Chapter 4

Foundations: Stochastic Compositional
Optimization

Abstract In this chapter, we introduce stochastic compositional optimization prob-
lems and their optimization algorithms, including stochastic compositional gradient
descent and stochastic compositional momentum metholds. We also consider exten-
sions of these techniques to structured optimization with compositional gradients
including non-convex regularized problems, min-max optimization, min-min opti-
mization and bilevel optimization. We focus on the complexity of these metholds for
non-convex optimization.

Moving average is the core ingredient!
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4.1. STOCHASTIC COMPOSITIONAL OPTIMIZATION

4.1 Stochastic Compositional Optimization

We have seen several advanced machine learning frameworks in the Chapter 2, in-
cluding DRO, GDRO, EXM, and COCE. Unfortunately, existing stochastic gradient
metholds such as SGD are not directly applicable to these new problems. The rea-
son will become clear shortly. To address this challenge, we need new optimization
tools.

In this chapter, we will consider a family of stochastic optimization problems
called stochastic compositional optimization (SCO), whose objective is given by

‘g@ F(w) :=E¢f(Erg(w; 0);€), 4.1

where & and ¢ are random variables, g(-;¢) : R — R¥ is the inner random func-
tion, and f(-;&) : R? — R is the outer random function. Let f(-) = Ee f(+;€) and
g(-) = Ezg(+;£). Then the objective function F(w) = f(g(w)) is a composition of
two functions.

Examples

Example 4.1. The KL-regularized DRO (2.14) is a special case of SCO by
setting f(-) = Alog(+) and g(w) = % 2y exp(E(w;x;, i)/ ).

Example 4.2. The KL-constrained DRO (2.19) is a special case of SCO by
setting § = (81,82) f(8) = gilog(g2) + g1p and g1 (W, 1) = 4,82(W, 1) =
Ly exp(6(w:xi, yi)/A).

Example 4.3. The compositional objective for AUC maximization (2.32) has

a compositional term of f(g(w)), where g(W) is a stochastic function and f
is a deterministic function.

Optimization Challenge

The challenge of solving SCO lies in how to estimate the gradient VF(w) =
Vg(W)V f(g(w)), where Vg(w) € R¥4" denotes the transpose of the Jacobian ma-
trix of g at w and Vf(g) € R? is a gradient of £ at g.

A simple way of estimating the gradient is by using stochastic samples, i.e.,
G(W;&,4,0") =Vg(w,; )V f(g(w; ) &), where &, £, {’ are random samples. One
can also use mini-batch of random samples to compute the estimator. However,
the problem is that G(w; &, ,’) is a biased estimator when f is non-linear, i.e.,
Eer,00G(W;€,4,¢") # VF(w). This will break all assumptions made in the con-
vergence analysis in Chapter 3. Directly using this estimator in SGD could result in
non-convergence or it requires a large batch size for estimating g(w).
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Algorithm 9 SCGD

1: Input: learning rate schedules {7,
2: fort=1,..., T do

Sample ¢, ¢/ and &

4 Compute the inner function value estimator u; = (1 — y;)u;—1 + v g(We; &)
5: Compute the vanilla gradient estimator z, = Vg(w,; /) V f(u;; &)
6

7:

T

=1 {vt szl; starting points wy, ug

Update the model w by w;,; = w; — 1,2,
end for

4.2 Stochastic Compositional Gradient Descent

We assume both f and g are differentiable. Next, we introduce stochastic composi-
tional gradient descent (SCGD) as a solution method for SCO. The key to the de-

sign is to track the sequence of {g(w;),# = 1,...,T} by a sequence of estimators
{u;,t=1,...,T}. Let us consider the following problem:
.1 2
min > Ju = g(w) 3. (42

We compute u; by using the SGD update:

w=u =y (W —g(Wes &) = (1 —yo)w—1 +y:.8(Wes &), t € [T],  (4.3)

where g(w; () is stochastic estimator of g(w) such that E; [g(w; {)] = g(w). The
update is also known as moving average sequence of {g(w,)}.

The intuition behind this is that when w; converges (i.e., w, — w;_; — 0), u; is
a better estimator of g(w;) than g(w,; ;). With u,, the gradient estimator can be
computed by

Z; = Vg(“’t?é}/)vf(ut;ft), (4.4)

where ¢/ is another independent random variable. Then, we can use it for updating

Weel = W — 12y
The detailed steps are presented in Algorithm 9.

Critical: Using ¢; instead of {; in computing Vg(w;; /) is for simplicity of
analysis, which decouple the dependence between u, and {; as u, depends on
{;. However, this will increase the number of random samples per-iteration.
For practical implementation, one may just use ¢ = {;.
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

4.2.1 Convergence Analysis

We make the following assumptions regarding the SCO problem (4.1).

Assumption 4.1. There exist L1, G| > 0 such that

(i)  fis Li-smooth, i.e., |[Vf(g) =Vf(g)ll2 < Lillg—-¢'ll2,Vg, g';
(ii) E[IVf(g:9l3] < G3,Vs.

Assumption 4.2. There exist G, > 0 such that E[||Vg(w; O)[13] < G2, ¥w.

Due to Jensen’s inequality, E[[|Vf(+€)|3] < G2, and E[[|Vg(w;)I3] < G2
indicate the G-Lipschitz condition of f and G»-Lipschitz condition of g, respec-
tively.

Assumption 4.3. There exist o, 0, 0 > 0 such that

(i) Blllg(w:0) - gWli3] < a3, ¥w;
(i) BlIVf(g:6) - Vf(®I3] <ol E[lIVe(w:{) = Vg(WI3] < o3, Vw. g.
(iii) F. = minyg F (W) > —oo.

Assumption 4.4. F is Lg-smooth, i.e., there exist L > 0 such that VF(-) is Lg-
Lipschitz continuous.

It is notable that the smoothness of F does not necessarily imply that g is smooth.
One example is that if g(w) = ||wl||; and f(g) = g, the overall function F(w) =
||W||§ is smooth but the inner function g is non-smooth.

Lemma 4.1 Under Assumptions 4.2 and 4.3(i), the {u; },>1 sequence (4.3) satisfies
that

G
E,, [”ut - g(Wt)”%] < (1 =) laoy - g(“’t—l)”% +')’t20'8 + 7_ [|w; — Wz—1||%~
s

(4.5)

where By, denotes the expectation over {; given all previous randomness.

@ Why it matters

The lemma admits an intuitive interpretation. The first term shows that |lu; —
g(w,)||§ is bounded by a contracting sequence. The second term is due to the
noise in g(w;; ;) and the third term is caused by the drifting from w;_; to w;,
. . E[|lw,—w,_1]13
both of which decay to zero under the conditions y?> — 0 and M =

2
(0] ("j/—;‘) — 0, respectively.

Proof. In the following proof, we abuse the notation E; to denote E,,. According to
the update formula w; = (1 — y,)u,_1 + v, g(W;; ¢;) we have
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E: [l — g(wo)ll3] =By [I1(1 = yo)w—1 +yeg(Wes &) — g(w)ll3]
=B, [I(1 = y) (o1 — g(Wo)) +v: (g (W3 &) — g(wo))ll5] -

Note that E; [(u;—1 — g(w;)) " (g(W;: ;) — g(W;))] = 0. Thus,
E [llw — g(wo)ll3] < (1 =) lw—1 — g(wo)l3 + y2og. (4.6)

This inequality is same as Lemma 3.7 when we consider u, as the SGD update
for (4.2).

Due to the Young’s inequality of inner product, we have ||ju;—; — g(w;) ||§ <(1+
@) [la;—1 = g(We-)II3 + (1 +1/@) llg(W,) = g(W;-1)|I3 for any @ > 0. Whence,

E [l — g(wo)l3] <(1=v)*(1+y) -1 — g(we—) I3
+(1=y)*(1L+ 1/y)G3 W, = Wi |5 + y2op.

The proof is completed by noticing (1—y;)*>(1+y;) < 1—y; and (1-y,)>(1+1/y,) <
1

" 5
Lemma 4.2 Under Assumptions 4.1, 4.2, 4.3 and 4.4, SCGD satisfies
272
n n:G3L
Eg.e.00 [F(Wir1)] <F(w;) - Et IVF(w)l3 + —=2—Ey, [Ilu, — g(wo)ll3]
2LrG32G2
Milideiy @.7)

2

Proof. In the following proof, we abuse the notation E, to denote E, ¢, ;7. Accord-
ing to Lr-smoothness of F, we have

L
F(Wiat) < F(We) + VEW) T (Wet = Wo) + = [Weat = Wil

n?Lr

7 [Ve(we &)V ;-

= F(w;) — 1, VF(w;) " Vg(w; OV f(asé) +

Then, we have
E, [F(Ws1)] <F (W) =, [IVF(w)) |13

+1| By [VF (W) T (Vg(Wes £V (8(We)) = Vg(wes £V f(u))]

2
n;LF , 2
+ [2 E, [||Vg(Wz;§,)Vf(ut;§z)||2] > 4.8)
where we use the fact

Ee [Ve(we Z)Vf(g(w))]| = VF(w,)
Eg.ce [VeWis V(i é0))] =By o [Ve(Wis )V f ()]
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

Due to the Cauchy-Schwarz inequality and the Young’s inequality of inner product,
we have

E,[VF(W:) " (Vg(Wi; £V f(g(We)) — Ve (Wi )V f(uy))]

2
IVF (w13 |Ve(we: 7)) G?
<E, k T2 LBy | 22 IV (g(w) = Vf(u) I3
2G2 2
IVF(w)|} G3L?
S =Byl — g (w3 (4.9)

For bounding the last term in (4.8), we proceed as follows:

B, (Vg we, i)V r 0 €0[5 | | < Baar [IV8 W 8D Btz 197 s ) 13]

< G3G3. (4.10)

We finish the proof by plugging the last two inequalities into (4.8). O

Critical: We comment on the modifications required in the analysis when
the same sample ¢; is used to compute Vg(w;; ;). In the original proof,
there are two places highlighted in boxes, where we explicitly rely on the
independence between u, and /. If instead we use the coupled estimator
Ve(ws; &)V f(us; &), then the first term must be modified and bounded as
follows:

B, [VE(W:) T (Ve(We )V (8(W): &) — V(Wi L)V f (a3 é1)) |

[VEWoII” 1Vg (W3 &) 112

<E l 2G2
2

GZ
+E | VS (g(w)ién) = V(i é)P |

To recover the same bound as in (4.9), we must impose a stronger regularity
condition on f, namely,

Be [V (2:6) - V(& OI7] < Lille-¢'ll5.

For the second boxed term, the corresponding expression becomes
E, [|| Veg(w:; &)V f(ug; &) ||2] , which in turn requires assuming that this quan-
tity is uniformly bounded by a constant.

Combining Lemma 4.1 and Lemma 4.2, we can prove the following theorem of
convergence for SCGD for a non-convex function.

Theorem 4.1 Suppose Assumptions 4.1, 4.2, 4.3 and 4.4 hold. After T iterations of
SCGD updates with parameters 11, = 75, v+ = 755, we have
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_ 200 L3G3GSm? . LiGlogm . LrG2Gin
= T %Tz/s T2/5 T35

T
1 2
E ;Zl IVF (w3

where Cy = F(w;) — F. +LC20° oI =1/, v, = y1 /1283, then the conver-

gence rate becomes O (log T/TZ/S).

Proof. Adding ‘ G} '7: [lla; — g(w,)13] on (4.7), we have
222
1Y2

2

E, [F(Wi1)] + Z—E [, - g(w)l3]

22 22
" nL2G M LrG2G2
< F(w,) - EIIIVF(Wz)H% + (1+y) ——2E, lu, — g(w,) |3 + ZT

Applying Lemma 4.1 to bound the right hand side, we have

LiG3n
1 t
Er [F(Wer)] + =2 228 [[lu - g(wo)l13]
Vi
LG}
n n
SF(W:)——’IIVF(W1)|I§+(1 — (1 +y) =527 lu = g(wi-pl3
t
(1+y,)L2c;2G2n, 5 LiG305 niLrGiG3
272 Iwe = wetll5 +yem: (1 + 1) 5>t )
2G2 204
sl G Mt
< Fw)+ =52 T sy = g (eIl + =5 [we = w3
Vi t
2 232
M LrG3G
+y L3 Ghog + =22 = T E w13

. . L?G?
We define the potential function Y, = F(w;) + ITZ% |-y — g(w,_1)||§. By the
setting, we have 2L ”—;, then

Yeel T
232 2
G3 1yt G3
Yoot = F(Weat) + =52 58 = (W0l < Fwee) + =52 fluy = gl
Yi+1
Then,
24 2 2032
L1G2 tLFG1G2

Nt
E [Yi] €Y + lw; — w,_ 1||2 + v Ly G%O'g

2 2

n
= S IV

Telescoping the above over ¢+ = 1 to T and use the tower property of conditional
expectation.
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

T
<2B[Y) - Yral +2L3G3 ) v} G1G3
t=1
T 22 T
LrG3G2
+ L%G%Ug Z Vel + — r]?.
t=1 t=1

T
B> n IVF(w)I3

t=1

where we use the fact E[|lw, — w,—1|3] = E[n?_IVg(W:: )V (a3 é)5] <
n?_ ,G3G3. Let wo = wy and ug = g(Wo; £1). Then, we have

L%C% 11 2
E[Y) = Yrul <E|[F(wy)+ 7|Illo—g(Wo)||2 - F.
12
G20
< F(w)) - F, + ¢m
2

L Gz‘To '71

We define Cy = F(wy) — F. + /=221 Then we have

2Cy P v,

2~6~2
+ L1G,G] T
t177 =11
22
G2 22[ 17177t+LFG G Zl ]nt

200 =71 :
=11 2 t 1 e

E[IIVF(wo)3] <

+ L2

Plugging the constant values of ; = 5=z and y; = 7—/ we have

T3/

20y LiGIGST  LiGiogyvi  LrGiGim

2
E[IVEGolL] < g T T2/ 27775

If g, = 0(1/87),y, = 0(1/1*1), '7”‘ ; is satisfied. Besides, we have Y.\, 1, =

0(T2/5)7 ZtT:1 77? =0(1), thl ')’t’]t = 0(10g T), Zt:l Y m”t—l = O(logT). Then,
we have E [|[VF(w.)|13] < O(1/T%5). .

4.2.2 An Improved Complexity with Smooth Inner Function

If we replace the smoothness assumption of F' by the smoothness of g, we can es-
tablish a better complexity of SCGD.

Assumption 4.5. g is Ly-smooth, i.e., there exist L, > 0 such that Vg(-) is L,-
Lipschitz continuous.

Assumptions 4.1 and 4.5 ensures that F' is smooth.

Lemma 4.3 Under Assumptions 4.1 and 4.5, we have F is Lg-smooth, where Ly =
GiL> +G3Ly.
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Proof. Since VF(w) = Vg(w)V f(g(w)), we have

IVg(w)Vf(g(wi)) — Vg(w2)Vf(g(w2))ll2
=[|[Vg(w)Vf(g(w1)) — Vg(w1)Vf(g(w2))

+Vg(w)Vf(g(wa)) — Vg(w2)Vf(g(w2))ll2
< G3Li||wi — wall2 + G La||wy — wala.

