ (𝑢) = 4𝑢 − 𝑢

(1 + 𝑢)2 = 𝑢
(
4 − 1

(1 + 𝑢)2

)
.

For 𝑢 ≥ − 1
2 , (1 + 𝑢)2 ≥ 1

4 , hence
1

(1+𝑢)2 ≤ 4. Therefore ℎ′ (𝑢) ≤ 0 for 𝑢 ∈ [− 1
2 , 0]

and ℎ′ (𝑢) ≥ 0 for 𝑢 ≥ 0. Thus ℎ attains its minimum over [− 1
2 ,∞) at 𝑢 = 0, where

ℎ(0) = 0. Hence ℎ(𝑢) ≥ 0 on [− 1
2 ,∞), i.e., 𝑔(𝑢) ≤ 2𝑢2 there. ut

Lemma 5.42 Let 𝑧𝑖 ≥ 0 i.i.d. with finite 𝜅. Then

P(𝑄𝑇 ≤ 1/2) = P(𝑧𝑇 ≤ 𝑚/2) ≤ exp
(
− 𝑇

8𝜅

)
.

Proof. For any 𝜆 > 0, by Chernoff bound,

P
( 𝑇∑
𝑖=1

𝑧𝑖 ≤ 𝑇𝑚
2

)
= P

(
𝑒−𝜆

∑𝑇
𝑖=1 𝑧𝑖 ≥ 𝑒−𝜆𝑇𝑚/2

)
≤ 𝑒𝜆𝑇𝑚/2

(
E[𝑒−𝜆𝑧]

)𝑇
.

Using 𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2/2 for 𝑥 ≥ 0,

E[𝑒−𝜆𝑧] ≤ 1 − 𝜆𝑚 + 𝜆
2

2
E[𝑧2] ≤ exp

(
− 𝜆𝑚 + 𝜆

2

2
E[𝑧2]

)
.

Therefore

P(𝑧𝑇 ≤ 𝑚/2) ≤ exp
(
𝑇
(
𝜆𝑚/2 − 𝜆𝑚 + 𝜆

2

2
E[𝑧2]

))
= exp

(
− 𝑇

(𝜆𝑚
2

− 𝜆2

2
E[𝑧2]

))
.

Choose 𝜆 = 𝑚/(2E[𝑧2]) to get the exponent −𝑇𝑚2/(8E[𝑧2]) = −𝑇/(8𝜅). ut

Lemma 5.43 If 𝑠 is 𝜎2-subgaussian, then

𝑚2 E[𝑧−2] = (E[𝑒𝑠])2 E[𝑒−2𝑠] ≤ 𝑒3𝜎2
.

Proof. Let 𝜇 = E[𝑠] and 𝑋 = 𝑠 − 𝜇. Then E[𝑋] = 0 and 𝑧 = 𝑒𝑠 = 𝑒𝜇𝑒𝑋. Thus

𝑚2E[𝑧−2] =
(
𝑒𝜇E[𝑒𝑋]

)2 ·
(
𝑒−2𝜇E[𝑒−2𝑋]

)
=

(
E[𝑒𝑋]

)2 E[𝑒−2𝑋] .
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By subgaussianity,

E[𝑒𝑋] ≤ 𝑒𝜎
2/2, E[𝑒−2𝑋] ≤ 𝑒 (2

2 )𝜎2/2 = 𝑒2𝜎2
.

Hence 𝑚2E[𝑧−2] ≤ 𝑒𝜎
2
𝑒2𝜎2

= 𝑒3𝜎2 . ut

Theorem 5.18 Under Assumption 5.20, the SPMD iterate 𝜈𝑇 produced by 𝛼𝑡 =
𝑦𝑡−1/(𝑡 − 1) satisfies

E
[
𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗)

]
≤ 2(𝜅 − 1)

𝑇
+ 𝑒

3
2 𝜎

2
exp

(
− 𝑇

16𝜅

)
. (5.112)

In particular, since the second term is exponentially small in 𝑇/𝜅,

E
[
𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗)

]
= 𝑂 (𝜅/𝑇),

for every 𝜎2-subgaussian 𝑠(𝜁).

