Chapter 3
Classic: Stochastic Optimization

Abstract In this chapter, we introduce standard stochastic optimization problems
and present key stochastic optimization algorithms along with their complexity anal-
ysis. While many important stochastic algorithms have been proposed for solving
stochastic optimization and empirical risk minimization problems, we focus on seven
foundational methods that gained prominence before the deep learning era. These
algorithms have had a profound impact on machine learning and provide essential
insights for understanding more advanced methods presented in later chapters. The
selected algorithms include stochastic gradient descent (SGD), stochastic proximal
gradient descent, stochastic mirror descent, adaptive gradient methods, stochastic co-
ordinate descent, stochastic gradient descent ascent, and stochastic optimistic mirror
prox. We concentrate on the complexity analysis in the convex setting.

Stochastic optimization is classical wisdom in motion!
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3.1. STOCHASTIC GRADIENT DESCENT

Algorithm 1 SGD

1: Input: learning rate schedule {7,
2: fort=1,..., T do

T

;1> Starting point w;

3: Compute an unbiased gradient estimator z, = Vg (w;; &)
4: Update the model w by wyy; = w; — 17,2
5: end for

3.1 Stochastic Gradient Descent

Let us consider the following standard stochastic optimization problem:
ming(w) :=E¢[g(w; )] (3.1

If g is differentiable, the stochastic gradient descent (SGD) method takes the follow-
ing update:
Wil = Wr =1, VE(We5 4r), (3.2)

where {; is a random sample. If g is non-differentiable, we use a stochastic subgra-
dient G(w; () to update the model parameter:

Werl =W = 1:G (W3 {p). (3.3)
The key assumption regarding the stochastic gradient or subgradient is the following.

Assumption 3.1. For any w, we have E;[Vg(w;{)] = Vg(w) or E;[G(W; ()] €
ag(w).

Explanation of SGD update

The update (3.2) is equivalent to:
. 1
Weet = argming(w;; &) + Vg(wr; &) T (W—w) + gllw - w3 (3.4)
t

The stochastic linear approximation g(w; ;) = g(W;; &) + Vg(ws; &) T (w—
W, ) serves as a stochastic surrogate for g(w). Since it is only an approxima-
tion, we avoid optimizing it directly; instead, we seek a solution close to w;
that minimizes this surrogate.

When SGD is applied to solving ERM (2.1), {; could represent one randomly
sampled data with an index from {1, ..., n} or a mini-batch of random data.

Below, we present the convergence analysis for smooth and non-smooth, convex
and non-convex objective functions.
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3.1.1 Smooth Convex Functions

For a point w, convergence is typically measured by the objective gap:
(W) —ming(w) = g(W) — g(W.),

where w.. denotes a global optimal solution. A convergence analysis aims to show
that after T iterations of updates, we can obtain a solution Wz such that the expected
objective gap is bounded by

E[g(Wr) — g(w.)] < O (%) , (3.5)

for some @ > 0. The term 1/7% is referred to as the convergence rate. Accordingly,
to guarantee a small objective gap E[g(Wr) —g(W.)] < € for some € < 1, the bound

implies that T = O (#) which is known as the iteration complexity.

ella |°
Let us first assume that g is smooth and its stochastic gradient Vg(w; () satisfies
the following assumption.

Assumption 3.2. (i) g(W) is L-smooth and convex; (ii) For any w, we have
E[[|Vg(w; {) - Ve(W)l3] < o
for some o > 0.
The following lemma is useful for convergence analysis.
Lemma 3.1 Consider the update (3.2). For any w we have

1 1 1
Ve(Wei &) (Wea1 — W) Sz—nt”W - Wr||% - Z_rh”W — Wiyl ||§ - 2—m||Wz+1 - Wr||§-

Proof. Since the problem (3.4) is 1/n, strongly convex and has an optimal solution
W41, following (1.18) for any w we have

1
Ve(Wes &) T (W —w,) + 2—||w - w3
Nt

1 1
> Vg(wg; {t)T(Wt+1 - W)+ —|lW1 — Wt”% + —lw =W ||%
21, 2n,

Re-arranging the inequality, we have

1 1 1
Ve(We3 &) T (Weat — W) Sz_m”W - w3 - 2—m||W ~Well3 - 2—m||W:+1 - w3

O

The following lemma shows one-step objective gap bound.
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3.1. STOCHASTIC GRADIENT DESCENT

Lemma 3.2 Suppose Assumption 3.1 and 3.2 hold. For one step SGD update ;1 =
w; —1:Vg(Ws; &), we have

1 1
Elg(Wi1) = g(W)] <E|=—lIw. = W[5 = =—lIw. = Wit I3 | + me0™.
2n; 2n;

Proof. From Lemma 3.1, we have

1 1 1
Vg (W) T (W — W) Sz—mHW w3 - Z_Th”w ~ w3 - 2—m||Wt+1 - w3

+(Vg(we) = Vg(Wi3 &) T (Wee1 = W).
(3.6)
By the smoothness and convexity of g, we have

L
g(Wis1) < g(We) + V(W) (Wret = We) + = [[Wers = w3
T T L 2
<g(w)+Vg(w,) (W, —w) +Vg(w;) (W1 — W) + EHWHI - w5

L
< g(W) +Vg(w) T (Wi — W) + EHWHI - Wt||§~
(3.7
Combining this with (3.6), we have

1 1 1
g(Wes1) = 8(W) <——IIw =W, I3 = =—IIw = Wit |3 = =— Wit — wiI3
L
+ E”Wt+l - Wt”% +(Vg(w:) = Vg(We; )T (Wee1 — W).

Then if n, < 1/L and plugging w = w,,, we have

1 2 1 2
W, - W.) <—|[We — W — —||Wye — W,
g(Wey1) — g(w.) 2 I t”2 oy Il t+1 ”2

+(Vg(we) = Vg(Wi3 &) T (Wert = Wa).

The challenge lies at handling the last term where w,,; depends on ¢;, hence its
expectation is not equal to zero. To bound the last term, we introduce

. . 1
Wier = argmin Ve (w,) T (W= W) + >—[[w — wi|[3.
w 2n,
Note that W, is independent of ;. Then E,, [(Vg(W;)—Vg(W;; ) T (Wer1 —W,)] =

0. Thus, we have

1 1
Elg(Wer1) — g(W)] <E | =—|lW. = W, |3 = =—[IWs = Wi [13
2n; 2n;

+E[(Vg(w;) — Vg(ws; {t))T(WHl - We1)].
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Due to Lemma 1.7, we have [|W;41 — Westll2 < 7/1IVg(W;) — Vg(w;5 ) |l2, thus

1 1
Elg(Wis1) — g(Wa)] <E | =—|IWs = W, |2 = =—[IW. = W 3| + 102
2m; 2n;

O

Theorem 3.1 Suppose Assumption 3.1 and 3.2 hold. Let the learning rate {n,} be
ne =n < 1/L and W = % Z,T:1 Wei1. Then after T iterations of SGD update we
have

lwi —w. |3

2
T +no-. 3.9

E[g(Wr) —g(w.)] <

Ifn = min({, —”W‘;Tw(;uz), then

‘/7

V2o ||wi = w.ll,  Llwi = w.ll3

\NT T

@ Why it matters

In the convergence upper bound (3.9), the first term captures the optimization
error due to the finite time horizon, while the second term represents the error
induced by stochastic gradient noise.

If o = 0 (no noise), SGD reduces to gradient descent, then a constant step size

_ 2
n = 1/L canbe used and the convergence rate becomes O (M ) Ifo? >0

E[g(wr) —g(w.)] <

(there is noise in stochastic gradient), in order to guarantee convergence, we have
to set 7, — 0 or a small value to guarantee certain level of accuracy.