O
Lemma 4.4 Letz, = Vg(w; )V f(us; &), My =E;[2;]. Then
Ei[llz - MiI3] < Glo3 + G3of,
E:[IIWeet = wel3] < 77 G163,
B, (1w = Will3] < nf IMUII3 + 777 (GRos + Go).
where E; denotes Ey g conditioned on w;, u;.
Proof. First, we have
’ 2
Eelllze = Mil3] = B [||[Ve(Wes E)V f (&) = Vg (W) V£ (uy)||;]
=E[IIVg(w)Vf(ur) - Vg(w)Vf(us;ér)
, 2
+ Vg(w)Vf(u:; &) - Vg(wt§§t)vf(ut§§t)||2]
< G%o-l2 + G%O‘%.
Next, due to Assumption 4.1, 4.2 we have
Ee[lIWet = Well3] = B 07 IV8 (Wes )V f (i €3] < 17 G163,
Second, we have
E[llwes — Wt”%] =E, [77;2||Zt -M;+ Mz”%] =E, [7712||Zt - Mt”%] + 7712||Mt”%
Plugging the first result into the above, we finish the proof. O

Next, we develop two lemmas similar to Lemma 4.1 and Lemma 4.2.

Lemma 4.5 Under Assumptions 4.2, 4.3 and 4.5, ifnf71 < L;/tGZ then the {u;};>1
271

sequence (4.3) satisfies that

2 2y, 4G5 2
E [l = g(woll3] < (1= y)E[llw—1 - g(w,—p)lI3] + —, BlIMl]
t
3n?_,G2
+yiod + %(G%ag +Glod). (4.11)

Proof. Similar to the proof of Lemma 4.1, we have
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

By [llur — g(wo)ll3] < (1=9)* w1 = g(w)ll3 + v/ 05 (4.12)
Next, we will handle ||ju,-; — g(w;) ||§ differently by using the smoothness of g.

lur—1 = g(Woll3 = -1 — g(wi—1) + g(wi—1) — g(wo)lI3
= w1 = g(wem )13 + llg(wimt) — g(Wo)lI3
+ (o1 — g(Wim1) T (g(Wi1) — g(Wy))
< lugoy = g(Wem)II3 + G5 Iwe—y — will3
+2(-1 — g(Wim1)) T (g(Wi—1) — g(Wy)).

Taking expectation on both sides and applying Lemma 4.4, we have

E[llu;-1 = g(Wn)l3] < Elllw—1 = g(we-)I3] +1;_ G3E[IM;-1113]
+n77,G3(G307 +G103) + E[2(w—1 = g(W;-1)) T (g(Wi-1) — g(W))].
Instead of using the Young’s inequality of inner product to bound the last term, we

proceed as follows:
E[(u-1 = g(We-1)) " (8(Wi-1) — g(W1))]
= E[(u;-1 = g(Wr-1)) "Vg(Wr—1) (Wit = Wy)]

A
+E[(u—1 — g(w—1) T (g(W—1) — g(W,) + Vg(w,—1) T (W, — w,—1))].

B

To bound A, we have

A=E[(u-1 — g(Wi=1)) "Vg(W—1) -1 Mi_1]

2
ni_
< Blonl| (-1 = gw-1) I+ 5= Vg (wi) "M 3]
t
2 2
n:_.G
< Blagll(woy = g(wi)TIP + == M, 3]

da,
To bound B, we have
B <E[llu—1 — g(wi—)ll2llg(We—1) — g(We) + Ve (we1) T (W, — we_1)]l2]

L,
< E[flu,-1 - g(Wz—1)||27||Wz - w3

2 2
< éﬁ[nut_l = g(WeD) I lIwe = Wit 131+ —2ELlIwe = we- 3],

where the first inequality uses the smoothness of g and the last inequality uses the
Young’s inequality. To proceed, we utilize the first bound of E,_[||w; — w,_; ||§]
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in lemma 4.4 to bound the first term, and utilize its second bound in lemma 4.4 to

bound the second E[||w, — w,_, ||%]. Thus, we have

n L2G2 n2_ G2
B <=2 B llu — g(we) 3] + 2
2 2

+ M-
4

2 (G%O'Q2 + G%O’lz ].
Combing the bounds for A and B, we have

E[(u;—1 — g(w;—1)) " (g(Wi—1) — g(wy))]

n? L3G3 n? G5 n? G
=(a,+% Bl = g(we-n) 3] + | =7 2+ =
t
GZ
L 122 (G} + GRod).
As a result,
2 22
B ;1 L5Gy 2
[lu, - = g(wo)ll3] < 1+2at+T lu—1 = g(we) I3
2 2
2 2 77—1G2 i, 1G
+(’7:—1G2+ tz% ’2 E[IM;-1113]
2 2
n:_.G
+ (ng_IGg o Tt 2)(0@2 +G2).
nt 1L G?

Welete, = % <1,

can finish the proof.

E[IM-1113]

2
) (M- 5]

> < 7‘ . Combining the above inequality with (4.12), we

O

Lemma 4.6 Under Assumptions 4.1, 4.2, 4.3 and 4.5, if n;Ly < 1/4 then SCGD

satisfies

BIF(wien)] <E|F(wp) = TIVF(w) 13 = ZIMIB

272
+ 1:G5 L

5 Elllg(w) - |31 +27Lr (G307 +

Proof. According to Lemma 4.3 (Lr-smoothness of F'), we have

Lr
F(We1) < F(We) + VF (W) T (Wit — We) + — ||Wt+1 - Wz”z

=F(w;) - n,VF(W,)TVg(w,, OV f(uér) +

Taking expectation on both sides, we have
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

T ntzLF 2
E[F(Wi1)] <E[F(wo)] - nE[VF(w,) M] + > Elllz, — M; + M:||5]
=B[F(w,)] - mE[VF(w)" M) + 17 LrE[llz, = M, 3] + 07 LFE[IM]]3]

Using —2a"b = [la — b — [|a]|3 — ||b]|2, we have

BIF(wi)] < E[F(w) = ZIVF(w) I3 = 2 IM, 3]

+ DE[IVF (W) = Mill3] +n?LrE[llz = M 1G]+ m LEBLIM ).
Next, we bound E[||[VF(w,) — M,|13].

E[IVF(w;) = M.|13] = E[|IVg(W,)Vf(g(W)) — Vg(w)V.f(u,) 3]
< G5LIE[|lg(w,) — u|13].

Combining the above inequalities, we have
n n
E[F(Wi1)] < E[F (W) - éIIVF(Wz)Ilg - éIIMzH%]

nGiLy
2

Elllg(W:) = w 3] + 17 Lr (G307 + Gio3) +n; LEE[I M [13].

If n,Lr < 1/4, we have —%HM,H% +n’Lp ||M,||§ < %IlM;llz, which concludes
the proof. O

Finally, we establish the following convergence of SCGD under the smoothness
condition of g.

Theorem 4.2 Suppose Assumptions 4.1, 4.5 and 4.3 hold. Run SCGD with T itera-

o, = : v N1
AR where 1 < min( Vioin a6 T ). Then

tions with parameters n; =

we have

Cy +L1yfo-g m(Lp + L1G3)(G30? + Gloj

E + ,
771‘/7 771\/7 \/T

<0

T

1

7 2, IVF W3
t=1

where Cy = F(wy) — F. + \L—}6IIU1 —g(wll3-

¢ Why it matters

From Theorem 4.2, we can derive that in order to find an e-level stationary so-

lution of a smooth non-convex compositional function (whose gradient norm is
. L} .

less than €), SCGD needs a sample complexity of O(_;). The order in terms of

€ is the same order as that of SGD for solving non-convex ERM.

Proof. By Lemma 4.5, and Lemma 4.6, we have
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BIF(wien)] < E[F(w) = ZIVE(w) I3 = 2 1M, 1]

nG5L3
+ =Bl - g(wo)ll3] + 07 Lr (G + Gloy),
4n’G?
E [llurs1 — g(Wer) 3] < (1= ypa1) luy — g(wo) |13 + — IZE[thu%]
+
3 G
+yt2+10§+ 'h (G2 2+G2 ).

Multiplying the second inequality by G2L 1M:/(2y1+1) and adding it to the first in-
equality, we have

T]thLz
B|F (W) + =5 2 e = gwen) I | < B Fw) = TIVEw)IB = 7 IM5
+
n:G2L? n.G3L? 49} G3
2LE[|lu; - g(w)l3] + ——2E[IM 3]
2141 2Y41 Vil
n,G2L? n.G3L? 307G
+n°L G2 +G20-2+ 27,2 52y 2 G2 2+ Gio?
n: Lr( 10%) 2yt Yi+1%0 2in1 3 ( ) 207
. 77,G§L|2 47]t2G ,7 Veil . . 2 .
Since B2 < I duetoyy, < \/géng,the term involving || M, |5 will be less
than zero. If y't]—’ < '7; L we obtain
UtG2L2
E|(F (W) + 2 loer — g(Wt+1)||2
l+
Nt 1G2L n UtG%L%
E|F(w,) + ———E[|lu, —g(Wz)H% — ZE[IVF(w)I3] + V0o
2y, 2 2y

T] 2L2 377

2 Yi+1

+7Lp (G0t + Gio?) +

5+ G20'1 ).

Applying n; < \F to the R.H.S, we have
n,G3L?

t+1

Ne— 1G2L2
< BIF(wo) + =2 lu, - g(w))I3
Yt

E|F (W) +

o1 — g(Wz+1)||§ ]

- _E[”VF(wt)” ]

7,.,_10'0 +1; (LF+L1G2)(G2 +G%O'22).

2\/_

272
Define Y, = F(w,) + “5 22 B[ |u, - g(w,)[[3. Then we have 37 (Y, ~ Y,.1) <
Cy =Y, -F,and
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T T 2 2
2C L oz
E Z Tm ||VF(w,)||§ < X o, pIvil 1T7’z+1 0
=1 Zi=i 1t =11t ‘/§Zz=1 i
5L 23 (L + LiG)(GRot + Glad)
+ .

T
=1 n:

Plugging the values of 7, y; will finish the proof. O

4.2.3 A Straightforward Approach with a Large batch size

Before ending this section, we compare the complexity of SCGD with a straightfor-
ward approach that uses a large batch size for estimating the gradient. In particular,
we update the model parameter by the following:

B B
_ 1 _ 1 , _
U=z JZ:; g(WesLje)s Ve = 3 ; Ve(Wis & IV (05 &) (4.14)
Wil = Wy —11: Vs, (4.15)
Then under Assumptions 4.1, 4.2, we have

E[|[¥; = VF(w.)l13]

B

= EH'% ; Ve(Wi: {{ IV f (03 &i) = V(W) VS ()
2
i

1 B
E[HE ; V(Wi &l VS (Ui €i) = V(W) V f (W)

+Ve(w)Vf (@) - VF(w,)

Since

J

2 2 2 2
G20'1 +Glo'2
= Ta

2
E[”Vg(wt)vf (u;) — VF(w;)

2722
Gy Loy
B b

< B[G3Lillu; - g(w)li5] <

2

Lo} ool

then, E[||¥, —VF(w,)II%] <0 (% +—5 ) Hence, if Assumption 4.4 holds and

by setting B = O(max(L%O'g/ez, (a'l2 +O'22)/62)), n=0(1/Lg)andT = O(Lp/€),
Lemma 4.9 will indicate that the naive approach can find an e-stationary solution.
Overall, it yields a sample complexity of
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Algorithm 10 SCMA

1: Input: learning rate schedules {7,
2: Let wi = wg — 170V
3:fort=1,...,Tdo

: Sample ¢, ¢/ and &

T

T . ; :
¢=1» {¥t},_,; starting points wo, U, vo

4
5 Compute the inner function value estimator u, = (1 — yy)u,—1 + v, g (W5 &)
6: Compute the vanilla gradient estimator z, = Vg(w;; )V f(u;; &)

7: Update the MA gradient estimator v, = (1 — B;)V,_| + B:Z;

8: Update the model w by w; 1 = w; — 17, v,

9: end for

BT =0

)

et et

LpL?0? Lp(c?+ 0?2
max( 170 1 2 ) )

Critical: Compared with Theorem 4.1, the sample complexity of this naive
approach is improved by an order of magnitude. In comparison to Theo-
rem 4.2, while the order of € remains identical, the dependence on the Lip-
schitz constant L; is reduced. Specifically, SCGD exhibits a dependence of
O(L‘l‘), whereas the large mini-batch approach achieves O(Lf), assuming
Lr=0(Ly).

4.3 Stochastic Compositional Momentum Metholds

In this section, we present a method that matches the sample complexity of the large
mini-batch approach without using large mini-batches under the smoothness condi-
tions of f and F. The idea is to design a gradient estimator such that its error can be
reduced gradually. It turns out this technique, related to the momentum metholds for
standard stochastic optimization, is more widely applicable to other problems dis-
cussed later in this chapter. Furthermore, we introduce advanced metholds to further
improve the complexity to O(1/€?) under stronger conditions.

It is worth noting that the results in this section apply to the standard stochastic
optimization problem (3.1) under the smoothness assumption of g(w) by setting
fi(g) = g and L| = 0 in the complexity results and removing the u update in the
algorithm.

4.3.1 Moving-Average Gradient Estimator

The first method is to use the following moving-average gradient estimator:
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Ve = (1= B)Vio1 + B Vg (Wi {)V f (a3 &), (4.16)
where 0 < B; < 1. With v;, the model parameter is updated by:
Weel = Wr =1t Vz. 4.17)

We present the full steps in Algorithm 10 and refer to it as SCMA.

To understand this method, we can view v, as a better estimator of the gradient,
with its estimation error gradually decreasing over iterations—a property we will
prove shortly. This yields an enhanced stability of momentum-based metholds ob-
served in practice.

Connection with Stochastic Momentum Metholds

This method is analogous to applying the stochastic momentum method to
the ERM problem, using the term Vg(w;;/)V f(u;;&,) as a surrogate for
the true stochastic gradient. This connection is revealed by reformulating the
update into a canonical momentum form:

Wil = W, =, Veg(We )V f(ug &) + Br(we — wi_1), (4.18)

where the effective step size and momentum parameters are n; = 7,3, and
B =n:(1—;)/n:-1, respectively. The term 3, (W, —w,_1) is the momentum
term.

In the special case where f is the identity function, the update is identical to
the classical stochastic momentum method (also known as stochastic heavy-
ball method), renowned for its accelerated performance on quadratic func-
tions relative to plain gradient descent. Hence, the convergence analysis pre-
sented below also applies to the stochastic momentum method for ERM by
setting L1 = 0.

Convergence Analysis

First, we prove a generic lemma that establishes the error recursion of v;.

Lemma 4.7 Let v, = (1 - B¢)Vi_1 + B:2s, where B, [z,] = M,. If B[]z, —Mz||§] <
o2, then we have

E [lve = VE(W)I3] < (1= B0) Ive—1 = VE(W_1)I5 + Bio? (4.19)
2

ﬁF Wit = Well3 + 48, 1M, — VE(w)l3 .
t

Proof. Due to the update formula v, = (1 — 3,)v,_| + B;Z;, we have

+
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E, [||Vt - VF(WZ)”%]
=E, [”(1 = B)Vi-1 + Bz — VF(Wt)”%]

=B |l (1 =B)Vic1 = VF(W,) + B M + B (2, = M,) ||§ .

ar b,
Note that E, [a/b,] = 0. Besides, we have Et[||bt||§] < B?0%. Due to Young’s
inequality, we have [la + b||3 < (1 +a)l|all3 + (1 + 1/a)||b||3 for any & > 0. Hence,
llaell3 = 11(1 = B) (Veet = VF(W;—1)) + (1 = Be) (VF (W) = VF (W)
+ 6 (M - VF(Wt))”%
< (1=B)*(A+B)I(vie1 = VF(wi-1)) 13
1
+(1+ F)ll(l = B)(VF(Wi_1) = VF(W,)) + B (M, — VF(wy))II3
t

201+ B)(1 - B)?
B

< =B)Iviz1 = VF(Wt—l)”% +

21+ B,)B?