Proof. Since 𝐹 (𝜈𝑇 ) − 𝐹 (𝜈∗) = 𝑔(𝑈𝑇 ), we split the expectation on the events {𝑈𝑇 ≥
−1/2} and {𝑈𝑇 < −1/2}:

E[𝑔(𝑈𝑇 )] = E[𝑔(𝑈𝑇 )1{𝑈𝑇 ≥ −1/2}] + E[𝑔(𝑈𝑇 )1{𝑈𝑇 < −1/2}] .

On {𝑈𝑇 ≥ −1/2}, Lemma 5.41 yields

E[𝑔(𝑈𝑇 )1{𝑈𝑇 ≥ −1/2}] ≤ 2E[𝑈2
𝑇 ] = 2 Var(𝑄𝑇 ) = 2

Var(𝑧)
𝑚2𝑇

=
2(𝜅 − 1)

𝑇
.

On {𝑈𝑇 < −1/2} we have 𝑄𝑇 ≤ 1/2, and since log𝑄𝑇 − 1 ≤ 0,

𝑔(𝑈𝑇 ) =
1
𝑄𝑇

+ log𝑄𝑇 − 1 ≤ 1
𝑄𝑇

.

Hence, by Cauchy–Schwarz,

E[𝑔(𝑈𝑇 )1{𝑈𝑇 < −1/2}] ≤ E[𝑄−1
𝑇 1{𝑄𝑇 ≤ 1/2}] ≤

(
E[𝑄−2

𝑇 ]
)1/2 P(𝑄𝑇 ≤ 1/2)1/2.

By Jensen inequality and Lemma 5.43,

E[𝑄−2
𝑇 ] = 𝑚2 E[𝑧−2

𝑇 ] ≤ 𝑚2 E[𝑧−2] ≤ 𝑒3𝜎2
.

By Lemma 5.42, P(𝑄𝑇 ≤ 1/2) ≤ exp(−𝑇/(8𝜅)). Therefore,

E[𝑔(𝑈𝑇 )1{𝑈𝑇 < −1/2}] ≤ 𝑒
3
2 𝜎

2
exp

(
− 𝑇

16𝜅

)
.

Combining the two pieces proves (5.112). ut
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A Distribution-free lower bound

Indeed, we can show that 𝑂
(
𝜅−1
𝑇

)
is an optimal bound by establishing matching a

lower bound for a black-box oracle model where the underlying distribution of 𝑧 is
unknown and for any query 𝜈 the oracle returns

Φ(𝜈; 𝜁) = 𝑧𝑒−𝜈 + 𝜈, 𝑔(𝜈; 𝜁) = ∇𝜈Φ(𝜈; 𝜁) = 1 − 𝑧𝑒−𝜈 .

Since

𝑧(𝜁) = 𝑒𝜈 (Φ(𝜈; 𝜁) − 𝜈) = 𝑒𝜈 (1 − 𝑔(𝜈; 𝜁)),

hence, any 𝑇-query algorithm can reconstruct 𝑇 i.i.d. samples 𝑧1, . . . , 𝑧𝑇 from 𝑃.
Thus, it suffices to prove the lower bound in the standard i.i.d. sampling model for 𝑧.

Let us define a distribution class. For 𝜅 ≥ 2, define

P𝜅 :=
{
𝑃 : 𝑧 ≥ 0, 0 < E𝑃 [𝑧] < ∞, E𝑃 [𝑧2]

(E𝑃 [𝑧])2 ≤ 𝜅

}
.

Equivalently, Var𝑃 (𝑧)/(E𝑃 [𝑧])2 ≤ 𝜅−1. For 𝑃 ∈ P𝜅 let𝑚(𝑃) = E𝑃 [𝑧] and 𝜈∗ (𝑃) =
log𝑚(𝑃).