For a fixed number of iterations 7', a smaller variance o~ allows for faster con-
vergence with a larger learning rate 77 (up to a certain limit).

The iteration complexity required to achieve E[g(Wr) — g(w.)] < € is

Pllwi=w. )3 Lllwi—w.ll3 ))

T = O(max( p , -

If a mini-batch of size B is used to compute the stochastic gradient at each it-
eration, the variance of the stochastic gradient decreases by a factor of B. This
implies that increasing the batch size, up to a certain point, can reduce the num-
ber of iterations needed.

Finally, the result also highlights that the initial learning rate 77 cannot be too
large; in practice, an excessively large initial learning rate may cause the algo-
rithm to diverge.

Proof. If n; = n, summing the inequalities in Lemma 3.2 overt = 1, ..., T, we have
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3.1. STOCHASTIC GRADIENT DESCENT

5ol 1
2 2
21w = Wil = 5w = e

t=1

E

T
Z(g(Wm) - g(w*))} <E
t=1

+ Tna'z.
The first term in [-] is a telescoping series,

T
1 2 1 2 1 2 1 2
Z —|lw. - Wt”z - Z”W* - Wt+1||2 < Z”W* - Wl”z - %“W* - WT+1”2

2
[Iw. — W1||2~

As a result,
| - 1
2 2
E[T ;(g(wml) -g(w.)) SZT]_T”W* - Wl||2 +no-,

which concludes the proof of the first part of the theorem.
For the second part, optimizing the upper bound over n gives 1, = “V‘V‘F;Tv;” If

lwi—w.|I3L2
202

n. <1/L,ie., T > , wWe set 7 = 1, then

20 |lwi — w.ll2

E[g(Wr) —g(w.)] < NoTi

llwi—w.|I3L?

Ifn. > 1/L,ie., o2 < ——r ., wesetn = 1/L, then

Llw; — w.|2 , Llwi ~ w3 Lllwi — w3
2T 2T - T

E[g(wr) —g(w.)] <

3.1.2 Non-smooth Convex Functions

Now, let us consider the SGD update (3.3) for non-smooth convex functions under
the following assumption.

Assumption 3.3. (i) g(W) is convex; (ii) For any w, we have E[||G(W; {)|3] < G*.

Lemma 3.3 Suppose Assumption 3.1 and 3.3 hold. For one step SGD update W;1 =
w, — 11, G(Wy; &), we have

1 1 M
E - I SE|=—|w. = w5 - —lw- 2+ 262
L (we) = W)l < B 5liwe = Wil = 5w = W+ 5
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Proof. From Lemma 3.1, we have

1 1 1
Wi Z) T (W, = W) < —||We = Wi |2 = —[|We = Weat |17 = — [|Wre1 — W, |2
G(W3 41) (W, ) o I i 2, Il +11l3 2 lWes1 el

+G (W5 {t)T(WH] - W;)

1 1
W, = Well3 = 5= 11w = Westll3 = 5—[[Weer = Wil

S -
2n, 2n, 2n;

1
+ NG Wi G 1B + 5 Wit = will
(3.10)

where the last inequality uses the Young’s inequality. Taking expectation on both
sides, we have

E[G(Ws; &) (w, —w.)] < B

1 2 1 2 Nt 2
—||W. — W ||5 — —|lW—W + —=G~.
277t” t||2 277t” t+1||2] )

(3.11)

Since w, is independent of ¢;, we have E[G (W;; ) T (W, — w,)] = E[v/] (w, — w,)]
for some v, € dg(w;). By the convexity of g, we have

E[g(w:) — g(w)] < E[v; (W, = w)] =E[G(Wr: &) T (W = w)]
L (3.12)
5 G

1 1
<E|[—/|W:=W 2 |w-w 2
3 1w = Wil = 5 llw = wea

O

The theorem below establishes the convergence of SGD for non-smooth convex
functions as measured by the objective gap.

Theorem 3.2 Suppose Assumption 3.1 and 3.3 hold. Let the learning rate {n;} be
ny =nand Wr = % Zthl w;. Then after for T iterations of SGD update (3.3) we have

Ilwi - w3 G2
LMETMGLE NS b

E[g(Wr) —g(w.)] < 2T >

IfTI — ||W‘I/%Vg||2’ then

Gllwi — w.ll2

E[g(Wr) —g(w.)] < N

@ Why it matters

The above theorem exhibits the key difference in the convergence of SGD for
smooth convex functions and non-smooth convex functions. Even with a zero
variance for the stochastic subgradient , the convergence rate is still O(1/ \T).
The reason is that for smooth convex functions when g(w) — g(w.), we have
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3.1. STOCHASTIC GRADIENT DESCENT

Vg(w) — 0 (cf. Lemma 1.5(b)), which is not true for non-smooth convex func-
tions.

Proof. The proof is similar to that in the smooth case.

3.1.3 Smooth Non-Convex Functions

For a non-convex function, it is generally NP-hard to find a global optimal solution.
Hence, our goal here is to establish the complexity of SGD for finding an e-stationary
solution with € < 1, as defined below.

Definition 3.1 (e-stationary solution) w is an e-stationary solution to miny g(w),
if [Vg(w)l2 < e.

Assumption 3.4. (i) g(w) is L-smooth and non-convex; (ii) For any w, we have
E[[|Vg(w;{) - Ve(W)l3] < o

for some o > 0.

Based on the above assumptions, we establish the following convergence guaran-
tee.

Theorem 3.3 Suppose Assumption 3.1 and 3.4 hold. Let the learning rate {n,} be
N = min{%, a_%ﬁ}for some constant D > 0. Lett € {1, ..., T} be arandom sample

Jollowing a distribution Pr(t =1t) = % Then we have

2L(g(w1) —g(w.)  (2(8(w) —g(Ws)) | o
T D T

Proof. For brevity of notation, we let Vg, (w;) = Vg(w;; ;). Due to the L-smoothness
of g, we have

E[[|Vg(wo)l3] <
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L
g(Wes1) < g(W,) + Vg (W) T (Wey1 —We) + = ||Wt+1 Wt”%

2
77 L
=g(w,) =1, Vg(w;) Vg, (w;) + — ||V8t(Wt)||2

2L
=g(w) —m; ||V8(Wz)||2 +77th(Wt) (Vg(wy) = Vgi(wy)) + — 77 ||Vg,(w,)||2

=g(w;) —m; ||V8(Wt)||2 + n,Vg(w,)T(Vg(wt) - Vg (wy))

77tL
IVg: (w:) — Vg(w,) + Vg(wt)||2

77t

=g(ws) —(m — ——) ||V8(Wt)||2 + (e - U%L)Vg(wt)T(Vg(Wt) —Vg:i(w))

UtL
Vg (we) = Ve(woll3 .