+ —_—
B

2

2 2LF 2 2
<(1=pB)llve-1 = VF(Wt—l)”z + _,3 ~ |lwey - Wt”z +40; |IM; — VF(Wt)”z-
t

IVF (1) = VE(W)lI3

IM, = VF(w,)|2

Combining the above results, we finish the proof. O

With the above lemma, we are able to establish the error recursion of v, of SCMA.

Lemma 4.8 Under Assumptions 4.1, 4.2, 4.3, and 4.4, for t > 1 SCMA satisfies that

Ee, ¢ [V = VE(W)I3] < (1= B0) Vi1 = V(w113 (4.20)
2
+ ﬁf Wit = W,lI3 +4G3L3B; llu, — g(w)ll3 + B2,

where 0% = G%O'z2 + G%(le.

@ Why it matters

The above lemma establishes the recursion of the error of stochastic gradient
estimator v;. It is the key to show that the average of the estimator error of v,
will converge to zero.

Proof. We denote by E,[-] = Eg, /[]. Letz, = Vg(w;; )V f(us; &) and M, =
E;[z;] = Vg(w,)Vf(u;). Lemma 4.4 proves that

E:lllze - M l13] < G507 + Gio3, 4.21)
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4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

and
IM; = VE(WII3 = Vg (W) V f () = Vg(w) Y (g(w)ll3
< G3Li|lu; — g(wi)ll3.
Plugging these two results into Lemma 4.7, we finish the proof. O

Critical: If we use the same random sample ; to compute

2, = Vg(Wi; &)V f(ug; &),

then M; = Eg, (2] is not equal to Vg(w;)V f(u,). However, we just need
to assume that E,, £ [||z; —M,||§] is bounded and ||Vg(w,; &) ||> < G. Then

IM; = VE(W)II3 = By, Ve (Wi £V f () = B, Vg (Wi £)Vf (g(Wo)) I3
< B IVe(Wi: £V f () = Vg (Wi £V f (g(wa))I3
< B¢ [IIVe(We: 203NV f (up) = V£ (g(wi))I3]
< B, [G5LT llu; — g(wo)ll3] -

The following analysis will proceed in the same manner.

To enjoy the above recursion of the gradient estimator’s error, we state the fol-
lowing lemma, which is a variant of the standard descent lemma of gradient descent.

Lemma 4.9 For the update Wiy = W, — Ve, t 20, if n, < 1/(2LFE), we have

n n 1
F(wWi1) < F(wy) + Et IVE(w:) = vell5 - Et IVE(wo)ll3 - o Wee1 — Wl
t
(4.22)

¢ Why it matters

This lemma ensures that if the stochastic gradient error satis-
fies E[+ X/, IIVF(w,)-v]3] — 0, then the convergence of
E[+ 27, IVF(w,)|3] to zero is guaranteed.

Proof. Due to the smoothness of F, we have
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L
F(Wi1) < F(w;) + VF(Wt)T(WtH - W)+ TF (W1 — Wt”%

Lr
= F(W) + (VF(W) =) (We1 — Wy) + V; T (Wil — W) + — > [[Wee1 — Wt”z

=F(w;) —n:(VF(W;) = Vi) v, — (nl - LTF) Wi —well3
=F(w)+n I(VF(w;) - Vt)”% -1 (VF(w;) - vt)TVF(w,)

1 Lp
- (E - ?) W1 _Wt”%'

Since (VF(w,) = Vi) VF(w,) = £ (IVF(w,) = vil13+ [VF (W)l = v, 113), then
we have

1 Lf
F(We1) < F(we) +1, [[VF(w,) - Vt”% - (77_ - 7) IWesr — Wt”%

t

n
= L (I9F (w0 =il + IV F (w3 = Ivil13)
n 2 1 Lp 2
= F(w) + 5 IVE) = vl = S IV = |5 = 5| Iwees = well.
t

To prove the final convergence of SCMA, we present a useful lemma.

Lemma 4.10 Ifn, < 1/L, assume that there exist non-negative sequences A;, By, Tz, Ay, 67,1 >
0 satisfying:

(#)Ars1 < Ap +1:0r =By — i1y

Con?
(A1 < (1= Bry1)Ar + C1 1416141 + B lt I, +,3,2+10'27
t+

Csn; 2 n
(©)8r+1 < (1 = 41)0r + y_rt Y0 -

t+1

Cr, 7 7 7
Lo, = At St [ e < B, < Bty < min( i, )
and Y; > A, then we have

=5 1 (1B, + 1 r) < Cy . ZZ:()I (Tltﬂt+10'2 + 2C17717’t+10"2)
, MeDr + SMelt ,
=0 ZZ: L 2 ZT—() un tTol Nt
whereCy:Yg—A*sAo—A*+ FAO-'- 8&50
2 .
Ifg= 302, W, n= mm(L, Vics W)’ then in order to guarantee

142
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~

,]1

1
f(Bt + EFI) < 62.

Il
(=}

t

the iteration complexity is the in the order of

CyL Cya'z\/c_‘z CYvC1C3C1(T'2
T = O [max .

e’ e’ et

Critical: If (), (#), (¢) hold in expectation, then the concluding inequalities
also hold in expectation.

Proof. The proof is constructive. The idea is to construct a telescoping series of
A + a,As + b6, with some appropriate sequences of a;, b;. First, we have

Al + Are1 Ayt + bi16041 < Ap + e A — e By — 12
2

Con; 2 2
+ a1 (1 = Bra1)Ar + a1 C1Brs1 041 + Ay ﬁ_rt +a1B;,0
t+1

Can?

t+1

2 2
Fl +bt+1’yt+10' .

+ b1 (1 = Yi41)8; + bry

Let ary1 = n¢/Brs1 < ni-1/Br and byy1 = Ciny (1 + y141) /¥e41, We have

n L+ 7y
Apgr + _tAt+1 +(C1m4 AL Cini)0i41 < Ar — 1 By — i1y
t+1 t+1
3
n Con
+ {7+ d (1=Bm1) | A + 5 trt""]tﬂmlo'z
IBt+1 41
1+ Y41 C3Cim; (1+y141)
+ CIUI—H(I — Vis1)0; + tfﬁr‘t +Cin:(1 +7’t+1)7’t+10"2-
Yi+1 Vil
Thus,
C C
A1 + It Apyr + hald Ore1 S Ar+ r A + Lt Oy
t+1 Y+l t+1 Vil
Con} GO (1 +y441)
1B — |m — 21— : s I,

2
B Vin

+ Utﬁt+10'2 +Cin (1 + yt+1)yt+10—,2'

Since 1, /Br+1 < M:-1/Br and 1 /Y141 < 11-1/7yr and ;41 < 1, we have
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C _ Cins_
A + LAt+1 + 1_771(5”1 <A+ il lAt + Ul 151‘
t+1 Ye+1 t Vi
G} 2C3Cim}
—n:B: — |1 - N L
ﬂt+l 71+l

+ Utﬁt+10'2 + 2C177t7t+10'12-

Since Con}/B%., < m,/4 (because 5, < Br41/V4C2) and 2C3Cmf/yt2+1 < n /4

t+1

(because 17; < y;+1/V8C1C3), we have

(o _ Cins—
Ay + Nt Ay + mt6;+1 <A+ Nt lAt + 1Mr-1
t+1 Ye+1 t Ve

0

1
-n:B; — Entrt + 77t,31+10'2 + 2C177t7t+10',2-
Define Y, = Ajqp + L%A’“ + %6,“, we have

1
B, + EmFt <Y =Y + 77t,8t+10'2 + 2C177t7t+10-,2'

Hence

~

1
(m:B; + Entrt) <Yp- A+ (let,3z+10'2 + 2C177tyt+10-/2) .

t

~

-1

I
(=}
I
(=}

t

Next, let us consider ; =1, 8; = B,y: = y. Then we have

~

_]1

1 C
f(B’ + EF,) < TY + (B(Tz + 2C1yo"2) .

Il
(=}

t

In order to ensure the RHS is less than €2, it suffices to have
2 2
€ € Cy
B —

= y=—S_ 7=-X
302 7 6C07? 3eZn

Since

(1 B Y )
=min|—, N )
7 (L V4C, V8CC3

thus the order of T becomes

a CyL CyVC; CyVCC3
T = O |max s s
€2 €2 ve?
( {Cpr Cyo\GC, ny/C1C3C10"2})
= 0 |max , R s
€? et et
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where
Ui Cin 1 VC
CYZA()—A*+—A0+—50 SA()—A*+—A0+—50.
B Y 2VC, V8C;

Finally, let us prove the convergence of SCMA.
Theorem 4.3 Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. For the SCMA algo-

: p_ € _ € — i 1 B Y
rithm, set the parameters as follows: B = 375,y = o andn = min e Vie e o)

where 0% = G%Ul2 + G%O’ZZ, C = 4G§L%, C, = 4L12,, C; = 2G%. Then, the following

T-1

EDY {Z Ivell3 + ||VF(wt>||2H <€

t=0

holds, with an iteration complexity of

{CyLF Cyo'zLF CYL?U'(%})
ax > )
€

T =0 |m )
et et

where Cy :=2 (F(wWo) = F.) + 51— [IVF (o) = voll3 + 5 [lup — g(wo)l3.

@ Why it matters

Insights 1: Theorem 4.3 indicates that SCMA enjoys the same complexity of
O(1/€*) for finding an e-stationary solution as SGD for ERM. In addition,
the averaged estimation error of the moving-average gradient estimator v, i.e.,
E[+ X/ IV — VF(w,)|[3], converges to zero as T — co.

Insights 2: We can apply the above result to the Momentum method (6.2) for
solving the standard stochastic optimization miny, F(w) := E,[g(w; ()] by set-
ting L; = 0. The complexity of the Momentum method is

T =0 |m:

(F(wo) — F)Lg (F(wo) — F)o* L |IVF(wo) = voll3 o
R 2 ’ ! ) ! ’

which is no worse than that of SGD in Theorem 3.3. The key advantage of the
Momentum method over SGD is that it ensures the averaged estimation error of
the moving-average gradient estimator v, converge to zero.

The convergence bound also suggests that it is better to initialize v( in a way such
that |VF (wg) — v0||§ is small, e.g., using the mini-batch gradient at wy instead
of initializing it to zero.

Proof. The three inequalities in Lemma 4.8, 4.9 and 4.1 that we have proved so far
are
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()F (Wes1) < F(we) + T IVE (W) = vell

n n
S IVF (w3 - Zt Ivell3.220

-3
WE [IIvi = VE(Wo) 2] < BL(L = A1) [Ivi-1 = VE(we-)II3]
[ 2L2 772
+E4GILIB: llur =g (W) ll3 + — = Vil + B
() [llur = g(Woll3] < BL(1 =0 1 = g (we-p) 3]

Define A, = 2(F(w;)
IVF(w) - Vt||%, o = [luy

t

Tt < 7]t—1, Mt < Ne-1
B+ Br  Yinl Yt

Then we have

T-

=0 z: t

2
+E y—’ Ive1ll3 + v og

—g(w)l3,and Y, =

- F)and B, = |[VF(W)IZ Tv = [Ivl3/2, A,

A+ B, + DL,
Then the three inequalities satisfy that in Lemma 4.10 with C, = 4G3L3,C,
4L%,C3=2G3,0% = Go2 +Glo?, 0% =

0-0 Then n;, B, v satisfy

777t—m (

Br+1 Y+l
V4Cy \/8C1C

ST nIVFn)IG + ) tuz)l

Cr Yt (1o +2C]7]t7t+10—0)

<
2i=1T

T-1

=0 Tt

Since the setting of n, y, B satisfy that in Lemma 4.10, the order of T becomes

where

T=0

2 et

€

=0

s

{CyLF Cyo2\GC, CYVC1C3C10'§})
max -
€

€2 et

1
Cy =2(F(wp) - F) + NG

bl

lIvo = VF(wo)ll3 +

{CyLF Cyo’Ly CyxLio, })
max 4 5
€

1
llao — g (wo)ll3

VCi
V3G

1 L
= 2(F(wo) = F.) + 7= lIvo = VF(wo) I3 + =~ llug — g(Wo)l5 -
4LF 2
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4.3.2 STORM Estimators

We can further reduce the error of the gradient estimator by using advanced variance
reduction techniques under stronger assumptions. We make the following assump-
tions.

Assumption 4.6. There exists L1, G > 0 such that

(i) ElIVf(g:6) - Vf(g:Ol5] < L3llg-g'l12. Ve, 8
(ii) E[IVf(g:)I3] < G2 Vs.

Assumption 4.7. There exists Ly, G, > 0 such that

(i) E[IVg(w;{) - Vg(W: I3 < L3[Iw—w|13,Vw, w';
(ii) E[IVg(w:)I3] < G2, vw.

Due to Jensen’s inequality, Assumption (4.6)(i) implies the Lipschitz continu-
ity assumption of V f in Assumption (4.1)(i). Similarly, Assumption (4.7)(i) implies
that in Assumption 4.2(i), respectively. Hence, Assumption (4.6)(i) and Assump-
tion (4.7)(i) are stronger, which are referred to as mean-square smoothness condition
of f and g.

The STORM estimator

Let us first discuss a generic STORM estimator, an improved variant of the
moving average estimator. Without loss of generality, we consider estimat-
. . T . .

ing a sequence of mappings {M(w;)},_, through their stochastic values at
each iteration { M (w;; g“,)}tT:I, where By, [M(w;; ()] = M(w;) € RY . We
assume the mapping M satisfies:

Ee [IM(W;0) = MW 0)II5] < GPllw — W' |[3, Yw, W'
The STORM estimator is give by a sequence of Uy, . .., Ur, where

U = (1 =y) U1 +y MW &) + (1 =) (M(Wes &) = M(Wi_134r)),
4.23)

and y; € (0,1).

It augments the moving-average estimator by adding an extra term (1 —
ve) (M(wy; &) — M(we_1; ), which can be viewed as an error correction
term.

Applying the STORM estimator to estimating the sequence of {g(w;)},;>1, we
have the following sequence:

u = (1=y)u_1 +yg(We; &) + (1 = y)(g(Wes &) —g(Wio134)). (4.24)

Given u,, we can compute a moving-average gradient estimator (4.16) similar to
SCMA. However, this will not yield an improved rate compared with SCMA. To
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Algorithm 11 SCST
T

1: Input: learning rate schedules {7, },_,, {¥: thl; starting points W, U, Vo
2: Let w; = wg — 10Vo

3:forr=1,...,Tdo

4: Sample ¢, ¢/ and &

5: Update the inner function value estimator

u = (1= y)u1 +ye8(Wes &) + (1= y:) (8(We3 &) — 8(Wem1541))

6 Compute the vanilla gradient estimator z, = Vg(w;; /) V f(u;; &)

7 Compute Z; 1 = Vg (W15 )V f(w_15 &)

8: Update the STORM gradient estimator v; = (1 — B¢)Vs—1 + Br2: + (1 — B¢) (2: — Zs—1)
9: Update the model by W, = W, — 17, V,

0:

10: end for

reduce the estimator error of the gradient, we apply another STORM estimator to
estimate M, = Vg(w;)V f(u,). This is computed by the following sequence:

Ve = (1= B)vio1 + B: Vg (wy; Q’)Vf(ut;ft) (4.25)
+(1 _,Bt)(Vg(Wt§§;)Vf(ut§§t) - Vg(Wr—l;Q')Vf(uz-l;fz))-

With v;, we update the model parameters by
Wiel = We —11V;.

