
Chapter 4
Foundations: Stochastic Compositional
Optimization

Abstract In this chapter, we introduce stochastic compositional optimization prob-
lems and their optimization algorithms, including stochastic compositional gradient
descent and stochastic compositional momentum metholds. We also consider exten-
sions of these techniques to structured optimization with compositional gradients
including non-convex regularized problems, min-max optimization, min-min opti-
mization and bilevel optimization. We focus on the complexity of these metholds for
non-convex optimization.

Moving average is the core ingredient!
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4.1. STOCHASTIC COMPOSITIONAL OPTIMIZATION

4.1 Stochastic Compositional Optimization

We have seen several advanced machine learning frameworks in the Chapter 2, in-
cluding DRO, GDRO, EXM, and COCE. Unfortunately, existing stochastic gradient
metholds such as SGD are not directly applicable to these new problems. The rea-
son will become clear shortly. To address this challenge, we need new optimization
tools.

In this chapter, we will consider a family of stochastic optimization problems
called stochastic compositional optimization (SCO), whose objective is given by

min
w∈R𝑑

𝐹 (w) := E𝜉 𝑓 (E𝜁 𝑔(w; 𝜁); 𝜉), (4.1)

where 𝜉 and 𝜁 are random variables, 𝑔(·; 𝜁) : R𝑑 → R𝑑
′ is the inner random func-

tion, and 𝑓 (·; 𝜉) : R𝑑′ → R is the outer random function. Let 𝑓 (·) = E𝜉 𝑓 (·; 𝜉) and
𝑔(·) = E𝜁 𝑔(·; 𝜁). Then the objective function 𝐹 (w) = 𝑓 (𝑔(w)) is a composition of
two functions.

Examples

Example 4.1. The KL-regularized DRO (2.14) is a special case of SCO by
setting 𝑓 (·) = 𝜆 log(·) and 𝑔(w) = 1

𝑛

∑𝑛
𝑖=1 exp(ℓ(w; x𝑖 , 𝑦𝑖)/𝜆).

Example 4.2. The KL-constrained DRO (2.19) is a special case of SCO by
setting 𝑔̄ = (𝑔1, 𝑔2) 𝑓 (𝑔̄) = 𝑔1 log(𝑔2) + 𝑔1𝜌 and 𝑔1 (w, 𝜆) = 𝜆, 𝑔2 (w, 𝜆) =
1
𝑛

∑𝑛
𝑖=1 exp(ℓ(w; x𝑖 , 𝑦𝑖)/𝜆).

Example 4.3. The compositional objective for AUCmaximization (2.32) has
a compositional term of 𝑓 (𝑔(w)), where 𝑔(w) is a stochastic function and 𝑓
is a deterministic function.

Optimization Challenge

The challenge of solving SCO lies in how to estimate the gradient ∇𝐹 (w) =
∇𝑔(w)∇ 𝑓 (𝑔(w)), where ∇𝑔(w) ∈ R𝑑×𝑑

′ denotes the transpose of the Jacobian ma-
trix of 𝑔 at w and ∇ 𝑓 (𝑔) ∈ R𝑑

′ is a gradient of 𝑓 at 𝑔.
A simple way of estimating the gradient is by using stochastic samples, i.e.,

𝐺 (w; 𝜉, 𝜁 , 𝜁 ′) = ∇𝑔(w; 𝜁)∇ 𝑓 (𝑔(w; 𝜁 ′); 𝜉), where 𝜉, 𝜁 , 𝜁 ′ are random samples. One
can also use mini-batch of random samples to compute the estimator. However,
the problem is that 𝐺 (w; 𝜉, 𝜁 , 𝜁 ′) is a biased estimator when 𝑓 is non-linear, i.e.,
E𝜉 ,𝜁 ,𝜁 ′𝐺 (w; 𝜉, 𝜁 , 𝜁 ′) ≠ ∇𝐹 (w). This will break all assumptions made in the con-
vergence analysis in Chapter 3. Directly using this estimator in SGD could result in
non-convergence or it requires a large batch size for estimating 𝑔(w).
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Algorithm 9 SCGD
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u0
2: for 𝑡 = 1, . . . , 𝑇 do
3: Sample 𝜁𝑡 , 𝜁 ′

𝑡 and 𝜉𝑡
4: Compute the inner function value estimator u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔 (w𝑡 ; 𝜁𝑡 )
5: Compute the vanilla gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁 ′

𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )
6: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
7: end for

4.2 Stochastic Compositional Gradient Descent

We assume both 𝑓 and 𝑔 are differentiable. Next, we introduce stochastic composi-
tional gradient descent (SCGD) as a solution method for SCO. The key to the de-
sign is to track the sequence of {𝑔(w𝑡 ), 𝑡 = 1, . . . , 𝑇} by a sequence of estimators
{u𝑡 , 𝑡 = 1, . . . , 𝑇}. Let us consider the following problem:

min
𝑢

1
2
‖u − 𝑔(w𝑡 )‖2

2. (4.2)

We compute u𝑡 by using the SGD update:

u𝑡 = u𝑡−1 − 𝛾𝑡 (u𝑡−1 − 𝑔(w𝑡 ; 𝜁𝑡 )) = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ), 𝑡 ∈ [𝑇], (4.3)

where 𝑔(w; 𝜁) is stochastic estimator of 𝑔(w) such that E𝜁 [𝑔(w; 𝜁)] = 𝑔(w). The
update is also known as moving average sequence of {𝑔(w𝑡 )}.

The intuition behind this is that when w𝑡 converges (i.e., w𝑡 − w𝑡−1 → 0), u𝑡 is
a better estimator of 𝑔(w𝑡 ) than 𝑔(w𝑡 ; 𝜁𝑡 ). With u𝑡 , the gradient estimator can be
computed by

z𝑡 = ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ), (4.4)

where 𝜁 ′𝑡 is another independent random variable. Then, we can use it for updating
w𝑡 :

w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 .

The detailed steps are presented in Algorithm 9.

Critical: Using 𝜁 ′𝑡 instead of 𝜁𝑡 in computing ∇𝑔(w𝑡 ; 𝜁 ′𝑡 ) is for simplicity of
analysis, which decouple the dependence between u𝑡 and 𝜁 ′𝑡 as u𝑡 depends on
𝜁𝑡 . However, this will increase the number of random samples per-iteration.
For practical implementation, one may just use 𝜁 ′𝑡 = 𝜁𝑡 .
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

4.2.1 Convergence Analysis

We make the following assumptions regarding the SCO problem (4.1).

Assumption 4.1. There exist 𝐿1, 𝐺1 > 0 such that

(i) 𝑓 is 𝐿1-smooth, i.e., ‖∇ 𝑓 (𝑔) − ∇ 𝑓 (𝑔′)‖2 ≤ 𝐿1‖𝑔 − 𝑔′‖2,∀𝑔, 𝑔′;
(ii) E[‖∇ 𝑓 (𝑔; 𝜉)‖2

2] ≤ 𝐺2
1,∀𝑔.

Assumption 4.2. There exist 𝐺2 > 0 such that E[‖∇𝑔(w; 𝜁)‖2
2] ≤ 𝐺2

2,∀w.

Due to Jensen’s inequality, E[‖∇ 𝑓 (·; 𝜉)‖2
2] ≤ 𝐺2

1, and E[‖∇𝑔(w; 𝜁)‖2
2] ≤ 𝐺2

2
indicate the 𝐺1-Lipschitz condition of 𝑓 and 𝐺2-Lipschitz condition of 𝑔, respec-
tively.

Assumption 4.3. There exist 𝜎0, 𝜎1, 𝜎2 > 0 such that

(i) E[‖𝑔(w; 𝜁) − 𝑔(w)‖2
2] ≤ 𝜎2

0 ,∀w;
(ii) E[‖∇ 𝑓 (𝑔; 𝜉) − ∇ 𝑓 (𝑔)‖2

2] ≤ 𝜎2
1 , E[‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2

2] ≤ 𝜎2
2 ,∀w, 𝑔.

(iii) 𝐹∗ = minw 𝐹 (w) > −∞.

Assumption 4.4. 𝐹 is 𝐿𝐹-smooth, i.e., there exist 𝐿𝐹 > 0 such that ∇𝐹 (·) is 𝐿𝐹-
Lipschitz continuous.

It is notable that the smoothness of 𝐹 does not necessarily imply that 𝑔 is smooth.
One example is that if 𝑔(w) = ‖w‖2 and 𝑓 (𝑔) = 𝑔2, the overall function 𝐹 (w) =
‖w‖2

2 is smooth but the inner function 𝑔 is non-smooth.

Lemma 4.1 Under Assumptions 4.2 and 4.3(i), the {u𝑡 }𝑡≥1 sequence (4.3) satisfies
that

E𝜁𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + 𝛾2
𝑡 𝜎

2
0 +

𝐺2
2
𝛾𝑡

‖w𝑡 − w𝑡−1‖2
2 .

(4.5)

where E𝜁𝑡 denotes the expectation over 𝜁𝑡 given all previous randomness.

 Why it matters

The lemma admits an intuitive interpretation. The first term shows that ‖u𝑡 −
𝑔(w𝑡 )‖2

2 is bounded by a contracting sequence. The second term is due to the
noise in 𝑔(w𝑡 ; 𝜁𝑡 ) and the third term is caused by the drifting from w𝑡−1 to w𝑡 ,
both of which decay to zero under the conditions 𝛾2

𝑡 → 0 and E[ ‖w𝑡−w𝑡−1 ‖2
2 ]

𝛾𝑡
=

𝑂
(
𝜂2
𝑡−1
𝛾𝑡

)
→ 0, respectively.

Proof. In the following proof, we abuse the notation E𝑡 to denote E𝜁𝑡 . According to
the update formula u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ) we have
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E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
= E𝑡

[
‖(1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 )‖2

2
]

= E𝑡
[
‖(1 − 𝛾𝑡 )(u𝑡−1 − 𝑔(w𝑡 )) + 𝛾𝑡 (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 ))‖2

2
]
.

Note that E𝑡 [(u𝑡−1 − 𝑔(w𝑡 ))> (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 ))] = 0. Thus,

E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 )2 ‖u𝑡−1 − 𝑔(w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 . (4.6)

This inequality is same as Lemma 3.7 when we consider u𝑡 as the SGD update
for (4.2).

Due to the Young’s inequality of inner product, we have ‖u𝑡−1 − 𝑔(w𝑡 )‖2
2 ≤ (1 +

𝛼) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + (1 + 1/𝛼) ‖𝑔(w𝑡 ) − 𝑔(w𝑡−1)‖2

2 for any 𝛼 > 0. Whence,

E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤(1 − 𝛾𝑡 )2 (1 + 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+ (1 − 𝛾𝑡 )2 (1 + 1/𝛾𝑡 )𝐺2
2 ‖w𝑡 − w𝑡−1‖2

2 + 𝛾2
𝑡 𝜎

2
0 .

The proof is completed by noticing (1−𝛾𝑡 )2 (1+𝛾𝑡 ) ≤ 1−𝛾𝑡 and (1−𝛾𝑡 )2 (1+1/𝛾𝑡 ) ≤
1
𝛾𝑡
. ut

Lemma 4.2 Under Assumptions 4.1, 4.2, 4.3 and 4.4 , SCGD satisfies

E𝜁𝑡 , 𝜉𝑡 ,𝜁 ′𝑡 [𝐹 (w𝑡+1)] ≤𝐹 (w𝑡 ) −
𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 +

𝜂𝑡𝐺
2
2𝐿

2
1

2
E𝜁𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]

+
𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
. (4.7)

Proof. In the following proof, we abuse the notation E𝑡 to denote E𝜁𝑡 , 𝜉𝑡 ,𝜁 ′𝑡 . Accord-
ing to 𝐿𝐹-smoothness of 𝐹, we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

= 𝐹 (w𝑡 ) − 𝜂𝑡∇𝐹 (w𝑡 )>∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) +
𝜂2
𝑡 𝐿𝐹

2


∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

2

2 .

Then, we have

E𝑡 [𝐹 (w𝑡+1)] ≤𝐹 (w𝑡 ) − 𝜂𝑡 ‖∇𝐹 (w𝑡 )‖2
2

+ 𝜂𝑡 E𝑡
[
∇𝐹 (w𝑡 )> (∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (𝑔(w𝑡 )) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ))

]
+
𝜂2
𝑡 𝐿𝐹

2
E𝑡

[

∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

2
2

]
, (4.8)

where we use the fact

E𝜁 ′𝑡
[
∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (𝑔(w𝑡 ))

]
= ∇𝐹 (w𝑡 )

E𝜁𝑡 ,𝜁 ′𝑡 , 𝜉𝑡
[
∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ))

]
= E𝜁𝑡 ,𝜁 ′𝑡

[
∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ))

]
.
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4.2. STOCHASTIC COMPOSITIONAL GRADIENT DESCENT

Due to the Cauchy-Schwarz inequality and the Young’s inequality of inner product,
we have

E𝑡 [∇𝐹 (w𝑡 )> (∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (𝑔(w𝑡 )) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ))]

≤ E𝑡

[
‖∇𝐹 (w𝑡 )‖2

2


∇𝑔(w𝑡 ; 𝜁 ′𝑡 )

2

2

2𝐺2
2

]
+ E𝜁𝑡

[
𝐺2

2
2

‖∇ 𝑓 (𝑔(w𝑡 )) − ∇ 𝑓 (u𝑡 )‖2
2

]
≤

‖∇𝐹 (w𝑡 )‖2
2

2
+
𝐺2

2𝐿
2
1

2
E𝜁𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖2

2 . (4.9)

For bounding the last term in (4.8), we proceed as follows:

E𝑡
[

∇𝑔(w𝑡 , 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 , 𝜉𝑡 )

2

2

]
≤ E𝜁𝑡 ,𝜁 ′𝑡

[

∇𝑔(w𝑡 ; 𝜁 ′𝑡 )

2
2 E𝜉𝑡 |𝜁𝑡 ,𝜁 ′𝑡 ‖∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖

2
2

]
≤ 𝐺2

1𝐺
2
2. (4.10)

We finish the proof by plugging the last two inequalities into (4.8). ut

Critical: We comment on the modifications required in the analysis when
the same sample 𝜁𝑡 is used to compute ∇𝑔(w𝑡 ; 𝜁𝑡 ). In the original proof,
there are two places highlighted in boxes, where we explicitly rely on the
independence between u𝑡 and 𝜁 ′𝑡 . If instead we use the coupled estimator
∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ), then the first term must be modified and bounded as
follows:

E𝑡
[
∇𝐹 (w𝑡 )>

(
∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (𝑔(w𝑡 ); 𝜉𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

) ]
≤ E𝑡

[
‖∇𝐹 (w𝑡 )‖2 ‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2

2𝐺2
2

]
+ E𝑡

[
𝐺2

2
2

‖∇ 𝑓 (𝑔(w𝑡 ); 𝜉𝑡 ) − ∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2

]
.

To recover the same bound as in (4.9), we must impose a stronger regularity
condition on 𝑓 , namely,

E𝜉
[
‖∇ 𝑓 (𝑔; 𝜉) − ∇ 𝑓 (𝑔′; 𝜉)‖2] ≤ 𝐿1‖𝑔 − 𝑔′‖2

2.

For the second boxed term, the corresponding expression becomes
E𝑡

[
‖∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2] , which in turn requires assuming that this quan-

tity is uniformly bounded by a constant.

Combining Lemma 4.1 and Lemma 4.2, we can prove the following theorem of
convergence for SCGD for a non-convex function.

Theorem 4.1 Suppose Assumptions 4.1, 4.2, 4.3 and 4.4 hold. After 𝑇 iterations of
SCGD updates with parameters 𝜂𝑡 = 𝜂1

𝑇3/5 , 𝛾𝑡 =
𝛾1
𝑇2/5 , we have
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E

[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹 (w𝑡 )‖2
2

]
≤ 2𝐶Υ

𝜂1𝑇2/5 +
𝐿2

1𝐺
2
1𝐺

6
2𝜂

2
1

𝛾2
1𝑇

2/5 +
𝐿2

1𝐺
2
2𝜎

2
0 𝛾1

𝑇2/5 +
𝐿𝐹𝐺

2
1𝐺

2
2𝜂1

2𝑇3/5 ,

where 𝐶Υ = 𝐹 (w1) − 𝐹∗ +
𝐿2

1𝐶
2
2 𝜎

2
0

2
𝜂1
𝛾1
. If 𝜂𝑡 = 𝜂1/𝑡3/5, 𝛾𝑡 = 𝛾1/𝑡2/5, then the conver-

gence rate becomes 𝑂 (log𝑇/𝑇2/5).

Proof. Adding 𝐿2
1𝐺

2
2

2
𝜂𝑡
𝛾𝑡
E𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
on (4.7), we have

E𝑡 [𝐹 (w𝑡+1)] +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡
E𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]

≤ 𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 + (1 + 𝛾𝑡 )
𝜂𝑡𝐿

2
1𝐺

2
2

2𝛾𝑡
E𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖2

2 +
𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
.

Applying Lemma 4.1 to bound the right hand side, we have

E𝑡 [𝐹 (w𝑡+1)] +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡
E𝑡

[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]

≤ 𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 + (1 − 𝛾𝑡 ) (1 + 𝛾𝑡 )
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2

+
(1 + 𝛾𝑡 )𝐿2

1𝐺
2
2𝐺

2
2𝜂𝑡

2𝛾2
𝑡

‖w𝑡 − w𝑡−1‖2
2 + 𝛾𝑡𝜂𝑡 (1 + 𝛾𝑡 )

𝐿2
1𝐺

2
2𝜎

2
0

2
+
𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
𝛾𝑡≤1
≤ 𝐹 (w𝑡 ) +

𝐿2
1𝐺

2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 +

𝜂𝑡𝐿
2
1𝐺

4
2

𝛾2
𝑡

‖w𝑡 − w𝑡−1‖2
2

+ 𝛾𝑡𝜂𝑡𝐿2
1𝐺

2
2𝜎

2
0 +

𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2
− 𝜂𝑡

2
‖∇𝐹 (w𝑡 )‖2

2 .

We define the potential function Υ𝑡 = 𝐹 (w𝑡 ) +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2. By the

setting, we have 𝜂𝑡+1
𝛾𝑡+1

≤ 𝜂𝑡
𝛾𝑡
, then

Υ𝑡+1 = 𝐹 (w𝑡+1) +
𝐿2

1𝐺
2
2

2
𝜂𝑡+1

𝛾𝑡+1
‖u𝑡 − 𝑔(w𝑡 )‖2

2 ≤ 𝐹 (w𝑡+1) +
𝐿2

1𝐺
2
2

2
𝜂𝑡
𝛾𝑡

‖u𝑡 − 𝑔(w𝑡 )‖2
2 .

Then,

E𝑡 [Υ𝑡+1] ≤ Υ𝑡 +
𝜂𝑡𝐿

2
1𝐺

4
2

𝛾2
𝑡

‖w𝑡 − w𝑡−1‖2
2 + 𝛾𝑡𝜂𝑡𝐿2

1𝐺
2
2𝜎

2
0 +

𝜂2
𝑡 𝐿𝐹𝐺

2
1𝐺

2
2

2

− 𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 .

Telescoping the above over 𝑡 = 1 to 𝑇 and use the tower property of conditional
expectation.
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E

[
𝑇∑
𝑡=1

𝜂𝑡 ‖∇𝐹 (w𝑡 )‖2
2

]
≤ 2E [Υ1 − Υ𝑇+1] + 2𝐿2

1𝐺
4
2

𝑇∑
𝑡=1

𝛾−2
𝑡 𝜂𝑡𝜂

2
𝑡−1𝐺

2
1𝐺

2
2

+ 𝐿2
1𝐺

2
2𝜎

2
0

𝑇∑
𝑡=1

𝛾𝑡𝜂𝑡 +
𝐿𝐹𝐺

2
1𝐺

2
2

2

𝑇∑
𝑡=1

𝜂2
𝑡 .

where we use the fact E[‖w𝑡 − w𝑡−1‖2
2] = E[𝜂2

𝑡−1‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2
2] ≤

𝜂2
𝑡−1𝐺

2
1𝐺

2
2. Let w0 = w1 and u0 = 𝑔(w0; 𝜁1). Then, we have

E [Υ1 − Υ𝑇+1] ≤ E

[
𝐹 (w1) +

𝐿2
1𝐶

2
2

2
𝜂1

𝛾1
‖u0 − 𝑔(w0)‖2

2

]
− 𝐹∗

≤ 𝐹 (w1) − 𝐹∗ +
𝐿2

1𝐺
2
2𝜎

2
0

2
𝜂1

𝛾1
.

We define 𝐶Υ = 𝐹 (w1) − 𝐹∗ +
𝐿2

1𝐺
2
2𝜎

2
0

2
𝜂1
𝛾1
. Then we have

E
[
‖∇𝐹 (w𝜏)‖2

2
]
≤ 2𝐶Υ∑𝑇

𝑡=1 𝜂𝑡
+ 𝐿2

1𝐺
6
2𝐺

2
1

∑𝑇
𝑡=1 𝛾

−2
𝑡 𝜂𝑡𝜂

2
𝑡−1∑𝑇

𝑡=1 𝜂𝑡

+ 𝐿2
1𝐺

2
2𝜎

2
0

∑𝑇
𝑡=1 𝛾𝑡𝜂𝑡∑𝑇
𝑡=1 𝜂𝑡

+
𝐿𝐹𝐺

2
1𝐺

2
2

2

∑𝑇
𝑡=1 𝜂

2
𝑡∑𝑇

𝑡=1 𝜂𝑡
.

Plugging the constant values of 𝜂𝑡 = 𝜂1
𝑇3/5 and 𝛾𝑡 = 𝛾1

𝑇2/5 , we have

E
[
‖∇𝐹 (w𝜏)‖2

2
]
≤ 2𝐶Υ

𝜂1𝑇2/5 +
𝐿2

1𝐺
2
1𝐺

6
2𝜂

2
1

𝛾2
1𝑇

2/5 +
𝐿2

1𝐺
2
2𝜎

2
0 𝛾1

𝑇2/5 +
𝐿𝐹𝐺

2
1𝐺

2
2𝜂1

2𝑇3/5 .

If 𝜂𝑡 = 𝑂 (1/𝑡3/5), 𝛾𝑡 = 𝑂 (1/𝑡2/5), 𝜂𝑡+1
𝛾𝑡+1

≤ 𝜂𝑡
𝛾𝑡

is satisfied. Besides, we have
∑𝑇
𝑡=1 𝜂𝑡 =

𝑂 (𝑇2/5),∑𝑇
𝑡=1 𝜂

2
𝑡 = 𝑂 (1),∑𝑇

𝑡=1 𝛾𝑡𝜂𝑡 = 𝑂 (log𝑇),∑𝑇
𝑡=1 𝛾

−2
𝑡 𝜂𝑡𝜂

2
𝑡−1 = 𝑂 (log𝑇). Then,

we have E
[
‖∇𝐹 (w𝜏)‖2

2
]
≤ Õ(1/𝑇2/5). ut

4.2.2 An Improved Complexity with Smooth Inner Function

If we replace the smoothness assumption of 𝐹 by the smoothness of 𝑔, we can es-
tablish a better complexity of SCGD.