Lemma 5.44 Let 𝜙(𝑢) := 𝑒−𝑢 + 𝑢 − 1. Then 𝜙(0) = 𝜙′ (0) = 0 and 𝜙′′ (𝑢) = 𝑒−𝑢. In
particular, for all |𝑢 | ≤ 1,

𝜙(𝑢) ≥ 𝑒−1

2
𝑢2. (5.113)

Proof. On the interval [−1, 1], 𝜙′′ (𝑢) = 𝑒−𝑢 ≥ 𝑒−1, so 𝜙 is 𝑒−1-strongly convex
on [−1, 1]. Since 𝜙(0) = 𝜙′ (0) = 0, strong convexity implies 𝜙(𝑢) ≥ 𝑒−1

2 𝑢
2 for all

|𝑢 | ≤ 1. ut

Lemma 5.45 Let 𝜙(𝑢) = 𝑒−𝑢 + 𝑢 − 1. Fix 𝜈0 < 𝜈1 and let Δ := 𝜈1 − 𝜈0. Define

𝐻 (𝜈) := 𝜙(𝜈 − 𝜈0) + 𝜙(𝜈 − 𝜈1).

Then 𝐻 is strictly convex and its unique minimizer 𝜈† lies in (𝜈0, 𝜈1). Moreover, if
Δ ≤ 1, then

inf
𝜈∈R

𝐻 (𝜈) ≥ 𝑒−1

4
Δ2. (5.114)

Proof. We have 𝜙′ (𝑢) = 1 − 𝑒−𝑢 and 𝜙′′ (𝑢) = 𝑒−𝑢 > 0, hence 𝐻 is strictly convex
with

𝐻′ (𝜈) = 𝜙′ (𝜈 − 𝜈0) + 𝜙′ (𝜈 − 𝜈1) = 2 − 𝑒−(𝜈−𝜈0 ) − 𝑒−(𝜈−𝜈1 ) .

At the endpoints,

𝐻′ (𝜈0) = 2−1−𝑒−(𝜈0−𝜈1 ) = 1−𝑒Δ < 0, 𝐻′ (𝜈1) = 2−𝑒−(𝜈1−𝜈0 )−1 = 1−𝑒−Δ > 0.
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Since 𝐻′ is strictly increasing (because 𝐻′′ > 0), there is a unique root 𝜈† ∈ (𝜈0, 𝜈1)
and thus inf𝜈∈R 𝐻 (𝜈) = inf𝜈∈[𝜈0 ,𝜈1 ] 𝐻 (𝜈).

Assume Δ ≤ 1. Then for all 𝜈 ∈ [𝜈0, 𝜈1] we have |𝜈 − 𝜈0 | ≤ Δ ≤ 1 and |𝜈 − 𝜈1 | ≤
Δ ≤ 1. On [−1, 1], 𝜙′′ (𝑢) = 𝑒−𝑢 ≥ 𝑒−1, so 𝜙(𝑢) ≥ 𝑒−1

2 𝑢
2 for all |𝑢 | ≤ 1. Therefore,

for all 𝜈 ∈ [𝜈0, 𝜈1],

𝐻 (𝜈) ≥ 𝑒−1

2
(
(𝜈 − 𝜈0)2 + (𝜈 − 𝜈1)2) .

Minimizing the RHS over 𝜈 yields inf𝜈
(
(𝜈 − 𝜈0)2 + (𝜈 − 𝜈1)2) = Δ2/2, hence

inf𝜈∈R 𝐻 (𝜈) ≥ 𝑒−1

4 Δ2. ut

Lemma 5.46 (Le Cam’s Two-point Method) Let 𝑃0, 𝑃1 be two distributions and
let 𝐿0 (·), 𝐿1 (·) be nonnegative loss functions. For any estimator 𝑎̂ measurable w.r.t.
the data,

max{E𝑃0 [𝐿0 (𝑎̂)], E𝑃1 [𝐿1 (𝑎̂)]} ≥ 1 − TV(𝑃0, 𝑃1)
2

inf
𝑎

(
𝐿0 (𝑎) + 𝐿1 (𝑎)

)
. (5.115)

Proof. Let 𝑀 := (𝑃0 +𝑃1)/2 and write 𝑑𝑃0 = (1+ 𝑓 ) 𝑑𝑀 , 𝑑𝑃1 = (1− 𝑓 ) 𝑑𝑀 where
| 𝑓 | ≤ 1 and