The full steps of this method is presented in Algorithm 11, which is referred to as
SCST.

Connection with Variance-reduced metholds for Non-convex optimiza-

tion

In the special case where f is the identity function, the update is identical
to the classical variance-reduced method (also known as STROM) for non-
convex optimization miny E/[g(w; {)], i.e.,

Ve = (1= Bo)Vi1 + B Veg(Wes ) + (1 = B) (Ve (Wi &) — Vg (We-154))),
Wil = We =11 V:.
(4.26)
It is renowned for its improved complexity of O(1/e*) better than the com-
plexity O(1/€*) of SGD for finding an e-stationary solution.

Convergence Analysis

We first prove a general result of the STORM estimator that applies to both u, and
Vi.
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Lemma 4.11 Consider v, = (1 — 8;)v,—1 + B2, + (1 — B,)(z; — Z;-1), where B; €
(0, 1). Let E; denote the expectation over randomness associated with z,,Z; — condi-
tion on the randomness before t-the iteration. If E,[2,] = M, and E,[Z,—1] = M,_1.
IfE[llz, -~ M|13] < o2, then we have

B [Ive = MAB3] < (1= B0) IIVict = M-t ll3 + B [2l|z, — 71 |12] + 28202
Proof.

E; [”Vt - MZH%]

=E, [”(1 = B)Vie1 = Me + Brzg + (1 = Br) (2, - it—l)”%]
=E; [II(1 = Be) (Vi1 = Me—1) + (1 = Br) (2 — Z—1) — (M = Mi—1))
+ B (2 — Mz)”%] .
Note that
B [{(1 = Be) (Vi1 = Mi-1),
(1 =B)(2zs =2-1) = (M; = M;i-1)) + Bi (2, — M;))] = 0.
Then,
Er [I1ve = Mell3] < (1= B 1V = Mie-ill3
+ (1= B) (2t —Z 1) — My = Mi_1)) + B (2 — MI)”%
(o)
< (1=B)* llve = Mol
+2(1 = B B [ (2 = Z-1) = (My = M) 3] + 287, [z — M |13]
()
< (1= B2 IVemt = Micit I3 +2(1 = B)°Er[llze = 211131 + 2870,
where (o) uses the Young’s inequality, () uses the fact that E[|la — E[a]||%] <
E[Ilallg],andEt[Zz —Z1] = My - M. O
Let us first prove an error recursion of u, in the lemma below.

Lemma 4.12 Under Assumption (4.7)(ii), we have:

By, [lur = g(Woll3] < (1=y2) llu—1 = g(We)ll5 +2v7 0 +2G3lIwe = Wi |13

2 2 2 2 2 2 2
E{, [ |la; — uz—l”z] < 2y; o +4y; llas—y — g(“’t—l)”z + 6G2||W, - Wt—1||2~

¢ Why it matters

Compared to the error recursion of u, to that in Lemma 4.1, the improvement

2G3||w,

2
. —W;_
comes from the last term reducing from R — =il to ZG%HW, — Wi ||%.
t
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Proof. The first part follows directly from Lemma 4.11 by noting the mean-Lipschitz
continuity of g(w; {). To prove the second part, we proceed as follows:
E, [”“t - ut—l”%]
=E, [”)’t (g(Wrs ) —u—1) + (1 —y:) (g(Wes 4y) = g(“’z—ﬁ{z))”%]
<E; [207 I1(g(Wes &) = w15 +2(1 = 70)* g (Wi &) = g(We-15 )15
<E: [207 I(g(Wi: &) =D 13] +2(1 = y0)*G3lIwe = wii 3.

Next, we bound the first term on the RHS as

E, [2%2 I(g(Ws; &r) — ut_1)||%] =E; [2712 I(g(Wes i) — g(we) + g(Wy) — ut_1)||%]

2 2 2 2
< 2y;04 + 2y llg(we) — w5

< 29203 + 2y llg (W) — g(Wi_1) + g(Wim1) — w13

2 2 2 2 22 2
< 2yrop + 4y llg(wiot) —weql; + 4y, Gollwe — wi_itll3,

where the first inequality uses the fact E [g(w;; ;) — g(w,)] = 0. Combining the
above results, we finish the proof. O

Next, we build an error recursion of ||v; — M, |I§.

Lemma 4.13 Ler 0> = G%a’l2 + G%(rzz. Under Assumptions (4.6) and Assump-
tion (4.7), (4.25) satisfies that

Ege [V = Mill3] < (1= Bo) Vet = M3 (4.27)
+16G5 L1y lus—1 = g(We-1)ll5 + (24G3LT +4GTL3)IWe — Wi I3
+ 2Bt20'2 + 8G§L%y,20'02.
Proof. First, (4.21) gives E, [|lz, — M,||3] < o*. Second,
E; [”Zz —21—1”%]
=B, [[IVg(We; )V f (w3 &) = Ve(Weo13 SV F (w13 )13

=B/ [IIVg(Wi; SV (0 &) = Vg (Wi )V f(ue-13 &)
+ Vg (Wi )V (o1 &) = Ve(Wm1: )V f(w-130)13]

()
< ZG%L%”ut — U ||§ + ZG%Lillwz — Wi ||%,
where (A) uses the Assumption (4.6)(i) and Assumption (4.7)(i). It then follows:

E [lIve = Mell3] < (1= B2 Vet = Mol

+4G5L[u, — |3 +4GILE||w, — w1 |15 + 287077

By using the second inequality of Lemma 4.12, i.e.,
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4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

E,, [ [, —umlli] < 27: O'o +47t o, -1 — g(w;_ 1)”2 +6G2||W, W 1||2,
we have

E, [”VI - Mr”%] < (1=pB)l|vie1 = M, 1||2 + 16G2L1'}’t la;—1 — g(w;- 1)”2
+(24G5 L +4GILY) W, — Wi |3 + 28707 + 8G3 L3y 0.

O
Similar to Lemma 4.9, we have the following descent lemma.
Lemma 4.14 For the update w;.1 = Wy, —1,V,,t > 0, ifn, < 1/(2LF) we have
F(We1) < F(w) + ﬂtGgL%”“t - g(Wt)H% +1 |lve = Ht”%
1
= JIVFOIB = - Wi = wil. (4.28)

This lemma can be proved following that of lemma 4.9 by bound ||v,~VF (w,)||? <
2||v, - Mt”% +2|IM; - VF(W1)||2 < 2|lv; - MI”% + ZGgL%Hu, - g(Wt)”%-

Lemma 4.15 For n, < 1/L, the non-negative sequences A;, By, T, Ay, 64,8 > 0
satisfy:

(#)Arr1 < Ap +n A + 1,6 — 1By — 1y
A1 < (1 =Br)Ar + C17t2+15t + C27]t2rt +ﬁ?+10'2 + 7,2+10J2’
(©)641 < (1 = yp41)0; + C377t2Ft + 7;2+10'"2

Let Yiy1 = Ay + - At+l + 6t+l 2 A.. Suppose c,c’, 0y, Y1, Br satisfy:

Crc+Czc’ <

c
s M+ —(1=f) <
Nt

N —

e-1 (4.29)

7’

c C’
N + _C17;2+1 +—(1=ym1) <
Nt un t—1

Then,

B o2+ Y 2 Y 2
Z(U:Bt"‘ Utrz)<CY+Z o'+ o7, (4.30)

1=l =0 Nt Nt

- L v _ _L E’7\/
If we set ¢ = iG¢ = 4c3’ﬁt =

_ enVC, enyC C
s Y = mm( o o7 ’2C32Cl ) and

€ VG, € V& .
=17 =min (L, WCo 8C507 3VCia7 4C3ﬁ) then in order to grantee
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~

711

1
T(Bt + EF,) < 52, (431)

Il
(=}

t
the iteration complexity is in the order of

- {CYL CrC3/Ci/Cy CyoVT; CyCio’ Cyo'\GCs }
X

T=0
e’ €? e T eVG e’

1 1
where CY = Y() — A, = A() + on + W(S() —A..

Critical: If (), (#), (¢) hold in expectation, then the two inequalities in (4.30)
and (4.31) hold in expectation.

Proof. The proof is constructive. The idea is to multiply the second inequality by
as+1 and the third inequality by b;4; such that we can construct a telescoping series
of A; +a;A; + b;5;. First, we have

A1 + Arg1 Ayt + D164 < Ap + 0Dy + 1,60 — 1By — 01
2 2 2 2 2 72
+ a1 (1 = Bra)Ar + a1 Cry; 6 + a1 Cony Ty + @11 By ) 07 + Qr1 Y 07

+ b1 (1 = y141)6: + b,+1C3T]?F, + bt+1712+10'”2-

Let a;+1 = ¢/n; and by = ¢’ /n,, we have

c c’
A1+ —Api1 + — 0011 < A — By — i1y
Mt Nt
2 2
cp cy
+ (r]t + i(l _:Bt+1)) A + CZCTIIFI + i 0'2 + i+l 0—’2
un n: n

74,2

c c’ , cy ,,
+ (T]t + _C17t2+1 + _(1 b ’yt+])) 6[ + C3C 77,F, + —t+10— 2.
un un Nt

With (4.29) we have

’ ’

c c c 1
App1 + —Apg + — 041 S A + A + 6 =By — =1
Nt Nt Mt-1 NMt-1 2

2 2 14,2

cf cy c'y
+ t+10_2+ t+1 0_/2+ t+10_//2

Nt Nt Nt

~ w4
Define Y,y = Apy1 + iAHl + %6,”, we have

2 2 )

cp cy cy
t+1 0_2 + t+1 0_/2 + t+1 0_/12.

Nt un Nt

1
n:B: + Enth <Y =Y +

Hence
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4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

= T- 2 )

1 c c
§ (B + =n:Ty) < Yo - E ’+1 o2+ Vit o Vvl el
t=0 2 o\ N Mt Mt

Next, let us consider 5, =, 8; = 3, ¥: = y. Then we have

T-1

1 1 Y, 2 )
X B+ 3T < X [ L o).
~ T 2 nT n n n
In order to ensure the RHS is less than €2, it suffices to have
€n . en Cy
= R = min T - .
p 2\Jco 4 (2\/_0' 2\/_0—") 4ep
To ensure (4.29), it suffices to have
2<eB, Ciey<c')2 Z<cy)2 c—L c'—L
T] —_ £ 1 ')’ —_ ) 77 —_ ')’ ) - 4C29 - 4C3 .

As a result, if we set

,(1 eVc e’ eV )
nzmln ) 5 5
L™ 20 4+Jco’ 40" 2+/cCy

. (1 € eVC, € VG, )
= min | —

L’ 4JCro” 8C30"” 8+/C30" " 4C3/Cy

5= eNG en\/C_z NG G
o 77 o7 2650y )
we have
-1, 1 ,
;T(BZ-FEFI) < €.

Plugging the values of 7 into the requirement of 7 yields the order of T'.
O

Theorem 4.4 Suppose that Assumptions 4.3, 4.6,and 4.7 hold. For SCST, in order
to guarantee

2

= >

T-1
1 1
EDY {Z Ivell3 + ||VF(wt)||§}

t=0

— i 1 _ enL
we can set the parameters as n = min{O(f-), O(L]LU), O(ﬁ)}, B =0(=5),
and y = min{O (- E" ,O(1)}, and the iteration complexity is

T = O | max(

s

3

CyLy (o1 +03) Cyooli CYLF))

€ €3 €?
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where Cy = O(F(wo) — F + ﬁllvg(wo)vf(uo) ~voll3 + ﬁllg(wo) ~wuoll3).

¢ Why it matters

We only explicitly maintain the dependence on L, which will have implications
when we handle non-smooth f in next Chapter.

The above theorem can help us establish an improved iteration complex-
ity of O(1/€%). First, we need to ensure Cy = O(1), which can be sat-
1sﬁed by using a large 1n1t1a1 batch size. In particular, we can set uo =

= T2 g(Woidi).vo = Z | Ve (Wo: )V f (o &), where {£i, £/, i}, are
independent random varlables. Thus, we have E[||lug — g(wp) ||2] < 0O( Bo) and

E[||lvo — Vg(wo)Vf(uo)H%] < O(Blo). Hence, if we set By = O(L‘lTE, ) we
have Cy = O(1). This initial batch size requirement can be removed by using a
decreasing parameters n, = O(1/t'/3), B, = 0(1/1*13),y; = 0(1/1*13).

Compared to the result of SCMA in Theorem 4.3, SCST has a higher order of

step size 7 and a smaller order of iteration complexity.

Proof. Let us recall the three inequalities in Lemma 4.14, 4.13 and 4.12:
(%) F(Wis1) < F(W,) +1:G3L3[[w, = g(Wo)ll3 + 770 [1ve = Mo I3 - % IVF(wo)ll3

2
— — w1 = wel5,
g e = wil

MHE [”Vt - Ml”%] <E[(1-=8)Ivi-1 = Mt—l” 1+ 16GZL1% [[a;—y — g(Wt—l)”%]
+E[(24G5L3 +4GIL3) |lw, — w1 |5 + 28202 + 8G3 L2yl o],

() Eg, [llus = g(wol3] < (1 =92) llu—1 — g(wim1)II3
+E[2G§||Wt Wi 1||2+2710'0]

Define

=F(w) - F., Bi=I[IVF(W)|53/2,
U= vell3/4, Ac=llve = Hill3, 6 = LiG3llu, — g(w)l[3.

They satisfy the three inequalities marked by =, §, ¢ in Lemma 4.15 with Then we
have C; = 16,C, = 0(G4L2+G$L§), C3 = 0(L2G3),0? = 0(Gio}+G20o}), 0% =
O(LEG%O'(?), o’ = 0(L2G2 ). Plugging these into Lemma 4.15, we can finish the
proof. O

4.4 Non-smooth (Non-convex) Regularized Problems

In this section, we consider the following regularized stochastic compositional opti-
mization:
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

Fig. 4.1: Left: the capped £;-norm regularizer; Right: a non-convex PAR regularizer

;2};{31 F(w) :=E¢f(Bz[g(W; )];€) +r(w), (4.32)

where r is a non-smooth regularizer, which is potentially non-convex. This in-
cludes constrained problems, where r(w) = [y_o(W € W). For example, the KL-
constrained DRO (2.19) has a constraint 4 > 0.

We extend the definition of e-stationary solution of a smooth function to the non-
smooth composite function by noting that 9(F + r)(w) = VF(w) + dr(w).

Definition 4.1 (e-stationary solution) A solution w is called an e-stationary so-
lution to minycga F(W) + r(w) where F is smooth and r is non-differentiable, if
dist(0, VF(w) + 0r(w)) < €.

To handle non-smoothness or r, we assume the proximal mapping of r is simple
to compute:

. 1 <12
prox, (W) = arg ;Ielgb §||W - W3 +r(w).