Assumption 4.5. 𝑔 is 𝐿2-smooth, i.e., there exist 𝐿2 > 0 such that ∇𝑔(·) is 𝐿2-
Lipschitz continuous.

Assumptions 4.1 and 4.5 ensures that 𝐹 is smooth.

Lemma 4.3 Under Assumptions 4.1 and 4.5, we have 𝐹 is 𝐿𝐹-smooth, where 𝐿𝐹 =
𝐺1𝐿2 + 𝐺2

2𝐿1.
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Proof. Since ∇𝐹 (w) = ∇𝑔(w)∇ 𝑓 (𝑔(w)), we have

‖∇𝑔(w1)∇ 𝑓 (𝑔(w1)) − ∇𝑔(w2)∇ 𝑓 (𝑔(w2))‖2

= ‖∇𝑔(w1)∇ 𝑓 (𝑔(w1)) − ∇𝑔(w1)∇ 𝑓 (𝑔(w2))
+ ∇𝑔(w1)∇ 𝑓 (𝑔(w2)) − ∇𝑔(w2)∇ 𝑓 (𝑔(w2))‖2

≤ 𝐺2
2𝐿1‖w1 − w2‖2 + 𝐺1𝐿2‖w1 − w2‖2.

ut

Lemma 4.4 Let z𝑡 = ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ),M𝑡 = E𝑡 [z𝑡 ]. Then

E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤ 𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ,

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] ≤ 𝜂2

𝑡𝐺
2
1𝐺

2
2,

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] ≤ 𝜂2

𝑡 ‖M𝑡 ‖2
2 + 𝜂2

𝑡 (𝐺2
1𝜎

2
2 + 𝐺2

2𝜎
2
1 ).

where E𝑡 denotes E𝜁 ′𝑡 , 𝜉𝑡 conditioned on w𝑡 , u𝑡 .

Proof. First, we have

E𝑡 [‖z𝑡 −M𝑡 ‖2
2] = E𝑡 [



∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 )


2

2]
= E𝑡 [‖∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ) − ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

+ ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )


2

2]
≤ 𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 .

Next, due to Assumption 4.1, 4.2 we have

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] = E𝑡 [𝜂2

𝑡 ‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )‖2
2] ≤ 𝜂2

𝑡𝐺
2
1𝐺

2
2.

Second, we have

E𝑡 [‖w𝑡+1 − w𝑡 ‖2
2] = E𝑡 [𝜂2

𝑡 ‖z𝑡 −M𝑡 +M𝑡 ‖2
2] = E𝑡 [𝜂2

𝑡 ‖z𝑡 −M𝑡 ‖2
2] + 𝜂2

𝑡 ‖M𝑡 ‖2
2.

Plugging the first result into the above, we finish the proof. ut

Next, we develop two lemmas similar to Lemma 4.1 and Lemma 4.2.

Lemma 4.5 Under Assumptions 4.2, 4.3 and 4.5, if 𝜂2
𝑡−1 ≤ 𝛾𝑡

𝐿2
2𝐺

2
1
then the {u𝑡 }𝑡≥1

sequence (4.3) satisfies that

E
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 )E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] +
4𝜂2
𝑡−1𝐺

2
2

𝛾𝑡
E[‖M𝑡−1‖2

2]

+ 𝛾2
𝑡 𝜎

2
0 +

3𝜂2
𝑡−1𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ). (4.11)

Proof. Similar to the proof of Lemma 4.1, we have
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E𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 )2 ‖u𝑡−1 − 𝑔(w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
0 . (4.12)

Next, we will handle ‖u𝑡−1 − 𝑔(w𝑡 )‖2
2 differently by using the smoothness of 𝑔.

‖u𝑡−1 − 𝑔(w𝑡 )‖2
2 = ‖u𝑡−1 − 𝑔(w𝑡−1) + 𝑔(w𝑡−1) − 𝑔(w𝑡 )‖2

2

= ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + ‖𝑔(w𝑡−1) − 𝑔(w𝑡 )‖2

2

+ (u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))
≤ ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + 𝐺2
2 ‖w𝑡−1 − w𝑡 ‖2

2

+ 2(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 )).

Taking expectation on both sides and applying Lemma 4.4, we have

E[‖u𝑡−1 − 𝑔(w𝑡 )‖2
2] ≤ E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] + 𝜂2
𝑡−1𝐺

2
2E[‖M𝑡−1‖2

2]
+ 𝜂2

𝑡−1𝐺
2
2 (𝐺2

2𝜎
2
1 + 𝐺1𝜎

2
2 ) + E[2(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))] .

Instead of using the Young’s inequality of inner product to bound the last term, we
proceed as follows:

E[(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))]
= E[(u𝑡−1 − 𝑔(w𝑡−1))>∇𝑔(w𝑡−1)> (w𝑡−1 − w𝑡 )]︸                                                        ︷︷                                                        ︸

𝐴

+ E[(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ) + ∇𝑔(w𝑡−1)> (w𝑡 − w𝑡−1))]︸                                                                                     ︷︷                                                                                     ︸
𝐵

.

To bound 𝐴, we have

𝐴 = E[(u𝑡−1 − 𝑔(w𝑡−1))>∇𝑔(w𝑡−1)>𝜂𝑡−1M𝑡−1]

≤ E[𝛼𝑡 ‖(u𝑡−1 − 𝑔(w𝑡−1))>‖2 +
𝜂2
𝑡−1

4𝛼𝑡
‖∇𝑔(w𝑡−1)>M𝑡−1‖2

2]

≤ E[𝛼𝑡 ‖(u𝑡−1 − 𝑔(w𝑡−1))>‖2 +
𝜂2
𝑡−1𝐺

2
2

4𝛼𝑡
‖M𝑡−1‖2

2] .

To bound 𝐵, we have

𝐵 ≤ E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2‖𝑔(w𝑡−1) − 𝑔(w𝑡 ) + ∇𝑔(w𝑡−1)> (w𝑡 − w𝑡−1)‖2]

≤ E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2
𝐿2

2
‖w𝑡 − w𝑡−1‖2

2]

≤
𝐿2

2

4𝐺2
2
E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2‖w𝑡 − w𝑡−1‖2
2] +

𝐺2
2

4
E[‖w𝑡 − w𝑡−1‖2

2],

where the first inequality uses the smoothness of 𝑔 and the last inequality uses the
Young’s inequality. To proceed, we utilize the first bound of E𝑡−1 [‖w𝑡 − w𝑡−1‖2

2]
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in lemma 4.4 to bound the first term, and utilize its second bound in lemma 4.4 to
bound the second E[‖w𝑡 − w𝑡−1‖2

2]. Thus, we have

𝐵 ≤
𝜂2
𝑡−1𝐿

2
2𝐺

2
1

4
E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] +
𝜂2
𝑡−1𝐺

2
2

4
E[‖M𝑡−1‖2

2]

+
𝜂2
𝑡−1𝐺

2
2

4
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 )] .

Combing the bounds for 𝐴 and 𝐵, we have

E[(u𝑡−1 − 𝑔(w𝑡−1))> (𝑔(w𝑡−1) − 𝑔(w𝑡 ))]

=

(
𝛼𝑡 +

𝜂2
𝑡−1𝐿

2
2𝐺

2
1

4

)
E[‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2] +
(
𝜂2
𝑡−1𝐺

2
2

4𝛼𝑡
+
𝜂2
𝑡−1𝐺

2
2

4

)
E[‖M𝑡−1‖2

2]

+
𝜂2
𝑡−1𝐺

2
2

4
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

As a result,

E[‖u𝑡−1 − 𝑔(w𝑡 )‖2
2] ≤

(
1 + 2𝛼𝑡 +

𝜂2
𝑡−1𝐿

2
2𝐺

2
1

2

)
‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+
(
𝜂2
𝑡−1𝐺

2
2 +

𝜂2
𝑡−1𝐺

2
2

2𝛼𝑡
+
𝜂2
𝑡−1𝐺

2
2

2

)
E[‖M𝑡−1‖2

2]

+
(
𝜂2
𝑡−1𝐺

2
2 +

𝜂2
𝑡−1𝐺

2
2

2

)
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

We let 𝛼𝑡 = 𝛾𝑡
4 < 1, 𝜂

2
𝑡−1𝐿

2
2𝐺

2
1

2 ≤ 𝛾𝑡
2 . Combining the above inequality with (4.12), we

can finish the proof.
ut

Lemma 4.6 Under Assumptions 4.1, 4.2, 4.3 and 4.5, if 𝜂𝑡𝐿𝐹 ≤ 1/4 then SCGD
satisfies

E[𝐹 (w𝑡+1)] ≤E
[
𝐹 (w𝑡 ) −

𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
4
‖M𝑡 ‖2

2

]
(4.13)

+
𝜂𝑡𝐺

2
2𝐿

2
1

2
E[‖𝑔(w𝑡 ) − u𝑡 ‖2

2] + 2𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ).

Proof. According to Lemma 4.3 (𝐿𝐹-smoothness of 𝐹), we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

=𝐹 (w𝑡 ) − 𝜂𝑡∇𝐹 (w𝑡 )>∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) +
𝜂2
𝑡 𝐿𝐹

2


∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

2

2 .

Taking expectation on both sides, we have
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E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 )] − 𝜂𝑡E[∇𝐹 (w𝑡 )>M𝑡 ] +
𝜂2
𝑡 𝐿𝐹

2
E[‖z𝑡 −M𝑡 +M𝑡 ‖2

2]

= E[𝐹 (w𝑡 )] − 𝜂𝑡E[∇𝐹 (w𝑡 )>M𝑡 ] + 𝜂2
𝑡 𝐿𝐹E[‖z𝑡 −M𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹E[‖M𝑡 ‖2

2]

Using −2a>b = ‖a − b‖2
2 − ‖a‖2

2 − ‖b‖2
2, we have

E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
2
‖M𝑡 ‖2

2]

+ 𝜂𝑡
2
E[‖∇𝐹 (w𝑡 ) −M𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹E[‖z𝑡 −M𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹E[‖M𝑡 ‖2

2] .

Next, we bound E[‖∇𝐹 (w𝑡 ) −M𝑡 ‖2
2].

E[‖∇𝐹 (w𝑡 ) −M𝑡 ‖2
2] = E[‖∇𝑔(w𝑡 )∇ 𝑓 (𝑔(w𝑡 )) − ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 )‖2

2]
≤ 𝐺2

2𝐿
2
1E[‖𝑔(w𝑡 ) − u𝑡 ‖2

2] .

Combining the above inequalities, we have

E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
2
‖M𝑡 ‖2

2]

+
𝜂𝑡𝐺

2
2𝐿

2
1

2
E[‖𝑔(w𝑡 ) − u𝑡 ‖2

2] + 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ) + 𝜂2

𝑡 𝐿𝐹E[‖M𝑡 ‖2
2] .

If 𝜂𝑡𝐿𝐹 ≤ 1/4, we have − 𝜂𝑡
2 ‖M𝑡 ‖2

2 + 𝜂2
𝑡 𝐿𝐹 ‖M𝑡 ‖2

2 ≤ 𝜂𝑡
4 ‖M𝑡 ‖2

2, which concludes
the proof. ut

Finally, we establish the following convergence of SCGD under the smoothness
condition of 𝑔.

Theorem 4.2 Suppose Assumptions 4.1, 4.5 and 4.3 hold. Run SCGD with 𝑇 itera-
tions with parameters 𝜂𝑡 = 𝜂1√

𝑇
, 𝛾𝑡 =

𝛾1√
𝑇
, where 𝜂1 ≤ min( 𝛾1√

8𝐺2
2𝐿1
,

√
2𝛾1

𝐿2𝐺1
, 1

4𝐿𝐹 ). Then
we have

E

[
1
𝑇

𝑇∑
𝑡=1

‖∇𝐹 (w𝑡 )‖2
2

]
≤ 𝑂

(
𝐶Υ

𝜂1
√
𝑇
+
𝐿1𝛾

2
1𝜎

2
0

𝜂1
√
𝑇

+
𝜂1 (𝐿𝐹 + 𝐿1𝐺

2
2) (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 )√

𝑇

)
,

where 𝐶Υ = 𝐹 (w1) − 𝐹∗ + 𝐿1√
6
‖u1 − 𝑔(w1)‖2

2.

 Why it matters

From Theorem 4.2, we can derive that in order to find an 𝜖-level stationary so-
lution of a smooth non-convex compositional function (whose gradient norm is
less than 𝜖), SCGD needs a sample complexity of 𝑂 ( 𝐿

4
1
𝜖 4 ). The order in terms of

𝜖 is the same order as that of SGD for solving non-convex ERM.

Proof. By Lemma 4.5, and Lemma 4.6, we have
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E[𝐹 (w𝑡+1)] ≤ E[𝐹 (w𝑡 ) −
𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
4
‖M𝑡 ‖2

2]

+
𝜂𝑡𝐺

2
2𝐿

2
1

2
E[‖u𝑡 − 𝑔(w𝑡 )‖2

2] + 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ),

E
[
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2
]
≤ (1 − 𝛾𝑡+1) ‖u𝑡 − 𝑔(w𝑡 )‖2

2 +
4𝜂2
𝑡𝐺

2
2

𝛾𝑡+1
E[‖M𝑡 ‖2

2]

+ 𝛾2
𝑡+1𝜎

2
0 +

3𝜂2
𝑡𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

Multiplying the second inequality by 𝐺2
2𝐿

2
1𝜂𝑡/(2𝛾𝑡+1) and adding it to the first in-

equality, we have

E
[
𝐹 (w𝑡+1) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2

]
≤ E

[
𝐹 (w𝑡 ) −

𝜂𝑡
2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
4
‖M𝑡 ‖2

2

]
+
𝜂𝑡𝐺

2
2𝐿

2
1

2𝛾𝑡+1
E[‖u𝑡 − 𝑔(w𝑡 )‖2

2] +
𝜂𝑡𝐺

2
2𝐿

2
1

2𝛾𝑡+1

4𝜂2
𝑡𝐺

2
2

𝛾𝑡+1
E[‖M𝑡 ‖2

2]

+ 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
𝛾2
𝑡+1𝜎

2
0 +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1

3𝜂2
𝑡𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

Since 𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1

4𝜂2
𝑡𝐺

2
2

𝛾𝑡+1
≤ 𝜂𝑡

4 due to 𝜂𝑡 ≤ 𝛾𝑡+1√
8𝐺2

2𝐿1
, the term involving ‖M𝑡 ‖2

2 will be less

than zero. If 𝜂𝑡
𝛾𝑡+1

≤ 𝜂𝑡−1
𝛾𝑡

, we obtain

E
[
𝐹 (w𝑡+1) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2

]
≤ E

[
𝐹 (w𝑡 ) +

𝜂𝑡−1𝐺
2
2𝐿

2
1

2𝛾𝑡
E[‖u𝑡 − 𝑔(w𝑡 )‖2

2

]
− 𝜂𝑡

2
E[‖∇𝐹 (w𝑡 )‖2

2] +
𝜂𝑡𝐺

2
2𝐿

2
1

2𝛾𝑡+1
𝛾2
𝑡+1𝜎

2
0

+ 𝜂2
𝑡 𝐿𝐹 (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1

3𝜂2
𝑡𝐺

2
2

2
(𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 ).

Applying 𝜂𝑡 ≤ 𝛾𝑡+1√
8𝐺2

2𝐿1
to the R.H.S, we have

E
[
𝐹 (w𝑡+1) +

𝜂𝑡𝐺
2
2𝐿

2
1

2𝛾𝑡+1
‖u𝑡+1 − 𝑔(w𝑡+1)‖2

2

]
≤ E

[
𝐹 (w𝑡 ) +

𝜂𝑡−1𝐺
2
2𝐿

2
1

2𝛾𝑡
‖u𝑡 − 𝑔(w𝑡 )‖2

2

]
− 𝜂𝑡

2
E[‖∇𝐹 (w𝑡 )‖2

2]

+ 𝐿1

2
√

8
𝛾2
𝑡+1𝜎

2
0 + 𝜂2

𝑡 (𝐿𝐹 + 𝐿1𝐺
2
2)(𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 ).

Define Υ𝑡 = 𝐹 (w𝑡 ) +
𝜂𝑡−1𝐺

2
2𝐿

2
1

2𝛾𝑡 E[‖u𝑡 − 𝑔(w𝑡 )‖2
2. Then we have

∑𝑇
𝑡=1 (Υ𝑡 − Υ𝑡+1) ≤

𝐶Υ := Υ1 − 𝐹∗ and
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E

[
𝑇∑
𝑡=1

𝜂𝑡∑𝑇
𝑡=1 𝜂𝑡

‖∇𝐹 (w𝑡 )‖2
2

]
≤ 2𝐶Υ∑𝑇

𝑡=1 𝜂𝑡
+

∑𝑇
𝑡=1 𝐿1𝛾

2
𝑡+1𝜎

2
0√

8
∑𝑇
𝑡=1 𝜂𝑡

+
∑𝑇
𝑡=1 2𝜂2

𝑡 (𝐿𝐹 + 𝐿1𝐺
2
2) (𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 )∑𝑇

𝑡=1 𝜂𝑡
.

Plugging the values of 𝜂𝑡 , 𝛾𝑡 will finish the proof. ut

4.2.3 A Straightforward Approach with a Large batch size

Before ending this section, we compare the complexity of SCGD with a straightfor-
ward approach that uses a large batch size for estimating the gradient. In particular,
we update the model parameter by the following:

ū𝑡 =
1
𝐵

𝐵∑
𝑗=1
𝑔(w𝑡 ; 𝜁 𝑗 ,𝑡 ), v̄𝑡 =

1
𝐵

𝐵∑
𝑖=1

∇𝑔(w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓
(
ū𝑡 ; 𝜉𝑖,𝑡

)
(4.14)

w𝑡+1 = w𝑡 − 𝜂𝑡 v̄𝑡 . (4.15)

Then under Assumptions 4.1, 4.2, we have

E[‖v̄𝑡 − ∇𝐹 (w𝑡 )‖2
2]

≤ E
[



 1
𝐵

𝐵∑
𝑖=1

∇𝑔(w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓
(
ū𝑡 ; 𝜉𝑖,𝑡

)
− ∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 )

+ ∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 ) − ∇𝐹 (w𝑡 )




2

2

]
.

Since

E
[



 1
𝐵

𝐵∑
𝑖=1

∇𝑔(w𝑡 ; 𝜁 ′𝑖,𝑡 )∇ 𝑓
(
ū𝑡 ; 𝜉𝑖,𝑡

)
− ∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 )






2

]
≤
𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2

𝐵
,

E
[



∇𝑔(w𝑡 )∇ 𝑓 (ū𝑡 ) − ∇𝐹 (w𝑡 )





2

2

]
≤ E[𝐺2

2𝐿
2
1‖ū𝑡 − 𝑔(w𝑡 )‖2

2] ≤
𝐺2

2𝐿
2
1𝜎

2
0

𝐵
,

then, E[‖v̄𝑡 −∇𝐹 (w𝑡 )‖2
2] ≤ 𝑂

(
𝐿2

1𝜎
2
0

𝐵 + 𝜎2
1+𝜎

2
2

𝐵

)
. Hence, if Assumption 4.4 holds and

by setting 𝐵 = 𝑂 (max(𝐿2
1𝜎

2
0 /𝜖2, (𝜎2

1 +𝜎2
2 )/𝜖2)), 𝜂 = 𝑂 (1/𝐿𝐹) and 𝑇 = 𝑂 (𝐿𝐹/𝜖2),

Lemma 4.9 will indicate that the naive approach can find an 𝜖-stationary solution.
Overall, it yields a sample complexity of
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Algorithm 10 SCMA
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Sample 𝜁𝑡 , 𝜁 ′

𝑡 and 𝜉𝑡
5: Compute the inner function value estimator u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔 (w𝑡 ; 𝜁𝑡 )
6: Compute the vanilla gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁 ′

𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )
7: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
8: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
9: end for

𝐵𝑇 = 𝑂

(
max

(
𝐿𝐹𝐿

2
1𝜎

2
0

𝜖4 ,
𝐿𝐹 (𝜎2

1 + 𝜎2
2 )

𝜖4

))
.

Critical: Compared with Theorem 4.1, the sample complexity of this naïve
approach is improved by an order of magnitude. In comparison to Theo-
rem 4.2, while the order of 𝜖 remains identical, the dependence on the Lip-
schitz constant 𝐿1 is reduced. Specifically, SCGD exhibits a dependence of
𝑂 (𝐿4

1), whereas the large mini-batch approach achieves 𝑂 (𝐿3
1), assuming

𝐿𝐹 = 𝑂 (𝐿1).

4.3 Stochastic Compositional Momentum Metholds

In this section, we present a method that matches the sample complexity of the large
mini-batch approach without using large mini-batches under the smoothness condi-
tions of 𝑓 and 𝐹. The idea is to design a gradient estimator such that its error can be
reduced gradually. It turns out this technique, related to the momentum metholds for
standard stochastic optimization, is more widely applicable to other problems dis-
cussed later in this chapter. Furthermore, we introduce advanced metholds to further
improve the complexity to 𝑂 (1/𝜖3) under stronger conditions.

It is worth noting that the results in this section apply to the standard stochastic
optimization problem (3.1) under the smoothness assumption of 𝑔(w) by setting
𝑓𝑖 (𝑔) = 𝑔 and 𝐿1 = 0 in the complexity results and removing the u update in the
algorithm.

4.3.1 Moving-Average Gradient Estimator

The first method is to use the following moving-average gradient estimator:
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v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ), (4.16)

where 0 ≤ 𝛽𝑡 < 1. With v𝑡 , the model parameter is updated by:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 . (4.17)

We present the full steps in Algorithm 10 and refer to it as SCMA.
To understand this method, we can view v𝑡 as a better estimator of the gradient,

with its estimation error gradually decreasing over iterations—a property we will
prove shortly. This yields an enhanced stability of momentum-based metholds ob-
served in practice.

Connection with Stochastic Momentum Metholds

This method is analogous to applying the stochastic momentum method to
the ERM problem, using the term ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) as a surrogate for
the true stochastic gradient. This connection is revealed by reformulating the
update into a canonical momentum form:

w𝑡+1 = w𝑡 − 𝜂′𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) + 𝛽′𝑡 (w𝑡 − w𝑡−1), (4.18)

where the effective step size and momentum parameters are 𝜂′𝑡 = 𝜂𝑡 𝛽𝑡 and
𝛽′𝑡 = 𝜂𝑡 (1− 𝛽𝑡 )/𝜂𝑡−1, respectively. The term 𝛽′𝑡 (w𝑡 −w𝑡−1) is the momentum
term.
In the special case where 𝑓 is the identity function, the update is identical to
the classical stochastic momentum method (also known as stochastic heavy-
ball method), renowned for its accelerated performance on quadratic func-
tions relative to plain gradient descent. Hence, the convergence analysis pre-
sented below also applies to the stochastic momentum method for ERM by
setting 𝐿1 = 0.

Convergence Analysis

First, we prove a generic lemma that establishes the error recursion of v𝑡 .