∫
| 𝑓 | 𝑑𝑀 = TV(𝑃0, 𝑃1). Then for any (possibly random) decision 𝐴,

E𝑃0 [𝐿0 (𝐴)] + E𝑃1 [𝐿1 (𝐴)] =
∫ (

𝐿0 (𝐴)(1 + 𝑓 ) + 𝐿1 (𝐴)(1 − 𝑓 )
)
𝑑𝑀

=
∫ (

(𝐿0 (𝐴) + 𝐿1 (𝐴)) + 𝑓 (𝐿0 (𝐴) − 𝐿1 (𝐴))
)
𝑑𝑀

≥
∫ (

(𝐿0 (𝐴) + 𝐿1 (𝐴)) − | 𝑓 | (𝐿0 (𝐴) + 𝐿1 (𝐴))
)
𝑑𝑀

=
∫

(𝐿0 (𝐴) + 𝐿1 (𝐴)) (1 − | 𝑓 |) 𝑑𝑀

≥ inf
𝑎
(𝐿0 (𝑎) + 𝐿1 (𝑎))

∫
(1 − | 𝑓 |) 𝑑𝑀

= (1 − TV(𝑃0, 𝑃1)) inf
𝑎
(𝐿0 (𝑎) + 𝐿1 (𝑎)).

Taking half and using max{𝑥, 𝑦} ≥ (𝑥 + 𝑦)/2 yields (5.115). ut

The final distribution-free suboptimality lower bound is stated in the following
theorem.

Theorem 5.19 Let 𝑧 = 𝑒𝑠 (𝜁 ) ≥ 0 with 𝑚(𝑃) = E𝑃 [𝑧] and 𝜈∗ (𝑃) = log𝑚(𝑃). For
𝜅 ≥ 2, define

P𝜅 :=
{
𝑃 : 𝑧 ≥ 0, 0 < E𝑃 [𝑧] < ∞, E𝑃 [𝑧2]

E𝑃 [𝑧]2 ≤ 𝜅

}
.

Let 𝐹𝑃 (𝜈) := 𝑚(𝑃)𝑒−𝜈 + 𝜈 and 𝜈∗ (𝑃) = arg min𝜈 𝐹𝑃 (𝜈). Then there exists an abso-
lute constant 𝑐 > 0 such that for all 𝑇 ≥ 𝜅, any (possibly adaptive) algorithm using
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𝑇 value/gradient oracle calls and outputting 𝜈̂ satisfies

sup
𝑃∈P𝜅

E𝑃 [𝐹𝑃 (𝜈̂) − 𝐹𝑃 (𝜈∗ (𝑃))] ≥ 𝑐
𝜅 − 1
𝑇

. (5.116)

Proof. We construct two strictly positive hard instances in P𝜅 . Fix 𝜀 ∈ (0, 1] and
define two distributions supported on {𝜀, 𝜅}:

𝑃𝜀𝑖 : P(𝑧 = 𝜅) = 𝑝𝑖 , P(𝑧 = 𝜀) = 1 − 𝑝𝑖 , 𝑖 ∈ {0, 1},

where
𝑝0 :=

1
𝜅
, 𝑝1 := 𝑝0 + ℎ, ℎ :=

1
8
√
𝜅𝑇
.

Since 𝑇 ≥ 𝜅, we have ℎ ≤ 1
8𝜅 so 𝑝1 ∈ (0, 1).

Next we show that 𝑃𝜀0 , 𝑃
𝜀
1 ∈ P𝜅 . For a generic 𝑝 ∈ (0, 1) and support {𝜀, 𝜅},

define
𝑅𝜀 (𝑝) :=

E[𝑧2]
E[𝑧]2 =

𝑝𝜅2 + (1 − 𝑝)𝜀2(
𝑝𝜅 + (1 − 𝑝)𝜀

)2 .

Let 𝑢 := 𝜀/𝜅 ∈ (0, 1/𝜅] ⊂ (0, 1]. Then

𝑅𝜀 (𝑝) =
𝑝 + (1 − 𝑝)𝑢2(
𝑝 + (1 − 𝑝)𝑢

)2 .