Below, we give some examples of non-convex regularizers and their proximal map-
pings, whose derivations are left as exercises for interested readers.

Examples

Example 4.4 (Capped ¢-norm). It is defined as r(w) = A Zle W (w;), where
Y (w;) = min(|w;|, 0) (cf. Figure (4.1)). It penalizes small coefficients heav-
ily (encouraging sparsity) but stops penalizing once coefficients are large
enough. It was shown to reduce the bias issue of LASSO, which cannot ex-
actly recover the non-zero coefficients under some conditions. Its proximal
mapping is given by

x1 = min(sign(u) (ul = ), 0) if h(x13u) < h(xo; )
xp = max(|ul, 0) otherwise ,

proxy, (u) = {
(4.33)
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where h(x;u) = %(x — u)? + Amin(|x|, 8). Similar non-convex sparse regu-
larizers include minimax concave penalty (MCP) and Smoothly Clipped Ab-
solute Deviation (SCAD).

Example 4.5 (Nonconvex Piecewise Affine Regularization (PAR)). A non-
convex PAR is defined as r(w) = A Z;’zl W (w;) (cf Figure (4.1)), where

— 7 < < 2k+1
lﬁ(x)={|X| kq ifkq < x| < 557q, k=0,1,..., (4.34)

g i ELg < x| < (k+1)q,

Its proximal mapping is defined as:

o When the regularization strength A < g, we have

sign(u)kq ifkg < |ul < kg+a,
proxy, (u) = {sign(u)(Jul = ) ifkqg+A < |u| < 2Hq+4,
sign(u)|u| i 2I‘T“q+/§l <lul < (k+1)g.
(4.35)
o When the regularization strength A > g, we have
: lul - 5
prox,, (u) = sign(u) p q. (4.36)

where | -] denotes the nearest integer. When A exceeds a certain thresh-
old (e.g., A > gq), the proximal operator becomes a hard quantizer,
mapping inputs exactly to discrete levels in a quantization set Q =
{0, +q, +2q,+3q,...}.

Algorithms

We can easily extend SCMA and SCST to solving the non-smooth regularized SCO

problems using the following update:

o1
W41 = arg min gllw - (w, — n,v,)ll% +r(w), 4.37)
t

where v, is the MA or STORM gradient estimator as in SCMA or SCST.

Convergence Analysis

We first present a lemma similar to Lemma 4.9.

Lemma 4.16 Consider the update in (4.37), if n; < ﬁ then we have
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

F(w) = F(Wii1) <nellve = VE(w)) |2 - %disz(o, OF (Wea1))>

1 2
- —||W - W .
8077t ” t+1 t”z

Proof. Recall the update of w,,:

. 1
Wi €arg min {r(W) + 5w — (w, - nm)ll%} :
weRd 27],
Then following variational analysis, we have
1

=V — n_(wt+1 —W;) € Or(Wpy1),
t

which implies that

1 _
VF(Wi1) =V, = U_(Wt+1 —W;) € VF(Wpy1) +0r(Wey1) = OF (Wry).
t

Hence, we have
. _ 1
dist(0, 6F(Wt+1))2 S |VF(Wpy1) = v — n_(Wt+1 - Wt)”%
t
Due to the update of w,., we also have
1 2
F(Weat) + Ve, Wel — W) + g”wtﬂ - w5 < r(w).
t
Since F(w) is smooth with parameter L, then
LF 2
F(Wi1) S F(w) +(VE(W;), Weyp — W) + THWHI - Wt”z‘

Combining these two inequalities (4.40) and (4.41) we get

(4.38)

(4.39)

(4.40)

(4.41)

_ - 1 L
F(Wea) + (v = VEOW). Weay = wi) £ F(we) = (30 = ) Iwen = will.
t

From the above inequality, we obtain two results. The first result is
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2
]7—<Vr = VF(Wii1), Weel — Wy)
t

2(F(w,) — F(w 1 1
< W) “Fwe)) 1Ly i — w2
Nt Mt M

2
+ ;(VF(Wt) = VF(Wei1), Wil — Wy)
'

2(F(w,) — F(w 1 1
CHEW) ZFOWe) L Ly i w442
Nt n Nt

The second result is
1 _ _
(ﬁ - 7F)||Wt+1 - Wt”% S F(W) = F(Wes1) +(VF(W;) = Vi, Wi — Wy)
t

_ _ 1
=F(w;) = F(We1) +1:IVF(W;) - Vt”% + E”WHI - Wt”%-
t

If 3F < g 1€ e < g the above inequality indicates:

1 _ _
s, Wit = Wil < F(We) = F(Wes) + 1 IVF (W) = vill3. (4.43)
t

To proceed, we have
1 2
v = VF (W) + U_(WHI - Wt)”z
t
1 2 1 2
=2(v; = VF(Ws41), n—(WHl = W)y + lvi = VE (W) |5 + _2||Wt+l - w3
t t

Adding the above inequality to (4.42) we have

1
Vi = VF(Wei1) + U_(WHl - Wt)”%
t

2(F(w,) — F(w 1 1
< HEW) “FWe)) L1 gy i - w2
Nt Nr My

1
+lve = VF(Wt+1)”§ + = [[Weer = WIH%
t

_ 2F(w) = F(Ww) | 3Lk
Nt Nt

2 2
|Weer — Wt”z +|lve - VF(wt+l)||2'

Since

”Vt - VF(WZ+1)||§ = ”Vt - VF(WI) + VF(Wt) - VF(WZ+1)||§
< 2|lv; = VE(W,)|3 + 2lIVF (W) = VE(Wes1)I3

< 2|lv; = VE(Wo)|3 +2L% (lwe) = Wit |13
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2 o Lr
Due to 2L < 2 e have

1
lv: = VF (W) + n_(wt+1 - Wt)”%
t

< 2(F(wi) = F(Wis1)) L33k

[IWes1 = Wt”% +2[v; - VF(“’t)”é
Nt Nt

Multiplying both sides by 7;, we have

1
N:llve = VF(Wipp) + U_(WHI - Wt)”%
t
< 2(F(Wt) - F(WHI)) +3.5LF||Wie1 — Wt”% +2n|lv, — VF(W:)II%-

Adding this inequality to (4.43) gives

1 1
Ve = VE(Wi1) + —(Wppr — Wl)“% +— W — Wt”%
Nt 81y

< 3(F(wW,) = F(W1)) + 30 1ve = VE(W)|13 + 3.5LE|[Weat — w3,

Applying (4.43) again to the RHS, we have

1 1
nellve = VE(Weit) + — (Weet = WO ll3 + =—— Wt — well3
Nt 8n;

< (3+28Lpn,) (F(W,) — F(Wea1)) + (317, + 2877 LE) v, — VE (W) |13
< IO(F(WI) - F(Wt+l)) + 10n||v; - VF(Wt)”%-

Combining this with (4.39), we finish the proof. O

Since the above lemma resembles that in Lemma 4.9, hence, it remains a simple
exercise to derive the complexity of using the MA estimator similar to Theorem 4.3
and of using the STORM estimator similar to Theorem 4.4.

Corollary 4.1 Consider the method (4.37). Under the same assumptions and similar
settings as in Theorem 4.3, the method finds an e-stationary solution with a complex-
ity of O(1/€*). Under the same assumptions and similar settings as in Theorem 4.4,
the method finds an e-stationary solution with a complexity of O(1/€%).

@ Why it matters

Since standard regularized stochastic optimization E, [g(w; {)] + (W) is a spe-
cial case, the above results directly apply. This corollary shows that regularized
problems can be solved with the same complexities as unregularized ones by
employing either the moving-average gradient estimator or the STORM gradi-
ent estimator. In contrast, without these estimators, solving non-convex regular-
ized problems requires a large batch size at every iteration (Lan, 2020)[Section
6.2.3].
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4.5 Structured Optimization with Compositional Gradient

In this section, we extend the compositional optimization technique to address other
structured optimization problems, including min-max optimization, min-min opti-
mization, and bilevel optimization. These problems share a common structure in the
form of a compositional gradient, denoted by M (w, u*(w)), where M is a mapping
that is Lipschitz continuous with respect to its second argument, and u*(w) is defined
as the solution to a strongly convex optimization problem:

u*(w) = arg min A(w, u). (4.44)
ueu
This structure generalizes the gradient of a compositional function f(g(w)), whose
gradient takes the form M(w, u*(w)) = Vg(w)V f(u*(w)) with

u'(w) = argmin [lu - g(w)|3.

The high-level idea underlying the algorithms and analysis presented below is
summarized as follows. To estimate M(w, u*(w)) at w,, we use an auxiliary variable
u, to track the optimal solution u*(w;), which is defined by solving (4.44) with one
step update at w,. A key aspect of the analysis is that the error in the approximation of
M(w,,u,) is controlled by the estimation error ||u; —u*(w;)||2, due to the Lipschitz
continuity of M:

M (We,ur) = M(we, w* (W) 3 < O(lluy = u*(wo)13).- (4.45)

Moreover, since u*(w) is the solution to a strongly convex problem and is Lipschitz
continuous with respect to w, we can construct a recursion for |lu, — u*(wt)llg to
effectively bound the cumulative error over iterations.

In cases where M(w;,u,) cannot be computed exactly and is instead approxi-
mated by a stochastic estimator M(w;,u;;{;), where {; is a random variable, we
employ a moving average (MA) estimator:

Vi = (1= B)Vi-1 + B M(Wr,ui581).
The model update is then performed using:
Wiil = Wy — 1)1 Vs
Alternatively, if M(w;,u;) is directly computable, the update simplifies to:

Weel = W, — 17, M(wg,0,).
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

4.5.1 Non-convex Min-Max Optimization

We consider a non-convex min-max optimization problem:

min max f(w,u) := Eg[f(w,u;&)], (4.46)

weRd ue

where f(w,u) is a continuous and differentiable and U is a closed convex set. Let
F(w) = maxyeqs f(W,u). Denote by V; f(-,-) and V, f (-, -) the partial gradients of
the first and second variable, respectively.

We make the following assumptions.

Assumption 4.8. Regarding the problem (4.46), the following conditions hold:

(i) f(w,u) is u-strongly concave in terms of u, and u*(w) = arg maxycqs f (W, 1)
exists for any w.
(ii) Vi f(w,u) is Ly-Lipschitz continuous such that

IVif(w,u) = Vif(w,u)]l2 < Li([lw = w2+ lu—u'[]2). (4.47)

(iii) Vo f (w, ) is Lyi-Lipschitz continuous with respect to the first variable and is
Loy-Lipschitz continuous with respect to the second variable

(IV2f(w,u) = Vo f(wW,u')|l2 < Loy |lw = W2 + Loz [lu —u’||>. (4.48)
(iv) there exist o1, 0 such that

E[IVif(w,u;€) = Vif(w,u)[3] < o2, (4.49)
E[|IVaf (w,u;€) = Vaf(w,u)|[3] < o3. (4.50)

(v) F, = min F(w) > —o0.

4.5.1.1 A Double-loop Large mini-batch method

Let us first consider a straightforward approach that updates w, using a large-batch
gradient estimator

B
1
vV = E Z Vlf(Wt’ut§ fi,t),
i=1
and computes u, via an inner-loop SGD with K updates. It suffices to have K =
O(L2c}/(u*€?)) (by Lemma 3.8) such that

62

E[[lu; —u*(w)l3] < —.

—

If B = O(c?/€?), following the Lemma 4.18 below we have
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Algorithm 12 SMDA
T T

1: Input: learning rate schedules {7:},_;, {v:},_;» {B: IT:I; starting points wo, uj, Vo
2 Wy = Wo — 170V0

3:fort=1,...,Tdo

4: Sample &;

5 Update uy = s [uy +y: Vo f (We, ue; 4r)]

6: Compute the vanilla gradient estimator z; = V; f (W, us; &)

7: Update the MA gradient estimator v, = (1 — B;)V,_| + B:Z;

8: Update the model by wy| = Wy, — 17,V

9: end for

ﬁ]

B
E[llv; - VF(WI)”%] < E[Hé ; Vif(Weus i) = Vif(we,u®(wy))

2

a
<0 f‘ + L3 ||u, —u*(w,)ll%) <é.

Combining this with Lemma 4.9, we can set the step size 5, = O(1/Lp) and the
number of iterations 7 = O (L /€?), yielding an overall sample complexity of

BT +KT =0

o 26t

Lro? . LFLfazz)

4.5.1.2 A Stochastic Momentum Method

We present a solution method in Algorithm 12, referred to as SMIDA (Stochastic
Momentum Descent-Ascent). The method begins by updating the dual variable us-
ing stochastic gradient ascent (Step 4), then computes the moving average gradient
estimator v, for the primal variable (Step 6), and finally updates the primal variable
using this estimator (Step 7). When §; = 1, the method reduces to SGDA. How-
ever, setting §; < 1 is crucial for achieving improved complexity. Conceptually, the
method shares similarities with SCMA.

Convergence Analysis

We will prove the convergence of the gradient norm of F(w). We first prove the
following lemmas.

Lemma 4.17 Let u*(w) = argmaxyeqs f(W,0). Under Assumption 4.8(i), (iii),

u* () is k-Lipschitz continuous with k = %

Proof. Let us consider wi, w,. By the optimality condition of u*(wy) and u*(w;)
for a concave function, we have
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Vof(wi,u*(w)T(u—u*(wy)) <0, VueU
Vof(wo,u*(ws)) " (u—u*(ws)) <0, VueU.

Let u = u*(wj) in the first inequality and u = u*(wy) in the second equality and add
them together we have

(Vaf (Wi, " (w1)) = Vo f (W, 0" (W2))) T (u" (w2) —u"(w)) < 0.
Since — f(wy, -) is u-strongly convex, due to Lemma 1.6, we have
(Vaf (Wi, u™(w1)) = Vaf (Wi, u'(w2))) T (u”(w2) —u"(wp))
> plu* (wa) —u* (wi)|l3.
Combining these two inequalities we have

plut (wa) —u* (W) 13 < (Vaf (o, w'(w2)) = Vaf (Wi, u"(w2))) T (u*(w2) — u*(wy))
< |IVaf (wa, 0" (W2)) = Vo f(wi,u" (w2)) ]2 [lu* (w2) —u”(wy)|l2

< Log|lwa — wil2][u” (w2) — u*(wp)]l2.

Thus,
. Ly
[lu*(w2) —u(wp)ll2 < 7||W2 - wil2.

O

Lemma 4.18 Under Assumption 4.8(i) and (ii), VF(w) = V| f(w,u*(w)), and it is
is Lp-Lipschitz continuous with Ly = L1 (1 + k).

Proof. If U is bounded, the Danskin’s theorem implies that VF (w) = V; f(w, u*(w)).
If U is unbounded, we have

our(w) "

VE(w) =V f(w,u*(w)) +
ow

Vo f(w,u'(w)) = Vif(w,u’(w), (4.51)

where the last equality follows from V, f(w, u*(w)) = 0. To establish the Lipschitz
continuity of VF(w), let us consider w; and w,. We have

(IVE(wi) = VE(W2)|l2 = IV f(wi,u" (W) = Vi f(Wa,u"(W2))]l2
< Li(Jlwy = wall2 + [[u"(wy) —u*(w2)]l2) < Li(1 +k)[[wy — wall2.