Lemma 4.7 Let v𝑡 = (1− 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 , where E𝑡 [z𝑡 ] = M𝑡 . If E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤

𝜎2, then we have

E𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 + 𝛽2
𝑡𝜎

2 (4.19)

+
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝛽𝑡 ‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 .

Proof. Due to the update formula v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 , we have
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E𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]

= E𝑡
[
‖(1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 − ∇𝐹 (w𝑡 )‖2

2
]

= E𝑡

[
‖ (1 − 𝛽𝑡 )v𝑡−1 − ∇𝐹 (w𝑡 ) + 𝛽𝑡M𝑡︸                                    ︷︷                                    ︸

a𝑡

+ 𝛽𝑡 (z𝑡 −M𝑡 )︸         ︷︷         ︸
b𝑡

‖2
2

]
.

Note that E𝑡 [a>𝑡 b𝑡 ] = 0. Besides, we have E𝑡 [‖b𝑡 ‖2
2] ≤ 𝛽2

𝑡𝜎
2. Due to Young’s

inequality, we have ‖𝑎 + 𝑏‖2
2 ≤ (1 + 𝛼)‖𝑎‖2

2 + (1 + 1/𝛼)‖𝑏‖2
2 for any 𝛼 > 0. Hence,

‖a𝑡 ‖2
2 = ‖(1 − 𝛽𝑡 ) (v𝑡−1 − ∇𝐹 (w𝑡−1)) + (1 − 𝛽𝑡 ) (∇𝐹 (w𝑡−1) − ∇𝐹 (w𝑡 ))

+ 𝛽𝑡 (M𝑡 − ∇𝐹 (w𝑡 ))‖2
2

≤ (1 − 𝛽𝑡 )2 (1 + 𝛽𝑡 )‖(v𝑡−1 − ∇𝐹 (w𝑡−1))‖2
2

+ (1 + 1
𝛽𝑡
)‖(1 − 𝛽𝑡 )(∇𝐹 (w𝑡−1) − ∇𝐹 (w𝑡 )) + 𝛽𝑡 (M𝑡 − ∇𝐹 (w𝑡 ))‖2

2

≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2
2 +

2(1 + 𝛽𝑡 )(1 − 𝛽𝑡 )2

𝛽𝑡
‖∇𝐹 (w𝑡−1) − ∇𝐹 (w𝑡 )‖2

2

+
2(1 + 𝛽𝑡 )𝛽2

𝑡

𝛽𝑡
‖M𝑡 − ∇𝐹 (w𝑡 )‖2

2

≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2
2 +

2𝐿2
𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝛽𝑡 ‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 .

Combining the above results, we finish the proof. ut

With the above lemma, we are able to establish the error recursion of v𝑡 of SCMA.

Lemma 4.8 Under Assumptions 4.1, 4.2, 4.3, and 4.4, for 𝑡 ≥ 1 SCMA satisfies that

E𝜉𝑡 ,𝜁 ′𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 (4.20)

+
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝐺2
2𝐿

2
1𝛽𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖

2
2 + 𝛽2

𝑡𝜎
2,

where 𝜎2 = 𝐺2
1𝜎

2
2 + 𝐺2

2𝜎
2
1 .

 Why it matters

The above lemma establishes the recursion of the error of stochastic gradient
estimator v𝑡 . It is the key to show that the average of the estimator error of v𝑡
will converge to zero.

Proof. We denote by E𝑡 [·] = E𝜉𝑡 ,𝜁 ′𝑡 [·]. Let z𝑡 = ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) and M𝑡 =
E𝑡 [z𝑡 ] = ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ). Lemma 4.4 proves that

E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤ 𝐺2

2𝜎
2
1 + 𝐺2

1𝜎
2
2 , (4.21)
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and

‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 = ‖∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ) − ∇𝑔(w𝑡 )∇ 𝑓 (𝑔(w𝑡 ))‖2

2

≤ 𝐺2
2𝐿

2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2.

Plugging these two results into Lemma 4.7, we finish the proof. ut

Critical: If we use the same random sample 𝜁𝑡 to compute

z𝑡 = ∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ),

then M𝑡 = E𝜉𝑡 ,𝜁𝑡 [z𝑡 ] is not equal to ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ). However, we just need
to assume that E𝜁𝑡 , 𝜉𝑡 [‖z𝑡 −M𝑡 ‖2

2] is bounded and ‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
2 ≤ 𝐺2. Then

‖M𝑡 − ∇𝐹 (w𝑡 )‖2
2 = ‖E𝜁𝑡∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ) − E𝜁𝑡∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (𝑔(w𝑡 ))‖2

2

≤ E𝜁𝑡 ‖∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (u𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 )∇ 𝑓 (𝑔(w𝑡 ))‖2
2

≤ E𝜁𝑡 [‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
2‖∇ 𝑓 (u𝑡 ) − ∇ 𝑓 (𝑔(w𝑡 ))‖2

2]
≤ E𝜁𝑡

[
𝐺2

2𝐿
2
1 ‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
.

The following analysis will proceed in the same manner.

To enjoy the above recursion of the gradient estimator’s error, we state the fol-
lowing lemma, which is a variant of the standard descent lemma of gradient descent.

Lemma 4.9 For the update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 , 𝑡 ≥ 0, if 𝜂𝑡 ≤ 1/(2𝐿𝐹), we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂𝑡
2

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

(4.22)

 Why it matters

This lemma ensures that if the stochastic gradient error satis-
fies E

[ 1
𝑇

∑𝑇
𝑡=1 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2
]

→ 0, then the convergence of
E

[ 1
𝑇

∑𝑇
𝑡=1 ‖∇𝐹 (w𝑡 )‖2

2
]
to zero is guaranteed.

Proof. Due to the smoothness of 𝐹, we have
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𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

= 𝐹 (w𝑡 ) + (∇𝐹 (w𝑡 ) − v𝑡 )> (w𝑡+1 − w𝑡 ) + v>𝑡 (w𝑡+1 − w𝑡 ) +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2

= 𝐹 (w𝑡 ) − 𝜂𝑡 (∇𝐹 (w𝑡 ) − v𝑡 )>v𝑡 −
(

1
𝜂𝑡

− 𝐿𝐹
2

)
‖w𝑡+1 − w𝑡 ‖2

2

= 𝐹 (w𝑡 ) + 𝜂𝑡 ‖(∇𝐹 (w𝑡 ) − v𝑡 )‖2
2 − 𝜂𝑡 (∇𝐹 (w𝑡 ) − v𝑡 )>∇𝐹 (w𝑡 )

−
(

1
𝜂𝑡

− 𝐿𝐹
2

)
‖w𝑡+1 − w𝑡 ‖2

2 .

Since (∇𝐹 (w𝑡 ) − v𝑡 )>∇𝐹 (w𝑡 ) = 1
2

(
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2 − ‖v𝑡 ‖2

2

)
, then

we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝜂𝑡 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

(
1
𝜂𝑡

− 𝐿𝐹
2

)
‖w𝑡+1 − w𝑡 ‖2

2

− 𝜂𝑡
2

(
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2 − ‖v𝑡 ‖2

2

)
= 𝐹 (w𝑡 ) +

𝜂𝑡
2

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

(
1

2𝜂𝑡
− 𝐿𝐹

2

)
‖w𝑡+1 − w𝑡 ‖2

2 .

ut

To prove the final convergence of SCMA, we present a useful lemma.

Lemma 4.10 If 𝜂𝑡 ≤ 1/𝐿, assume that there exist non-negative sequences 𝐴𝑡 , 𝐵𝑡 , Γ𝑡 ,Δ𝑡 , 𝛿𝑡 , 𝑡 ≥
0 satisfying:

(∗)𝐴𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

(♯)Δ𝑡+1 ≤ (1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛽𝑡+1𝛿𝑡+1 +
𝐶2𝜂

2
𝑡

𝛽𝑡+1
Γ𝑡 + 𝛽2

𝑡+1𝜎
2,

(�)𝛿𝑡+1 ≤ (1 − 𝛾𝑡+1)𝛿𝑡 +
𝐶3𝜂

2
𝑡

𝛾𝑡+1
Γ𝑡 + 𝛾2

𝑡+1𝜎
′2.

LetΥ𝑡 = 𝐴𝑡 + 𝜂𝑡−1
𝛽𝑡

Δ𝑡 + 𝐶1𝜂𝑡−1
𝛾𝑡

𝛿𝑡 . If 𝜂𝑡
𝛽𝑡+1

≤ 𝜂𝑡−1
𝛽𝑡

, 𝜂𝑡
𝛾𝑡+1

≤ 𝜂𝑡−1
𝛾𝑡

, 𝜂𝑡 ≤ min( 𝛽𝑡+1√
4𝐶2

, 𝛾𝑡+1√
8𝐶1𝐶3

),
and Υ𝑡 ≥ 𝐴∗, then we have

𝑇−1∑
𝑡=0

1∑𝑇−1
𝑡=0 𝜂𝑡

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤

𝐶Υ∑𝑇−1
𝑡=0 𝜂𝑡

+
∑𝑇−1
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2
)

∑𝑇−1
𝑡=0 𝜂𝑡

,

where 𝐶Υ = Υ0 − 𝐴∗ ≤ 𝐴0 − 𝐴∗ + 1
2
√
𝐶2
Δ0 +

√
𝐶1
8𝐶3

𝛿0.

If 𝛽 = 𝜖 2

3𝜎2 , 𝛾 = 𝜖 2

6𝐶1𝜎′2 , 𝜂 = min( 1
𝐿 ,

𝛽√
4𝐶2

, 𝛾√
8𝐶1𝐶3

), then in order to guarantee

142



4.3. STOCHASTIC COMPOSITIONAL MOMENTUM METHOLDS

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2.

the iteration complexity is the in the order of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿

𝜖2 ,
𝐶Υ𝜎

2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
.

Critical: If (∗), (♯), (�) hold in expectation, then the concluding inequalities
also hold in expectation.

Proof. The proof is constructive. The idea is to construct a telescoping series of
𝐴𝑡 + 𝑎𝑡Δ𝑡 + 𝑏𝑡𝛿𝑡 with some appropriate sequences of 𝑎𝑡 , 𝑏𝑡 . First, we have

𝐴𝑡+1 + 𝑎𝑡+1Δ𝑡+1 + 𝑏𝑡+1𝛿𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+ 𝑎𝑡+1 (1 − 𝛽𝑡+1)Δ𝑡 + 𝑎𝑡+1𝐶1𝛽𝑡+1𝛿𝑡+1 + 𝑎𝑡+1
𝐶2𝜂

2
𝑡

𝛽𝑡+1
Γ𝑡 + 𝑎𝑡+1𝛽

2
𝑡+1𝜎

2

+ 𝑏𝑡+1 (1 − 𝛾𝑡+1)𝛿𝑡 + 𝑏𝑡+1
𝐶3𝜂

2
𝑡

𝛾𝑡+1
Γ𝑡 + 𝑏𝑡+1𝛾

2
𝑡+1𝜎

′2.

Let 𝑎𝑡+1 = 𝜂𝑡/𝛽𝑡+1 ≤ 𝜂𝑡−1/𝛽𝑡 and 𝑏𝑡+1 = 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)/𝛾𝑡+1, we have

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + (𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
− 𝐶1𝜂𝑡 )𝛿𝑡+1 ≤ 𝐴𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+
(
𝜂𝑡 +

𝜂𝑡
𝛽𝑡+1

(1 − 𝛽𝑡+1)
)
Δ𝑡 +

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

Γ𝑡 + 𝜂𝑡 𝛽𝑡+1𝜎
2

+ 𝐶1𝜂𝑡
1 + 𝛾𝑡+1

𝛾𝑡+1
(1 − 𝛾𝑡+1)𝛿𝑡 +

𝐶3𝐶1𝜂
3
𝑡 (1 + 𝛾𝑡+1)
𝛾2
𝑡+1

Γ𝑡 + 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)𝛾𝑡+1𝜎
′2.

Thus,

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
(
𝜂𝑡 −

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

−
𝐶3𝐶1𝜂

3
𝑡 (1 + 𝛾𝑡+1)
𝛾2
𝑡+1

)
Γ𝑡

+ 𝜂𝑡 𝛽𝑡+1𝜎
2 + 𝐶1𝜂𝑡 (1 + 𝛾𝑡+1)𝛾𝑡+1𝜎

′2.

Since 𝜂𝑡/𝛽𝑡+1 ≤ 𝜂𝑡−1/𝛽𝑡 and 𝜂𝑡/𝛾𝑡+1 ≤ 𝜂𝑡−1/𝛾𝑡 and 𝛾𝑡+1 ≤ 1, we have
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𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
(
𝜂𝑡 −

𝐶2𝜂
3
𝑡

𝛽2
𝑡+1

−
2𝐶3𝐶1𝜂

3
𝑡

𝛾2
𝑡+1

)
Γ𝑡

+ 𝜂𝑡 𝛽𝑡+1𝜎
2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎

′2.

Since 𝐶2𝜂
3
𝑡 /𝛽2

𝑡+1 ≤ 𝜂𝑡/4 (because 𝜂𝑡 ≤ 𝛽𝑡+1/
√

4𝐶2) and 2𝐶3𝐶1𝜂
3
𝑡 /𝛾2

𝑡+1 ≤ 𝜂𝑡/4
(because 𝜂𝑡 ≤ 𝛾𝑡+1/

√
8𝐶1𝐶3), we have

𝐴𝑡+1 +
𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 +
𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1 ≤ 𝐴𝑡 +
𝜂𝑡−1

𝛽𝑡
Δ𝑡 +

𝐶1𝜂𝑡−1

𝛾𝑡
𝛿𝑡

− 𝜂𝑡𝐵𝑡 −
1
2
𝜂𝑡Γ𝑡 + 𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Define Υ𝑡+1 = 𝐴𝑡+1 + 𝜂𝑡
𝛽𝑡+1

Δ𝑡+1 + 𝐶1𝜂𝑡
𝛾𝑡+1

𝛿𝑡+1, we have

𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ≤ Υ𝑡 − Υ𝑡+1 + 𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2.

Hence

𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ Υ0 − 𝐴∗ +

𝑇−1∑
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
′2
)
.

Next, let us consider 𝜂𝑡 = 𝜂, 𝛽𝑡 = 𝛽, 𝛾𝑡 = 𝛾. Then we have

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤

𝐶Υ

𝑇
+

(
𝛽𝜎2 + 2𝐶1𝛾𝜎

′2
)
.

In order to ensure the RHS is less than 𝜖2, it suffices to have

𝛽 =
𝜖2

3𝜎2 , 𝛾 =
𝜖2

6𝐶1𝜎′2 , 𝑇 =
𝐶Υ

3𝜖2𝜂
.

Since

𝜂 = min
(

1
𝐿
,

𝛽
√

4𝐶2
,

𝛾
√

8𝐶1𝐶3

)
,

thus the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿

𝜖2 ,
𝐶Υ

√
𝐶2

𝜖2𝛽
,
𝐶Υ

√
𝐶1𝐶3

𝛾𝜖2

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
,
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where

𝐶Υ = 𝐴0 − 𝐴∗ +
𝜂

𝛽
Δ0 +

𝐶1𝜂

𝛾
𝛿0 ≤ 𝐴0 − 𝐴∗ +

1
2
√
𝐶2

Δ0 +
√
𝐶1√
8𝐶3

𝛿0.

ut

Finally, let us prove the convergence of SCMA.

Theorem 4.3 Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. For the SCMA algo-
rithm, set the parameters as follows: 𝛽 = 𝜖 2

3𝜎2 , 𝛾 = 𝜖 2

6𝐶1𝜎
2
0
, and 𝜂 = min

(
1

2𝐿𝐹 ,
𝛽√
4𝐶2

, 𝛾√
8𝐶1𝐶3

)
,

where 𝜎2 = 𝐺2
2𝜎

2
1 + 𝐺2

1𝜎
2
2 , 𝐶1 = 4𝐺2

2𝐿
2
1, 𝐶2 = 4𝐿2

𝐹 , 𝐶3 = 2𝐺2
2. Then, the following

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2

}]
≤ 𝜖2

holds, with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2𝐿𝐹
𝜖4 ,

𝐶Υ𝐿
3
1𝜎

2
0

𝜖4

})
.

where 𝐶Υ := 2 (𝐹 (w0) − 𝐹∗) + 1
8𝐿𝐹 ‖∇𝐹 (w0) − v0‖2

2 +
𝐿1
2 ‖u0 − 𝑔(w0)‖2

2.

 Why it matters

Insights 1: Theorem 4.3 indicates that SCMA enjoys the same complexity of
𝑂 (1/𝜖4) for finding an 𝜖-stationary solution as SGD for ERM. In addition,
the averaged estimation error of the moving-average gradient estimator v𝑡 , i.e.,
E[ 1

𝑇

∑𝑇−1
𝑡=0 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2], converges to zero as 𝑇 → ∞.
Insights 2: We can apply the above result to the Momentum method (6.2) for
solving the standard stochastic optimization minw 𝐹 (w) := E𝜁 [𝑔(w; 𝜁)] by set-
ting 𝐿1 = 0. The complexity of the Momentum method is

𝑇 = 𝑂

(
max

{
(𝐹 (w0) − 𝐹∗)𝐿𝐹

𝜖2 ,
(𝐹 (w0) − 𝐹∗)𝜎2𝐿𝐹

𝜖4 ,
‖∇𝐹 (w0) − v0‖2

2 𝜎
2

𝜖4

})
,

which is no worse than that of SGD in Theorem 3.3. The key advantage of the
Momentum method over SGD is that it ensures the averaged estimation error of
the moving-average gradient estimator v𝑡 converge to zero.
The convergence bound also suggests that it is better to initialize v0 in a way such
that ‖∇𝐹 (w0) − v0‖2

2 is small, e.g., using the mini-batch gradient at w0 instead
of initializing it to zero.

Proof. The three inequalities in Lemma 4.8, 4.9 and 4.1 that we have proved so far
are
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(∗)𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂𝑡
2

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

𝜂𝑡
4

‖v𝑡 ‖2
2 , 𝑡 ≥ 0

(♯)E
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ E[(1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2]

+ E

[
4𝐺2

2𝐿
2
1𝛽𝑡 ‖u𝑡 − 𝑔(w𝑡 )‖

2
2 +

2𝐿2
𝐹𝜂

2
𝑡−1

𝛽𝑡
‖v𝑡−1‖2

2 + 𝛽2
𝑡𝜎

2

]
,

(�)E
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ E[(1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2]

+ E

[
𝐺2

2𝜂
2
𝑡−1

𝛾𝑡
‖v𝑡−1‖2

2 + 𝛾2
𝑡 𝜎

2
0

]
.

Define 𝐴𝑡 = 2(𝐹 (w𝑡 ) − 𝐹∗) and 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2, Γ𝑡 = ‖v𝑡 ‖2

2 /2, Δ𝑡 =

‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2, 𝛿𝑡 = ‖u𝑡 − 𝑔(w𝑡 )‖2

2, and Υ𝑡 = 𝐴𝑡 + 𝜂𝑡−1
𝛽𝑡

Δ𝑡 + 𝐶1𝜂𝑡−1
𝛾𝑡

𝛿𝑡 .

Then the three inequalities satisfy that in Lemma 4.10 with 𝐶1 = 4𝐺2
2𝐿

2
1, 𝐶2 =

4𝐿2
𝐹 , 𝐶3 = 2𝐺2

2, 𝜎
2 = 𝐺2

1𝜎
2
2 + 𝐺2

2𝜎
2
1 , 𝜎

′2 = 𝜎2
0 . Then 𝜂𝑡 , 𝛽𝑡 , 𝛾𝑡 satisfy

𝜂𝑡
𝛽𝑡+1

≤ 𝜂𝑡−1

𝛽𝑡
,
𝜂𝑡
𝛾𝑡+1

≤ 𝜂𝑡−1

𝛾𝑡
, 𝜂𝑡 ≤ min( 𝛽𝑡+1√

4𝐶2
,

𝛾𝑡+1√
8𝐶1𝐶3

).

Then we have

E

[
𝑇−1∑
𝑡=0

1∑𝑇−1
𝑡=0 𝜂𝑡

(𝜂𝑡 ‖∇𝐹 (w𝑡 )‖2
2 +

𝜂𝑡
4

‖v𝑡 ‖2
2)

]
≤ 𝐶Υ∑

𝑡=1 𝜂𝑡
+

∑𝑇−1
𝑡=0

(
𝜂𝑡 𝛽𝑡+1𝜎

2 + 2𝐶1𝜂𝑡𝛾𝑡+1𝜎
2
0
)∑𝑇−1

𝑡=0 𝜂𝑡
.

Since the setting of 𝜂, 𝛾, 𝛽 satisfy that in Lemma 4.10, the order of 𝑇 becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

2
0

𝜖4

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2𝐿𝐹
𝜖4 ,

𝐶Υ𝐿
3
1𝜎

2
0

𝜖4

})
,

where

𝐶Υ = 2(𝐹 (w0) − 𝐹∗) +
1

2
√
𝐶2

‖v0 − ∇𝐹 (w0)‖2
2 +

√
𝐶1√
8𝐶3

‖u0 − 𝑔(w0)‖2
2

= 2(𝐹 (w0) − 𝐹∗) +
1

4𝐿𝐹
‖v0 − ∇𝐹 (w0)‖2

2 +
𝐿1

2
‖u0 − 𝑔(w0)‖2

2 .

ut
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4.3.2 STORM Estimators

We can further reduce the error of the gradient estimator by using advanced variance
reduction techniques under stronger assumptions. We make the following assump-
tions.

Assumption 4.6. There exists 𝐿1, 𝐺1 > 0 such that

(i) E[‖∇ 𝑓 (𝑔; 𝜉) − ∇ 𝑓 (𝑔′; 𝜁)‖2
2] ≤ 𝐿2

1‖𝑔 − 𝑔′‖2
2,∀𝑔, 𝑔′;

(ii) E[‖∇ 𝑓 (𝑔; 𝜉)‖2
2] ≤ 𝐺2

1,∀𝑔.
Assumption 4.7. There exists 𝐿2, 𝐺2 > 0 such that

(i) E[‖∇𝑔(w; 𝜁) − ∇𝑔(w′; 𝜁)‖2
2] ≤ 𝐿2

2‖w − w′‖2
2,∀w,w′;

(ii) E[‖∇𝑔(w; 𝜁)‖2
2] ≤ 𝐺2

2,∀w.

Due to Jensen’s inequality, Assumption (4.6)(i) implies the Lipschitz continu-
ity assumption of ∇ 𝑓 in Assumption (4.1)(i). Similarly, Assumption (4.7)(i) implies
that in Assumption 4.2(i), respectively. Hence, Assumption (4.6)(i) and Assump-
tion (4.7)(i) are stronger, which are referred to as mean-square smoothness condition
of 𝑓 and 𝑔.