Taking expectation over {; given w, on both sides, we have

2

L
L T 19gwol3 + 1=, (3.13)

Eg, [8(Wes1)] < g(We) — (s —

Telescoping this from # = 1 to T gives

T T]zL T T]2L
2 2
B ;m—’T) IVg(w)l3] < (g(wl>—g(w*>+;f7cr.
As a result,

(gw) —g(w)  Taml

7L 2L
Z[ 1(7]t h ) ZZ,T:](UZ -

E [[IVe(wo)ll3] <
yn
=)

Plugging the value of n; = min(%, ﬁ?), we have

gw) —g(w) Tl 2
T(n-4=) 270 - 45)
J2ew) —gw) ) o
Tm
N (2L(g(wl) g(w.) 2(g(w)) - g(w*)>o)+Do-L
T ' DNT T
2L(g(wy) — g(w.)) +(2(g(W1)—g(W*)) o

+DL| —.
; : )7

If we setn; = mm(L, \[) then Zt = Q(VT) and Zt 117, < 0(log(T)), then
E [IIVg(w-)ll3] < O(log T/T). O

E[IVe(wo)l3] <

IA
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3.1. STOCHASTIC GRADIENT DESCENT

3.1.4 Non-smooth Weakly Convex Functions

Next, let us extend the analysis to non-smooth non-convex functions. Consider a
function g : R? > R and a point w € R? with g(w) finite. The Fréchet subdifferen-
tial of g at w, denoted dg(w), consists of all vectors v satisfying

gwW) = g(W)+v i (w=w)+o(lw=-w]r) asw — w.

We consider a family of non-convex functions, namely weakly convex functions. A
lower semi-continuous function g is called p-weakly, if there exists p > 0 such that:

g(W) 2 g(W)+vT(w-w) = Ellw-wWI5  Vww.vedgw).

It is easy to show that if g is p-weakly convex, then g(w)+§ ||W||§ is a convex function
of w. A smooth function is weakly convex, but the reverse is not necessarily true.

Example

Example 3.1 (Compositional functions). Ler F(x) = f(g(x)). If f convex
and G -Lipschitz continuous and g(X) is Ly-smooth, then F is p-weakly con-
vex for some p > 0. We will prove this in Section 5.3. The OCE risk (2.22) is
a special case when ¢* is non-smooth and the loss function £(W; z) is smooth
non-convex.

Example 3.2 (Compositional functions). Let F(x) = f(g(x)). If f Li-
smooth and monotonically non-decreasing and g(X) is non-smooth convex
and G»-Lipschitz continuous, then F is p-weakly convex for some p > 0.

Let us prove it. Since f(g) is Ly smooth, i.e., for any w,v € R, we have
F(gW) + [/(8()(g(W) = g(v) = F-lg(w) — g(M* < f(g(W)). Since g

is convex, i.e. for any w,v € R%, g(w) > g(v) + dg(v)T (W — V), then
f(g(w)) = f(g(v) 2f"(8(v)dg(V) " (W=v) - %Ig(w) -gW?
G3L

1
2

>f"(g(v))dg(v)" (W —-v) - W = vII3,
where the first inequality uses f'(g(v)) > 0, the second inequality uses the
fact that ||0g (W) |2 < G,. That is, f(g(w)) is G>L-weakly convex.

An important application of this function in machine learning is optimizing
the truncation of a convex loss g(w) = £(w;z) > 0 with a smooth truncation
Sfunction f(£(w;z)) = alog(1 + HL(;Z))for some a > 0, which is useful for
tackling heavy-tailed data distribution.
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Comparison of go2(x) and g(x)

Function value
w S w o ~ ]

N

o =

e

X N
x

Fig. 3.1: Moreau envelope of g(x) = |x?> — 1| with 1 = 0.2.

Nearly e-stationary solution

When g(-) is non-smooth, finding an e-stationary solution such that ||Vg(w)|2 < €
is difficult even for a convex function. Let us consider a simple example min,, |w|.
The only stationary point is the optimal solution w, = 0, and any w # 0 is not an
e-stationary solution (¢ < 1) no matter how close w to 0. To address this issue, we
introduce a weak notion of e-stationary solution, termed nearly e-stationary solution.

Definition 3.2 (Nearly e-stationary solution) w is a nearly e-stationary solution to
miny, g(W), if there exists W such that ||w — W|| < O(€) and dist(0, dg(W)) < e.

A useful tool for deriving a nearly e-stationary solution is the Moreau envelope of g:
() = ming(w) + == [lu — w2 (3.14)
g,lw.—m&ngu 2/lu wl|5. .
Define
._ : 1 2
Prox (W) := argmumg(u) + ﬁllu—wllz. (3.15)
An example of a weakly convex function and its Moreau envelope is illustrated in
Figure 3.1.

The proposition below shows that when A is sufficiently small, g,(-) is a smooth
function.

Proposition 3.1. Consider a p-weakly convex function g(-). Then for any 1 €
(0, p~"), the Moreau envelope g, (-) is %-smooth, with gradient given by
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3.1. STOCHASTIC GRADIENT DESCENT

Vga(w) = 1 (W~ proxy (W),

Proof. First, when A < p~! we have g(u) + 5;|lu — w||3 become (4 — p) -strongly
convex. Hence the solution prox,, (w) is unique for a given w. We can also write

Prox (W) as

. 1 2
Prox (W) := arg min g(u) + ﬁllu -wl;

2

w

1(1
=argmuing(ll)+g||“||§+§(j_p)Hu_1—/lp )
~—

r(u)

1
Due to Lemma 1.7, we have [|prox ;, (W) — prox ;, (w')[|2 < W”W — W||2. Then

1
IVga(W) = Vga(w)ll2 = ~ [ (W = prox,¢ (W) = (W = proxo (W) 12

’ _ 2_/1p ’
I =Wl = 1=l = Wl

< Liw-wip+ —
= 2T 1= ap

O

With the Moreau envelope, we can use the norm of its gradient to measure the
convergence for optimizing the original function.

1

Proposition 3.2. If1 < p~', we have

£a(W) < g(w),  ming, (W) = ming(w). (3.16)
IfIVga(w)ll2 < € then W = prox,,(w) is a nearly e-stationary solution. In partic-

ular,
W —wll2=2|Vga(w)|l2 < e,

) . (3.17)
dist(0,0g(W)) < [[Vga(w)[l2 < €.

Proof. ga(w) < g(w) follows the definition of g,(w). Then g (w.) < g(w,). To
prove they are equal, we have

. 1 .
ga(w) =ming(u) + —|lu— W||% > ming(u) = g(w,).
u 21 u

Since Vg, (w) = %(w — W), which implies the second inequality. The first inequality
is due to the first-order optimality condition of miny g(u) + % |la - w||§. O
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@ Why it matters

Proposition 3.2 shows that if we can make ||Vg,(w)||, small, then w is close to
an e-stationary solution w of the original function g(w). The smaller the A, the
closer between w and W.

Convergence Analysis

Assumption 3.5. (i) g(W) is p-weakly convex; (ii) Foranyw, E; [|G (W, {)|3] < G?
for some G > 0.

Lemma 3.4 Let us consider an update Wi = W; — n:2;. If Bi[z,] = M; and
E/[llz:113] < G?, then we have

Mt U?Gz
B [ga(Wis1)] < ga(we) + — (W, —w,) "M, + ———,

A 22
where W, = prox ,,(W;).

Proof. We have

. | . 1, .
8a(Wei1) = g(Wppr) + ﬁ”wml - Wt+1||% <g(Wy)+ ﬁ”wt - Wt+l||%

. | . 1., 1. .
= g(W;) + ﬁ”wt - Wt”% - ﬁ”wt - Wt”% + ﬁ”wt = Wiyl ||%

Merging the first two terms we get g,(W;), and using the three-point equality 2(a —

b)y(b-c)=l|a- c||§ —|la - b||§ —|Ib - c||§ to merge the last two terms we get

1 . 1
ga(Wrs1) = ga(wy) + E(WI = W) (W, = Wepr) + ﬁ”wz = Wil ||§
=ga(w;) + l(‘?Vt —w,) Mz, + 77_?”zt”2.
1 2112

Taking expectation over {; given w, on both sides, we have

1. . n:G>
Er[ga(Wee1)] < ga(we) + — (W —wp) e M, + .
A 24
O
Lemma 3.5 Under the same setting of Lemma 3.4 we have
n;G?