O

Next, we prove two lemmas similar to Lemma 4.8 and Lemma 4.1, regarding the
recursion of gradient estimation error and the estimation error of u, respectively. The
descent lemma (Lemma 4.9) still holds.

Lemma 4.19 It holds that
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2

2 2 2LF 2
Eft [”Vt - VF(WZ)”z] <(1 = B) Vi1 = VF(Wt—l)”z + _ﬁ [lw,—1 — Wz”z
t

+4L%,Bt o, —u (Wt)“z +ﬁt 0'1

Proof. Letz, = Vi f(w;,us;&) and M, = B,[z;] = Vi f(ws,u;). Then v, = (1 -
Bi)Vi-1 + Bz, Noting that B, [ ||z, = M;|3] < o and |M, = VF(w,)|13 < Lillu, ~
u(w) ||§ Plugging these into Lemma 4.7 finishes the proof.

O

Lemma 4.20 Suppose Assumption 4.8 (i), (iii), (iv) hold. Consider the update u; =
g [u; +y: Vo f(We,ue; &)1 If ye < 1/Loy < 1/, we have

2

. B 3k
By [llurer = w' (wean) ] < (1= 225y - u* (w13 + Bl = Wi ]
t

+ 27/, 0'2

Proof. By Lemma 3.7, if y < 1/Ly; we have

By [llur —w* (w51 < (1 = ye)lluy —u* (Woll3 + 7703 (4.52)

Then,

BEE: [lu, - (wo) ]

E/[llusr — “*(Wt+l)||§] <(1+

F(1+ %)Et[uu*(w» - u*(vvm)nz]

%,U)(l_ %,U)

< (1+

ye)lhue =t (wo) [l + (1 + YO

2+vu
+ —tszt [llwy — W1 ||2]
Yt

Y
< (1- ”‘)nut

32 2
—uw (W)ll3 +2y7 07 + —E, [lIw, — we l13],
YiH

where the first inequality uses the Young’s inequality, and the last inequality uses
yu < 1. O

Finally, we can prove the following theorem regarding the convergence of SMDA.

Theorem 4.5 Suppose Assumption 4.8 holds. By setting B; = 8 = € /(30-12), Vi =
, ﬁ) in SMDA, then the

y = ,1162/(96[4%0'22) and n, = n = min(
following holds

B YH
VSLg’ 16V3Lik

1 T-1

1
{vatn% + ||VF(wt)||§” < e (4.53)

t=0
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

with an iteration complexity of

{ CyLrp Cyo'lsz CyL?KO'ZZ })
max )

T=0
P P Y

(4.54)

_ 1 2 L % 2
where Cy = 2(F(Wo) = F.) + g —llvo = VE(Wo) I3 + - [luo — u*(wo) 5.

@ Why it matters

The MA gradient estimator in SMDA is critical to obtaining a complexity of
O(1/€*). If we simply update the primal variable by SGD, the algorithm be-
comes SGDA. The convergence analysis of SGDA for non-convex minimax
problems will suffer from a large batch size issue or slow convergence. In par-
ticular, SGDA with a batch size of O (1/€?) can find an e-stationary solution in
O(1/€?) iterations when the problem is smooth in terms of primal and dual vari-
ables and strongly-concave in terms of dual variable, yielding a sample complex-
ity of O(1/€*). If using a constant batch size O(1), SGDA may need O(1/€®)
iterations for finding an e-stationary solution (Lin et al., 2020).

Proof. The proof is similar to Theorem 4.3. Let us see the three inequalities in
Lemma 4.9, Lemma 4.19, and 4.20 that we have proved so far:

n n n
(F(Wea1) < FOw) + TIVE(w) = vl = T IVE o) I3 - T w3,

2.2

2L
BE [Ive = VEW)I3] <E|(1=B) V-1 = VE(w,_)|I3 + %’7 ||v,_1||%l

+41362 o, - (w3 + Bt

. yu . 3kn?
(0)Ellu, —u*(w) 3 <E|(1 - 7)”“:—1 —u' (w3 +2y%07 + i Ive-1ll3] -

Let ¥ = yu/2, the last inequality becomes:

« 2 7 - . 2 -20'22 3k*n? 2
(OE|u; —u* (W)l <E (1 =P)luj—1 —u* (W) |5 + 8y el + Ive—1ll5] -

2y

Let us define A, = 2(F(w,) — F,) and B; = ||[VF(w)|2, T; = ||vt||§ /2, Ay =
||[VF(w;) — thlg, 0; = |luy, — u*(wt)llg. Then the three inequalities (x), (§), (¢) sat-
isfy that in Lemma 4.10 with C; = 4L%, Cy, = 2L2F, Cz = 3k*/2,02 = 0'12, o'? =
807 /u*. If n, B, ¥ satisfy
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&2 &2 &2 12

P3027 30 7T 6o T 1021207
I R SNV B R 2
2LF’ \4C, \BC|Cs 2LF 8L VA8Lik~

then (4.89) holds, and the iteration complexity becomes

CyLF CTO'Z\/C_Z Cy\/C1C3C10"2
T = O [ max , >

€? et et

1 = min(

=0

R P Y

{CYLF CyolLp CyLiko? })
max .

Critical: It is worth mentioning that an improved complexity of O(1/€) can
be achieved by employing the STORM gradient estimator for both the primal
and dual variables under the mean-square smooth condition of the objective.

4.5.2 Non-convex Min-Min Optimization

We can extend SMDA to solving a non-convex strongly-convex min-min problem:

min min f(w,u) :=E[f(w,u;&)], (4.55)

weRd uel

where f(w,u) is smooth, non-convex in terms of w and strongly convex in terms
of u and U is a closed convex set. If the u*(w) = arg minycq/ f(W, u) exists and
unique, then we have VF(w) = V| f(w,u*(w)). Hence, its gradient also exhibits a
compositional structure, where the inner function u*(w) is a solution to a strongly
convex problem.

SMDA can be modified by replacing the u update with

Uy = Hyu =y Vo f(we,ug540)].

Then, the same convergence result in the last subsection can be established for min-
min problem, which is omitted here.

4.5.2.1 Application to weakly convex minimization

Next, we present an application to solving weakly convex minimization problems:

166



4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Algorithm 13 A novel method for weakly convex minimization

T
t=1’

: Input: learning rate schedules {7, {vt szl; starting points wy, uj, v;
cforer=1,..., T do

Sample £, and compute G(u;; &) = g (us; &)

Update us1 =0y — ¥ (G (05 &) +p(uy — Wy))

Update wyy = (1 — 237:0) Wy + 211 puy
end for

A

min F(w) := E[g(w:{)], (4.56)

where F > —co is p-weakly convex, as discussed in Chapter 3.

As argued in Section 3.1.4, an e-stationary solution of the Moreau envelope of
F(w) corresponds to a nearly e-stationary solution of the original problem. Hence,
we consider optimizing the Moreau envelope directly:

min F,(w) := minE[g(w: )] + pllu - wll3. (4.57)

Define f(w,u) = E[g(u; )] + p|lu - W||§- Then f(w,u) is p-strongly convex with
respect to u due to the p-weak convexity of F.
For updating u, we use the standard SGD:

U =0 — Y (G0 &) +2p(u, — wy)). (4.58)

where G(u;; ;) € dg(u;; ;). For updating w, then we just apply GD with its gra-
dient given by V| f(w;,u;) = 2p(w, —u;):

Wipl = W —0:2p(W; — ) = (1 = 2n:p)W; + 21, pu;. (4.59)

We present the updates in Algorithm 13. An interesting observation about this algo-
rithm is that the u update is similar to the Momentum update (4.18) except that the
momentum term u, — u,_; is replaced by u, — w,, where w, is a MA weight vector.

Convergence Analysis

Let us first prove the following lemma.

Lemma 4.21 We have (i) F,, is Lp-smooth with Ly = g; (ii) Vi f (w, ) is Lipschitz
continuous with Ly = 2p, and (iii) w*(w) is 1-Lipschitz continuous.

Proof. The smoothness of F,, has been proved in Proposition 3.1 with 2 = p/2. The
Lipschitz continuity of V| f(w,u) = 2p(w — u) is obvious. Next, let us prove the
Lipschitz continuity of u*(w). The proof is similar to that of Lemma 4.17.

Let us consider wy, w,. By the optimality condition of u*(w;) and u*(w,) for a
concave function, there exists v(wy) € & f (Wi, u*(wy)), v(wy) € 0> f (W, u*(wy))
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viw) (u—u*(w;)) <0, Vu
v(iwy) " (u—u"(w)) <0, Vu

Let u = u*(wj) in the first inequality and u = u*(wy) in the second equality and add
them together we have

(v(wy) = v(w2)) " (u"(w2) —u*(wy)) < 0.

Since —f(wy, -) is p-strongly convex, similar to Lemma 1.6, we have for any v €
O f(wi,u"(w2)),

(v(w1) = v) T (u* (w2) —u’(W1)) 2 pllu’(w2) —u*(w)]]3.
Combining these two inequalities we have

plla* (wa) —u*(wi) 13 < (v(w) = v) T (u*(w2) — u*(wy))

< Iv(w2) = vll2]lu” (w2) = u*(wy)]l2.

Since there exists v/ € dg(u*(w;)) such that v(wy) = vV + p(u*(wy) — wy), we let
v=V +p(u*(w;) — wy), then

[[u*(w2) —u*(Wi)ll2 < [[w2 = will2.
O

Since 0, f (W, u) is not Lipschitz continuous with respect to u, lemma 4.20 is not
directly applicable. We develop a similar one below.

Lemma 4.22 Consider the following update:
U =0 — Y (G(ur; 4p) +2p(uy — Wy)).
IFE NG (u; {)Il%] < G* and y;p < 1/8, then we have

2
E; [Jugr — u*(wt+1)”2

. 12
< (1= Z8) lhus - u* (w15 + 857G + —= By Wt = w3
Yip

Proof. Since u;y; is one-step SGD update of f(w;,u), the proof is similar to
Lemma 3.7 for the non-smooth case.

lasy — U*(Wt)”% = |lu; —y: (G(us; &) +2P(“t -w)) — U*(Wt)“% (4.60)
= [lu, —u* (W)l3 + 72 1G (w3 &) +2p(u, — w13
- 2y(G(ur; &) +2p(u, = wy)) T (u — u(wy)).

Note that 0 € dg(u*(w;)) + 2p(u*(w;) — w;). Thus, v;_; = 2p(w; — u*(w;)) €
ag(u*(wy)),
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

E; |G (us; &) +2p(uy — Wt)”% =E, [|G(u; &) = Vi1 +2p(0; — u*(w,))ll%
< 2B, 16 (ugs &) + Vit |l + 807 [luy —u* (wy)[[3
< 8G2 +8p” |lu; —u* (W) |13,

where the last inequality uses ||v;—1||2 < G. For the last term in (4.60), let v,_; =
E[G(us; &) +2p(u; — W) € 02 f(Wr, 1), then we have

E (G (us; &) +2p(u; - Wt))T(ut -u'(w,)) = V;r_l (0; —u*(w;))

(Veo1 = V(W) (u, —u*(w))) = p [l — (w13

where 0 = v(w;) € 0f(w;,u*(w,)) and the last inequality is due to the strong
convexity of f in terms of u. Combining the above inequalities we have

et —w (W3 = llu, =y, (9g(uss &) +20(u — w,)) —u'(w)) 13
< flu; —u* (W) |13 +¥2(8G? + 89 lu; —u* (W) [13) = 2y Iy — w*(wi) 13
= (1-2y:p +8y20%) lu; —u*(w,) |13 + 4y2G>
< (1= y:p) lluy —u* (W) |13 + 8y?G>
where the last inequality uses y; < #. Since u*(w) is 1-Lipschitz continuous, we
have
E; |[uge1 — u* (wean) |13

* 2 * *
< (10 22 Bl =0 n 1+ 1 =2 ) = o)

t

. 3
< (1= Z) lhus - wr (w3 + 87767 + B [[we = wil3.
Yip

O

Lemma 4.23 Let 7z, = 2p(W, — ;). For the update W;.y = W; — 1%, if 7y <
1/(2LF), we have

1
Fp(Wei1) < Fp(We) + % ||VFp(Wt) - Zt“; - % HVFp(Wt)Hi T an IWre1 — Wt||§7
un

where L is the smoothness parameter of F(-).

Since VF, (W) = 2p(w; —u*(w,)), hence ||F,(W;) = 2|3 = 4p*|[u, —u*(wy) |3,
whose recursion has been established in Lemma 4.22. We can combine these two
lemmas and establish a complexity of O(1/€e*) for Algorithm 13 in order to find an
e-stationary solution to Fj, ().
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4.5.2.2 Application to weakly-convex strongly-concave min-max problems

The same technique can be applied to solving weakly-convex strongly-concave
min-max problems miny maxycq; f (W, u) with a single loop algorithm. In subsec-
tion 4.5.1, we assume the partial gradient V; f(w,u) is Lipschitz continuous. We
replace this assumption by an assumption that f(w,u) is p-weakly convex in terms
of w for any u € U.

In this case, F(w) = maxycqs f(W,u) is not smooth but weakly convex. Let us
consider its Moreau envelope:

min F,(w) := min F(u;) + p|lu; — W||§.
w up

This problem is equivalent to

min max f(uj, ) + plla; — wlj3,
w.u el

which is strongly convex in terms of u; and strongly concave in terms of uy.

Compared to (4.57), this problem just adds another layer of inner maximization.
However, it can be still mapped to the general framework as discussed at the begin-
ning. The gradient of F,(w) is given by M(w, u](w)) = p(w — uj(w)). If we track
uj(w;) by u;, and its update relies on the gradient d; f(u;,,,u;(u;,)). Hence, we
just need another variable uy ; to track u; (uy ).

We can develop a similar algorithm. First, let us update uy, up. Given w;, uy ¢, ua ¢,
we update uj s41, W ¢+ With SGD update by

w y1 = Heg[ug, + 200 f (g 1, 02,45 47)] (4.61)
g =0, — Y1 (01 f (5 8) +2p(ug, — we)). (4.62)

Then we update w,,; with GD update by
Wil = Wy = n2p(W —uy ;) = (1 = 2np)w; +2npuy ;. (4.63)
This algorithm also enjoys a complexity of O(1/€*) for finding a nearly e-stationary

solution of F(w). We refer the readers to (Hu et al., 2024a) for a convergence analysis
of this algorithm.

4.5.2.3 Application to Compositional Optimization

We can apply a similar strategy to a compositional function F(w) = fo(g(w)), where
fo 1s smooth convex and g is weakly convex. With the conjugate of fj, we can write

min fo(g(W)) = min max f(w,uz) :=ul g(w) - f; (u2).
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Since fo is smooth, then fj is strongly convex. Then if g is weakly convex and U is
bounded (i.e., fj is Lipschitz), then f(w,u) is weakly convex and strongly concave.
Optimizing the Moreau envelope of fy(g(w)) yields:

. T * 2
min max u up) — u) + u —w
in max ul g(un) = 1 (u2) + s Wi,

which is strongly convex in terms of u; and strongly concave in terms of u,. We give
an update below:

w1 = Hyfuy, +y28(0y 5 4)]
e =, —y1(01g(wy s {)un, + 2p(uyg ; — W)
Wil = W, = 112p(W; —uy ;) = (1 =2np)w; +2npuy ;.

Then similar convergence analysis can be developed with a complexity of O(1/€*)
for finding a nearly e-stationary solution to F.