The STORM estimator

Let us first discuss a generic STORM estimator, an improved variant of the
moving average estimator. Without loss of generality, we consider estimat-
ing a sequence of mappings {M(w𝑡 )}𝑇𝑡=1 through their stochastic values at
each iteration {M(w𝑡 ; 𝜁𝑡 )}𝑇𝑡=1, where E𝜁𝑡 [M(w𝑡 ; 𝜁𝑡 )] = M(w𝑡 ) ∈ R𝑑

′ . We
assume the mapping M satisfies:

E𝜁 [‖M(w; 𝜁) −M(w′; 𝜁)‖2
2] ≤ 𝐺2‖w − w′‖2

2,∀w,w′;

The STORM estimator is give by a sequence of U1, . . . ,U𝑇 , where

U𝑡 = (1 − 𝛾𝑡 )U𝑡−1 + 𝛾𝑡M(w𝑡 ; 𝜁𝑡 ) + (1 − 𝛾𝑡 )(M(w𝑡 ; 𝜁𝑡 ) −M(w𝑡−1; 𝜁𝑡 )),
(4.23)

and 𝛾𝑡 ∈ (0, 1).
It augments the moving-average estimator by adding an extra term (1 −
𝛾𝑡 ) (M(w𝑡 ; 𝜁𝑡 ) −M(w𝑡−1; 𝜁𝑡 )), which can be viewed as an error correction
term.

Applying the STORM estimator to estimating the sequence of {𝑔(w𝑡 )}𝑡≥1, we
have the following sequence:

u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔(w𝑡 ; 𝜁𝑡 ) + (1 − 𝛾𝑡 ) (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡−1; 𝜁𝑡 )). (4.24)

Given u𝑡 , we can compute a moving-average gradient estimator (4.16) similar to
SCMA. However, this will not yield an improved rate compared with SCMA. To
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Algorithm 11 SCST
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=0, {𝛾𝑡 }𝑇𝑡=1; starting points w0, u0, v0
2: Let w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Sample 𝜁𝑡 , 𝜁 ′

𝑡 and 𝜉𝑡
5: Update the inner function value estimator

u𝑡 = (1 − 𝛾𝑡 )u𝑡−1 + 𝛾𝑡𝑔 (w𝑡 ; 𝜁𝑡 ) + (1 − 𝛾𝑡 ) (𝑔 (w𝑡 ; 𝜁𝑡 ) − 𝑔 (w𝑡−1; 𝜁𝑡 ) )

6: Compute the vanilla gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁 ′
𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 )

7: Compute z̃𝑡−1 = ∇𝑔 (w𝑡−1; 𝜁 ′
𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )

8: Update the STORM gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 ) (z𝑡 − z̃𝑡−1 )
9: Update the model by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
10: end for

reduce the estimator error of the gradient, we apply another STORM estimator to
estimate M𝑡 = ∇𝑔(w𝑡 )∇ 𝑓 (u𝑡 ). This is computed by the following sequence:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) (4.25)
+ (1 − 𝛽𝑡 )(∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )).

With v𝑡 , we update the model parameters by

w𝑡+1 = w𝑡 − 𝜂v𝑡 .

The full steps of this method is presented in Algorithm 11, which is referred to as
SCST.

Connection with Variance-reduced metholds for Non-convex optimiza-
tion

In the special case where 𝑓 is the identity function, the update is identical
to the classical variance-reduced method (also known as STROM) for non-
convex optimization minw E𝜁 [𝑔(w; 𝜁)], i.e.,

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡∇𝑔(w𝑡 ; 𝜁 ′𝑡 ) + (1 − 𝛽𝑡 )(∇𝑔(w𝑡 ; 𝜁 ′𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )),
w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 .

(4.26)
It is renowned for its improved complexity of 𝑂 (1/𝜖3) better than the com-
plexity 𝑂 (1/𝜖4) of SGD for finding an 𝜖-stationary solution.

Convergence Analysis

We first prove a general result of the STORM estimator that applies to both u𝑡 and
v𝑡 .
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Lemma 4.11 Consider v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 )(z𝑡 − z̃𝑡−1), where 𝛽𝑡 ∈
(0, 1). Let E𝑡 denote the expectation over randomness associated with z𝑡 , z̃𝑡−1 condi-
tion on the randomness before 𝑡-the iteration. If E𝑡 [z𝑡 ] = M𝑡 and E𝑡 [z̃𝑡−1] = M𝑡−1.
If E𝑡 [‖z𝑡 −M𝑡 ‖2

2] ≤ 𝜎2, then we have

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 + E𝑡 [2‖z𝑡 − z̃𝑡−1‖2
2] + 2𝛽2

𝑡𝜎
2.

Proof.

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]

= E𝑡
[
‖(1 − 𝛽𝑡 )v𝑡−1 −M𝑡 + 𝛽𝑡z𝑡 + (1 − 𝛽𝑡 ) (z𝑡 − z̃𝑡−1)‖2

2
]

= E𝑡 [‖(1 − 𝛽𝑡 )(v𝑡−1 −M𝑡−1) + (1 − 𝛽𝑡 )((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1))
+ 𝛽𝑡 (z𝑡 −M𝑡 )‖2

2
]
.

Note that

E𝑡 [〈(1 − 𝛽𝑡 ) (v𝑡−1 −M𝑡−1),
(1 − 𝛽𝑡 ) ((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1)) + 𝛽𝑡 (z𝑡 −M𝑡 )〉] = 0.

Then,

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 )2 ‖v𝑡 −M𝑡−1‖2

2

+ ‖(1 − 𝛽𝑡 )((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1)) + 𝛽𝑡 (z𝑡 −M𝑡 )‖2
2

(�)
≤ (1 − 𝛽𝑡 )2 ‖v𝑡 −M𝑡−1‖2

2

+ 2(1 − 𝛽𝑡 )2E𝑡 [‖((z𝑡 − z̃𝑡−1) − (M𝑡 −M𝑡−1))‖2
2] + 2𝛽2

𝑡 E𝑡 [‖z𝑡 −M𝑡 ‖2
2]

(∗)
≤ (1 − 𝛽𝑡 )2 ‖v𝑡−1 −M𝑡−1‖2

2 + 2(1 − 𝛽𝑡 )2E𝑡 [‖z𝑡 − z̃𝑡−1‖2
2] + 2𝛽2

𝑡𝜎
2,

where (�) uses the Young’s inequality, (∗) uses the fact that E[‖𝑎 − E[𝑎] ‖2
2] ≤

E[‖𝑎‖2
2], and E𝑡 [z𝑡 − z̃𝑡−1] = M𝑡 −M𝑡−1. ut

Let us first prove an error recursion of u𝑡 in the lemma below.

Lemma 4.12 Under Assumption (4.7)(ii), we have:

E𝜁𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + 2𝛾2
𝑡 𝜎

2
0 + 2𝐺2

2‖w𝑡 − w𝑡−1‖2
2

E𝜁𝑡
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 2𝛾2

𝑡 𝜎
2
0 + 4𝛾2

𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + 6𝐺2

2‖w𝑡 − w𝑡−1‖2
2.

 Why it matters

Compared to the error recursion of u𝑡 to that in Lemma 4.1, the improvement
comes from the last term reducing from 2𝐺2

2 ‖w𝑡−w𝑡−1 ‖2
2

𝛾𝑡
to 2𝐺2

2‖w𝑡 − w𝑡−1‖2
2.
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Proof. The first part follows directly fromLemma 4.11 by noting themean-Lipschitz
continuity of 𝑔(w; 𝜁). To prove the second part, we proceed as follows:

E𝑡
[
‖u𝑡 − u𝑡−1‖2

2
]

=E𝑡
[
‖𝛾𝑡 (𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1) + (1 − 𝛾𝑡 ) (𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡−1; 𝜁𝑡 ))‖2

2
]

≤E𝑡
[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1)‖2

2 + 2(1 − 𝛾𝑡 )2 ‖𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡−1; 𝜁𝑡 )‖2
2
]

≤E𝑡
[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1)‖2

2
]
+ 2(1 − 𝛾𝑡 )2𝐺2

2‖w𝑡 − w𝑡−1‖2
2.

Next, we bound the first term on the RHS as

E𝑡
[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − u𝑡−1)‖2

2
]
= E𝑡

[
2𝛾2
𝑡 ‖(𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 ) + 𝑔(w𝑡 ) − u𝑡−1)‖2

2
]

≤ 2𝛾2
𝑡 𝜎

2
0 + 2𝛾2

𝑡 ‖𝑔(w𝑡 ) − u𝑡−1‖2
2

≤ 2𝛾2
𝑡 𝜎

2
0 + 2𝛾2

𝑡 ‖𝑔(w𝑡 ) − 𝑔(w𝑡−1) + 𝑔(w𝑡−1) − u𝑡−1‖2
2

≤ 2𝛾2
𝑡 𝜎

2
0 + 4𝛾2

𝑡 ‖𝑔(w𝑡−1) − u𝑡−1‖2
2 + 4𝛾2

𝑡𝐺
2
2‖w𝑡 − w𝑡−1‖2

2,

where the first inequality uses the fact E [𝑔(w𝑡 ; 𝜁𝑡 ) − 𝑔(w𝑡 )] = 0. Combining the
above results, we finish the proof. ut

Next, we build an error recursion of ‖v𝑡 −M𝑡 ‖2
2.

Lemma 4.13 Let 𝜎2 = 𝐺2
2𝜎

2
1 + 𝐺2

1𝜎
2
2 . Under Assumptions (4.6) and Assump-

tion (4.7), (4.25) satisfies that

E𝜁 ′𝑡 , 𝜉𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 (4.27)

+ 16𝐺2
2𝐿

2
1𝛾

2
𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2 + (24𝐺4
2𝐿

2
1 + 4𝐺2

1𝐿
2
2)‖w𝑡 − w𝑡−1‖2

2

+ 2𝛽2
𝑡𝜎

2 + 8𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0 .

Proof. First, (4.21) gives E𝑡 [‖z𝑡 −M𝑡 ‖2
2] ≤ 𝜎2. Second,

E𝑡
[
‖z𝑡 − z̃𝑡−1‖2

2
]

= E𝑡 [‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )‖2
2]

= E𝑡 [‖∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡 ; 𝜉𝑡 ) − ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )
+ ∇𝑔(w𝑡 ; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 ) − ∇𝑔(w𝑡−1; 𝜁 ′𝑡 )∇ 𝑓 (u𝑡−1; 𝜉𝑡 )‖2

2]
(4)
≤ 2𝐺2

2𝐿
2
1‖u𝑡 − u𝑡−1‖2

2 + 2𝐺2
1𝐿

2
2‖w𝑡 − w𝑡−1‖2

2,

where (4) uses the Assumption (4.6)(i) and Assumption (4.7)(i). It then follows:

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 )2 ‖v𝑡−1 −M𝑡−1‖2

2

+ 4𝐺2
2𝐿

2
1‖u𝑡 − u𝑡−1‖2

2 + 4𝐺2
1𝐿

2
2‖w𝑡 − w𝑡−1‖2

2 + 2𝛽2
𝑡𝜎

2.

By using the second inequality of Lemma 4.12, i.e.,
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E𝜁𝑡
[
‖u𝑡 − u𝑡−1‖2

2
]
≤ 2𝛾2

𝑡 𝜎
2
0 + 4𝛾2

𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2
2 + 6𝐺2

2‖w𝑡 − w𝑡−1‖2
2,

we have

E𝑡
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2 + 16𝐺2
2𝐿

2
1𝛾

2
𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+ (24𝐺4
2𝐿

2
1 + 4𝐺2

1𝐿
2
2)‖w𝑡 − w𝑡−1‖2

2 + 2𝛽2
𝑡𝜎

2 + 8𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0 .

ut

Similar to Lemma 4.9, we have the following descent lemma.

Lemma 4.14 For the update w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 , 𝑡 ≥ 0, if 𝜂𝑡 ≤ 1/(2𝐿𝐹) we have

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝜂𝑡𝐺2
2𝐿

2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2 + 𝜂𝑡 ‖v𝑡 − 𝐻𝑡 ‖
2
2

− 𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 . (4.28)

This lemma can be proved following that of lemma 4.9 by bound ‖v𝑡−∇𝐹 (w𝑡 )‖2
2 ≤

2‖v𝑡 −M𝑡 ‖2
2 + 2‖M𝑡 − ∇𝐹 (w𝑡 )‖2

2 ≤ 2‖v𝑡 −M𝑡 ‖2
2 + 2𝐺2

2𝐿
2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2.

Lemma 4.15 For 𝜂𝑡 ≤ 1/𝐿, the non-negative sequences 𝐴𝑡 , 𝐵𝑡 , Γ𝑡 ,Δ𝑡 , 𝛿𝑡 , 𝑡 ≥ 0
satisfy:

(∗)𝐴𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 + 𝜂𝑡𝛿𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡
(♯)Δ𝑡+1 ≤ (1 − 𝛽𝑡+1)Δ𝑡 + 𝐶1𝛾

2
𝑡+1𝛿𝑡 + 𝐶2𝜂

2
𝑡 Γ𝑡 + 𝛽2

𝑡+1𝜎
2 + 𝛾2

𝑡+1𝜎
′2,

(�)𝛿𝑡+1 ≤ (1 − 𝛾𝑡+1)𝛿𝑡 + 𝐶3𝜂
2
𝑡 Γ𝑡 + 𝛾2

𝑡+1𝜎
′′2.

Let Υ𝑡+1 = 𝐴𝑡+1 + 𝑐
𝜂𝑡
Δ𝑡+1 + 𝑐′

𝜂𝑡
𝛿𝑡+1 ≥ 𝐴∗. Suppose 𝑐, 𝑐′, 𝜂𝑡 , 𝛾𝑡 , 𝛽𝑡 satisfy:

𝐶2𝑐 + 𝐶3𝑐
′ ≤ 1

2
, 𝜂𝑡 +

𝑐

𝜂𝑡
(1 − 𝛽𝑡+1) ≤

𝑐

𝜂𝑡−1
,

𝜂𝑡 +
𝑐

𝜂𝑡
𝐶1𝛾

2
𝑡+1 +

𝑐′

𝜂𝑡
(1 − 𝛾𝑡+1) ≤

𝑐′

𝜂𝑡−1
.

(4.29)

Then,

𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ 𝐶Υ +

𝑇−1∑
𝑡=0

(
𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2
)
. (4.30)

If we set 𝑐 = 1
4𝐶2

, 𝑐′ = 1
4𝐶3

, 𝛽𝑡 = 𝜖 𝜂
√
𝐶2

𝜎 , 𝛾𝑡 = min
(
𝜖 𝜂

√
𝐶2

𝜎′ , 𝜖 𝜂
√
𝐶3

𝜎′′ , 𝐶2
2𝐶3𝐶1

)
, and

𝜂𝑡 = 𝜂 = min
(

1
𝐿 ,

𝜖
4
√
𝐶2𝜎

, 𝜖
√
𝐶2

8𝐶3𝜎′ ,
𝜖

8
√
𝐶3𝜎′′ ,

√
𝐶2

4𝐶3
√
𝐶1

)
, then in order to grantee

151



𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2, (4.31)

the iteration complexity is in the order of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿

𝜖2 ,
𝐶Υ𝐶3

√
𝐶1/𝐶2

𝜖2 ,
𝐶Υ𝜎

√
𝐶2

𝜖3 ,
𝐶Υ𝐶3𝜎

′

𝜖3√𝐶2
,
𝐶Υ𝜎

′′√𝐶3

𝜖3

})
where 𝐶Υ = Υ0 − 𝐴∗ = 𝐴0 + 1

4𝐶2𝜂
Δ0 + 1

4𝐶3𝜂
𝛿0 − 𝐴∗.

Critical: If (∗), (♯), (�) hold in expectation, then the two inequalities in (4.30)
and (4.31) hold in expectation.

Proof. The proof is constructive. The idea is to multiply the second inequality by
𝑎𝑡+1 and the third inequality by 𝑏𝑡+1 such that we can construct a telescoping series
of 𝐴𝑡 + 𝑎𝑡Δ𝑡 + 𝑏𝑡𝛿𝑡 . First, we have

𝐴𝑡+1 + 𝑎𝑡+1Δ𝑡+1 + 𝑏𝑡+1𝛿𝑡+1 ≤ 𝐴𝑡 + 𝜂𝑡Δ𝑡 + 𝜂𝑡𝛿𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡
+ 𝑎𝑡+1 (1 − 𝛽𝑡+1)Δ𝑡 + 𝑎𝑡+1𝐶1𝛾

2
𝑡+1𝛿𝑡 + 𝑎𝑡+1𝐶2𝜂

2
𝑡 Γ𝑡 + 𝑎𝑡+1𝛽

2
𝑡+1𝜎

2 + 𝑎𝑡+1𝛾
2
𝑡+1𝜎

′2.

+ 𝑏𝑡+1 (1 − 𝛾𝑡+1)𝛿𝑡 + 𝑏𝑡+1𝐶3𝜂
2
𝑡 Γ𝑡 + 𝑏𝑡+1𝛾

2
𝑡+1𝜎

′′2.

Let 𝑎𝑡+1 = 𝑐/𝜂𝑡 and 𝑏𝑡+1 = 𝑐′/𝜂𝑡 , we have

𝐴𝑡+1 +
𝑐

𝜂𝑡
Δ𝑡+1 +

𝑐′

𝜂𝑡
𝛿𝑡+1 ≤ 𝐴𝑡 − 𝜂𝑡𝐵𝑡 − 𝜂𝑡Γ𝑡

+
(
𝜂𝑡 +

𝑐

𝜂𝑡
(1 − 𝛽𝑡+1)

)
Δ𝑡 + 𝐶2𝑐𝜂𝑡Γ𝑡 +

𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2

+
(
𝜂𝑡 +

𝑐

𝜂𝑡
𝐶1𝛾

2
𝑡+1 +

𝑐′

𝜂𝑡
(1 − 𝛾𝑡+1)

)
𝛿𝑡 + 𝐶3𝑐

′𝜂𝑡Γ𝑡 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2.

With (4.29) we have

𝐴𝑡+1 +
𝑐

𝜂𝑡
Δ𝑡+1 +

𝑐′

𝜂𝑡
𝛿𝑡+1 ≤ 𝐴𝑡 +

𝑐

𝜂𝑡−1
Δ𝑡 +

𝑐′

𝜂𝑡−1
𝛿𝑡 − 𝜂𝑡𝐵𝑡 −

1
2
𝜂𝑡Γ𝑡

+
𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2

Define Υ𝑡+1 = 𝐴𝑡+1 + 𝑐
𝜂𝑡
Δ𝑡+1 + 𝑐′

𝜂𝑡
𝛿𝑡+1, we have

𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ≤ Υ𝑡 − Υ𝑡+1 +

𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2.

Hence
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𝑇−1∑
𝑡=0

(𝜂𝑡𝐵𝑡 +
1
2
𝜂𝑡Γ𝑡 ) ≤ Υ0 − 𝐴∗ +

𝑇−1∑
𝑡=0

(
𝑐𝛽2
𝑡+1
𝜂𝑡

𝜎2 +
𝑐𝛾2
𝑡+1
𝜂𝑡

𝜎′2 +
𝑐′𝛾2

𝑡+1
𝜂𝑡

𝜎′′2
)
.

Next, let us consider 𝜂𝑡 = 𝜂, 𝛽𝑡 = 𝛽, 𝛾𝑡 = 𝛾. Then we have

𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤

Υ0 − 𝐴∗
𝜂𝑇

+
(
𝑐𝛽2

𝜂2 𝜎
2 + 𝑐𝛾

2

𝜂2 𝜎
′2 + 𝑐

′𝛾2

𝜂2 𝜎′′2
)
.

In order to ensure the RHS is less than 𝜖2, it suffices to have

𝛽 =
𝜖𝜂

2
√
𝑐𝜎
, 𝛾 = min

(
𝜖𝜂

2
√
𝑐𝜎′ ,

𝜖𝜂

2
√
𝑐′𝜎′′

)
, 𝑇 =

𝐶Υ

4𝜖2𝜂
.

To ensure (4.29), it suffices to have

𝜂2 ≤ 𝑐𝛽, 𝐶1𝑐𝛾 ≤ 𝑐′/2, 𝜂2 ≤ 𝑐′𝛾/2, 𝑐 =
1

4𝐶2
, 𝑐′ =

1
4𝐶3

.

As a result, if we set

𝜂 = min
(

1
𝐿
,
𝜖
√
𝑐

2𝜎
,
𝜖𝑐′

4
√
𝑐𝜎′ ,

𝜖
√
𝑐′

4𝜎′′ ,
𝑐′

2
√
𝑐𝐶1

)
= min

(
1
𝐿
,

𝜖

4
√
𝐶2𝜎

,
𝜖
√
𝐶2

8𝐶3𝜎′ ,
𝜖

8
√
𝐶3𝜎′′ ,

√
𝐶2

4𝐶3
√
𝐶1

)
𝛽 =

𝜖𝜂
√
𝐶2

𝜎
, 𝛾 = min

(
𝜖𝜂

√
𝐶2

𝜎′ ,
𝜖𝜂

√
𝐶3

𝜎′′ ,
𝐶2

2𝐶3𝐶1

)
,

we have
𝑇−1∑
𝑡=0

1
𝑇
(𝐵𝑡 +

1
2
Γ𝑡 ) ≤ 𝜖2.

Plugging the values of 𝜂 into the requirement of 𝑇 yields the order of 𝑇 .
ut

Theorem 4.4 Suppose that Assumptions 4.3, 4.6,and 4.7 hold. For SCST, in order
to guarantee

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2

}]
≤ 𝜖2,

we can set the parameters as 𝜂 = min{𝑂 ( 1
𝐿𝐹

), 𝑂 ( 𝜖
𝐿1𝜎

), 𝑂 ( 𝜖
𝐿2

1𝜎0
)}, 𝛽 = 𝑂 ( 𝜖 𝜂𝐿1

𝜎 ),
and 𝛾 = min{𝑂 ( 𝜖 𝜂𝜎0

, 𝑂 (1)}, and the iteration complexity is

𝑇 = 𝑂

(
max(𝐶Υ𝐿1 (𝜎1 + 𝜎2)

𝜖3 ,
𝐶Υ𝜎0𝐿

2
1

𝜖3 ,
𝐶Υ𝐿𝐹
𝜖2 )

)
,

153



where 𝐶Υ = 𝑂 (𝐹 (w0) − 𝐹∗ + 1
𝐿2

1 𝜂
‖∇𝑔(w0)∇ 𝑓 (u0) − v0‖2

2 +
1
𝐿2

1 𝜂
‖𝑔(w0) − u0‖2

2).

 Why it matters

We only explicitly maintain the dependence on 𝐿1, which will have implications
when we handle non-smooth 𝑓 in next Chapter.
The above theorem can help us establish an improved iteration complex-
ity of 𝑂 (1/𝜖3). First, we need to ensure 𝐶Υ = 𝑂 (1), which can be sat-
isfied by using a large initial batch size. In particular, we can set u0 =
1
𝐵0

∑𝐵0
𝑖=1 𝑔(w0; 𝜁𝑖), v0 = 1

𝐵0

∑𝐵0
𝑖=1 ∇𝑔(w0; 𝜁 ′𝑖 )∇ 𝑓 (u0; 𝜉𝑖), where {𝜁𝑖 , 𝜁 ′𝑖 , 𝜁𝑖}

𝐵0
𝑖=1 are

independent random variables. Thus, we have E[‖u0 − 𝑔(w0)‖2
2] ≤ 𝑂 ( 1

𝐵0
) and

E[‖v0 − ∇𝑔(w0)∇ 𝑓 (u0)‖2
2] ≤ 𝑂 ( 1

𝐵0
). Hence, if we set 𝐵0 = 𝑂 ( 𝜎

𝐿1 𝜖
, 𝜎0
𝜖 ) we

have 𝐶Υ = 𝑂 (1). This initial batch size requirement can be removed by using a
decreasing parameters 𝜂𝑡 = 𝑂 (1/𝑡1/3), 𝛽𝑡 = 𝑂 (1/𝑡2/3), 𝛾𝑡 = 𝑂 (1/𝑡2/3).
Compared to the result of SCMA in Theorem 4.3, SCST has a higher order of
step size 𝜂 and a smaller order of iteration complexity.