(1= 2p)IVga(W)ll3 < ga(w,) — B [ga(Wesn)] + TR

Proof. Due to the weak convexity of g, for any M, € dg(w;), we have
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3.1. STOCHASTIC GRADIENT DESCENT

MT (W, =) = g (W) = g (%) = E 1% = w3
1 . 1. 1 po..
= (g(wo) + 5 lIwe = wlB) = (g() + 5= IN =will3) + (57 = 5D = will.

Since h(w) = g(w) + ﬁllw - w,ll% is (1/A1 — p)-strongly convex and W, =
arg min &(w), then applying Lemma 1.6(a), we get

1 . Lo L P
(g(w;) + ﬁ”wz - Wt”%) - (g(W;) + ﬁ”wt - Wt”%) = (ﬁ - E)”Wt - WI||§~
Combining the above two inequalities we have
M (W =) = g(we) = g (W) = 1 = wi 3
1 R 1 .
> (37— D% =Wl + (o7 = Sl = will3 = (2= 20) 1984w 13-
Plugging this into the inequality in Lemma 3.4, we have

22
un

22

(1= 2p)IVga(W)lI3 < ga(w,) — B [ga(Wesn)] +

O

Theorem 3.4 Suppose the learning rate {n, } is setton, = % Lett € {1,...,T} be

a random sample following a distribution Pr(t =t) = % Then for any A € (0, p~1),
we have

_gw)-glw) _ CG

© (1-2p)CNT  22(1 - Ap)NT

E[lIVga(wo)ll3]

Proof. Summing up the inequalities in Lemma 3.5 over ¢+ = 1,...,T and taking
expectation over all randomness, we have
n;G*

21

T T
B> m(1=2p)IVga(will3| < g(wi) = g(w.) + >
t=1 t=1

where we have used g (w) < g(w) and min g,(w) = g(w..). Then

|8 glw) | CG?
T (1=2p)CNT  24(1 = Ap)NT

E[[|Vga(wo)ll3
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Algorithm 2 SPGD

1: Input: learning rate schedule {7,
2: fort=1,..., T do

T

;1> Starting point w;

3: Compute an unbiased gradient estimator z, = Vg (w;; &)
4: Update the model w by W, = arg minycpa z; (W — W) + ﬁ [|w — w, ||§ +r(w).
5: end for

3.2 Stochastic Proximal Gradient Descent

Let us consider the following stochastic composite optimization problem:
min F(w) :=Ez[g(w; )] +r(w), (3.18)
weRd ’

where g(w) = E;[g(w; )] is a smooth function and r(w) is a possibly non-smooth
function. In machine learning, r usually corresponds to some regularizer on the
model parameter. We make the following assumption.

Assumption 3.6. Suppose the following conditions hold:

(i) g(w) is L-smooth and convex, and r(W) is convex.
(ii) There exists o > 0 such that E; [||Vg(w; {) — Vg(w)||§] < o for all w.

If the regularizer r is non-smooth, the overall objective function is also non-
smooth. Consequently, applying SGD directly cannot exploit the smoothness of g,
which would otherwise enable faster convergence and enjoy the variance scaling in
the convergence bound.

To address this challenge, we can employ the stochastic proximal gradient descent
(SPGD) method:

. 1
Wit = arg min V(Wi £i) T (W —w,) + (W) + —|[lw — w13
weR4 2n; (3.19)
. 1 '
= arg min r(w) + =—||w — (W, =, Vg(wi: £) 3.
weRd 2n;

This is also known as forward-backward splitting, where w,,; = w, — 17, Vg(w;; ;)
is the forward step and the proximal mapping of r is the backward step:

- . 1 —
(Wes1) = argngnr(w) +—|lw- Wt+1||§-

w = prox
t+1 = P 2

ner

When r is absent, the above update is equivalent to the SGD update. If »(w) corre-
sponds to a domain constraint w € ‘W, i.e., r(w) = [p_o (W € W), the above update
becomes

Wil = Hay[We] = v?eu({dl/ lw— Wi “%, (3.20)
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Regularization |r() |prox,]r (W) or prox nr(W)

Euclidean norm square %llwll% % .

Euclidean norm Allwll> (1- ﬁ)ﬂ‘v

Lasso Allw|ly sign(W) © max{|w| — An, 0}

Group Lasso AYg Iwgll2 (1- “‘fvlﬁ)jvg (for each group g)
Elastic Net allwli + gllw”% ﬁ (sign(W) o max{|w| - na, 0})

Trace norm (nuclear) |A||W|l. =AY, (W) |U diag ((o; — An)+) VT (W = U diag(o;)VT)

Table 3.1: Examples of regularization functions r(+) and their proximal mappings,
where o; denote the i-th singular value of a matrix.

which is the projection of wW,4; = w; — 1,Vg(W;, ;) onto the constrained domain
‘W. This is known as projected SGD method.

Explanation of SPGD update

The update (3.19) is equivalent to:
. T 1 2
Wit = argrrgng(wt; G)+Vg(We &) (Ww—w,) +r(w) + E”W - Wt||2~
t

Unlike SGD, SPGD uses a stochastic linear approximation g(w;;¢;) +
Vg(w;; &) (w—w;) +r(w) as a stochastic surrogate for g(w) + r(w).
Using the first-order optimality condition of (3.19), w;, satisfies

Wip1 = W — (Vg (Wes £r) + 0r(Weyr)). (3.21)

It resembles SGD but differs in that it uses a stochastic gradient of g evaluated
at w, and a subgradient of r evaluated at w;,;.

In order to make the update efficient, the proximal mapping of  should be easily
computable. Table 3.1 presents several examples of regularizers » and the corre-
sponding solutions of their proximal mappings, followed by explanations below. We
leave the detailed derivations of these proximal mappings to the reader as exercises.

Examples

Example 3.3 (Euclidean norm square). This is the most commonly used reg-
ularizer. Its proximal mapping shrinks the magnitude of the input vector w,
effectively performing weight decay.

Example 3.4 (¢; norm). The €| norm regularizer A||W||, is used in the well-
known Lasso method for linear regression. Its proximal mapping promotes
sparsity in the solution by setting some entries to zero if the corresponding
component of W is smaller than nA in magnitude.
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Example 3.5 (Group Lasso). This is an extension of Lasso that groups fea-
tures together and enforces group-wise sparsity. Specifically, if one weight
within a group is set to zero, then all weights in that group are simultane-
ously set to zero.

Example 3.6 (Trace norm). The trace norm regularizer for a matrix is anal-
ogous to the €1 norm for a vector, as it promotes low-rank structure. Its prox-
imal mapping induces a low-rank solution by setting the singular values of
the input matrix to zero whenever they are smaller than nA.