4.5.3 Non-convex Bilevel Optimization

In this section, we discuss the application of the compositional gradient estimation
technique to non-convex bilevel optimization defined by

min £ (W, u" (W)
wer , (4.64)
u*(w) = arg min g(w,u),
ueRd’

where g is twice differentiable and pg-strongly convex in terms of u. Let F(w) =
f(w,u*(w)). The following lemma states the gradient of the objective F(w).

Lemma 4.24 We have
VE(W) = Vi f (w0 (W) = Varg(w,u" (W) T (Varg (w,u’ (w))) ™' Vo f (W, u (W)
Proof. By the optimality condition of u*(w), we have

Vog(w,u*(w)) = 0.

By taking derivative on both sides, using the chain rule, and the implicit function
theorem, we obtain

ou*(w) _

0.
ow

Vai1g(w,u"(w)) + Varg(w,u"(w))

Hence
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ou*(w)
ow

= —(Vag(w,u" (W) "' Va1 (W, u* (w)).

Thus,

"’“;V(VW) Vaf (W, (w))

= Vif(w,u (W) — Varg(w,u"(w) T (Vaog(w, u*(w) "' Vo f (w, u* (w)).

VF(w) =V f(w,u"(w)) +

O
Let us define
M(w,u*(w)) =
Vif(w,u"(w) = Vorg(w,u*(w) T (Varg(w,u*(w))) "' Vo f (w,u*(w)).

If we can establish the Lipschitz continuity of M(w,u*(w)) in terms of the second
argument and the Lipschitz continuity of u*(w), then the similar technique can be
leveraged. Let u*(w;) be tracked by u,. It can be updated by SGD:

U =0 — ¥ Vag(We urs &) (4.65)
With u,, the gradient at w, can be estimated by
M(we,up) = Vi f(we,up) + Vo g(wy, Uz)T(szg(Wt, ut))_IVZf(Wh u;). (4.66)

However, another challenge is to handle the Hessian inverse (V2,g(w,,u;)~!, which
itself is a compositional structure. We will discuss three different ways to tackle this
challenge. If we have a stochastic estimator of M (w;,u;) denoted by v;, then we
update the model parameter by:

Weel = Wr — 11Vt (4.67)

4.5.3.1 Approach 1: The MA Estimator

If the lower level problem is low-dimensional such that the inverse of the Hessian
matrix can be efficiently computed, we can estimate V,,g(w;, u;) by a MA estimator:

Hy =Sy, [(1 = B)Ha -1 + BV28(Wr,ur52,0)]

where S, [-] is a projection operator that projects a matrix into a matrix whose
minimum eigen-value is lower bounded by p, where u, is the lower bound of eigen-
values of Vy,g(w, u). The projection ensures that [Ho; ;] ~1is Lipschitz continuous
with respect to Hay ;.

The a vanilla stochastic gradient estimator of w, and its MA estimator are com-
puted by
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2 = Vif(Weu &) + Vag(weu 8 )T (Hoo) ' Va f (Wi ugs &)

(4.68)
Vi =1~ B)vi_1 + Bz;.

Convergence Analysis

The proof is largely similar to that of Theorem 4.3. We provide a sketch of proof
below. Recall that

M(wi,up) = Vi f(we, ;) + Vo g(wy, u,)T(szg(W,, llz))_Isz(Wz, u;).
Define:
M(Wt, ;) = Vif(we,u,) + Vorg(wy, ut)Tngl,,VZf(Wz, u).
First, similar to Lemma 4.9, we have the following:
F Nt 2 Mt 2 1 2
(Wrs1) < F(wy) + E”Vt - VF(Wt)“z - E ||VF(Wt)||2 - E [|Weer — Wt||2-
t
(4.69)

We establish a recursion of the error ||v; — VF(w;) ||% similar to Lemma 4.7 by not-
ing that B¢, o7 [z:] = M(w;,u,) and there exists & > 0 such that Ee g, [z, —
M(ws,u.)[12] < 2. Thus, Lemma 4.7 implies that

g g, [IVe = VEW)I3] < (1= B) Iveet = VE(we-n) 3 (4.70)
2
F 2 9 2 2 2
+ _ﬁ Wit — well5 + 48 ([M(ws,up) — VE(w;) 5 + B0,
t

Then, we bound || M(w;,u,) — VF(W;)H% by

IM(We,u) = VE(Wo) 13 < 2 M(we,u,) = M(we, a3
+2[[M(we,u;) = VE(w) I3
< O(||Hay — Varg (Wi, u)|13) + O(Jlu, —u*(w,)[[3).

As a result, we have

2

2 2, 2L¥ 2
Efllvi=VFEW)I2] < (1 = B)IVi-1 = VE(W,-)|I” + I Iw: = we1ll3
t

+Bi (O Ho,e = Vg (We, u)[15) + O(llw, — ' (w))lI3)) + B70(0?).

This result is similar to that in Lemma 4.8.
We can further build the error recursion of ||Hay; — Vaog(wy, ut)||§ similar to
Lemma 4.1, and the error recursion of ||u; — u*(wt)||% similar to Lemma 4.20.
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Combining these results, we can establish a complexity of O(1/e*) for finding an
e-stationary solution of F(-) in expectation.

4.5.3.2 Approach 2: The Neumann Series (Matrix Taylor Approximation)

If the lower level problem is high-dimensional such that it is prohibited to compute
the Hessian, one approach is to leverage the Neuman series:

[oe]

A‘1=Z(I—A)i, if  JJA| < 1. 4.71)
i=0

Hence, if ||V22g(W,, u;)|| < Loo, we estimate the inverse of LLnVZZ g(w;,u,), yield-
ing i

K-1
_ 1
(Vaag(Weu )™ = 7 )

i=0

1 i
(1 - L_szg(wt, ut)) . (4.72)
22

This can be further estimated by a stochastic route, by sampling k from {0, ..., K—1}
randomly, then estimate the Hessian inverse by

Kk (7oL ) i
Q22,t - ngz i=1 ( Ly szg(wt’uls é’l)) lfk Z 1 . (4.73)
L_zzl ifk=0

This is can be justified by

K
1 K K-1 K 1
E =——] Ex- _ —_— 1 - —E[V U G
[022,] Xin + Bk 1k -1y n |”|( n [Voog(w:,u, é’)])l
K K-l k
K 1 1 1

=E,— |- —V s = — |- —V s .

kL22 ( I, 28(W; llt)) g:o 7 ( 7 28(W; u,))

Then the vanilla gradient estimator of w; and its MA estimator are computed by

2 = Vif(We, w5 410) + Voug(We, w545 )T 02,V f (We,ugs {1 )

“4.74)
Vi = (1= B)vi_1 + Pz;.

Convergence Analysis

We provide a proof sketch below. We can understand that z, is a unbiased stochastic
estimator of

M(Whut) =Vif(w,u)+ VZIg(Wuut)TE[QZLt]VZf(Wt,ut)-
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

We decompose the estimation error of v, similarly as in (4.70) and bound ||M (W, up)—
VF(w,)|13 by

IM(we,u;) = VE(W)|15 < 2M(ws,u;) = VF(w) 13
+ 2”M(Wt» u;) — M(w;,u;) ”%
The error recursion of the first term on the right hand side can be similarly bounded
as before. To bound the last error, since

o)

— 1 1 i
[V%Zg(w, “)] = E[Q2] + I Z [1 - L—22V§2g(w, u)] ,

i=K
we have

IM(weur) = M(weu) [ < Ol [Vag(w.w)] '~ E[02]13)

00 L

K
<L (1 - “—g) :

2 Mg Ly

As a result, if K = O(fl—;2 log(1/(ugBro?))), then IM(wy,u;) — M’ (we,up)|13 <

O(p,0?). Then similar to the analysis of approach 1, we can establish a complexity
of O(1/€*) for finding an e-stationary solution of F(-) in expectation.

1
I- —ngg(w, u)

[V2,e(w,w)] ' —E[0n]| < 1 D
2 Ly

Ln

4.5.3.3 Approach 3: The penalty method

An alternative approach to avoid computing the Hessian inverse and Jacobian ma-
trices is to reformulate the problem as a constrained optimization problem:

min f(w,u)
w,u

s.t.  g(w,u) < ming(w,u).
u
This constrained problem can be addressed using a penalty method (see Chapter 6.7):
min f(w,u) +2(g(w,u) — ming(w,y)),,
w,u y

where 4 > 0 is a penalty parameter and (-); denotes the positive part. Since
g(w,u) > miny g(w,y), the formulation simplifies to:

min f(w,u)+ A |g(w,u) —ming(w,y) 4.75)
w,u y

= r‘rvnlrll myax fw,u) + 4 (g(w,u) —g(w,y)). (4.76)
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If both f and g are smooth and g is strongly convex in its second argument, the result-
ing formulation becomes a non-convex strongly-concave min-max problem, which
can be effectively addressed using the SMDA algorithm with the following update
fort > 1:

Vi1 =¥ + YeAVag(We, ¥1561),
2, =Vf(w,u;d)+A (Vg(wt,ut;ft) - [

Vi = (1 = B)Vi-1 + Bi2y,
=]
= —M:tVe.
Uzl u;

Convergence Analysis

Vlé’(“’n}’t?fz)])

0
4.77)

The convergence analysis of (4.77) for the min—max problem (4.75) follows a sim-
ilar approach to that of Theorem 4.5 for SMDA. However, a remaining challenge
lies in converting the convergence result for the min—max formulation into that of
the original problem. To address this, we provide the detailed convergence analysis
below. We begin by stating the following assumption.

Assumption 4.9. Regarding the problem (4.64), the following conditions hold:

(i) g(w,u) is u-strongly concave in terms of u.
(ii) V f(w,w) is L ¢-Lipschitz continuous such that

w w
IVf(wisup) = Vf(wa,w)ll2 < Ly ( 1) —( 2) N CWE
up up 2
(iii) Vg(w, ) is Lq-Lipschitz continuous such that
w w
e - Teomwlh < 2 (V)< ()] . @
uj w /il

(iv) there exist o ¢, 0g such that

E[IV/(w,u;) = Vf(w, 03] < o7, (4.80)
2

E[[|Vg(w,u; &) - Ve(w,w)3] < o, (4.81)
(v) min f(w,u) > —co.
Le’t us define W = (w, u) and
FW.y) = f(w,u) + 2 (g(w,u) — g(W,y)) (4.82)
F(W) = max f(w,y). (4.83)
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Then

V]f("_V, Y) = Vf(w’ ll) +4 (Vg(w7 u) -
Vo f(W,y) = —AV2g(W, y),
Vif(Ww,y;e) = Vf(w,u;{) + 4 (Vg(w,U;f) - [

Vo f(W,y;:€) = —AV2g(W,y; ).

Vlg(WJ’)}
0 s

Vig(w,y:é) ])
0 ,

where & = (£, £). We first show f(W,y) satisfies the conditions in Assumption (4.8).

Lemma 4.25 Under Assumption 4.9, we have

(i) f (W, y) is pd-strongly concave in terms of w.
(ii) Vi f (W,y) is Lipschitz continuous, i.e.,

IV1Lf (W1, 51) = Vif (W2, ¥2)ll2 < (Ly +2Lg ) (W1 = Wall2 + [ly1 = y2ll2).
(iii) Vo f (W, y) is Lipschitz continuous, i.e.,
Vo f (Wi,y1) = Vaf(Wa,¥2)|l2 < LgAllWi = Wall2 + LgAllyr — y2llo.
(iv)
E[IV1f(W,y;8) = Vif(W,p)3] <307 + 620,
E[|IV2f(W,y:€) = Vo f (W, y) 3] < X0y,
(v) E(W) := maxy f(W,y) > —co.

Proof. (i) is obvious. The Lipschitz continuity of V1 f (W, y) follows that of V f (w, u)
and Vg (w,u). For (iii), we have

IV2f (Wi, y1) = Vaf (W2, y2) [l = A|Vag (Wi, up) = Vag(wo, wo) |l

)= (el

< ALg(lwy = wa|l2 + [lug —uz||2) < AL ([[W1 — Wall2 + |[u; — uz]]2).

< AVg(wi,uy) = Vg(wa, wo)l2 < ALg

It is trivial to prove (iv). The last result follows that maxy f(w,y) > f(w,u)
00, O

\%

Theorem 4.6 Suppose Assumption 4.9 hold. By setting
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62

b= 902 + 180202
ﬂgfz
Ye=Y= 3 2
96(L f +2LgA)? A2
=

min B Vhgd !
VB(Ls +2Lgd)(1+ L) 16V3(Ls +2LgA)Lg 2(Ly+2LgA)(1+ Ly)
in (4.77), then the following holds
=

1 i}
T Z {Zuvtug + ||VF(W,)||§}l <é, (4.84)
t=0

E

with an iteration complexity of

Cyd Cy(/lcr]% +0?) CyA’o}?
T = O [ max 2 >
ety

(4.85)

’

€’ et
where Cy = 2(F(Wo) — ming F(W)) + ‘/§+LF||VO - VF(V_VO)H% + %HYO - Y*(WO)”%

Proof. We map the problem into the setting in Theorem 4.5 with L1 = Ly +
2Lg/1,L21 = Lg/l,Lz = Lg/l,/,l = ,ug/l,K = Lz]/(,ug/l) = Lg,LF = Ll(l +K) =

(Ly+2LA)(1+ Ly), 0'12 = 30'; + 6/120'3, 0'22 = /120';. Then, plugging these values

into the result in Theorem 4.5, we obtain the results. O

Convergence of the original function

Next, we derive the convergence of the original function in terms of ||VF(w)||,. We
need the following additional assumption.

Assumption 4.10. (i) g is twice differentiable and V1 g(w,u) and Vg (W, u) are
Lgg-Lipschitz continuous; and (ii) ||Vof (w,u)|l2 < Gr.

Lemma 4.26 Let u’(w) = argminy F(w,u),u*(w) = arg min, g(w, u). Under As-
sumption 4.10(i), we have

_ L
IVF(w) = ViF(w,uy(w))|l2 < L(1+ M—g)IIHZ(W) —u (w2
g
L&’ * * 2
+ Lgg A(1 + —)[[uy(w) —u”(w)]l5.
Hg

Proof. Letu* =u*(w). Then,
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

VIF(W’ ll) = V]f(w5u) +/1(V|g(w’u) - V]g(W,u*))
VoF(w,u) = Vof(w,u) + AVag(w, u).

Due to Lemma 4.24, we have

VE(w) = ViF(w,u) = Vi f(w,u*) = V| f(w,u)

* ) —1 * * (486)
- Vlzg(Wau )V22g(w’u ) VZf(W,u ) - A(Vlg(w7 u) - Vlg(w’u ))

We can rearrange terms for (Vig(w,u) — V;g(w,u")) as the following:

Vig(w,u) — Vig(w,u") = Vig(w,u) — Vig(w,u") — Virg(w,u") " (u—u’)
+Ving(w,u")" (u—u").
(4.87)

To continue, we have
u-u'=-Vyg(w,u") ! (Vag(w,u) - Vog(w,u’) — Vorg(w,u")(u—u’))
+ Vg (w,u’) " (Vag(w,m) — Vog(w,u’)).