Proof. Let us recall the three inequalities in Lemma 4.14, 4.13 and 4.12:

(∗) 𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 𝜂𝑡𝐺2
2𝐿

2
1‖u𝑡 − 𝑔(w𝑡 )‖2

2 + 𝜂𝑡 ‖v𝑡 −M𝑡 ‖2
2 −

𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2

− 1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 ,

(♯) E
[
‖v𝑡 −M𝑡 ‖2

2
]
≤ E[(1 − 𝛽𝑡 ) ‖v𝑡−1 −M𝑡−1‖2

2] + 16𝐺2
2𝐿

2
1𝛾

2
𝑡 ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2]
+ E[(24𝐺4

2𝐿
2
1 + 4𝐺2

1𝐿
2
2)‖w𝑡 − w𝑡−1‖2

2 + 2𝛽2
𝑡𝜎

2 + 8𝐺2
2𝐿

2
1𝛾

2
𝑡 𝜎

2
0 ],

(�) E𝜁𝑡
[
‖u𝑡 − 𝑔(w𝑡 )‖2

2
]
≤ (1 − 𝛾𝑡 ) ‖u𝑡−1 − 𝑔(w𝑡−1)‖2

2

+ E[2𝐺2
2‖w𝑡 − w𝑡−1‖2

2 + 2𝛾2
𝑡 𝜎

2
0 ] .

Define

𝐴𝑡 = 𝐹 (w𝑡 ) − 𝐹∗, 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2/2,

Γ𝑡 = ‖v𝑡 ‖2
2/4, Δ𝑡 = ‖v𝑡 − 𝐻𝑡 ‖2

2, 𝛿𝑡 = 𝐿
2
1𝐺

2
2‖u𝑡 − 𝑔(w𝑡 )‖2

2.

They satisfy the three inequalities marked by ∗, ♯,� in Lemma 4.15 with Then we
have𝐶1 = 16, 𝐶2 = 𝑂 (𝐺4

2𝐿
2
1+𝐺2

1𝐿
2
2), 𝐶3 = 𝑂 (𝐿2

1𝐺
2
2), 𝜎2 = 𝑂 (𝐺2

2𝜎
2
1+𝐺2

1𝜎
2
2 ), 𝜎′2 =

𝑂 (𝐿2
1𝐺

2
2𝜎

2
0 ), 𝜎′′2 = 𝑂 (𝐿2

1𝐺
2
2𝜎

2
0 ). Plugging these into Lemma 4.15, we can finish the

proof. ut

4.4 Non-smooth (Non-convex) Regularized Problems

In this section, we consider the following regularized stochastic compositional opti-
mization:
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

Fig. 4.1: Left: the capped ℓ1-norm regularizer; Right: a non-convex PAR regularizer

min
w∈R𝑑

𝐹̄ (w) := E𝜉 𝑓 (E𝜁 [𝑔(w; 𝜁)]; 𝜉) + 𝑟 (w), (4.32)

where 𝑟 is a non-smooth regularizer, which is potentially non-convex. This in-
cludes constrained problems, where 𝑟 (w) = I0−∞ (w ∈ W). For example, the KL-
constrained DRO (2.19) has a constraint 𝜆 ≥ 0.

We extend the definition of 𝜖-stationary solution of a smooth function to the non-
smooth composite function by noting that 𝜕 (𝐹 + 𝑟)(w) = ∇𝐹 (w) + 𝜕𝑟 (w).

Definition 4.1 (𝜖-stationary solution) A solution w is called an 𝜖-stationary so-
lution to minw∈R𝑑 𝐹 (w) + 𝑟 (w) where 𝐹 is smooth and 𝑟 is non-differentiable, if
dist(0,∇𝐹 (w) + 𝜕𝑟 (w)) ≤ 𝜖 .

To handle non-smoothness or 𝑟 , we assume the proximal mapping of 𝑟 is simple
to compute:

prox𝑟 (ŵ) = arg min
w∈R𝑑

1
2
‖w − ŵ‖2

2 + 𝑟 (w).

Below, we give some examples of non-convex regularizers and their proximal map-
pings, whose derivations are left as exercises for interested readers.

Examples

Example 4.4 (Capped ℓ1-norm). It is defined as 𝑟 (w) = 𝜆∑𝑑
𝑖=1 𝜓(𝑤𝑖), where

𝜓(𝑤𝑖) = min( |𝑤𝑖 |, 𝜃) (cf. Figure (4.1)). It penalizes small coefficients heav-
ily (encouraging sparsity) but stops penalizing once coefficients are large
enough. It was shown to reduce the bias issue of LASSO, which cannot ex-
actly recover the non-zero coefficients under some conditions. Its proximal
mapping is given by

prox𝜆𝜓 (𝑢) =
{
𝑥1 = min(sign(𝑢) ( |𝑢 | − 𝜆)+, 𝜃) if ℎ(𝑥1; 𝑢) < ℎ(𝑥2; 𝑢)
𝑥2 = max(|𝑢 |, 𝜃) otherwise ,

(4.33)
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where ℎ(𝑥; 𝑢) = 1
2 (𝑥 − 𝑢)2 + 𝜆min(|𝑥 |, 𝜃). Similar non-convex sparse regu-

larizers include minimax concave penalty (MCP) and Smoothly Clipped Ab-
solute Deviation (SCAD).

Example 4.5 (Nonconvex Piecewise Affine Regularization (PAR)). A non-
convex PAR is defined as 𝑟 (w) = 𝜆∑𝑑

𝑖=1 𝜓(𝑤𝑖) (cf Figure (4.1)), where

𝜓(𝑥) =
{
|𝑥 | − 𝑘𝑞 if 𝑘𝑞 ≤ |𝑥 | ≤ 2𝑘+1

2 𝑞,
𝑘+1
2 𝑞 if 2𝑘+1

2 𝑞 ≤ |𝑥 | ≤ (𝑘 + 1)𝑞,
𝑘 = 0, 1, . . . , (4.34)

Its proximal mapping is defined as:

• When the regularization strength 𝜆 ≤ 𝑞, we have

prox𝜆𝜓 (𝑢) =

sign(𝑢)𝑘𝑞 if 𝑘𝑞 ≤ |𝑢 | ≤ 𝑘𝑞 + 𝜆,
sign(𝑢) ( |𝑢 | − 𝜆) if 𝑘𝑞 + 𝜆 ≤ |𝑢 | ≤ 2𝑘+1

2 𝑞 + 𝜆
2 ,

sign(𝑢) |𝑢 | if 2𝑘+1
2 𝑞 + 𝜆

2 ≤ |𝑢 | ≤ (𝑘 + 1)𝑞.
(4.35)

• When the regularization strength 𝜆 ≥ 𝑞, we have

prox𝜆𝜓 (𝑢) = sign(𝑢)
⌊
|𝑢 | − 𝜆

2
𝑞

⌉
𝑞. (4.36)

where b·e denotes the nearest integer. When 𝜆 exceeds a certain thresh-
old (e.g., 𝜆 ≥ 𝑞), the proximal operator becomes a hard quantizer,
mapping inputs exactly to discrete levels in a quantization set 𝑄 =
{0,±𝑞,±2𝑞,±3𝑞, . . .}.

Algorithms

We can easily extend SCMA and SCST to solving the non-smooth regularized SCO
problems using the following update:

w𝑡+1 = arg min
1

2𝜂𝑡
‖w − (w𝑡 − 𝜂𝑡v𝑡 )‖2

2 + 𝑟 (w), (4.37)

where v𝑡 is the MA or STORM gradient estimator as in SCMA or SCST.

Convergence Analysis

We first present a lemma similar to Lemma 4.9.

Lemma 4.16 Consider the update in (4.37), if 𝜂𝑡 ≤ 1
4𝐿𝐹 then we have
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4.4. NON-SMOOTH (NON-CONVEX) REGULARIZED PROBLEMS

𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) ≤𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 −

𝜂𝑡
10

dist(0, 𝜕𝐹̄ (w𝑡+1))2

− 1
80𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

Proof. Recall the update of w𝑡+1:

w𝑡+1 ∈ arg min
w∈R𝑑

{
𝑟 (w) + 1

2𝜂𝑡
‖w − (w𝑡 − 𝜂𝑡v𝑡 )‖2

2

}
.

Then following variational analysis, we have

−v𝑡 −
1
𝜂𝑡

(w𝑡+1 − w𝑡 ) ∈ 𝜕𝑟 (w𝑡+1),

which implies that

∇𝐹 (w𝑡+1) − v𝑡 −
1
𝜂𝑡

(w𝑡+1 − w𝑡 ) ∈ ∇𝐹 (w𝑡+1) + 𝜕𝑟 (w𝑡+1) = 𝜕𝐹̄ (w𝑡+1). (4.38)

Hence, we have

dist(0, 𝜕𝐹̄ (w𝑡+1))2 ≤ ‖∇𝐹 (w𝑡+1) − v𝑡 −
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2 (4.39)

Due to the update of w𝑡+1, we also have

𝑟 (w𝑡+1) + 〈v𝑡 ,w𝑡+1 − w𝑡 〉 +
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 ≤ 𝑟 (w𝑡 ). (4.40)

Since 𝐹 (w) is smooth with parameter 𝐿𝐹 , then

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) + 〈∇𝐹 (w𝑡 ),w𝑡+1 − w𝑡 〉 +
𝐿𝐹
2

‖w𝑡+1 − w𝑡 ‖2
2. (4.41)

Combining these two inequalities (4.40) and (4.41) we get

𝐹̄ (w𝑡+1) + 〈v𝑡 − ∇𝐹 (w𝑡 ),w𝑡+1 − w𝑡 〉 ≤ 𝐹̄ (w𝑡 ) − ( 1
2𝜂𝑡

− 𝐿𝐹
2

)‖w𝑡+1 − w𝑡 ‖2
2.

From the above inequality, we obtain two results. The first result is
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2
𝜂𝑡

〈v𝑡 − ∇𝐹 (w𝑡+1),w𝑡+1 − w𝑡 〉

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

− 1
𝜂𝑡

( 1
𝜂𝑡

− 𝐿𝐹)‖w𝑡+1 − w𝑡 ‖2
2

+ 2
𝜂𝑡

〈∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡+1),w𝑡+1 − w𝑡 〉

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

− 1
𝜂𝑡

( 1
𝜂𝑡

− 3𝐿𝐹)‖w𝑡+1 − w𝑡 ‖2
2. (4.42)

The second result is

( 1
2𝜂𝑡

− 𝐿𝐹
2

)‖w𝑡+1 − w𝑡 ‖2
2 ≤ 𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) + 〈∇𝐹 (w𝑡 ) − v𝑡 ,w𝑡+1 − w𝑡 〉

= 𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) + 𝜂𝑡 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2
2 +

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

If 𝐿𝐹2 ≤ 1
8𝜂𝑡 , i.e., 𝜂𝑡 ≤

1
4𝐿𝐹 , the above inequality indicates:

1
8𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 ≤ 𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1) + 𝜂𝑡 ‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2. (4.43)

To proceed, we have

‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

= 2〈v𝑡 − ∇𝐹 (w𝑡+1),
1
𝜂𝑡

(w𝑡+1 − w𝑡 )〉 + ‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2 +

1
𝜂2
𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

Adding the above inequality to (4.42) we have

‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

− 1
𝜂𝑡

( 1
𝜂𝑡

− 3𝐿𝐹)‖w𝑡+1 − w𝑡 ‖2
2

+ ‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2 +

1
𝜂2
𝑡

‖w𝑡+1 − w𝑡 ‖2
2

=
2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))

𝜂𝑡
+ 3𝐿𝐹

𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 + ‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2.

Since

‖v𝑡 − ∇𝐹 (w𝑡+1)‖2
2 = ‖v𝑡 − ∇𝐹 (w𝑡 ) + ∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡+1)‖2

2

≤ 2‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 + 2‖∇𝐹 (w𝑡 ) − ∇𝐹 (w𝑡+1)‖2

2

≤ 2‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 + 2𝐿2

𝐹 ‖w𝑡 ) − w𝑡+1‖2
2.
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Due to 2𝐿2
𝐹 ≤ 𝐿𝐹

2𝜂𝑡 , we have

‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1))
𝜂𝑡

+ 3.5𝐿𝐹
𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 + 2‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2.

Multiplying both sides by 𝜂𝑡 , we have

𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2

≤ 2(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + 3.5𝐿𝐹 ‖w𝑡+1 − w𝑡 ‖2
2 + 2𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2.

Adding this inequality to (4.43) gives

𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2 +

1
8𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

≤ 3(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + 3𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 + 3.5𝐿𝐹 ‖w𝑡+1 − w𝑡 ‖2

2.

Applying (4.43) again to the RHS, we have

𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 )‖2
2 +

1
8𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

≤ (3 + 28𝐿𝐹𝜂𝑡 ) (𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + (3𝜂𝑡 + 28𝜂2
𝑡 𝐿𝐹)‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2

≤ 10(𝐹̄ (w𝑡 ) − 𝐹̄ (w𝑡+1)) + 10𝜂𝑡 ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2.

Combining this with (4.39), we finish the proof. ut

Since the above lemma resembles that in Lemma 4.9, hence, it remains a simple
exercise to derive the complexity of using the MA estimator similar to Theorem 4.3
and of using the STORM estimator similar to Theorem 4.4.

Corollary 4.1 Consider the method (4.37). Under the same assumptions and similar
settings as in Theorem 4.3, the method finds an 𝜖-stationary solution with a complex-
ity of 𝑂 (1/𝜖4). Under the same assumptions and similar settings as in Theorem 4.4,
the method finds an 𝜖-stationary solution with a complexity of 𝑂 (1/𝜖3).

 Why it matters

Since standard regularized stochastic optimization E𝜁 [𝑔(w; 𝜁)] + 𝑟 (w) is a spe-
cial case, the above results directly apply. This corollary shows that regularized
problems can be solved with the same complexities as unregularized ones by
employing either the moving-average gradient estimator or the STORM gradi-
ent estimator. In contrast, without these estimators, solving non-convex regular-
ized problems requires a large batch size at every iteration (Lan, 2020)[Section
6.2.3].
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4.5 Structured Optimization with Compositional Gradient

In this section, we extend the compositional optimization technique to address other
structured optimization problems, including min-max optimization, min-min opti-
mization, and bilevel optimization. These problems share a common structure in the
form of a compositional gradient, denoted byM(w, u∗ (w)), whereM is a mapping
that is Lipschitz continuous with respect to its second argument, and u∗ (w) is defined
as the solution to a strongly convex optimization problem:

u∗ (w) = arg min
u∈U

ℎ(w, u). (4.44)

This structure generalizes the gradient of a compositional function 𝑓 (𝑔(w)), whose
gradient takes the form M(w, u∗ (w)) = ∇𝑔(w)∇ 𝑓 (u∗ (w)) with

u∗ (w) = arg min
u

‖u − 𝑔(w)‖2
2.

The high-level idea underlying the algorithms and analysis presented below is
summarized as follows. To estimateM(w, u∗ (w)) at w𝑡 , we use an auxiliary variable
u𝑡 to track the optimal solution u∗ (w𝑡 ), which is defined by solving (4.44) with one
step update at w𝑡 . A key aspect of the analysis is that the error in the approximation of
M(w𝑡 , u𝑡 ) is controlled by the estimation error ‖u𝑡 −u∗ (w𝑡 )‖2, due to the Lipschitz
continuity of M:

‖M(w𝑡 , u𝑡 ) −M(w𝑡 , u∗ (w𝑡 ))‖2
2 ≤ 𝑂 (‖u𝑡 − u∗ (w𝑡 )‖2

2). (4.45)

Moreover, since u∗ (w) is the solution to a strongly convex problem and is Lipschitz
continuous with respect to w, we can construct a recursion for ‖u𝑡 − u∗ (w𝑡 )‖2

2 to
effectively bound the cumulative error over iterations.

In cases where M(w𝑡 , u𝑡 ) cannot be computed exactly and is instead approxi-
mated by a stochastic estimator M(w𝑡 , u𝑡 ; 𝜁𝑡 ), where 𝜁𝑡 is a random variable, we
employ a moving average (MA) estimator:

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡 M(w𝑡 , u𝑡 ; 𝜁𝑡 ).

The model update is then performed using:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 .

Alternatively, if M(w𝑡 , u𝑡 ) is directly computable, the update simplifies to:

w𝑡+1 = w𝑡 − 𝜂𝑡 M(w𝑡 , u𝑡 ).
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4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

4.5.1 Non-convex Min-Max Optimization

We consider a non-convex min-max optimization problem:

min
w∈R𝑑

max
u∈U

𝑓 (w, u) := E𝜉 [ 𝑓 (w, u; 𝜉)], (4.46)

where 𝑓 (w, u) is a continuous and differentiable and U is a closed convex set. Let
𝐹 (w) = maxu∈U 𝑓 (w, u). Denote by ∇1 𝑓 (·, ·) and ∇2 𝑓 (·, ·) the partial gradients of
the first and second variable, respectively.

We make the following assumptions.

Assumption 4.8. Regarding the problem (4.46), the following conditions hold:

(i) 𝑓 (w, u) is 𝜇-strongly concave in terms of u, and u∗ (w) = arg maxu∈U 𝑓 (w, u)
exists for any w.

(ii) ∇1 𝑓 (w, u) is 𝐿1-Lipschitz continuous such that

‖∇1 𝑓 (w, u) − ∇1 𝑓 (w′, u′)‖2 ≤ 𝐿1 (‖w − w′‖2 + ‖u − u′‖2). (4.47)

(iii) ∇2 𝑓 (w, u) is 𝐿21-Lipschitz continuous with respect to the first variable and is
𝐿22-Lipschitz continuous with respect to the second variable

‖∇2 𝑓 (w, u) − ∇2 𝑓 (w′, u′)‖2 ≤ 𝐿21‖w − w′‖2 + 𝐿22‖u − u′‖2. (4.48)

(iv) there exist 𝜎1, 𝜎2 such that

E[‖∇1 𝑓 (w, u; 𝜉) − ∇1 𝑓 (w, u)‖2
2] ≤ 𝜎2

1 , (4.49)
E[‖∇2 𝑓 (w, u; 𝜉) − ∇2 𝑓 (w, u)‖2

2] ≤ 𝜎2
2 . (4.50)

(v) 𝐹∗ = min
w
𝐹 (w) ≥ −∞.

4.5.1.1 A Double-loop Large mini-batch method

Let us first consider a straightforward approach that updates w𝑡 using a large-batch
gradient estimator

v𝑡 =
1
𝐵

𝐵∑
𝑖=1

∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑖,𝑡 ),

and computes u𝑡 via an inner-loop SGD with 𝐾 updates. It suffices to have 𝐾 =
𝑂 (𝐿2

1𝜎
2
2 /(𝜇2𝜖2)) (by Lemma 3.8) such that

E[‖u𝑡 − u∗ (w𝑡 )‖2
2] ≤

𝜖2

𝐿2
1
.

If 𝐵 = 𝑂 (𝜎2
1 /𝜖2), following the Lemma 4.18 below we have
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Algorithm 12 SMDA
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1, {𝛽𝑡 }𝑇𝑡=1; starting points w0, u1, v0
2: w1 = w0 − 𝜂0v0
3: for 𝑡 = 1, . . . , 𝑇 do
4: Sample 𝜁𝑡
5: Update u𝑡+1 = ΠU [u𝑡 + 𝛾𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) ]
6: Compute the vanilla gradient estimator z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )
7: Update the MA gradient estimator v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡
8: Update the model by w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡
9: end for

E[‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2] ≤ E

[



 1
𝐵

𝐵∑
𝑖=1

∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑖,𝑡 ) − ∇1 𝑓 (w𝑡 , u∗ (w𝑡 ))




2

2

]
≤ 𝑂

(
𝜎2

1
𝐵

+ 𝐿2
1‖u𝑡 − u∗ (w𝑡 )‖2

2

)
≤ 𝜖2.

Combining this with Lemma 4.9, we can set the step size 𝜂𝑡 = 𝑂 (1/𝐿𝐹) and the
number of iterations 𝑇 = 𝑂 (𝐿𝐹/𝜖2), yielding an overall sample complexity of

𝐵𝑇 + 𝐾𝑇 = 𝑂

(
𝐿𝐹𝜎

2
1

𝜖4 +
𝐿𝐹𝐿

2
1𝜎

2
2

𝜇2𝜖4

)
.

4.5.1.2 A Stochastic Momentum Method

We present a solution method in Algorithm 12, referred to as SMDA (Stochastic
Momentum Descent-Ascent). The method begins by updating the dual variable us-
ing stochastic gradient ascent (Step 4), then computes the moving average gradient
estimator v𝑡 for the primal variable (Step 6), and finally updates the primal variable
using this estimator (Step 7). When 𝛽𝑡 = 1, the method reduces to SGDA. How-
ever, setting 𝛽𝑡 < 1 is crucial for achieving improved complexity. Conceptually, the
method shares similarities with SCMA.

Convergence Analysis
We will prove the convergence of the gradient norm of 𝐹 (w). We first prove the
following lemmas.

Lemma 4.17 Let u∗ (w) = arg maxu∈U 𝑓 (w, u). Under Assumption 4.8(i), (iii),
u∗ (·) is 𝜅-Lipschitz continuous with 𝜅 = 𝐿21

𝜇 .

Proof. Let us consider w1,w2. By the optimality condition of u∗ (w1) and u∗ (w2)
for a concave function, we have
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∇2 𝑓 (w1, u∗ (w1))> (u − u∗ (w1)) ≤ 0, ∀u ∈ U
∇2 𝑓 (w2, u∗ (w2))> (u − u∗ (w2)) ≤ 0, ∀u ∈ U .

Let u = u∗ (w2) in the first inequality and u = u∗ (w1) in the second equality and add
them together we have

(∇2 𝑓 (w1, u∗ (w1)) − ∇2 𝑓 (w2, u∗ (w2)))> (u∗ (w2) − u∗ (w1)) ≤ 0.

Since − 𝑓 (w1, ·) is 𝜇-strongly convex, due to Lemma 1.6, we have

(∇2 𝑓 (w1, u∗ (w1)) − ∇2 𝑓 (w1, u∗ (w2)))> (u∗ (w2) − u∗ (w1))
≥ 𝜇‖u∗ (w2) − u∗ (w1)‖2

2.