3.2.1 Convex Functions
Lemma 3.6 Consider the update
T 1 2
W41 = arg min z, (W —w;) + —|[|lw — w,||5 + r(w). (3.22)
weRd 2n;
If r is u,-strongly convex, for any w we have

1 1 ,
ZIT(Wt+1 - W) +7 (W) —7(W) < 2—m||Wt - W||§ - (2_77z + %)HWM - W||%

1 2
— —||Wy — W .
277t ” t t+l||2

Proof. By the first-order optimality condition of (3.22), for any w we have
(z; + Or(Weyp) + %(W,H -w))T(W=ws) > 0. (3.23)
By the strong convexity of r, we have
F(Wiat) < F(W)+ Or (W) T (Wit = W) = S flw = weai .
Adding the above two inequalities, we have
2/ (Wie1 = W) +7(Wip1) — (W) < %(W: — W) (Wi — W) — %IIW - w3

2 2 2 H 2
= _2 (Ilw; — W”z — [[We1 — W”z — |Iw; — Wt+l||2) - _r”W - Wt+1||2~
un 2

where the last equality uses the fact that 2(a — b) T (b —¢) = |la - CII% —|la - b||% -
b — C||§- O

Theorem 3.5 Suppose Assumption 3.6 holds. Let n; = n < 1/L and wr =
% Zthl Wei1. Then after T iterations of SPGD update (3.19), we have
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

lwi —w.|i3

2
2nT '

E[F(wr) — F(w,)] < +no

Ifn = min(£, ”vi‘é#”z) then

Vao|wi —w.lly  Llwi = w3

\NT T

¢ Why it matters

Insight 1: The theorem indicates that even if the objective has a non-smooth
regularizer r, the convergence rate of SPGD still depends on the variance bound
o2 instead of the Lipschitz constant of the objective function as in the analysis
of SGD for non-smooth convex functions.

Insight 2: Employing the proximal mapping of r renders the convergence in-
dependent of the smoothness of . Consequently, this approach is advantageous
even when r is smooth, particularly if it possesses a large smoothness constant.

E[F(wr) - F(w,)] <

Proof. Without loss of generality, we assume g is u-strongly convex with u > 0
and r is y,-strongly convex with y, > 0 so that it covers both convex and strongly
convex cases.

By Lemma 3.6, we have

1
Vg (Wi, 6T (Wist = W)+ 7 (Wiat) < r(w) + 5= (lwe = W = Wit = wIB)
t
1
= Sl =Wt = 5w = wea
t

By the smoothness of g, we have
T L 2
8(Wes1) < g(We) + Ve (W) " (Weat = We) + [ Weet = Wil
By the strong convexity of g, we have
T H 2
g(Wr) < g(W) +Vg(Wr) " (wr —w) = Zflw, — w3
Adding the above two inequalities, we have
T H 2, L 2
§(Wr1) < g(W) +Vg(We) " (Wrat = W) = S [IWe = Wl + S {IWear = Well3.

Combining this with the first inequality for w = w.., we have
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1
F(Wi1) — F(W,) < ﬁ(”wt =Wl = IWeer = Wall3 = 1w = Wraa [13)
t

1 U L 3.24
= S = Wl = Wit = Wl 2 e = will G2

+ (VW) = Vg(Wi, )T (Wep — W),
This is similar to (3.8) except for the two negative terms —% [|w; — W, ||§ - ”—zr Wi —
W, ||%, which are due to the u,--strong convexity of  and u-strong convexity of g. If

= pu =0, the remaining proof is similar to that of Theorem 3.1 with the following
definition of W;,;:

- 1
Wier = arg min —[|lw — (W, =7, Vg(w,)) |13 + r(w).
weRd 27];

It used to bound the expectation of last term in the RHS of (3.24):

E[(Ve(W;) = g(Wi, £i)) T (Wit = Wrgt + Wigy — Wa)] (3.25)
=E[(Ve(W;) — g(We, &) T (Weat = Wea)] < mE[11(Vg(We) — g(wy, évt)”%] = 7710'2’

where the inequality is due to Lemma 1.7.

3.2.2 Strongly Convex Functions

We can prove a faster convergence when the loss function or the regularizer is
strongly convex.

Theorem 3.6 Suppose Assumption 3.6 holds and g is p-strongly convex and r is
wuy-strongly convex. Let n; = 1/((u+ )t + L) and Wr = % Zthl Wyi1. Then after T
iterations of SPGD update (3.19), we have

T

lZ:(F(W 1) = F(w.)| < (L+p) lwi=w.ll3  (1+logT)o?
T t+ D) <

E
p r T(p+ pr)

Proof. Similar to the proof of Theorem 3.5, if 5, < % we have

E[(F(We41) = F(W.))]

1 2|1 2 _H 2 _ Hr 2
SE (= wr = Wall5 = z— [Wee1 = Wal[5 = Z[[We = W[5 = = ||Wre1 — W
[(2771‘ ” t *”2 27]t || t+1 *”2 2” t *”2 2 || t+1 ”2
+77t0'2.
Taking summation over t = 1, ...,T we have
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Algorithm 3 Restarted SPGD

1: Input: a learning schedule {7, Tk }17\::1, starting point w;

2. fork=1,..., K do

3: run SPGD with a learning rate 775 for T} iterations starting from wy
4: return an averaged solution Wy

5: end for

T
B> (F(We) - F(w.))
1=1
Lo 1 U+ 1 u
<E _ Iy lwe = w2 + — [[wy = w2 + 5 |lwy — w3
2~ Ty~ g Il g —w e -
T
+Zn[0-2
1=1
= 1 1 1 Htpr _
Letnt—m.Thenm—m—T—Oandwehave
E

1 T
7 2 (F(Wea) = F(w.))
t=1

2

T

L+ 1 o L+ (1 +logT)o?

< T E wi w2 D < S w2
2T T 4 (u+ py)t 2T

T(p+ pr)

A Restarted Approach

The log T factor in the convergence bound can be removed using a restarting scheme.
It runs in multiple stages. At stage k, it start with a step size n; and ran SGD with
a number of iterations T and returns an averaged solution wg. By choosing 7y, Ty
appropriately, after a logarithmic number of K stages, we will get a solution wg
satisfying E[F(wg) — F(w.)] < €. The key motivation is coming from the one-

stage convergence bound in Theorem 3.5:

lwi —w.li3

2
. 3.26
T no (3.26)

E[F(wr) — F(w,)] <

Since the u-strong convexity of F implies that ||w; — W*H% < %(F(wl) - F(w,)),
then we can establish a recursion of the objective gap in a stage-wise manner. From
which, we can show the objective gap will decrease geometrically if 77; decreases
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geometrically and Ty increases accordingly. This is formally stated in the following
theorem.

Theorem 3.7 Suppose Assumption 3.6 holds, F is u-strongly convex and there exists

€1 such that F(wy) — F(w.) < €. Let gy = mjn(%, #) and Ty = #flk. Then

after K = |log,(€1/€)] stages of Restarted SPGD updates (Alg. 3), we have

E[F(Wk+1) — F(w.))] <e.
The iteration complexity is Y,n_, Tk = O(g—z + ﬁ log()).

Proof. Let ex = €;/2F. Then ex41 = €,/2K*! < e and ex > €.
Applying the one-stage analysis of SPGD, we have

E[|lwir — w.||? E[F - F(w,
[lIwi I15] mo? < [F(wg) — F(w,)] s e,
2 T

E[F(Wis1) — F(W,)] <
uni T

Then we prove by induction. Assume E[F (wg)—F (w.)] < ek, we prove B[ F(Wg41)—
F(w.)] < €k1-

Bllwe - w2,

E[F(Wk+1) — F(w,)] < ko™
2mi Tk
€k 2 €k €k+1 €k €k+l
< +nro” < + < —+ = €k+]-
T pmTie 2 T 4 2 *
Thus, E[F(Wk+1) — F(W.)] < €x+1 < €. The total number of iterations is
K K K k+l 2
4 4.2 4L
Sre St S (S22, 4
=l = Mk o HEl M
K 2 2
8 4L L
< 3 max(E 2 < 0 T Liog (2 )
o ue2R=k" ue u €
O

Last-iterate Convergence

Furthermore, if g(-) and/or r is strongly convex, we can also prove ||W;i; — W.||2
converges to zero.