By the optimality condition for u*, Vog(w,u*) = 0, and Vo F (w,u) = Vo f(w,u) +
AV,g(w, ), we can express u — u* as

u-—u'=-Vyg(w,u) ' (Vog(w,u) — Vog(w,u*) — Varg(w,u*)(u —u*))

1 )
+ 2 ng(w, u) " H(VaF(w,u) - Vaf (w,u)).
(4.88)

Plugging (4.87) and (4.88) back to (4.86), we have

VE(w) = V{F(w,u) =V, f(w,u*) = V{f(w,u)

— V128 (W, u") Varg (W, u") "' Vo f(w, u")

—A(Vig(w,u) = Vig(w,u") - Vipg(w,u") " (u—u"))

+ AV 128 (W, u") " Voog(w,u*) ™ (Vag(w, u) — Vog(w,u’) — Vorg(w,u’) (u — u’))
~ Ving(w,u") " Vyrg(w,u*) " (VoF (w,u) = Vs f (W, ).

As a result, we have
VF(w) = ViF(w,u) + Vipg(w,u") Varg(w,u*) "' V2 F (w,u)

= Vlf(w’ u*) - Vlf(“’? u)

— Ving(w,u*)Varg(w,u") " (Vo f (w,u*) = Vo f (W, u))
- A(Vig(w,u) - Vig(w,u") — Vipg(w,u*) " (u—u))
+AVi2g(w,u*) T Varg(w,u*) ! (Vag(w,u) — Vag(w,u) — Varg(w,u”) (u —u*)).
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By the Assumption 4.10 we have
IVig(w,u) = Vig(w,u") = Visg(w,u") T (u —u)[|2 < Lggllu—u*|3,

V28 (W, u) = Vag(w,u") = Vaog(w,u") (u - u")l2 < Lgglu —u’[f3.

By the Assumption 4.9 we have
IVLf(w,u®) = Vif(w,u)ll2 < Lg|lu® —ull2,
V2 f(w,u) = Vo f(w,uw)ll2 < Lgllu” —ull,

V128 (W, u*)Varg(w,u") "', < =<,
Hg
Thus, we have
IVF(w) = ViE(w,u) + Viog(w,u*) " Vag(w,u’) "' Vo F(w,u)|»
. Lg * Lg )
SL(1+ =)lu—u’fz + LggA(1+ —=)|u—u’||5.
Hg Hg
Plugging u = u’, (W) = min, F(w, u), then Vo F(w, u’(w)) = 0 and then we have

IVF(w) = ViF(w,uy (W) ]l2

Lg * * Lg * %112
S Lp(1+ —)[luy(w) —u'[[2 + Lggd(1 + —=)Ju} (w) —u’[[5.
Hg Hg

Next, we bound [[u’, (W) —u*(w)||>.
Gy

Lemma 4.27 Under Assumption 4.10(ii), we have ||u’;(w) —u*(w)||2 < Tig

Proof. By the definitions of u’,(w), u*(w), we have
u,l (W) = arg Hll}n /_lf(w, u) + g(w3 u)
u*(w) = argmin g(w, u).
u
By the optimality condition,
1 . -
7 V2f (W, w3y (W) + Vag (w,u}(w)) =0
Vag(w,u*(w)) =0.

Since g(w, u) is pg-strongly convex w.r.t u for any w, then we have
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

(W, w5 (W)) >g(W, u* (W) + Vag(w, u (W) (W) — u* (W)
+ X i (w) — ' (w) 3
2(W, 0 (W) 2g(w, W5(W)) + Vag(w, uy (W) (u* (W) — wy(w))
+ EE i w) - w (wB.
Adding these two inequalities yields:
pellu (w) = u* (W12 < ~Vag(w, uh (W) (u* (W) — (W)
1
= 22/ (W (W) (" (W) — (W)
< 92 (v, (W) ol () ~ w0

Dividing both sides by [[u*(w)) — u’;(W)||2 and noting ||V2f(w,u}(W))|l2 < G
concludes the proof.
O

Corollary 4.2 Under the same setting as in Theorem 4.6 with A = 0(%) > 2Ly /g
and assume ||y — y*(Wo)||2 < O(€), then the following holds

E[[IVF(wo)ll2] < O(e), (4.89)

with an iteration complexity of

T=0

2 2
1 95 o
max{f—ye—s,?}), (490)

where T € {0, ..., T — 1} is randomly sampled.
Proof. Combining Lemma 4.25 and Lemma 4.27, we have
IVE(Wo)ll2 = [[VF(We) = ViF(We, wy(We)) |2 + [[VIF(We, 0y (Wo)) |2
L, G L, G}
<Ly(1+ 5L 4 Ly a1+ 5L
Mg Hgd Mg pgd?
+ ||V1F(WT’ ujl(w‘r)) - VIF(WT’ uT)||2 + ”VIF(WT, u‘r)”Z
_2LsLyGy 2LggLy G
< +
pzd fgA
+|IViF (W, (We)) = ViF(We,ug) |2+ [[VIF(We, ur) |2

Since F(w,u) is (Aug — L ¢)-strongly convex w.r.t u, Lemma 1.6(c) implies that
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. 1 _ _ i
(g = Ly)lwy(we) —ur| < W—IIVzF(WT, ur) = VoF (We,uy(wo)) 3
g

—Ly)

1 _
= ————|IV2F (wr,u,)|f5
(Apg — Ly) oo

Due to Vi F(w,u) = V; f(w,u) + 1(Vig(w,u) — Vig(w,u*(w))), we have
IVIF(We,uy(We)) = ViF(We,ur)lla < (Ly +ALg) [0 (W) =zl

(Ly+ALg)

"~ (dpg —Ly)
- 2(Aug/2+ALg)

||V2F(WT7uT)||2

_ Ue +2L _
IV2F (We,ur)ll = 52| V2 F (W, ur) 2
Apg Hg

where the last inequality uses Ly < Au, /2. Combining the above inequalities, we
obtain

2
2L¢LoGy . 2LggLgGy
pzA pzd

+2L
L He T ohe

Hg

IVE(w)ll2 <
”V2F(Wﬁ uT)||2 + ||V1F(WT’ u‘r)”Z-

From Theorem 4.6, we have
E[”VZF(WT» u‘r)”% + ||V1F(WT’ u‘r)”%] <€

Hence, it follows that E[||V2F (W, ur)|2] < € and E[||V1F (W, up)|2] < e.If A=
O(1/e), then E[||VF(w)|[2] < O(e). The iteration complexity can be established
by substituting 2 = O(1/e) into Theorem 4.6 and noting that Cy = O(1) when
lIyo = y*(Wo)l3 < O(e).

O
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4.6. HISTORY AND NOTES

Critical: The complexity of O(1/€’) is not the state-of-the-art sample com-
plexity achievable under the same assumptions. Indeed, a double-loop large-
batch method—similar to the one presented in Section 4.5.1.1 for solving the
min-max problem ming maxy f (W, y)—can yield a superior sample complex-
ity of O(1/€%) for achieving the stationarity condition E[||VF(w)]|2] < €.
To see this, we apply the results from Section 4.5.1.1, which indicates that a
Lro} LpL?o3
p aZet )

sample complexity for achieving E[||[VF(W)||3] < €% is O (

Here, L denotes the smoothness constant of the objective function F (W) =
maxy f(W,y). The remaining parameters are defined as follows:

o L; = 0(2) is the Lipschitz constant of V £ (-, -);

» ji = 0(A) is the strong concavity parameter of f(-,y) with respect to y;

. 6'22 = 0(A?) represents the variance of the stochastic gradient with respect
toy;

. 6'12 = 0(A?) is the variance of the stochastic gradient with respect to w =
(w,u).

Given that we can establish Lr = O(1) independent of A (Chen et al., 2025a,
see Lemma B.7) and 2 = O(1/e), the total sample complexity reduces to
O(1/€°).

However, it remains an open problem to develop a single-loop stochastic algo-
rithm that achieves O (1/€°) complexity without requiring a large batch size
or assuming mean-square smoothness (see next section for more discussion).

4.6 History and Notes

The optimization techniques presented in this chapter for stochastic compositional
optimization are rooted in the pioneering work of Yuri Ermoliev (Ermoliev, 1976;
Ermoliev and Wets, 1988). The monograph (Ermoliev, 1976), written in Ukrainian,
laid the early foundations. Chapter 6 of the edited volume (Ermoliev and Wets, 1988)
introduces an early form of the Stochastic Compositional Gradient Descent (SCGD)
method, employing a sequence of moving average estimators u, to track the inner
function values at each iteration—referred to then simply as “averaging.” The con-
vergence analysis in these early works is largely limited to asymptotic results, if
provided at all. Notably, these works considered a broader class of problems with
functional constraints, which will be discussed further in Chapter 6.

The study of non-smooth compositional optimization, where a non-smooth con-
vex function is composed with a smooth function, was first initiated in the works
of Fletcher and Watson (1980); Fletcher (1982). Their proposed method, known as
the prox-linear method, has since been extensively studied and developed in subse-
quent research (Lewis and Wright, 2009; Duchi and Ruan, 2018; Drusvyatskiy et al.,
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2021; Duchi and Ruan, 2017; Drusvyatskiy and Paquette, 2019). We will consider
non-smooth compositional optimization in next chapter.

The modern convergence analysis with non-asymptotic rates for stochastic com-
positional optimization was pioneered by Wang et al. (2017a). Their initial analysis
established an O (1/€®) complexity for finding an e-stationary solution to a smooth
compositional problem, primarily due to suboptimal choices of learning rates. Sub-
sequent works have aimed to improve this convergence rate (Ghadimi et al., 2020;
Wang et al., 2017b; Chen et al., 2021a). The improved complexity of O(1/€’) for
SCGD is derived by following the parameter settings introduced in Qi et al. (2021c¢).
A further refined complexity of O(1/€*), under the assumption that the inner func-
tion is smooth, was achieved in Chen et al. (2021a). The use of a moving-average
gradient estimator to attain the O(1/€e*) complexity in stochastic compositional op-
timization is credited to (Ghadimi et al., 2020).

The modern variance-reduction technique for estimating the gradient of a smooth
function originates from (Johnson and Zhang, 2013; Mahdavi and Jin, 2013; Zhang
et al., 2013), and was inspired by earlier work (Schmidt et al., 2017) that estab-
lished linear convergence for finite-sum problems with convex and smooth objec-
tives. This technique is now widely known as SVRG. For the objective function
f(w) = % i, fi(w), the SVRG gradient estimator takes the form Vf;(w;) —
Vf;(W) + Vf(W), where w is a reference point whose full gradient V f (W) is com-
puted periodically.

For non-convex optimization, the variance reduction technique named SPIDER
was initiated by Fang et al. (2018), which proposes a gradient estimator v, =
Vi1 + Vfi(wy) — Vfi(w;_1), with v being periodically re-initialized using either
a full gradient or a large-batch gradient. This approach was earlier proposed under
the name SARAH for convex optimization in (Nguyen et al., 2017). The technique
later evolved into the STORM estimator (Cutkosky and Orabona, 2019), defined as
Vi = (1= B)Viet + BV f (Wi &) + (1= B) [V £ (Wis &) = Vf (W13 €)1, which elim-
inates the need for periodic re-initialization.

Huo et al. (2018) applied the SVRG technique for finite-sum compositional opti-
mization where both the inner and outer expectation is an average over a finite set.
Hu et al. (2019) and Zhang and Xiao (2019) concurrently applied SARAH/SPIDER
to compositional optimization with an expectation form and a finite-sum structure,
and derived a complexity of O(1/€>) for the expectation form and O (\/n/€?) for a
finite-sum structure with n components. Qi et al. (2021a) applied the STORM esti-
mator for SCO with a complexity of O(1/€>) and Chen et al. (2021b) applied the
STORM estimator to only the inner function estimation for SCO with a complexity
of O(1/€*).

The capped £; norm for sparse regularization was introduced by Zhang (2013).
The minimax concave penalty (MCP) was proposed by Zhang (2010), while the
smoothly clipped absolute deviation (SCAD) regularizer was introduced by Fan and
Li (2001). The proximal mappings for these non-convex regularizers were studied
in (Gong et al., 2013). The non-convex piecewise affine regularization method for
quantization was proposed by Ma and Xiao (2025). The theoretical analysis pre-
sented in Section 4.4 on non-convex optimization with non-convex regularizers fol-
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4.6. HISTORY AND NOTES

lows the framework established by Xu et al. (2019a), whose results were applied
by Deleu and Bengio (2021) to train sparse deep neural networks.

Stochastic weakly-convex—concave min—max optimization with a complexity of
O(1/€%) was first studied by Rafique et al. (2018). When the problem is weakly-
convex and strongly-concave, the complexity can be improved to O(1/€*) using
double-loop algorithms (Rafique et al., 2018; Yan et al., 2020a). The analysis of
SGDA for smooth non-convex min-max optimization was first established by Lin
et al. (2020), who derived a complexity of O(1/€*) when using a large batch size
on the order of O(1/€?) for problems that are strongly concave in the dual variable.
Without employing a large batch size, the complexity degrades to O(1/€%), which
also applies to problems lacking strong concavity. The analysis of the single-loop
SMDA algorithm was provided by (Guo et al., 2021b), which also established the
convergence guarantees for stochastic bilevel optimization using the first approach
introduced in Section 4.5.3. A similar convergence result was achieved in Qiu et al.
(2020), which employed moving-average gradient estimators for both the primal and
dual variables. Chen et al. (2021a) obtained a complexity of O (1/€e*) for smooth non-
convex strongly-concave problems without relying on moving-average gradient esti-
mators, under the stronger assumption that the Hessian/Jacobian matrix is Lipschitz
continuous. An improved rate of O (1/€*) for smooth non-convex strongly-concave
problems was established by (Huang et al., 2022) through the use of STORM esti-
mators.

Bilevel optimization has a long and rich history (Bracken and McGill, 1973). The
first complexity analysis of bilevel optimization was initiated by Ghadimi and Wang
(2018), who employed the Neumann series to approximate the inverse of the Hes-
sian. Their proposed double-loop stochastic algorithm achieves a sample complexity
of O(1/€°) for solving the lower-level problem and O (1/€*) for the upper-level prob-
lem. Subsequent research has led to improved complexity bounds: O(1/€’) in (Hong
et al., 2020), 0(1/64) in (Ji et al., 2020; Guo et al., 2021b; Chen et al., 2021a), and
further down to O(1/€%) in (Yang et al., 2021; Khanduri et al., 2021; Guo et al.,
2021a) under mean-square smoothness conditions. The analysis corresponding to
Approach 1 in Section 4.5.3 can be found in (Qiu et al., 2022), while that of Ap-
proach 2 is provided in (Guo et al., 2021b).

Penalty-based metholds for bilevel optimization date back to (Ye et al., 1997),
with recent developments appearing in (Liu et al., 2021, 2022; Shen and Chen, 2023).
Lemma 4.26 is due to Kwon et al. (2023), which established a sample complexity of
O(1/€’)—comparable to Theorem 4.6—for a different double-loop algorithm. They
also derived a complexity of O(1/€°) for an algorithm similar to update (4.77), ex-
cept that the gradient estimators for both the lower- and upper-level functions are
replaced with STORM estimators under stronger mean-square smoothness assump-
tions.

The complexity of O(1/€e*) for stochastic compositional optimization is known
to be optimal, as it matches the lower bound established for standard stochastic opti-
mization (Arjevani et al., 2022). Moreover, under mean-square smoothness assump-
tions, a reduced complexity of O(1/€?) is also proven to be optimal (Arjevani et al.,
2022).
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