Combining these two inequalities we have

𝜇‖u∗ (w2) − u∗ (w1)‖2
2 ≤ (∇2 𝑓 (w2, u∗ (w2)) − ∇2 𝑓 (w1, u∗ (w2)))> (u∗ (w2) − u∗ (w1))

≤ ‖∇2 𝑓 (w2, u∗ (w2)) − ∇2 𝑓 (w1, u∗ (w2))‖2‖u∗ (w2) − u∗ (w1)‖2

≤ 𝐿21‖w2 − w1‖2‖u∗ (w2) − u∗ (w1)‖2.

Thus,

‖u∗ (w2) − u∗ (w1)‖2 ≤ 𝐿21

𝜇
‖w2 − w1‖2.

ut

Lemma 4.18 Under Assumption 4.8(i) and (ii), ∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)), and it is
is 𝐿𝐹-Lipschitz continuous with 𝐿𝐹 = 𝐿1 (1 + 𝜅).

Proof. IfU is bounded, theDanskin’s theorem implies that∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)).
If U is unbounded, we have

∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)) + 𝜕𝑢
∗ (w)
𝜕w

>
∇2 𝑓 (w, u∗ (w)) = ∇1 𝑓 (w, u∗ (w)), (4.51)

where the last equality follows from ∇2 𝑓 (w, u∗ (w)) = 0. To establish the Lipschitz
continuity of ∇𝐹 (w), let us consider w1 and w2. We have

‖∇𝐹 (w1) − ∇𝐹 (w2)‖2 = ‖∇1 𝑓 (w1, u∗ (w1)) − ∇1 𝑓 (w2, u∗ (w2))‖2

≤ 𝐿1 (‖w1 − w2‖2 + ‖u∗ (w1) − u∗ (w2)‖2) ≤ 𝐿1 (1 + 𝜅)‖w1 − w2‖2.

ut

Next, we prove two lemmas similar to Lemma 4.8 and Lemma 4.1, regarding the
recursion of gradient estimation error and the estimation error of u, respectively. The
descent lemma (Lemma 4.9) still holds.

Lemma 4.19 It holds that
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E𝜉𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 +
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2

+ 4𝐿2
1𝛽𝑡 ‖u𝑡 − u∗ (w𝑡 )‖2

2 + 𝛽2
𝑡𝜎

2
1 .

Proof. Let z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜉𝑡 ) and M𝑡 = E𝑡 [z𝑡 ] = ∇1 𝑓 (w𝑡 , u𝑡 ). Then v𝑡 = (1 −
𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 . Noting that E𝑡 [‖z𝑡 −M𝑡 ‖2

2] ≤ 𝜎2
1 and ‖M𝑡 −∇𝐹 (w𝑡 )‖2

2 ≤ 𝐿2
1‖u𝑡 −

u∗ (w)‖2
2. Plugging these into Lemma 4.7 finishes the proof.

ut

Lemma 4.20 Suppose Assumption 4.8 (i), (iii), (iv) hold. Consider the update u𝑡 =
ΠU [u𝑡 + 𝛾𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )]. If 𝛾𝑡 < 1/𝐿22 < 1/𝜇, we have

E𝑡 [‖u𝑡+1 − u∗ (w𝑡+1)‖2
2] ≤ (1 − 𝛾𝑡𝜇

2
)‖u𝑡 − u∗ (w𝑡 )‖2

2 +
3𝜅2

𝛾𝑡𝜇
E𝑡 [‖w𝑡 − w𝑡+1‖2

2]

+ 2𝛾2
𝑡 𝜎

2
2 .

Proof. By Lemma 3.7, if 𝛾 < 1/𝐿22 we have

E𝑡 [‖u𝑡+1 − u∗ (w𝑡 )‖2
2] ≤ (1 − 𝛾𝑡𝜇)‖u𝑡 − u∗ (w𝑡 )‖2

2 + 𝛾2
𝑡 𝜎

2
2 . (4.52)

Then,

E𝑡 [‖u𝑡+1 − u∗ (w𝑡+1)‖2
2] ≤ (1 + 𝛾𝑡𝜇

2
)E𝑡 [‖u𝑡 − u∗ (w𝑡 )‖2

2]

+ (1 + 2
𝛾𝑡𝜇

)E𝑡 [‖u∗ (w𝑡 ) − u∗ (w𝑡+1)‖2
2]

≤ (1 + 𝛾𝑡𝜇
2

)(1 − 𝛾𝑡𝜇)‖u𝑡 − u∗ (w𝑡 )‖2
2 + (1 + 𝛾𝑡𝜇

2
)𝛾2
𝑡 𝜎

2
2

+ 2 + 𝛾𝑡𝜇
𝛾𝑡𝜇

𝜅2E𝑡 [‖w𝑡 − w𝑡+1‖2
2]

≤ (1 − 𝛾𝑡𝜇

2
)‖u𝑡 − u∗ (w𝑡 )‖2

2 + 2𝛾2
𝑡 𝜎

2
2 + 3𝜅2

𝛾𝑡𝜇
E𝑡 [‖w𝑡 − w𝑡+1‖2

2],

where the first inequality uses the Young’s inequality, and the last inequality uses
𝛾𝜇 < 1. ut

Finally, we can prove the following theorem regarding the convergence of SMDA.

Theorem 4.5 Suppose Assumption 4.8 holds. By setting 𝛽𝑡 = 𝛽 = 𝜖2/(3𝜎2
1 ), 𝛾𝑡 =

𝛾 = 𝜇𝜖2/(96𝐿2
1𝜎

2
2 ) and 𝜂𝑡 = 𝜂 = min( 𝛽√

8𝐿𝐹
, 𝛾𝜇

16
√

3𝐿1𝜅
, 1

2𝐿𝐹 ) in SMDA, then the
following holds

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 + ‖∇𝐹 (w𝑡 )‖2
2

}]
≤ 𝜖2, (4.53)
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with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2
1 𝐿𝐹

𝜖4 ,
𝐶Υ𝐿

3
1𝜅𝜎

2
2

𝜖4𝜇2

})
, (4.54)

where 𝐶Υ = 2(𝐹 (w0) − 𝐹∗) + 1√
8𝐿𝐹

‖v0 − ∇𝐹 (w0)‖2
2 +

𝐿1√
3𝜅
‖u0 − u∗ (w0)‖2

2.

 Why it matters

The MA gradient estimator in SMDA is critical to obtaining a complexity of
𝑂 (1/𝜖4). If we simply update the primal variable by SGD, the algorithm be-
comes SGDA. The convergence analysis of SGDA for non-convex minimax
problems will suffer from a large batch size issue or slow convergence. In par-
ticular, SGDA with a batch size of 𝑂 (1/𝜖2) can find an 𝜖-stationary solution in
𝑂 (1/𝜖2) iterations when the problem is smooth in terms of primal and dual vari-
ables and strongly-concave in terms of dual variable, yielding a sample complex-
ity of 𝑂 (1/𝜖4). If using a constant batch size 𝑂 (1), SGDA may need 𝑂 (1/𝜖8)
iterations for finding an 𝜖-stationary solution (Lin et al., 2020).

Proof. The proof is similar to Theorem 4.3. Let us see the three inequalities in
Lemma 4.9, Lemma 4.19, and 4.20 that we have proved so far:

(∗)𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂

2
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2 −
𝜂

2
‖∇𝐹 (w𝑡 )‖2

2 −
𝜂

4
‖v𝑡 ‖2

2 ,

(♯)E
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ E

[
(1 − 𝛽) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 +
2𝐿2

𝐹𝜂
2

𝛽
‖v𝑡−1‖2

2

]
+ 4𝐿2

1𝛽E
[
‖u𝑡 − u∗ (w𝑡 )‖2

2 + 𝛽2𝜎2
1

]
,

(�)E‖u𝑡 − u∗ (w𝑡 )‖2
2 ≤ E

[
(1 − 𝛾𝜇

2
)‖u𝑡−1 − u∗ (w𝑡−1)‖2

2 + 2𝛾2𝜎2
2 + 3𝜅2𝜂2

𝛾𝜇
‖v𝑡−1‖2

2

]
.

Let 𝛾̄ = 𝛾𝜇/2, the last inequality becomes:

(�)E‖u𝑡 − u∗ (w𝑡 )‖2
2 ≤ E

[
(1 − 𝛾̄)‖u𝑡−1 − u∗ (w𝑡−1)‖2

2 + 8𝛾̄2𝜎
2
2
𝜇2 + 3𝜅2𝜂2

2𝛾̄
‖v𝑡−1‖2

2

]
.

Let us define 𝐴𝑡 = 2(𝐹 (w𝑡 ) − 𝐹∗) and 𝐵𝑡 = ‖∇𝐹 (w𝑡 )‖2
2, Γ𝑡 = ‖v𝑡 ‖2

2 /2, Δ𝑡 =
‖∇𝐹 (w𝑡 ) − v𝑡 ‖2

2, 𝛿𝑡 = ‖u𝑡 − u∗ (w𝑡 )‖2
2. Then the three inequalities (∗), (♯), (�) sat-

isfy that in Lemma 4.10 with 𝐶1 = 4𝐿2
1, 𝐶2 = 2𝐿2

𝐹 , 𝐶3 = 3𝜅2/2, 𝜎2 = 𝜎2
1 , 𝜎

′2 =
8𝜎2

2 /𝜇2. If 𝜂, 𝛽, 𝛾̄ satisfy
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𝛽 =
𝜖2

3𝜎2 =
𝜖2

3𝜎2
1
, 𝛾̄ =

𝜖2

6𝐶1𝜎′2 =
𝜖2𝜇2

192𝐿2
1𝜎

2
2
,

𝜂 = min( 1
2𝐿𝐹

,
𝛽

√
4𝐶2

,
𝛾̄

√
8𝐶1𝐶3

) = min( 1
2𝐿𝐹

,
𝛽

√
8𝐿𝐹

,
𝛾̄

√
48𝐿1𝜅

),

then (4.89) holds, and the iteration complexity becomes

𝑇 = 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2√𝐶2

𝜖4 ,
𝐶Υ

√
𝐶1𝐶3𝐶1𝜎

′2

𝜖4

})
= 𝑂

(
max

{
𝐶Υ𝐿𝐹
𝜖2 ,

𝐶Υ𝜎
2
1 𝐿𝐹

𝜖4 ,
𝐶Υ𝐿

3
1𝜅𝜎

2
2

𝜖4𝜇2

})
.

ut

Critical: It is worth mentioning that an improved complexity of 𝑂 (1/𝜖3) can
be achieved by employing the STORM gradient estimator for both the primal
and dual variables under the mean-square smooth condition of the objective.

4.5.2 Non-convex Min-Min Optimization

We can extend SMDA to solving a non-convex strongly-convex min-min problem:

min
w∈R𝑑

min
u∈U

𝑓 (w, u) := E𝜉 [ 𝑓 (w, u; 𝜉)], (4.55)

where 𝑓 (w, u) is smooth, non-convex in terms of w and strongly convex in terms
of u and U is a closed convex set. If the u∗ (w) = arg minu∈U 𝑓 (w, u) exists and
unique, then we have ∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)). Hence, its gradient also exhibits a
compositional structure, where the inner function u∗ (w) is a solution to a strongly
convex problem.

SMDA can be modified by replacing the u update with

u𝑡+1 = ΠU [u𝑡 − 𝛾𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )] .

Then, the same convergence result in the last subsection can be established for min-
min problem, which is omitted here.

4.5.2.1 Application to weakly convex minimization

Next, we present an application to solving weakly convex minimization problems:
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Algorithm 13 A novel method for weakly convex minimization
1: Input: learning rate schedules {𝜂𝑡 }𝑇𝑡=1, {𝛾𝑡 }𝑇𝑡=1; starting points w1, u1, v1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Sample 𝜁𝑡 and compute G(u𝑡 ; 𝜁𝑡 ) = 𝜕𝑔 (u𝑡 ; 𝜁𝑡 )
4: Update u𝑡+1 = u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 𝜌(u𝑡 − w𝑡 ) )
5: Update w𝑡+1 = (1 − 2𝜂𝑡𝜌)w𝑡 + 2𝜂𝑡𝜌u𝑡
6: end for

min
w
𝐹 (w) := E[𝑔(w; 𝜁)], (4.56)

where 𝐹 > −∞ is 𝜌-weakly convex, as discussed in Chapter 3.
As argued in Section 3.1.4, an 𝜖-stationary solution of the Moreau envelope of

𝐹 (w) corresponds to a nearly 𝜖-stationary solution of the original problem. Hence,
we consider optimizing the Moreau envelope directly:

min
w
𝐹𝜌 (w) := min

u
E[𝑔(u; 𝜁)] + 𝜌‖u − w‖2

2. (4.57)

Define 𝑓 (w, u) = E[𝑔(u; 𝜁)] + 𝜌‖u − w‖2
2. Then 𝑓 (w, u) is 𝜌-strongly convex with

respect to u due to the 𝜌-weak convexity of 𝐹.
For updating u, we use the standard SGD:

u𝑡+1 = u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )). (4.58)

where G(u𝑡 ; 𝜁𝑡 ) ∈ 𝜕𝑔(u𝑡 ; 𝜁𝑡 ). For updating w, then we just apply GD with its gra-
dient given by ∇1 𝑓 (w𝑡 , u𝑡 ) = 2𝜌(w𝑡 − u𝑡 ):

w𝑡+1 = w𝑡 − 𝜂𝑡2𝜌(w𝑡 − u𝑡 ) = (1 − 2𝜂𝑡 𝜌)w𝑡 + 2𝜂𝑡 𝜌u𝑡 . (4.59)

We present the updates in Algorithm 13. An interesting observation about this algo-
rithm is that the u update is similar to the Momentum update (4.18) except that the
momentum term u𝑡 − u𝑡−1 is replaced by u𝑡 − w𝑡 , where w𝑡 is a MA weight vector.

Convergence Analysis

Let us first prove the following lemma.

Lemma 4.21 We have (i) 𝐹𝜌 is 𝐿𝐹-smooth with 𝐿𝐹 = 6
𝜌 ; (ii) ∇1 𝑓 (w, u) is Lipschitz

continuous with 𝐿1 = 2𝜌, and (iii) u∗ (w) is 1-Lipschitz continuous.

Proof. The smoothness of 𝐹𝜌 has been proved in Proposition 3.1 with 𝜆 = 𝜌/2. The
Lipschitz continuity of ∇1 𝑓 (w, u) = 2𝜌(w − u) is obvious. Next, let us prove the
Lipschitz continuity of u∗ (w). The proof is similar to that of Lemma 4.17.

Let us consider w1,w2. By the optimality condition of u∗ (w1) and u∗ (w2) for a
concave function, there exists v(w1) ∈ 𝜕2 𝑓 (w1, u∗ (w1)), v(w2) ∈ 𝜕2 𝑓 (w2, u∗ (w2))
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v(w1)> (u − u∗ (w1)) ≤ 0, ∀u
v(w2)> (u − u∗ (w2)) ≤ 0, ∀u

Let u = u∗ (w2) in the first inequality and u = u∗ (w1) in the second equality and add
them together we have

(v(w1) − v(w2))> (u∗ (w2) − u∗ (w1)) ≤ 0.

Since − 𝑓 (w1, ·) is 𝜌-strongly convex, similar to Lemma 1.6, we have for any v ∈
𝜕2 𝑓 (w1, u∗ (w2)),

(v(w1) − v)> (u∗ (w2) − u∗ (w1)) ≥ 𝜌‖u∗ (w2) − u∗ (w1)‖2
2.

Combining these two inequalities we have

𝜌‖u∗ (w2) − u∗ (w1)‖2
2 ≤ (v(w2) − v)> (u∗ (w2) − u∗ (w1))

≤ ‖v(w2) − v‖2‖u∗ (w2) − u∗ (w1)‖2.

Since there exists v′ ∈ 𝜕𝑔(u∗ (w2)) such that v(w2) = v′ + 𝜌(u∗ (w2) − w2), we let
v = v′ + 𝜌(u∗ (w2) − w1), then

‖u∗ (w2) − u∗ (w1)‖2 ≤ ‖w2 − w1‖2.

ut

Since 𝜕2 𝑓 (w, u) is not Lipschitz continuous with respect to u, lemma 4.20 is not
directly applicable. We develop a similar one below.

Lemma 4.22 Consider the following update:

u𝑡+1 = u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )).

If E𝜁 [‖G(u; 𝜁)‖2
2] ≤ 𝐺2 and 𝛾𝑡 𝜌 < 1/8, then we have

E𝑡 ‖u𝑡+1 − u∗ (w𝑡+1)‖2
2

≤
(
1 − 𝛾𝑡 𝜌

2

)
‖u𝑡 − u∗ (w𝑡 )‖2

2 + 8𝛾2
𝑡𝐺

2 + 12
𝛾𝑡 𝜌

E𝑡 ‖w𝑡+1 − w𝑡 ‖2
2 .

Proof. Since u𝑡+1 is one-step SGD update of 𝑓 (w𝑡 , u), the proof is similar to
Lemma 3.7 for the non-smooth case.

‖u𝑡+1 − u∗ (w𝑡 )‖2
2 = ‖u𝑡 − 𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )) − u∗ (w𝑡 )‖2

2 (4.60)

= ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 𝛾2

𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )‖2
2

− 2𝛾𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 ))> (u𝑡 − u∗ (w𝑡 )).

Note that 0 ∈ 𝜕𝑔(u∗ (w𝑡 )) + 2𝜌(u∗ (w𝑡 ) − w𝑡 ). Thus, v𝑡−1 = 2𝜌(w𝑡 − u∗ (w𝑡 )) ∈
𝜕𝑔(u∗ (w𝑡 )),
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E𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )‖2
2 = E𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) − v𝑡−1 + 2𝜌(u𝑡 − u∗ (w𝑡 ))‖2

2

≤ 2(E𝑡 ‖G(u𝑡 ; 𝜁𝑡 ) + v𝑡−1‖2 + 8𝜌2 ‖u𝑡 − u∗ (w𝑡 )‖2
2

≤ 8𝐺2 + 8𝜌2 ‖u𝑡 − u∗ (w𝑡 )‖2
2 ,

where the last inequality uses ‖v𝑡−1‖2 ≤ 𝐺. For the last term in (4.60), let v𝑡−1 =
E[G(u𝑡 ; 𝜁𝑡 )] + 2𝜌(u𝑡 − w𝑡 ) ∈ 𝜕2 𝑓 (w𝑡 , u𝑡 ), then we have

E𝑡 (G(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 ))> (u𝑡 − u∗ (w𝑡 )) = v>𝑡−1 (u𝑡 − u∗ (w𝑡 ))
= (v𝑡−1 − v(w𝑡 ))> (u𝑡 − u∗ (w𝑡 )) ≥ 𝜌 ‖u𝑡 − u∗ (w𝑡 )‖2

2 .

where 0 = v(w𝑡 ) ∈ 𝜕2 𝑓 (w𝑡 , u∗ (w𝑡 )) and the last inequality is due to the strong
convexity of 𝑓 in terms of u. Combining the above inequalities we have

‖u𝑡+1 − u∗ (w𝑡 )‖2
2 = ‖u𝑡 − 𝛾𝑡 (𝜕𝑔(u𝑡 ; 𝜁𝑡 ) + 2𝜌(u𝑡 − w𝑡 )) − u∗ (w𝑡 )‖2

2

≤ ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 𝛾2

𝑡 (8𝐺2 + 8𝜌2 ‖u𝑡 − u∗ (w𝑡 )‖2
2) − 2𝛾𝑡 𝜌 ‖u𝑡 − u∗ (w𝑡 )‖2

2

= (1 − 2𝛾𝑡 𝜌 + 8𝛾2
𝑡 𝜌

2) ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 4𝛾2

𝑡𝐺
2

≤ (1 − 𝛾𝑡 𝜌) ‖u𝑡 − u∗ (w𝑡 )‖2
2 + 8𝛾2

𝑡𝐺
2

where the last inequality uses 𝛾𝑡 ≤ 1
8𝜌 . Since u∗ (w) is 1-Lipschitz continuous, we

have

E𝑡 ‖u𝑡+1 − u∗ (w𝑡+1)‖2
2

≤
(
1 + 𝛾𝑡 𝜌

2

)
E𝑡 ‖u𝑡+1 − u∗ (w𝑡 )‖2

2 +
(
1 + 2

𝛾𝑡 𝜌

)
‖u∗ (w𝑡+1) − u∗ (w𝑡 )‖2

2

≤
(
1 − 𝛾𝑡 𝜌

2

)
‖u𝑡 − u∗ (w𝑡 )‖2

2 + 8𝛾2
𝑡𝐺

2 + 3
𝛾𝑡 𝜌

E𝑡 ‖w𝑡+1 − w𝑡 ‖2
2 .

ut

Lemma 4.23 Let z𝑡 = 2𝜌(w𝑡 − u𝑡 ). For the update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 , if 𝜂𝑡 ≤
1/(2𝐿𝐹), we have

𝐹𝜌 (w𝑡+1) ≤ 𝐹𝜌 (w𝑡 ) +
𝜂𝑡
2



∇𝐹𝜌 (w𝑡 ) − z𝑡


2

2 −
𝜂𝑡
2



∇𝐹𝜌 (w𝑡 )

2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 ,

where 𝐿𝐹 is the smoothness parameter of 𝐹𝜌 (·).

Since ∇𝐹𝜌 (w𝑡 ) = 2𝜌(w𝑡 −u∗ (w𝑡 )), hence ‖𝐹𝜌 (w𝑡 ) − z𝑡 ‖2
2 = 4𝜌2‖u𝑡 −u∗ (w𝑡 )‖2

2,
whose recursion has been established in Lemma 4.22. We can combine these two
lemmas and establish a complexity of 𝑂 (1/𝜖4) for Algorithm 13 in order to find an
𝜖-stationary solution to 𝐹𝜌 (·).
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4.5.2.2 Application to weakly-convex strongly-concave min-max problems

The same technique can be applied to solving weakly-convex strongly-concave
min-max problems minw maxu∈U 𝑓 (w, u) with a single loop algorithm. In subsec-
tion 4.5.1, we assume the partial gradient ∇1 𝑓 (w, u) is Lipschitz continuous. We
replace this assumption by an assumption that 𝑓 (w, u) is 𝜌-weakly convex in terms
of w for any u ∈ U.

In this case, 𝐹 (w) = maxu∈U 𝑓 (w, u) is not smooth but weakly convex. Let us
consider its Moreau envelope:

min
w
𝐹𝜌 (w) := min

u1
𝐹 (u1) + 𝜌‖u1 − w‖2

2.

This problem is equivalent to

min
w,u1

max
u2∈U

𝑓 (u1, u2) + 𝜌‖u1 − w‖2
2,

which is strongly convex in terms of u1 and strongly concave in terms of u2.
Compared to (4.57), this problem just adds another layer of inner maximization.