Lemma 3.7 If g is L-smooth and pu-strongly convex and r is u,-strongly convex, for
the update (3.19) with n; < 2/L we have

(1= Qne =7 L)) lw, = w.l3 + 70

(3.27)
L+ nu,

2
Eg, (W = W*”z] <
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3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

If g u-strongly convex and ||0g(w)||2» < G for w € dom(r), for the update (3.19) we
have

(1 =2, 0)llw, — w3 + 72 (0% + 4G?)

3.28
L+npu, (3:28)

2
E,, [Iwes = W*”z] <

Proof. LetE; = E,,. Let us consider smooth case first. Due to the optimality condi-
tion of w,, we have

1
w. = arg min Vg(w.) (W = w.) + =— [[w — w13 + r(w)
weRd 2n;

= proxmr(w* —-n;Vg(wy)).

Due to the Lipschitz continuity of the prox operator (see Lemma 1.7), we have

E[lWes1 — W3 < Ellwe = n,V8(Ws3 &) = [we =, Vg (w3, (3.29)

L+ nu,

Next, we bound

Eellwe = n:Ve(Wis &) = [w. = 1. Vg (w)]ll3
=El[[w: —1:Vg(w)] = [we =, Vg(W)] +n,Vg(w,) =1, Vg (wy, (t)”%
= E/ll[w, = n:Vg (W)l = [W. = . Vg(w)lll5 + njo,
where the last inequality uses E,[Vg(w;, {;) — Vg(w;)] = 0 by expanding the RHS.
Let us bound the first term below.
E/ll[w: —1:Vg(wi)] = [we =1, Vg(W.)] ||%
= By [lw, = W.l3 + 07 B[ Ve(We) = V(W3 = 207,Bs (W, — w.) T (Vg (W) — Vg(w.))
< Brllwe = Wal3 +m7 LE (W, — w.) T (Vg (W) — Vg(w.))
=20 B¢ (W; = w.) T (Vg(w;) — Vg(W.))
= E;||lw; — W*”% - (2n; - U?L)Et(wt - W*)T(Vg(wt) - Vg(w.))
< Byllwe = Wall3 = (2nr = 07 L)UEe | W, = w3
< (1= Q21 = LB Wy = w3,
where the first inequality uses Lemma 1.5(c) and the second inequality follows from
Lemma 1.6(c).
If g is non-smooth, we bound E||Vg(w;) — Vg(W*)H% < 4G?. Combining this

with (3.29) concludes the proof.
O

Theorem 3.8 Suppose Assumption 3.6 holds and g is u-strongly convex and r is
ur-strongly convex. Let n, = n < min(1/L,1/u,). Then after T iterations of
SPGD (3.19) update, we have
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no?

(p+ur)T
_n#zyr B .
M+

E[llwrer — wall3] < e [lwy = w.]I3] + (3.30)

@ Why it matters

This theorem indicates that if we set n < O((u + u,)e/o?), then with T =

2 . . . . .
(m) iterations, the algorithm finds an solution wr,; that is e-close to

the optimal solution w, measured by E[||wz,; — W ||§] , where O(-) hides a log-
arithmic factor of log(1/e).

Proof. If n < 1/L, Lemma 3.7 implies that

(1 = nuwE[|lw, - w.[13] + n*o?
L+ nu,

2
E[llwesr — wall3] <

2

2
S(l_mu_n#+ngm

< (1 I ){(1 — nE[[lw: - w.ll3] + 7?02}

)E[“Wt — w3l +n*0?,

where the first inequality is due to 1 < (1 +nu,)(1 - 25=) = 1 + 2= — # as
nu- < 1. Then

nur MU
E[IWee = wll3] < (1= 555 = Z2)E[Iwe = wal3] + 70,
Unroll this inequality for# = 1,...,T, we have

+ 4t
ElIwra - w.l] < (1 - M)Euw ~wilB+ o,

Applying this inequality 7 times gives

E[llwrs1 — w.l12]

e+ )\ 2 N[ et o
5(1———3——)Emm—wm2+§:@——————)na.

t=0 2
Since (1 —a)” < e fora € (0,1) and 3, ' o' < L=, we have
Bllwra - w.l2] < e Bl lwy - wa|3] + Po?——2
T+ — Will3] < e 1 — Ws not—————
* 2 2 n(p+ uy)
_ n(ptpr)T 2 O’2
= e TR wy - wal2] + L.
M+ Uy
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3.3. STOCHASTIC COORDINATE DESCENT

Corollary 3.1. Under the setting of Theorem 3.8, if % =

I\)PR\

(5 )2 4 wzth
no < min(1/L, 1/u,) and g = (u + ) /2, then we have

4w - w3 202

E[llwrs —wall3] < - ——.
2 ngaT?>  @T

Proof. Leté, = ||w, — w*ll2 Due to the update of 7;, we have 1 —an, =

we have:
712
E[ 6741 < E[(1 - ainr)d7] + o’nf < B| 561 | + onj-
oy
Unrolling this inequality for # = 1,...,T, we have
2 e
E[ 6741] SE| =071 |+ 07 #2 < =61 +0’ng + T.
Nr-2 o
: 1 _ ﬁ 1 2 1
Since il /( )2 4 . Then, we have wZatao As a result, 7 >
% + % > max(L, u,), where g < m1n( ) Hence, n1 < _T, and
46, 207

E[o < —5——+—=.
[ T+1] )7(2)/127.,2 /IZT

O

@ Why it matters

This corollary shows that a decreasing learning rate schedule can be used without
requiring prior knowledge of €, in order to obtain a solution wr that is e-close
to the optimum w,, measured by E[ ||wy,; — W, ||%]. The iteration complexity is

1 o?
T:O(max{ ,_—})
fAnove f*e

3.3 Stochastic Coordinate Descent

In this section, we present stochastic coordinate descent (SCD) for solving the
stochastic optimization:

_min f(@) = E[f(a.)). (3:31)
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where Q = Q) X Qp - -- X Q,,.

The key motivation is that if the dimensionality # of « is very large, then comput-
ing Vf(a, &) could be expensive at each iteration. However, if the function exhibits
decomposable structure over dimensions of @, then we can sample a random coordi-
nate of @ and update it. To this end, we assume that [V f(«, £)];, Vi € [n] is easy to
compute. In machine learning applications, this is possible if f(a, &) = a" g(£) and
computing each coordinate of g(&) is much more cheaper than computing itself. An
example is the COCE problem (2.62), which will be discussed in Section 5.5.

Let us consider a simple version of SCD. At each iteration ¢, a coordinate de-
noted by i, is randomly sampled from {1, ..., n} with uniform probabilities. Then
we compute V;, f(a;, &) = [Vf(as,&)]i, and update o by

_ | g, [ar,i —nVif(a;, &) ifi=1i;
Yr+li = o, 0.W.

Convergence Analysis

We make the following assumption.
Assumption 3.7. The following conditions hold:

(i) f(a) is convex;
(it) For any a, we have E[||V; f(a; ) — Vl-f(oz)||§] < o-l.zfor some o; > 0;
(iii) V f is L;-Lipschitz continuous w.r.t to the i-th coordinate, i.e.,

IVf(@) = Vf(a+ed)l < Lild].