We claim 𝑅𝜀 (𝑝) ≤ 1
𝑝 for all 𝑢 ∈ [0, 1]. Indeed,(

𝑝 + (1 − 𝑝)𝑢
)2 − 𝑝

(
𝑝 + (1 − 𝑝)𝑢2)

= 𝑝2 + 2𝑝(1 − 𝑝)𝑢 + (1 − 𝑝)2𝑢2 − 𝑝2 − 𝑝(1 − 𝑝)𝑢2

= (1 − 𝑝)𝑢
(
2𝑝 + (1 − 2𝑝)𝑢

)
≥ 0,

because 𝑢 ∈ [0, 1] and 2𝑝 + (1 − 2𝑝)𝑢 ≥ min{2𝑝, 1} ≥ 0. Thus 𝑅𝜀 (𝑝) ≤ 1/𝑝.
Since 𝑝0 = 1/𝜅 and 𝑝1 ≥ 𝑝0, we have 1/𝑝𝑖 ≤ 𝜅, hence 𝑅𝜀 (𝑝𝑖) ≤ 𝜅 and therefore
𝑃𝜀0 , 𝑃

𝜀
1 ∈ P𝜅 .

Next, we compute the separationΔ between 𝜈∗’s. Let𝑚𝜀𝑖 = E𝑃𝜀𝑖 [𝑧] = 𝜀+𝑝𝑖 (𝜅−𝜀)
and 𝜈𝜀𝑖 = log𝑚𝜀𝑖 . Then

𝑚𝜀1 −𝑚𝜀0 = ℎ(𝜅 − 𝜀) ≥ ℎ(𝜅 − 1), 𝑚𝜀0 = 𝜀 + 𝑝0 (𝜅 − 𝜀) = 1 +
(
1 − 1

𝜅

)
𝜀 ∈ [1, 2] .

Hence

Δ := |𝜈𝜀1 − 𝜈𝜀0 | = log
(
1 +

𝑚𝜀1 − 𝑚𝜀0
𝑚𝜀0

)
≥ 1

2
· ℎ(𝜅 − 1)

2
=

𝜅 − 1
32

√
𝜅𝑇
,
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where we used log(1+𝑥) ≥ 𝑥/2 for 𝑥 ∈ [0, 1/2] and the fact that ℎ (𝜅−𝜀)𝑚𝜀0
≤ ℎ𝜅 ≤ 1/8.

In particular, Δ ≤ ℎ𝜅 ≤ 1/8 < 1.
Next, we show the lower bound of inf𝜈

(
(𝐹0 (𝜈) − 𝐹0 (𝜈𝜀0 )) + (𝐹1 (𝜈) − 𝐹1 (𝜈𝜀1 ))

)
.

Under 𝑃𝜀𝑖 the objective is 𝐹𝑖 (𝜈) = 𝑚𝜀𝑖 𝑒−𝜈+𝜈 and the optimal value is 𝐹𝑖 (𝜈𝜀𝑖 ) = 1+𝜈𝜀𝑖 .
Thus the suboptimality can be written as

𝐹𝑖 (𝜈) − 𝐹𝑖 (𝜈𝜀𝑖 ) = 𝑒𝜈
𝜀
𝑖 −𝜈 + (𝜈 − 𝜈𝜀𝑖 ) − 1 = 𝜙(𝜈 − 𝜈𝜀𝑖 ), 𝜙(𝑢) = 𝑒−𝑢 + 𝑢 − 1.

Let 𝜈𝜀0 < 𝜈
𝜀
1 and set 𝑢 = 𝜈 − 𝜈𝜀0 . Then

𝜙(𝜈 − 𝜈𝜀0 ) + 𝜙(𝜈 − 𝜈
𝜀
1 ) = 𝜙(𝑢) + 𝜙(𝑢 − Δ).

The function 𝑢 ↦→ 𝜙(𝑢) + 𝜙(𝑢 − Δ) is convex and its minimizer lies in [0,Δ]. Since
Δ ≤ 1, applying Lemma 5.45 gives

𝜙(𝑢) + 𝜙(𝑢 − Δ) ≥ 𝑒−1

4
Δ2.