However, it can be still mapped to the general framework as discussed at the begin-
ning. The gradient of 𝐹𝜌 (w) is given by M(w, u∗

1 (w)) = 𝜌(w − u∗
1 (w)). If we track

u∗
1 (w𝑡 ) by u1,𝑡 and its update relies on the gradient 𝜕1 𝑓 (u1,𝑡 , u∗

2 (u1,𝑡 )). Hence, we
just need another variable u2,𝑡 to track u∗

2 (u1,𝑡 ).
We can develop a similar algorithm. First, let us update u1, u2. Givenw𝑡 , u1,𝑡 , u2,𝑡 ,

we update u1,𝑡+1, u2,𝑡+1 with SGD update by

u2,𝑡+1 = ΠU [u2,𝑡 + 𝛾2𝜕2 𝑓 (u1,𝑡 , u2,𝑡 ; 𝜁𝑡 )] (4.61)
u1,𝑡+1 = u1,𝑡 − 𝛾1 (𝜕1 𝑓 (u1,𝑡 , u2,𝑡 ; 𝜁𝑡 ) + 2𝜌(u1,𝑡 − w𝑡 )). (4.62)

Then we update w𝑡+1 with GD update by

w𝑡+1 = w𝑡 − 𝜂2𝜌(w𝑡 − u1,𝑡 ) = (1 − 2𝜂𝜌)w𝑡 + 2𝜂𝜌u1,𝑡 . (4.63)

This algorithm also enjoys a complexity of𝑂 (1/𝜖4) for finding a nearly 𝜖-stationary
solution of 𝐹 (w). We refer the readers to (Hu et al., 2024a) for a convergence analysis
of this algorithm.

4.5.2.3 Application to Compositional Optimization

We can apply a similar strategy to a compositional function 𝐹 (w) = 𝑓0 (𝑔(w)), where
𝑓0 is smooth convex and 𝑔 is weakly convex. With the conjugate of 𝑓0, we can write

min
w

𝑓0 (𝑔(w)) = min
w

max
u2∈U

𝑓 (w, u2) := u>
2 𝑔(w) − 𝑓 ∗0 (u2).

170



4.5. STRUCTURED OPTIMIZATION WITH COMPOSITIONAL GRADIENT

Since 𝑓0 is smooth, then 𝑓 ∗0 is strongly convex. Then if 𝑔 is weakly convex and U is
bounded (i.e., 𝑓0 is Lipschitz), then 𝑓 (w, u) is weakly convex and strongly concave.
Optimizing the Moreau envelope of 𝑓0 (𝑔(w)) yields:

min
w,u1

max
u2∈U

u>
2 𝑔(u1) − 𝑓 ∗0 (u2) + 𝜌‖u1 − w‖2

2,

which is strongly convex in terms of u1 and strongly concave in terms of u2. We give
an update below:

u2,𝑡+1 = ΠU [u2,𝑡 + 𝛾2𝑔(u1,𝑡 ; 𝜁𝑡 )]
u1,𝑡+1 = u1,𝑡 − 𝛾1 (𝜕1𝑔(u1,𝑡 ; 𝜁𝑡 )u2,𝑡 + 2𝜌(u1,𝑡 − w𝑡 ))
w𝑡+1 = w𝑡 − 𝜂2𝜌(w𝑡 − u1,𝑡 ) = (1 − 2𝜂𝜌)w𝑡 + 2𝜂𝜌u1,𝑡 .

Then similar convergence analysis can be developed with a complexity of 𝑂 (1/𝜖4)
for finding a nearly 𝜖-stationary solution to 𝐹.

4.5.3 Non-convex Bilevel Optimization

In this section, we discuss the application of the compositional gradient estimation
technique to non-convex bilevel optimization defined by

min
w∈R𝑑

𝑓 (w, u∗ (w))

u∗ (w) = arg min
u∈R𝑑′

𝑔(w, u),
(4.64)

where 𝑔 is twice differentiable and 𝜇𝑔-strongly convex in terms of u. Let 𝐹 (w) =
𝑓 (w, u∗ (w)). The following lemma states the gradient of the objective 𝐹 (w).

Lemma 4.24 We have

∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)) − ∇21𝑔(w, u∗ (w))> (∇22𝑔(w, u∗ (w)))−1∇2 𝑓 (w, u∗ (w)).

Proof. By the optimality condition of u∗ (w), we have

∇2𝑔(w, u∗ (w)) = 0.

By taking derivative on both sides, using the chain rule, and the implicit function
theorem, we obtain

∇21𝑔(w, u∗ (w)) + ∇22𝑔(w, u∗ (w)) 𝜕u∗ (w)
𝜕w

= 0.

Hence
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𝜕u∗ (w)
𝜕w

= −(∇22𝑔(w, u∗ (w)))−1∇21𝑔(w, u∗ (w)).

Thus,

∇𝐹 (w) = ∇1 𝑓 (w, u∗ (w)) + 𝜕u∗ (w)
𝜕w

>
∇2 𝑓 (w, u∗ (w))

= ∇1 𝑓 (w, u∗ (w)) − ∇21𝑔(w, u∗ (w))> (∇22𝑔(w, u∗ (w)))−1∇2 𝑓 (w, u∗ (w)).

ut

Let us define

M(w, u∗ (w)) =
∇1 𝑓 (w, u∗ (w)) − ∇21𝑔(w, u∗ (w))> (∇22𝑔(w, u∗ (w)))−1∇2 𝑓 (w, u∗ (w)).

If we can establish the Lipschitz continuity of M(w, u∗ (w)) in terms of the second
argument and the Lipschitz continuity of u∗ (w), then the similar technique can be
leveraged. Let u∗ (w𝑡 ) be tracked by u𝑡 . It can be updated by SGD:

u𝑡+1 = u𝑡 − 𝛾𝑡∇2𝑔(w𝑡 , u𝑡 ; 𝜁𝑡 ). (4.65)

With u𝑡 , the gradient at w𝑡 can be estimated by

M(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )> (∇22𝑔(w𝑡 , u𝑡 ))−1∇2 𝑓 (w𝑡 , u𝑡 ). (4.66)

However, another challenge is to handle the Hessian inverse (∇22𝑔(w𝑡 , u𝑡 )−1, which
itself is a compositional structure. We will discuss three different ways to tackle this
challenge. If we have a stochastic estimator of M(w𝑡 , u𝑡 ) denoted by v𝑡 , then we
update the model parameter by:

w𝑡+1 = w𝑡 − 𝜂𝑡v𝑡 . (4.67)

4.5.3.1 Approach 1: The MA Estimator

If the lower level problem is low-dimensional such that the inverse of the Hessian
matrix can be efficiently computed, we can estimate∇22𝑔(w𝑡 , u𝑡 ) by aMA estimator:

𝐻22,𝑡 = 𝑆𝜇𝑔 [(1 − 𝛽)𝐻22,𝑡−1 + 𝛽∇22𝑔(w𝑡 , u𝑡 ; 𝜁2,𝑡 )] .

where 𝑆𝜇𝑔 [·] is a projection operator that projects a matrix into a matrix whose
minimum eigen-value is lower bounded by 𝜇𝑔, where 𝜇𝑔 is the lower bound of eigen-
values of ∇22𝑔(w, u). The projection ensures that [𝐻22,𝑡 ]−1 is Lipschitz continuous
with respect to 𝐻22,𝑡 .

The a vanilla stochastic gradient estimator of w𝑡 and its MA estimator are com-
puted by
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z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜉𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 ; 𝜁 ′2,𝑡 )> (𝐻22,𝑡 )−1∇2 𝑓 (w𝑡 , u𝑡 ; 𝜉𝑡 )
v𝑡 = (1 − 𝛽)v𝑡−1 + 𝛽z𝑡 .

(4.68)

Convergence Analysis

The proof is largely similar to that of Theorem 4.3. We provide a sketch of proof
below. Recall that

M(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )> (∇22𝑔(w𝑡 , u𝑡 ))−1∇2 𝑓 (w𝑡 , u𝑡 ).

Define:

M̂(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )>𝐻−1
22,𝑡∇2 𝑓 (w𝑡 , u𝑡 ).

First, similar to Lemma 4.9, we have the following:

𝐹 (w𝑡+1) ≤ 𝐹 (w𝑡 ) +
𝜂𝑡
2
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2 −
𝜂𝑡
2

‖∇𝐹 (w𝑡 )‖2
2 −

1
4𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2 .

(4.69)

We establish a recursion of the error ‖v𝑡 − ∇𝐹 (w𝑡 )‖2
2 similar to Lemma 4.7 by not-

ing that E𝜉𝑡 ,𝜁 ′2,𝑡 [z𝑡 ] = M̂(w𝑡 , u𝑡 ) and there exists 𝜎 > 0 such that E𝜉𝑡 ,𝜁 ′2,𝑡 [‖z𝑡 −
M̂(w𝑡 , u𝑡 )‖2

2] ≤ 𝜎2. Thus, Lemma 4.7 implies that

E𝜉𝑡 ,𝜁 ′2,𝑡
[
‖v𝑡 − ∇𝐹 (w𝑡 )‖2

2
]
≤ (1 − 𝛽𝑡 ) ‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2

2 (4.70)

+
2𝐿2

𝐹

𝛽𝑡
‖w𝑡−1 − w𝑡 ‖2

2 + 4𝛽𝑡



M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )




2

2
+ 𝛽2

𝑡𝜎
2.

Then, we bound ‖M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2 by

‖M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2 ≤ 2‖M̂(w𝑡 , u𝑡 ) −M(w𝑡 , u𝑡 )‖2

2

+ 2‖M(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2

≤ 𝑂 (‖𝐻22,𝑡 − ∇22𝑔(w𝑡 , u𝑡 )‖2
2) +𝑂 (‖u𝑡 − u∗ (w𝑡 )‖2

2).

As a result, we have

E[‖v𝑡−∇𝐹 (w𝑡 )‖2
2] ≤ (1 − 𝛽𝑡 )‖v𝑡−1 − ∇𝐹 (w𝑡−1)‖2 +

2𝐿2
𝐹

𝛽𝑡
‖w𝑡 − w𝑡−1‖2

2

+ 𝛽𝑡 (𝑂 (‖𝐻22,𝑡 − ∇22𝑔(w𝑡 , u𝑡 )‖2
2) +𝑂 (‖u𝑡 − u∗ (w𝑡 )‖2

2)) + 𝛽2
𝑡𝑂 (𝜎2).

This result is similar to that in Lemma 4.8.
We can further build the error recursion of ‖𝐻22,𝑡 − ∇22𝑔(w𝑡 , u𝑡 )‖2

2 similar to
Lemma 4.1, and the error recursion of ‖u𝑡 − u∗ (w𝑡 )‖2

2 similar to Lemma 4.20.
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Combining these results, we can establish a complexity of 𝑂 (1/𝜖4) for finding an
𝜖-stationary solution of 𝐹 (·) in expectation.

4.5.3.2 Approach 2: The Neumann Series (Matrix Taylor Approximation)

If the lower level problem is high-dimensional such that it is prohibited to compute
the Hessian, one approach is to leverage the Neuman series:

𝐴−1 =
∞∑
𝑖=0

(𝐼 − 𝐴)𝑖 , if ‖𝐴‖ ≤ 1. (4.71)

Hence, if ‖∇22𝑔(w𝑡 , u𝑡 )‖ ≤ 𝐿22, we estimate the inverse of 1
𝐿22

∇22𝑔(w𝑡 , u𝑡 ), yield-
ing

(∇22𝑔(w𝑡 , u𝑡 ))−1 ≈ 1
𝐿22

𝐾−1∑
𝑖=0

(
𝐼 − 1

𝐿22
∇22𝑔(w𝑡 , u𝑡 )

) 𝑖
. (4.72)

This can be further estimated by a stochastic route, by sampling 𝑘 from {0, . . . , 𝐾−1}
randomly, then estimate the Hessian inverse by

𝑄22,𝑡 =

{
𝐾
𝐿22

∏𝑘
𝑖=1

(
𝐼 − 1

𝐿22
∇22𝑔(w𝑡 , u𝑡 ; 𝜁𝑖)

)
if 𝑘 ≥ 1

𝐾
𝐿22
𝐼 if 𝑘 = 0

. (4.73)

This is can be justified by

E[𝑄22,𝑡 ] =
1
𝐾

𝐾

𝐿22
𝐼 + 𝐾 − 1

𝐾
E𝑘∼{1,...,𝐾−1}

[
𝐾

𝐿22

𝑘∏
𝑖=1

(
𝐼 − 1

𝐿22
E[∇22𝑔(w𝑡 , u𝑡 ; 𝜁𝑖)]

)]
= E𝑘

𝐾

𝐿22

(
𝐼 − 1

𝐿2
∇22𝑔(w𝑡 , u𝑡 )

) 𝑘
=
𝐾−1∑
𝑘=0

1
𝐿22

(
𝐼 − 1

𝐿22
∇22𝑔(w𝑡 , u𝑡 )

) 𝑘
.

Then the vanilla gradient estimator of w𝑡 and its MA estimator are computed by

z𝑡 = ∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁1,𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 ; 𝜁 ′2,𝑡 )>𝑄22,𝑡∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁1,𝑡 )
v𝑡 = (1 − 𝛽)v𝑡−1 + 𝛽z𝑡 .

(4.74)

Convergence Analysis

We provide a proof sketch below. We can understand that z𝑡 is a unbiased stochastic
estimator of

M̂(w𝑡 , u𝑡 ) = ∇1 𝑓 (w𝑡 , u𝑡 ) + ∇21𝑔(w𝑡 , u𝑡 )>E[𝑄22,𝑡 ]∇2 𝑓 (w𝑡 , u𝑡 ).
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Wedecompose the estimation error of v𝑡 similarly as in (4.70) and bound ‖M̂(w𝑡 , u𝑡 )−
∇𝐹 (w𝑡 )‖2

2 by

‖M̂(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2
2 ≤ 2‖M(w𝑡 , u𝑡 ) − ∇𝐹 (w𝑡 )‖2

2

+ 2‖M̂(w𝑡 , u𝑡 ) −M(w𝑡 , u𝑡 )‖2
2.

The error recursion of the first term on the right hand side can be similarly bounded
as before. To bound the last error, since[

∇2
22𝑔(w, u)

]−1
= E[𝑄22] +

1
𝐿22

∞∑
𝑖=𝐾

[
𝐼 − 1

𝐿22
∇2

22𝑔(w, u)
] 𝑖
,

we have

‖M(w𝑡 , u𝑡 ) − M̂(w𝑡 , u𝑡 )‖2
2 ≤ 𝑂 (‖

[
∇2

22𝑔(w, u)
]−1 − E[𝑄22] ‖2

2)


[∇2
22𝑔(w, u)

]−1 − E[𝑄22]





2
≤ 1
𝐿22

∞∑
𝑖=𝐾





𝐼 − 1
𝐿22

∇2
22𝑔(w, u)





𝑖
2
≤ 1
𝜇𝑔

(
1 −

𝜇𝑔

𝐿22

)𝐾
.

As a result, if 𝐾 = 𝑂 ( 𝐿22
𝜇𝑔

log(1/(𝜇𝑔𝛽𝑡𝜎2))), then ‖M(w𝑡 , u𝑡 ) − M′ (w𝑡 , u𝑡 )‖2
2 ≤

𝑂 (𝛽𝑡𝜎2). Then similar to the analysis of approach 1, we can establish a complexity
of 𝑂 (1/𝜖4) for finding an 𝜖-stationary solution of 𝐹 (·) in expectation.

4.5.3.3 Approach 3: The penalty method

An alternative approach to avoid computing the Hessian inverse and Jacobian ma-
trices is to reformulate the problem as a constrained optimization problem:

min
w,u

𝑓 (w, u)

s.t. 𝑔(w, u) ≤ min
u
𝑔(w, u).

This constrained problem can be addressed using a penaltymethod (see Chapter 6.7):

min
w,u

𝑓 (w, u) + 𝜆
(
𝑔(w, u) − min

y
𝑔(w, y)

)
+,

where 𝜆 > 0 is a penalty parameter and (·)+ denotes the positive part. Since
𝑔(w, u) ≥ miny 𝑔(w, y), the formulation simplifies to:

min
w,u

𝑓 (w, u) + 𝜆
(
𝑔(w, u) − min

y
𝑔(w, y)

)
(4.75)

= min
w,u

max
y

𝑓 (w, u) + 𝜆 (𝑔(w, u) − 𝑔(w, y)) . (4.76)
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If both 𝑓 and 𝑔 are smooth and 𝑔 is strongly convex in its second argument, the result-
ing formulation becomes a non-convex strongly-concave min-max problem, which
can be effectively addressed using the SMDA algorithm with the following update
for 𝑡 ≥ 1:

y𝑡+1 = y𝑡 + 𝛾𝑡𝜆∇2𝑔(w𝑡 , y𝑡 ; 𝜉𝑡 ),

z𝑡 = ∇ 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) + 𝜆
(
∇𝑔(w𝑡 , u𝑡 ; 𝜉𝑡 ) −

[
∇1𝑔(w𝑡 , y𝑡 ; 𝜉𝑡 )

0

] )
,

v𝑡 = (1 − 𝛽𝑡 )v𝑡−1 + 𝛽𝑡z𝑡 ,[
w𝑡+1

u𝑡+1

]
=

[
w𝑡
u𝑡

]
− 𝜂𝑡v𝑡 .

(4.77)

Convergence Analysis

The convergence analysis of (4.77) for the min–max problem (4.75) follows a sim-
ilar approach to that of Theorem 4.5 for SMDA. However, a remaining challenge
lies in converting the convergence result for the min–max formulation into that of
the original problem. To address this, we provide the detailed convergence analysis
below. We begin by stating the following assumption.

Assumption 4.9. Regarding the problem (4.64), the following conditions hold:

(i) 𝑔(w, u) is 𝜇-strongly concave in terms of u.
(ii) ∇ 𝑓 (w, u) is 𝐿 𝑓 -Lipschitz continuous such that

‖∇ 𝑓 (w1, u1) − ∇ 𝑓 (w2, u2)‖2 ≤ 𝐿 𝑓





(w1

u1

)
−

(
w2

u2

)




2
. (4.78)

(iii) ∇𝑔(w, u) is 𝐿𝑔-Lipschitz continuous such that

‖∇𝑔(w1, u1) − ∇𝑔(w2, u2)‖2 ≤ 𝐿𝑔





(w1

u1

)
−

(
w2

u2

)




2
. (4.79)

(iv) there exist 𝜎 𝑓 , 𝜎𝑔 such that

E[‖∇ 𝑓 (w, u; 𝜁) − ∇ 𝑓 (w, u)‖2
2] ≤ 𝜎2

𝑓 , (4.80)

E[‖∇𝑔(w, u; 𝜉) − ∇𝑔(w, u)‖2
2] ≤ 𝜎2

𝑔 . (4.81)

(v) min
w,u

𝑓 (w, u) ≥ −∞.

Let us define w̄ = (w, u) and

𝑓 (w̄, y) = 𝑓 (w, u) + 𝜆 (𝑔(w, u) − 𝑔(w, y)) (4.82)
𝐹̄ (w̄) = max

y
𝑓 (w̄, y). (4.83)
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Then

∇1 𝑓 (w̄, y) = ∇ 𝑓 (w, u) + 𝜆
(
∇𝑔(w, u) −

[
∇1𝑔(w, y)

0

] )
,

∇2 𝑓 (w̄, y) = −𝜆∇2𝑔(w, y),

∇1 𝑓 (w̄, y; 𝜀) = ∇ 𝑓 (w, u; 𝜁) + 𝜆
(
∇𝑔(w, u; 𝜉) −

[
∇1𝑔(w, y; 𝜉)

0

] )
,

∇2 𝑓 (w̄, y; 𝜉) = −𝜆∇2𝑔(w, y; 𝜉).

where 𝜀 = (𝜁, 𝜉). We first show 𝑓 (w̄, y) satisfies the conditions in Assumption (4.8).

Lemma 4.25 Under Assumption 4.9, we have

(i) 𝑓 (w̄, y) is 𝜇𝜆-strongly concave in terms of u.
(ii) ∇1 𝑓 (w̄, y) is Lipschitz continuous, i.e.,

‖∇1 𝑓 (w̄1, y1) − ∇1 𝑓 (w̄2, y2)‖2 ≤ (𝐿 𝑓 + 2𝐿𝑔𝜆) (‖w̄1 − w̄2‖2 + ‖y1 − y2‖2).

(iii) ∇2 𝑓 (w̄, y) is Lipschitz continuous, i.e.,

‖∇2 𝑓 (w̄1, y1) − ∇2 𝑓 (w̄2, y2)‖2 ≤ 𝐿𝑔𝜆‖w̄1 − w̄2‖2 + 𝐿𝑔𝜆‖y1 − y2‖2.

(iv)

E[‖∇1 𝑓 (w̄, y; 𝜀) − ∇1 𝑓 (w̄, y)‖2
2] ≤ 3𝜎2

𝑓 + 6𝜆2𝜎2
𝑔 ,

E[‖∇2 𝑓 (w̄, y; 𝜉) − ∇2 𝑓 (w̄, y)‖2
2] ≤ 𝜆2𝜎2

𝑔 .

(v) 𝐹̄ (w̄) := maxy 𝑓 (w̄, y) ≥ −∞.

Proof. (i) is obvious. The Lipschitz continuity of∇1 𝑓 (w̄, y) follows that of∇ 𝑓 (w, u)
and ∇𝑔(w, u). For (iii), we have

‖∇2 𝑓 (w̄1, y1) − ∇2 𝑓 (w̄2, y2)‖2 = 𝜆‖∇2𝑔(w1, u1) − ∇2𝑔(w2, u2)‖2

≤ 𝜆‖∇𝑔(w1, u1) − ∇𝑔(w2, u2)‖2 ≤ 𝜆𝐿𝑔




(w1

u1

)
−

(
w2

u2

)




2

≤ 𝜆𝐿𝑔 (‖w1 − w2‖2 + ‖u1 − u2‖2) ≤ 𝜆𝐿𝑔 (‖w̄1 − w̄2‖2 + ‖u1 − u2‖2).

It is trivial to prove (iv). The last result follows that maxy 𝑓 (w̄, y) ≥ 𝑓 (w, u) ≥
∞. ut

Theorem 4.6 Suppose Assumption 4.9 hold. By setting
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𝛽𝑡 = 𝛽 =
𝜖2

9𝜎2
𝑓 + 18𝜆2𝜎2

𝑔

,

𝛾𝑡 = 𝛾 =
𝜇𝑔𝜖

2

96(𝐿 𝑓 + 2𝐿𝑔𝜆)2𝜆𝜎2
𝑔

,

𝜂𝑡 =

min

{
𝛽

√
8(𝐿 𝑓 + 2𝐿𝑔𝜆) (1 + 𝐿𝑔)

,
𝛾𝜇𝑔𝜆

16
√

3(𝐿 𝑓 + 2𝐿𝑔𝜆)𝐿𝑔
,

1
2(𝐿 𝑓 + 2𝐿𝑔𝜆) (1 + 𝐿𝑔)

}
in (4.77), then the following holds

E

[
1
𝑇

𝑇−1∑
𝑡=0

{
1
4
‖v𝑡 ‖2

2 +


∇𝐹̄ (w̄𝑡 )

2

2

}]
≤ 𝜖2, (4.84)

with an iteration complexity of

𝑇 = 𝑂

(
max

{
𝐶Υ𝜆

𝜖2 ,
𝐶Υ (𝜆𝜎2

𝑓 + 𝜆3𝜎2
𝑔)

𝜖4 ,
𝐶Υ𝜆

3𝜎2
𝑔

𝜖4𝜇2
𝑔

})
, (4.85)

where 𝐶Υ = 2(𝐹̄ (w̄0) − minw̄ 𝐹̄ (w̄)) + 1√
8𝐿𝐹

‖v0 − ∇𝐹̄ (w̄0)‖2
2 +

𝐿1√
3𝜅
‖y0 − y∗ (w0)‖2

2.