Theorem 3.9 Let ar = % Zthl e, L=max; L;. If n; =5 < %, after T iterations
of SCD update we have

E

T 2nT

f(@) —f(a*)] UV (VACIV R C2) S PN ) S
i=1

If ||lay — a*llg <D% Y, a’i2 < o, with n = O (min( \/2‘/71, 1/L)), we have

(n=1)(f(ar) = f(as)) . \2nDo .\ LnD?
T \NT T

<

E[f(@t) - flaw)

@ Why it matters

According to the theorem, SCD’s iteration complexity is 0(%2{'2). Although
this is n times higher than that of SGD, it is offset by the fact that each individual
iteration of SCD can be n times cheaper to compute.
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3.3. STOCHASTIC COORDINATE DESCENT

Algorithm 4 SCD

T

: Input: learning rate schedule {7,},_,,

cforer=1,..., T do

1 starting point @)
2

3: Sample a coordinate i; uniformly

4

5

Compute an unbiased coordinate gradient estimator V;, f (a;, &)
Update

o o, [a@ri — 7 Vif(ar, &)] ifi=i
Hrli = g, 0.W.

6: end for

Proof. To facilitate the analysis, we consider a virtual sequence {&,} defined by
a1 =Tglar —n/Vf(ar, &)l
Due to the decomposability of Q = Q; X - - - Q,,, it implies that
@1, = o [ar,i —=n:Vif (ar, &)1, Vi

Applying Lemma 3.6 to each coordinate of @, with r(@;) = lp-o(@; € Q;), we
have

- 1 |
E[Vif (e &) (@1 — @i)] < =—Elllar; — awills — = @1, — asill3]
2, 2n,
1 .
- z_m]E[”at,i — as1ill3]-
Then,
T~ 1 » L 2
E[Vif(a:) (@10 — @i)] £ =—E[llay; — @ ill; — == @41, — @ ill5]
2n; 2n;
1 5 -
- EE[H%J’ — @1 |13 +E[(Vif (@) = Vif (@, &) (@10 — @)
t

Similar to (3.25), the last term in the RHS can be bounded by E[(V;f(a;) —
Vif (@, &) (@i = @] < E(Vif (@) = Vif(a:,é))* < n,07. Then adding
the above inequality overi = 1,...,n, we have

~ 1 %
E[V;f(an)T (@10 — @0i)] < 5—E |l — @uill} = 5— @i — @il
27]; 27]!
1 -
- Z_mE[”at’i - 01;+1,i||%] + 7710'1'2-

Due to the randomness of i;, we have
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Bl (@~ o)) = VB — )]+ (1= 1B - )]
BV, @) (@rr1i = 20)] = ~BIVf (@) (@t = 0,)]

+ (1= B[V:f () (@~ )]

Bl — arerilB] = Ll — GrerilE]

Combining the above, we have

E[nV;f(ar) (a1, —awi) = (n =DV f(ar) (@i — @)l

: 1
< z—mE[”at,i - a*z“%] - Z_ThE[(n”a'Hl,i - a*,i”% - (n- 1)||at,i _ a*t”%)]
n
- =—E[lla:; — arll3] +nio7

21,

Adding this overi = 1,...,n, we have

E

n n

n Y Vif (@) (@ = @e) = Y (= 1V f(ar) (ar; - )
i=1 i=1

i llar,i — a.ill3| - ~E i st — @.ill3

i=1 ’ ’ 2 i=1 ’ ’

n n

n 2 2

- —E[Z lae,i = s il + D mio?.
L e i=1

For the LHS, we have

n
< —E
2n;

n Z Vif(an) T (@i — n) — ;m —DVif () (@i - )

n
=1V, f(a) (@i, = @) +n ) Vif (@) (@ - a.)

i#i;
n
_ Z(n — I)Vif(at)T(at,i - a*,i)
i=1
=nV,, (@) (@i, = @) =0V, f @) (@, = aw)
n
+ Z Vif(a,)T(at,i - G«'*,i)
i=1

= nVi,f(a't)T(a’Hl,i, —ai,) + Vf(a't)T(Q’t - ).

By the assumption, we have
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3.3. STOCHASTIC COORDINATE DESCENT

Vi, flar) (@i, — i) = V(@) e, (@i, — i)
L;
> f(a't+1) - f(a't) - 7||(a't+1,i, - a’z,i,)”%

Via) (e —a.) 2 flar) - f(as).

Combining the above, we have
n Y Vi (@) (@i = e = D (n = DVif () (ari = @)
i=1 i=1

> n(f(aw) — flar) - _”a/t+1 Jir at,i,”%) + flar) = fas).

Thus, we have
E[n(f(ar1) - f(at)— Ilam i — @i 13 + flar) = ()]

Z la i - e, lng] - —E[Z letesri — a*luz]
- _E[ Z llar,i — @ L||2 Zﬂro}z‘
i=1 i=1

Re-arranging this, we have

E[n(f(ar1) = f(a) = (n =D (f(ar) = f(a.))]

n n n n
2 2
—E[Z v - a*,iuz} - Q—E[ Dl — a3 | +
i=1 U i=1 =
nL; n &
2 2
Bl =l i, = i3] = 5—E| D llar: - il
2 277[ Py
n n
2 2
[Z ||a’tz (e z”z] E[Z ”a't+l,i - a’*,i“z + ZU[O'[
2nt i=1 21 i=1 i=1

S nL; n &
E[Z Tl”a’tﬂ,i - a’t,i”%] - 2—E Z llezz,i — 0/z+1,i||§]-
=1 =1

< %, the sum of the last two terms is less than O, then we have

n
2

If

E[f (1) = fas)]
SE[(n - D(f(ar) = f(@) = (n = D(f (1) = f(@))]

n

2

+—E[Znat, a*lnz} E[Z||a,+1,i—a*,,-||2
i=1 21 i=1

n
2
+Znt0—i .
i=1
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Algorithm 5 SMD

1: Input: learning rate schedule {7,
2: fort=1,..., T do

T

;1> Starting point w;

3: Compute an unbiased gradient estimator z, = Vg (w;; &)
4: Update the model w by W, = arg minycpa z; (W — W) + U%D‘p (w,w;) +r(w).
5: end for

Averaging overt = 1,...,T, we have

n-D(f(e) - fla) = n_

E
T 2nT

2
llar — a.ll3

1 - (
7 2 e - f(a*)] <
t=1

n

2

" )t
i=1

which concludes the proof.

3.4 Stochastic Mirror Descent

The SGD update (3.2) and the SPGD update (3.19) can be generalized using the
Bregman divergence instead of the Euclidean distance. Let ¢ be an a-strongly con-
vex function with respect to a general norm || - ||. Recall the definition of Bregman
divergence D, (w, w’) in Definition 1.7 induced by ¢. Due to the strong convexity
of ¢, we have,

’ a ’
Dy(w, W) > Z[lw - w 2. (3.32)

The stochastic mirror descent (SMD) update applied to non-smooth convex opti-
mization problem (3.1) is given by

. 1
W1 = arg min GWi3 &) (W —w,) + U—D‘p(w, w;). (3.33)
w t

The SMD update applied to composite optimization problem (3.18) is given by

. 1
Wiyl = arg min, Ve(Wei &) (w—w;) + Esz(w, W) +r(W). (3.34)
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3.4. STOCHASTIC MIRROR DESCENT

Examples

Example 3.7 (Euclidean distance). By choosing ¢(-) = %Il . ||%, which is 1-
strongly convex with respect to || - ||2, the Bregman divergence reduces to the
Euclidean distance, and the above updates simplify to SGD or SPGD.

Example 3.8 (KL Divergence). Let us consider another example, where
r(W) =Tp-w(WeA) and Ag ={weR :w>0, T4 [w]; = 1}.