Therefore,

inf
𝜈

(
(𝐹0 (𝜈) − 𝐹0 (𝜈𝜀0 )) + (𝐹1 (𝜈) − 𝐹1 (𝜈𝜀1 ))

)
≥ 𝑒−1

4
Δ2. (5.117)

Next, we show the total variation between 𝑃𝜀0 , and 𝑃
𝜀
1 is bounded. Because the

two distributions differ only in the Bernoulli parameter,

KL(𝑃𝜀0 , 𝑃
𝜀
1 ) = 𝑝0 log

𝑝0

𝑝1
+ (1 − 𝑝0) log

1 − 𝑝0

1 − 𝑝1
.

Using the bound KL(𝑃,𝑄) ≤ 𝜒2 (𝑃,𝑄) and the fact that for Bernoulli measures
𝜒2 (𝑃𝜀0 , 𝑃

𝜀
1 ) =

ℎ2

𝑝1 (1−𝑝1 ) , we get

KL(𝑃𝜀0 , 𝑃
𝜀
1 ) ≤

ℎ2

𝑝1 (1 − 𝑝1)
.

Since ℎ ≤ 1
2𝜅 , we have 𝑝1 ≤ 𝑝0 + ℎ ≤ 3

2𝜅 ≤ 3
4 , hence 1 − 𝑝1 ≥ 1/4, and also

𝑝1 ≥ 𝑝0 = 1/𝜅. Therefore 𝑝1 (1 − 𝑝1) ≥ 1
4𝜅 and

KL(𝑃𝜀0 , 𝑃
𝜀
1 ) ≤ 4𝜅ℎ2.

For 𝑇 i.i.d. samples, this gives

KL
(
(𝑃𝜀0 )

⊗𝑇 , (𝑃𝜀1 )
⊗𝑇 ) = 𝑇 KL(𝑃𝜀0 , 𝑃

𝜀
1 ) ≤ 4𝜅𝑇ℎ2 =

1
16
.

By Pinsker’s inequality,
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TV
(
(𝑃𝜀0 )

⊗𝑇 , (𝑃𝜀1 )
⊗𝑇 ) ≤ √

1
2

KL
(
(𝑃𝜀0 )⊗𝑇 , (𝑃

𝜀
1 )⊗𝑇

)
≤

√
1
32

≤ 1
4
.

Finally, we apply Lemma 5.46 to 𝑃0 = (𝑃𝜀0 )
⊗𝑇 , 𝑃1 = (𝑃𝜀1 )

⊗𝑇 and losses

𝐿𝑖 (𝜈) := 𝐹𝑖 (𝜈) − 𝐹𝑖 (𝜈𝜀𝑖 ) ≥ 0.

Using (5.117) and TV ≤ 1/4 yields for any estimator 𝜈̂,

max
𝑖∈{0,1}

E𝑃𝜀𝑖
[
𝐹𝑖 (𝜈̂) − 𝐹𝑖 (𝜈𝜀𝑖 )

]
≥ 1 − TV

2
· 𝑒

−1

4
Δ2 ≥ 3

8
· 𝑒

−1

4
Δ2 =

3𝑒−1

32
Δ2.

Substituting Δ2 ≥ (𝜅−1)2

1024 𝜅 𝑇 ≥ 𝜅−1
2048𝑇 (since 𝜅 ≥ 2) gives

max
𝑖∈{0,1}

E𝑃𝜀𝑖
[
𝐹𝑖 (𝜈̂) − 𝐹𝑖 (𝜈𝜀𝑖 )

]
≥ 3

65536 𝑒
· 𝜅 − 1
𝑇

.

Since 𝑃𝜀0 , 𝑃
𝜀
1 ∈ P𝜅 , this implies (5.116) with 𝑐 = 3

65536 𝑒 . ut

5.6 History and Notes

Finite-sum coupled compositional optimization (FCCO) was first formalized in our
work (Qi et al., 2021c) for optimizing average precision, an empirical estimator of
the area under the precision–recall curve. We proposed the SOAP algorithm for AP
maximization and established the first complexity bound of 𝑂

(
𝑛
𝜖 5

)
for finding an

𝜖-stationary solution. Their algorithm is closely related to SOX, but differs in that it
does not employ a moving-average gradient estimator. The framework was demon-
strated on applications including image classification andmolecular property predic-
tion for drug discovery. The analysis of SOAP draws inspiration from the original
SCGD analysis Wang et al. (2017a), while significantly improving upon its𝑂 (1/𝜖8)
complexity with the a better hyper-parameter setting, leading to Theorem 4.1.