Proof. We map the problem into the setting in Theorem 4.5 with 𝐿1 = 𝐿 𝑓 +
2𝐿𝑔𝜆, 𝐿21 = 𝐿𝑔𝜆, 𝐿2 = 𝐿𝑔𝜆, 𝜇 = 𝜇𝑔𝜆, 𝜅 = 𝐿21/(𝜇𝑔𝜆) = 𝐿𝑔, 𝐿𝐹 = 𝐿1 (1 + 𝜅) =
(𝐿 𝑓 + 2𝐿𝑔𝜆) (1 + 𝐿𝑔), 𝜎2

1 = 3𝜎2
𝑓 + 6𝜆2𝜎2

𝑔 , 𝜎
2
2 = 𝜆2𝜎2

𝑔 . Then, plugging these values
into the result in Theorem 4.5, we obtain the results. ut

Convergence of the original function

Next, we derive the convergence of the original function in terms of ‖∇𝐹 (w)‖2. We
need the following additional assumption.

Assumption 4.10. (i) 𝑔 is twice differentiable and ∇21𝑔(w, u) and ∇𝑔22 (w, u) are
𝐿𝑔𝑔-Lipschitz continuous; and (ii) ‖∇2 𝑓 (w, u)‖2 ≤ 𝐺 𝑓 .

Lemma 4.26 Let u∗
𝜆 (w) = arg minu 𝐹̄ (w, u), u∗ (w) = arg minu 𝑔(w, u). Under As-

sumption 4.10(i), we have

‖∇𝐹 (w) − ∇1𝐹̄ (w, u∗
𝜆 (w))‖2 ≤ 𝐿 𝑓 (1 +

𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗ (w)‖2

+ 𝐿𝑔𝑔𝜆(1 +
𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗ (w)‖2
2.

Proof. Let u∗ = u∗ (w). Then,
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∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u) + 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗))
∇2𝐹̄ (w, u) = ∇2 𝑓 (w, u) + 𝜆∇2𝑔(w, u).

Due to Lemma 4.24, we have

∇𝐹 (w) − ∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)
− ∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1∇2 𝑓 (w, u∗) − 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗)).

(4.86)

We can rearrange terms for (∇1𝑔(w, u) − ∇1𝑔(w, u∗)) as the following:

∇1𝑔(w, u) − ∇1𝑔(w, u∗) = ∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗)
+ ∇12𝑔(w, u∗)> (u − u∗).

(4.87)

To continue, we have

u − u∗ = − ∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗) (u − u∗))
+ ∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗)).

By the optimality condition for u∗, ∇2𝑔(w, u∗) = 0, and ∇2𝐹̄ (w, u) = ∇2 𝑓 (w, u) +
𝜆∇2𝑔(w, u), we can express u − u∗ as

u − u∗ = −∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗) (u − u∗))

+ 1
𝜆
∇22𝑔(w, u∗)−1 (∇2𝐹̄ (w, u) − ∇2 𝑓 (w, u)).

(4.88)

Plugging (4.87) and (4.88) back to (4.86), we have

∇𝐹 (w) − ∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)
− ∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1∇2 𝑓 (w, u∗)
− 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗))
+ 𝜆∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗) (u − u∗))
− ∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1 (∇2𝐹̄ (w, u) − ∇2 𝑓 (w, u)).

As a result, we have

∇𝐹 (w) − ∇1𝐹̄ (w, u) + ∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1∇2𝐹̄ (w, u)
= ∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)
− ∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1 (∇2 𝑓 (w, u∗) − ∇2 𝑓 (w, u))
− 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗))
+ 𝜆∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1 (∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗)(u − u∗)).
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By the Assumption 4.10 we have

‖∇1𝑔(w, u) − ∇1𝑔(w, u∗) − ∇12𝑔(w, u∗)> (u − u∗)‖2 ≤ 𝐿𝑔𝑔‖u − u∗‖2
2,

‖∇2𝑔(w, u) − ∇2𝑔(w, u∗) − ∇22𝑔(w, u∗)(u − u∗)‖2 ≤ 𝐿𝑔𝑔‖u − u∗‖2
2.

By the Assumption 4.9 we have

‖∇1 𝑓 (w, u∗) − ∇1 𝑓 (w, u)‖2 ≤ 𝐿 𝑓 ‖u∗ − u‖2,

‖∇2 𝑓 (w, u∗) − ∇2 𝑓 (w, u)‖2 ≤ 𝐿 𝑓 ‖u∗ − u‖2,

‖∇12𝑔(w, u∗)∇22𝑔(w, u∗)−1‖2 ≤
𝐿𝑔

𝜇𝑔
.

Thus, we have

‖∇𝐹 (w) − ∇1𝐹̄ (w, u) + ∇12𝑔(w, u∗)>∇22𝑔(w, u∗)−1∇2𝐹̄ (w, u)‖2

≤ 𝐿 𝑓 (1 +
𝐿𝑔

𝜇𝑔
)‖u − u∗‖2 + 𝐿𝑔𝑔𝜆(1 +

𝐿𝑔

𝜇𝑔
)‖u − u∗‖2

2.

Plugging u = u∗
𝜆 (w) = minu 𝐹̄ (w, u), then ∇2𝐹̄ (w, u∗

𝜆 (w)) = 0 and then we have

‖∇𝐹 (w) − ∇1𝐹̄ (w, u∗
𝜆 (w))‖2

≤ 𝐿 𝑓 (1 +
𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗‖2 + 𝐿𝑔𝑔𝜆(1 +
𝐿𝑔

𝜇𝑔
)‖u∗

𝜆 (w) − u∗‖2
2.

ut

Next, we bound ‖u∗
𝜆 (w) − u∗ (w)‖2.

Lemma 4.27 Under Assumption 4.10(ii), we have ‖u∗
𝜆 (w) − u∗ (w)‖2 ≤ 𝐺 𝑓

𝜆𝜇𝑔
.

Proof. By the definitions of u∗
𝜆 (w), u∗ (w), we have

u∗
𝜆 (w) = arg min

u

1
𝜆
𝑓 (w, u) + 𝑔(w, u)

u∗ (w) = arg min
u
𝑔(w, u).

By the optimality condition,

1
𝜆
∇2 𝑓 (w, u∗

𝜆 (w)) + ∇2𝑔(w, u∗
𝜆 (w)) = 0

∇2𝑔(w, u∗ (w)) = 0.

Since 𝑔(w, u) is 𝜇𝑔-strongly convex w.r.t u for any w, then we have
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𝑔(w, u∗
𝜆 (w)) ≥𝑔(w, u∗ (w)) + ∇2𝑔(w, u∗ (w))> (u∗

𝜆 (w) − u∗ (w))

+
𝜇𝑔

2
‖u∗
𝜆 (w) − u∗ (w)‖2

2

𝑔(w, u∗ (w)) ≥𝑔(w, u∗
𝜆 (w)) + ∇2𝑔(w, u∗

𝜆 (w))> (u∗ (w) − u∗
𝜆 (w))

+
𝜇𝑔

2
‖u∗
𝜆 (w) − u∗ (w)‖2

2.

Adding these two inequalities yields:

𝜇𝑔‖u∗
𝜆 (w) − u∗ (w)‖2

2 ≤ −∇2𝑔(w, u∗
𝜆 (w))> (u∗ (w)) − u∗

𝜆 (w)))

=
1
𝜆
∇2 𝑓 (w, u∗

𝜆 (w))> (u∗ (w)) − u∗
𝜆 (w)))

≤ 1
𝜆
‖∇2 𝑓 (w, u∗

𝜆 (w))‖2‖(u∗ (w)) − u∗
𝜆 (w))‖2.

Dividing both sides by ‖u∗ (w)) − u∗
𝜆 (w)‖2 and noting ‖∇2 𝑓 (w, u∗

𝜆 (w))‖2 ≤ 𝐺 𝑓

concludes the proof.
ut

Corollary 4.2 Under the same setting as in Theorem 4.6 with 𝜆 = 𝑂 ( 1
𝜖 ) > 2𝐿 𝑓 /𝜇𝑔

and assume ‖y0 − y∗ (w0)‖2
2 ≤ 𝑂 (𝜖), then the following holds

E [‖∇𝐹 (w𝜏)‖2] ≤ 𝑂 (𝜖), (4.89)

with an iteration complexity of

𝑇 = 𝑂

(
max

{
1
𝜖3 ,

𝜎2
𝑓

𝜖5 ,
𝜎2
𝑔

𝜖7

})
, (4.90)

where 𝜏 ∈ {0, . . . , 𝑇 − 1} is randomly sampled.

Proof. Combining Lemma 4.25 and Lemma 4.27, we have

‖∇𝐹 (w𝜏)‖2 = ‖∇𝐹 (w𝜏) − ∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏))‖2 + ‖∇1𝐹̄ (w𝜏 , u∗

𝜆 (w𝜏))‖2

≤ 𝐿 𝑓 (1 +
𝐿𝑔

𝜇𝑔
)
𝐺 𝑓

𝜇𝑔𝜆
+ 𝐿𝑔𝑔𝜆(1 +

𝐿𝑔

𝜇𝑔
)
𝐺2
𝑓

𝜇2
𝑔𝜆2

+ ‖∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏)) − ∇1𝐹̄ (w𝜏 , u𝜏)‖2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2

≤
2𝐿 𝑓 𝐿𝑔𝐺 𝑓

𝜇2
𝑔𝜆

+
2𝐿𝑔𝑔𝐿𝑔𝐺2

𝑓

𝜇3
𝑔𝜆

+ ‖∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏)) − ∇1𝐹̄ (w𝜏 , u𝜏)‖2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2.

Since 𝐹̄ (w, u) is (𝜆𝜇𝑔 − 𝐿 𝑓 )-strongly convex w.r.t u, Lemma 1.6(c) implies that
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(𝜆𝜇𝑔 − 𝐿 𝑓 )‖u∗
𝜆 (w𝜏) − u𝜏 ‖2

2 ≤ 1
(𝜆𝜇𝑔 − 𝐿 𝑓 )

‖∇2𝐹̄ (w𝜏 , u𝜏) − ∇2𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏))‖2

2

=
1

(𝜆𝜇𝑔 − 𝐿 𝑓 )
‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

2

Due to ∇1𝐹̄ (w, u) = ∇1 𝑓 (w, u) + 𝜆(∇1𝑔(w, u) − ∇1𝑔(w, u∗ (w))), we have

‖∇1𝐹̄ (w𝜏 , u∗
𝜆 (w𝜏)) − ∇1𝐹̄ (w𝜏 , u𝜏)‖2 ≤ (𝐿 𝑓 + 𝜆𝐿𝑔)‖u∗

𝜆 (w𝜏) − u𝜏 ‖2

≤
(𝐿 𝑓 + 𝜆𝐿𝑔)
(𝜆𝜇𝑔 − 𝐿 𝑓 )

‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

≤
2(𝜆𝜇𝑔/2 + 𝜆𝐿𝑔)

𝜆𝜇𝑔
‖∇2𝐹̄ (w𝜏 , u𝜏)‖2 =

𝜇𝑔 + 2𝐿𝑔
𝜇𝑔

‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

where the last inequality uses 𝐿 𝑓 ≤ 𝜆𝜇𝑔/2. Combining the above inequalities, we
obtain

‖∇𝐹 (w𝜏)‖2 ≤
2𝐿 𝑓 𝐿𝑔𝐺 𝑓

𝜇2
𝑔𝜆

+
2𝐿𝑔𝑔𝐿𝑔𝐺2

𝑓

𝜇3
𝑔𝜆

+
𝜇𝑔 + 2𝐿𝑔
𝜇𝑔

‖∇2𝐹̄ (w𝜏 , u𝜏)‖2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2.

From Theorem 4.6, we have

E
[
‖∇2𝐹̄ (w𝜏 , u𝜏)‖2

2 + ‖∇1𝐹̄ (w𝜏 , u𝜏)‖2
2
]
≤ 𝜖2.

Hence, it follows that E[‖∇2𝐹̄ (w𝜏 , u𝜏)‖2] ≤ 𝜖 and E[‖∇1𝐹̄ (w𝜏 , u𝜏)‖2] ≤ 𝜖 . If 𝜆 =
𝑂 (1/𝜖), then E[‖∇𝐹 (w𝜏)‖2] ≤ 𝑂 (𝜖). The iteration complexity can be established
by substituting 𝜆 = 𝑂 (1/𝜖) into Theorem 4.6 and noting that 𝐶Υ = 𝑂 (1) when
‖y0 − y∗ (w0)‖2

2 ≤ 𝑂 (𝜖).
ut
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Critical: The complexity of 𝑂 (1/𝜖7) is not the state-of-the-art sample com-
plexity achievable under the same assumptions. Indeed, a double-loop large-
batch method—similar to the one presented in Section 4.5.1.1 for solving the
min-max problem minw̄ maxy 𝑓 (w̄, y)—can yield a superior sample complex-
ity of 𝑂 (1/𝜖6) for achieving the stationarity condition E[‖∇𝐹 (w)‖2] ≤ 𝜖2.
To see this, we apply the results from Section 4.5.1.1, which indicates that a
sample complexity for achieving E[‖∇𝐹̄ (w̄)‖2

2] ≤ 𝜖2 is 𝑂
(
𝐿̄𝐹 𝜎̄

2
1

𝜖 4 + 𝐿̄𝐹 𝐿̄
2
1 𝜎̄

2
2

𝜇̄2 𝜖 4

)
.

Here, 𝐿̄𝐹 denotes the smoothness constant of the objective function 𝐹̄ (w̄) =
maxy 𝑓 (w̄, y). The remaining parameters are defined as follows:

• 𝐿̄1 = 𝑂 (𝜆) is the Lipschitz constant of ∇1 𝑓 (·, ·);
• 𝜇̄ = 𝑂 (𝜆) is the strong concavity parameter of 𝑓 (·, y) with respect to y;
• 𝜎̄2

2 = 𝑂 (𝜆2) represents the variance of the stochastic gradient with respect
to y;

• 𝜎̄2
1 = 𝑂 (𝜆2) is the variance of the stochastic gradient with respect to w̄ =

(w, u).
Given that we can establish 𝐿̄𝐹 = 𝑂 (1) independent of 𝜆 (Chen et al., 2025a,
see Lemma B.7) and 𝜆 = 𝑂 (1/𝜖), the total sample complexity reduces to
𝑂 (1/𝜖6).
However, it remains an open problem to develop a single-loop stochastic algo-
rithm that achieves 𝑂 (1/𝜖6) complexity without requiring a large batch size
or assuming mean-square smoothness (see next section for more discussion).

4.6 History and Notes

The optimization techniques presented in this chapter for stochastic compositional
optimization are rooted in the pioneering work of Yuri Ermoliev (Ermoliev, 1976;
Ermoliev and Wets, 1988). The monograph (Ermoliev, 1976), written in Ukrainian,
laid the early foundations. Chapter 6 of the edited volume (Ermoliev andWets, 1988)
introduces an early form of the Stochastic Compositional Gradient Descent (SCGD)
method, employing a sequence of moving average estimators u𝑡 to track the inner
function values at each iteration—referred to then simply as“averaging.”The con-
vergence analysis in these early works is largely limited to asymptotic results, if
provided at all. Notably, these works considered a broader class of problems with
functional constraints, which will be discussed further in Chapter 6.

The study of non-smooth compositional optimization, where a non-smooth con-
vex function is composed with a smooth function, was first initiated in the works
of Fletcher and Watson (1980); Fletcher (1982). Their proposed method, known as
the prox-linear method, has since been extensively studied and developed in subse-
quent research (Lewis andWright, 2009; Duchi and Ruan, 2018; Drusvyatskiy et al.,
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2021; Duchi and Ruan, 2017; Drusvyatskiy and Paquette, 2019). We will consider
non-smooth compositional optimization in next chapter.

The modern convergence analysis with non-asymptotic rates for stochastic com-
positional optimization was pioneered by Wang et al. (2017a). Their initial analysis
established an 𝑂 (1/𝜖8) complexity for finding an 𝜖-stationary solution to a smooth
compositional problem, primarily due to suboptimal choices of learning rates. Sub-
sequent works have aimed to improve this convergence rate (Ghadimi et al., 2020;
Wang et al., 2017b; Chen et al., 2021a). The improved complexity of 𝑂 (1/𝜖5) for
SCGD is derived by following the parameter settings introduced in Qi et al. (2021c).
A further refined complexity of 𝑂 (1/𝜖4), under the assumption that the inner func-
tion is smooth, was achieved in Chen et al. (2021a). The use of a moving-average
gradient estimator to attain the 𝑂 (1/𝜖4) complexity in stochastic compositional op-
timization is credited to (Ghadimi et al., 2020).

The modern variance-reduction technique for estimating the gradient of a smooth
function originates from (Johnson and Zhang, 2013; Mahdavi and Jin, 2013; Zhang
et al., 2013), and was inspired by earlier work (Schmidt et al., 2017) that estab-
lished linear convergence for finite-sum problems with convex and smooth objec-
tives. This technique is now widely known as SVRG. For the objective function
𝑓 (w) = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (w), the SVRG gradient estimator takes the form ∇ 𝑓𝑖 (w𝑡 ) −

∇ 𝑓𝑖 (w̄) + ∇ 𝑓 (w̄), where w̄ is a reference point whose full gradient ∇ 𝑓 (w̄) is com-
puted periodically.

For non-convex optimization, the variance reduction technique named SPIDER
was initiated by Fang et al. (2018), which proposes a gradient estimator v𝑡 =
v𝑡−1 + ∇ 𝑓𝑖 (w𝑡 ) − ∇ 𝑓𝑖 (w𝑡−1), with v being periodically re-initialized using either
a full gradient or a large-batch gradient. This approach was earlier proposed under
the name SARAH for convex optimization in (Nguyen et al., 2017). The technique
later evolved into the STORM estimator (Cutkosky and Orabona, 2019), defined as
v𝑡 = (1− 𝛽)v𝑡−1 + 𝛽∇ 𝑓 (w𝑡 ; 𝜉𝑡 ) + (1− 𝛽) [∇ 𝑓 (w𝑡 ; 𝜉𝑡 ) − ∇ 𝑓 (w𝑡−1; 𝜉𝑡 )], which elim-
inates the need for periodic re-initialization.

Huo et al. (2018) applied the SVRG technique for finite-sum compositional opti-
mization where both the inner and outer expectation is an average over a finite set.
Hu et al. (2019) and Zhang and Xiao (2019) concurrently applied SARAH/SPIDER
to compositional optimization with an expectation form and a finite-sum structure,
and derived a complexity of 𝑂 (1/𝜖3) for the expectation form and 𝑂 (√𝑛/𝜖2) for a
finite-sum structure with 𝑛 components. Qi et al. (2021a) applied the STORM esti-
mator for SCO with a complexity of 𝑂 (1/𝜖3) and Chen et al. (2021b) applied the
STORM estimator to only the inner function estimation for SCO with a complexity
of 𝑂 (1/𝜖4).

The capped ℓ1 norm for sparse regularization was introduced by Zhang (2013).
The minimax concave penalty (MCP) was proposed by Zhang (2010), while the
smoothly clipped absolute deviation (SCAD) regularizer was introduced by Fan and
Li (2001). The proximal mappings for these non-convex regularizers were studied
in (Gong et al., 2013). The non-convex piecewise affine regularization method for
quantization was proposed by Ma and Xiao (2025). The theoretical analysis pre-
sented in Section 4.4 on non-convex optimization with non-convex regularizers fol-
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lows the framework established by Xu et al. (2019a), whose results were applied
by Deleu and Bengio (2021) to train sparse deep neural networks.

Stochastic weakly-convex–concave min–max optimization with a complexity of
𝑂 (1/𝜖6) was first studied by Rafique et al. (2018). When the problem is weakly-
convex and strongly-concave, the complexity can be improved to 𝑂 (1/𝜖4) using
double-loop algorithms (Rafique et al., 2018; Yan et al., 2020a). The analysis of
SGDA for smooth non-convex min-max optimization was first established by Lin
et al. (2020), who derived a complexity of 𝑂 (1/𝜖4) when using a large batch size
on the order of 𝑂 (1/𝜖2) for problems that are strongly concave in the dual variable.
Without employing a large batch size, the complexity degrades to 𝑂 (1/𝜖8), which
also applies to problems lacking strong concavity. The analysis of the single-loop
SMDA algorithm was provided by (Guo et al., 2021b), which also established the
convergence guarantees for stochastic bilevel optimization using the first approach
introduced in Section 4.5.3. A similar convergence result was achieved in Qiu et al.
(2020), which employed moving-average gradient estimators for both the primal and
dual variables. Chen et al. (2021a) obtained a complexity of𝑂 (1/𝜖4) for smooth non-
convex strongly-concave problems without relying on moving-average gradient esti-
mators, under the stronger assumption that the Hessian/Jacobian matrix is Lipschitz
continuous. An improved rate of 𝑂 (1/𝜖3) for smooth non-convex strongly-concave
problems was established by (Huang et al., 2022) through the use of STORM esti-
mators.

Bilevel optimization has a long and rich history (Bracken and McGill, 1973). The
first complexity analysis of bilevel optimization was initiated by Ghadimi and Wang
(2018), who employed the Neumann series to approximate the inverse of the Hes-
sian. Their proposed double-loop stochastic algorithm achieves a sample complexity
of𝑂 (1/𝜖6) for solving the lower-level problem and𝑂 (1/𝜖4) for the upper-level prob-
lem. Subsequent research has led to improved complexity bounds:𝑂 (1/𝜖5) in (Hong
et al., 2020), 𝑂 (1/𝜖4) in (Ji et al., 2020; Guo et al., 2021b; Chen et al., 2021a), and
further down to 𝑂 (1/𝜖3) in (Yang et al., 2021; Khanduri et al., 2021; Guo et al.,
2021a) under mean-square smoothness conditions. The analysis corresponding to
Approach 1 in Section 4.5.3 can be found in (Qiu et al., 2022), while that of Ap-
proach 2 is provided in (Guo et al., 2021b).

Penalty-based metholds for bilevel optimization date back to (Ye et al., 1997),
with recent developments appearing in (Liu et al., 2021, 2022; Shen andChen, 2023).
Lemma 4.26 is due to Kwon et al. (2023), which established a sample complexity of
𝑂 (1/𝜖7)—comparable to Theorem 4.6—for a different double-loop algorithm. They
also derived a complexity of 𝑂 (1/𝜖6) for an algorithm similar to update (4.77), ex-
cept that the gradient estimators for both the lower- and upper-level functions are
replaced with STORM estimators under stronger mean-square smoothness assump-
tions.

The complexity of 𝑂 (1/𝜖4) for stochastic compositional optimization is known
to be optimal, as it matches the lower bound established for standard stochastic opti-
mization (Arjevani et al., 2022). Moreover, under mean-square smoothness assump-
tions, a reduced complexity of 𝑂 (1/𝜖3) is also proven to be optimal (Arjevani et al.,
2022).
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