To accelerate convergence, we subsequently adopted the moving average gradi-
ent estimator for FCCO (Wang et al., 2022). While this approach achieves a com-
plexity order of 𝑂

(
𝑛
𝐵𝜖 4

)
, it does not benefit from the variance reduction gained by

using mini-batches to estimate inner function values. The limitation arises because
we treat all inner functions as a single vector variable and compute a sparse unbiased
stochastic estimator for this vector; consequently, the estimator does not enjoy the
advantages of inner mini-batching. This improved rate and analysis was inspired by
the stochastic compositional momentum method (Ghadimi et al., 2020).

Subsequently, we proposed the SOX algorithm-a significant advancement for
solving FCCO (Wang and Yang, 2022), encompassing new design, theoretical analy-
sis, and practical applications. In that work, we established a complexity of𝑂

(
𝑛𝜎2

0
𝐵𝜖 4

)
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for SOX to find an 𝜖-stationary solution in non-convex smooth FCCO problems. It
integrates the analysis of stochastic block coordinate update of the u sequences with
that of stochastic compositional momentum method.

Building on this, we developed a double-loop restarted algorithm that utilizes
SOX in the inner loop to address non-convex problems under the 𝜇-PL (Polyak-
Lojasiewicz) condition, i.e., ‖∇𝐹 (w)‖2

2 ≥ 𝜇(𝐹 (w) − minw 𝐹 (w)). This approach

yields an improved complexity of 𝑂
(
𝑛𝜎2

0
𝜇2𝐵𝜖

)
for finding an 𝜖-optimal solution. This

result further implies a complexity of 𝑂
(
𝑛𝜎2

0
𝜇2𝐵𝜖

)
for strongly convex FCCO prob-

lems and 𝑂
(
𝑛𝜎2

0
𝐵𝜖 3

)
for convex FCCO problems, requiring no assumptions on the in-

dividual convexity of inner and outer functions beyond the overall convexity of the
objective. The improved convergence analysis under the PL condition for the double-
loop restarted algorithm was inspired by our prior work on stochastic compositional
optimization for distributionally robust learning (Qi et al., 2021b). A comparable
complexity bound of𝑂 ( 1

𝜇2 𝜖
) for a single-loop algorithm in the context of Stochastic

Convex Optimization (SCO) under the PL condition was subsequently established in
(Jiang et al., 2023), which considers the application of SCO in training energy-based
models.

Furthermore, for convex FCCO instances where the outer function is both convex
and monotonically non-decreasing and the inner functions are convex, (Wang and
Yang, 2022) reformulated the problem as a convex-concave min-max optimization
problem and established a complexity of𝑂

(
𝑛𝜎2

0
𝐵𝜖 2

)
under a weak duality convergence

measure. Finally, when a 𝜇-strongly convex regularizer is present, the complexity is
further refined to 𝑂

(
𝑛𝜎2

0
𝜇2𝐵𝜖

)
for finding an 𝜖-optimal solution in terms of Euclidean

distance to the optimum. This analysis was mostly inspired by (Zhang and Lan,
2024), which is the first work that establishes the optimal complexity for solving con-
vex SCO where the outer function is both convex and monotonically non-decreasing
and the inner function is convex.

Later, Jiang et al. (2022) proposed theMulti-Block-Single-ProbeVariance Reduc-
tion (MSVR) algorithm for FCCO, establishing improved complexity bounds over
SOX by leveraging the mean squared smoothness of the inner functions. For non-
convex smooth FCCO problems, MSVR improves the complexity to 𝑂

(
𝑛𝜎0
𝐵𝜖 3

)
for

identifying an 𝜖-stationary solution.
For objectives satisfying the 𝜇-PL condition, a double-loop restarted MSVR al-

gorithm achieves an improved complexity of𝑂
(
𝑛𝜎0
𝜇𝐵𝜖

)
to find an 𝜖-optimal solution.

Consequently, this approach yields a complexity of 𝑂
(
𝑛𝜎0
𝜇𝐵𝜖

)
for strongly convex

FCCO problems and 𝑂
(
𝑛𝜎0
𝐵𝜖 2

)
for convex FCCO problems.

The analysis for non-smooth weakly convex FCCO and the SONX (v2) algorithm
was studied in our work (Hu et al., 2024b). This work established a complexity of
𝑂

(
𝑛𝜎0
𝐵𝜖 6

)
for finding a nearly 𝜖-stationary solution for weakly convex inner and outer
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functions. A similar analysis for a special case of weakly-convex SCOwas conducted
in (Zhu et al., 2023c).When the outer function is smooth, the complexity is improved
in this book to 𝑂

(
𝑛𝜎0
𝐵𝜖 4

)
. The SONEX algorithm for solving weakly convex FCCO

with non-smooth outer functions was proposed in our work (Chen et al., 2025b).
The ALEXR algorithm and its analysis for convex FCCO instances appeared in

our work (Wang and Yang, 2023), where the outer function is both convex andmono-
tonically non-decreasing and the inner functions are convex. For the first time, we
established a complexity of 𝑂

(
𝑛𝜎2

0
𝐵𝜖 2

)
for finding an 𝜖-optimal solution of convex

FCCO. Our analysis of the stochastic block coordinate update for the dual variables
is primarily informed by the framework in Alacaoglu et al. (2025), which addresses
convex-concaveminimax problemswith bilinear structures. The extrapolation for the
gradient of the dual variable is inspired by (Zhang et al., 2021). It is worth mention-
ing that for strongly convex FCCO with smooth outer functions, we only established
the convergence of ALEXR for the Euclidean distance to the optimum. However, it
is possible to establish the convergence for the objective gap and even the duality gap
following our work on strongly-convex strongly-concavemin-max optimization (Yan
et al., 2020b).

In (Wang andYang, 2023), we also established the lower bounds for convex FCCO
and strongly convex FCCO, which matches the upper bounds. Our derivation of the
lower bound for convex FCCO with non-smooth outer functions builds upon the
construction presented in (Zhang and Lan, 2024) for SCO.

The double-loopALEXRwas developed in Chen et al. (2025b), which wasmostly
inspired by a line of work on weakly-convex concave min-max problems (Rafique
et al., 2018; Yan et al., 2020b; Zhang et al., 2022). (Rafique et al., 2018) is the first
work that proves the convergence for weakly-convex (strongly)-concave problems.
Yan et al. (2020b) simplified the algorithm for weakly-convex strongly-concave prob-
lems with 𝜇-strong concavity on the dual variable and established a complexity of
𝑂 ( 1

𝜇2 𝜖 4 ) for finding an nearly 𝜖-stationary point. The later work (Zhang et al., 2022)
improved the complexity to𝑂 ( 1

𝜇𝜖 4 ) with a simple change on the number of iteration
for the inner loop.

The non-convex analysis of ASGD for compositional CVaRminimization first ap-
peared in (Zhu et al., 2022b) for one-way partial AUC optimization. The geometric-
aware algorithm SCENT for CERM and its analysis were developed in (Wei et al.,
2026). It remains an interesting problem to conduct fine-grained analysis of SCENT
for non-convex problems.

A more general framework than FCCO is the so-called conditional stochastic op-
timization (CSO), defined as:

min
w

E𝜉
[
𝑓𝜉

(
E𝜁 | 𝜉 [𝑔(w; 𝜁, 𝜉)]

) ]
.

This paradigm was formally introduced by Hu et al. (2020), who analyzed a biased
SGD (BSGD) algorithm employing a large inner mini-batch and a constant outer
mini-batch. For non-convex smooth problems, using an inner batch size of 𝑂 (𝜖−2)
results in an iteration complexity of 𝑂 (𝜖−4), which translates to a total sample com-
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plexity of𝑂 (𝜖−6). This performance is inferior to that of SOX when 𝑛/𝐵 < 𝜖−2. For
convex and 𝜇-strongly convex CSO problems, an inner batch size of 𝑂 (𝜖−1) yields
iteration complexities of 𝑂 (𝜖−2) and 𝑂 (𝜇−2𝜖−1), respectively. Notably, the latter
complexity is likewise worse than that of restarted SOX when 𝑛/𝐵 < 𝑂 (𝜖−1).
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