By choosing ¢(w) = ;i:] [w]; log[w];, which is 1-strongly convex w.r.t || - ||
(c¢f. Lemma 1.10), the Bregman divergence reduces to the KL-divergence:

d

Dy(w,u) = Z[W]ilog %
i=1 !

and the SMD update (3.34) simplifies to

[w:]; exp(-1:[Vg(w:;€0)]0)
Y4 Wil exp(—n, [Ve(wis &)1 )

[(We]i =

which is also known as stochastic exponential gradient descent.

Convergence Analysis

The following lemma is similar to Lemma 1.7.

Lemma 3.8 Ifr(-) is convex and ¢ is a-strongly convex w.r.t a norm || - ||, with
T 1
zy =argminw' a+r(w)+—D,(w,z),
w n
1
z) = argminw'b + (W) + =D ,(W, z),
w n

we have ||z; — 25|| < L||a—b]..
Proof. By the optimality of z; and z, we have

L. Ye(@) ~ Ve(z)
n

.. Ve(@) - Ve(z:)
n

—aedr(z)
—b e ir(zm).

Since r(x) is convex, we have

r(z1) > r(z2) +v' (21 — 22)
r(zz) > r(zy) +u' (20 — 71).

97



Adding them together, we have
0< (=97 (21=22) = (b~ 2+ Vi(z) = V(@) (21 =),
which implies
}I(VQD(ZI) ~Vo(22)) (21 —22) < (b-2) (21 —22) < [[b-all.||lz; — 2.
Since ¢ is a-strongly convex, similar to Lemma 1.6 (c) we have
(Veo(z1) - Vo(22) (21 — 22) 2 allz; — 22|
Combining the above two inequalities, we have ||z — 25| < Z|la - b]|... O
Lemma 3.9 (Generalized Three-point Equality) For any w, w,, W;,|, we have
(Vo(W;) = Vo(Wi1) T (Wes1 = W) = Do (W, W;) = D o (W, Wii1) = D o (Weat, Wy).
Proof.

D (W, Wry1) = D (W, W)

= —p(Wi41) — V‘P(WHI)T(W — Wei1) + (W) + VSO(WZ)T(W - W)

= (Vo(Wia1) = Vo (W) T (Weat = W) = @(Wei1) + @(W,) + Vo (W,) T (Wpiq = W)
= (Vo(We1) - VQD(WI))T(WI‘+1 -W) - D<p(wt+1»wt)'

Rearranging this equality finishes the proof. O
The following lemma is similar to Lemma 3.6.

Lemma 3.10 Consider the update
. T 1
W1 = arg min z, (W — w;) + —D (W, w;) +r(w). (3.35)
weRd Nt
If D.(w,w') > uD ,(W, W), then for any w we have
. 1 1
z, (Weet = W) +7(Wepp) — (W) < U—Dg;(w, W) - (77_ +1)D o (W, Wri)
t t
1
-—D, (Wre1, Wr).
un
Proof. By the first-order optimality condition of (3.35), we have

(z; +Or(Wes1) + nl(VQO(WHl) = Vo(w,)) T (W= W) > 0. (3.36)

By the assumption of r, we have
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3.4. STOCHASTIC MIRROR DESCENT

,UDw(Wa Wip1) < 7(W) = r(Weyp) — 6r(wt+l)T(W — Wiil).
Adding the above two inequalities, we have
Z:(WHI — W) +7(We1) = 7(W)

< %(W(wz) Vo (Wra)) (West = W) = 1Dy (W, i)

1 1 1
—D (W, W) = (— +)D (W, Wii1) = —D o (Wii1, Wy).
un uh Ui

where the last equality uses Lemma 3.9. |

3.4.1 Non-smooth Composite Problems

Let us first analyze SMD (3.34) for the composite problem (3.18) under a modified
Assumption.

Assumption 3.8. Suppose the following conditions hold:

(i) g is convex and L-smooth with respect to the norm || - ||, and r is convex.
(ii) There exists o > 0 such that E;[Vg(w;{)] = Vg(w) and E/[||IVg(w;{) -
Vg(w)|?] < o2 for all w.

Theorem 3.10 Suppose Assumption 3.8 holds. Let n, = n < a/L and wr =
% Z,T:1 Wy y1. After T iterations of SMD update (3.34) for the composite problem (3.18),
we have

D, (Wi, w.) . no?

E[F(wr) — F(w,)] < .
nT a

Ifn = min (%, —“ZD‘%(V:’W*)), then

204/D (W1, W.)  2LD (Wi, W,)
+ .

VTa Ta

@ Why it matters

The key difference of the above result of SMD from that of SPGD in Theo-
rem 3.5 lies in the divergence measure and the variance bound that is measured
in the dual norm. Let us consider r(w) = [y_o (W € Ay). With the Euclidean
setup, the convergence upper bound is dominated by O(O'ZHW‘—;W*

||2), where
o7 > E|Vg(w,¢) — Vg(w) |3 forall w, £.

E[F(Wr) - F(w,)] <
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In contrast, with the stochastic exponential gradient descent update, the con-

T\ Dy (W1,W.)
NT

E||Vg(w, ) — Vg(w)||2, for all w,Z. If we set [wy]; = % for all i, then we
get D, (wi,w,) < logd for all w., € Ay. In addition, [|[w; — w,||> could be
O(1). However, the constant o2, can be smaller than 0'22 by a factor of d. Hence
o—mm _ O(logd

oallwi-wila T vd
descent may converge faster than SGD.

), where ol >

00

vergence upper bound is dominated by O(

), which indicates that stochastic exponential gradient

Proof. From Lemma 3.10, we have
1
Vg(w;, §,)T(w,+1 = W) +7r (W) —r(W) < n_(D‘p(W’ W) — D‘p(W, Witl))
t

1
= —Dy(Wii1, Wy).
un

Same as (3.7) we have
T T L 2
g(Wei1) < g(W) +Vg(wy) (W — W) + Vg(W;) (Wry1 — W) + §||Wt+1 = we||".
Adding the above two inequalities for w = w,, we have
1 1
F(wiy1) = F(w,) < U_(D‘F(W’ W) — D(,D(Wv Wii1)) — U_Dcp(WHl,Wt)
t t

L
+ §|th+1 - Wt||2 +(Vg(we) = g(We, &) T (Wesr — W), (3.37)

Similar to the analysis of SPGD, we define:

1
W1 = arg min Vg(w,) T (W —w;) + —D (W, w,) +r(W),
weRd Ui

which uses the full gradient Vg (w;), making it independent of ;. Then we have

(Vg(w:) = g(Wi, 41)) T (Wip1 — W) (3.38)
< (Vg(wy) — g(wy, (t))T(WHl = Wei1) + (Vg (w;) — g(wy, §t))T(Wt+1 - W.).

In addition,

(Ve(we) = g(We, &) T (Weat = Weat) < IVe(We) = g(We, ) IWeat = Wi |
< T |Vg(we) - g(wi &)1, (3.39)

where the last inequality follows Lemma 3.8. Adding (3.37), (3.38) and (3.39) and
using (3.32), we have
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3.4. STOCHASTIC MIRROR DESCENT

a L

Z_le - E)Hwt - Wt+l||2

+(Vg(w;) — g(wy, gt))T(Wt+1 — Weel) + %”Vg(wt) - g(ws, é)lli

F(Wey1) — F(w,) < %(Dw(w, W) — D¢(W,W,+1)) - (

Taking expectation over {; on both sides, we have

Eg [F(We) — F(ws)]

! a L 2 M o
<E; |—(D , -D , - |—-= - + —0”.
=54 )7’( o (W, W) (W, Wii1)) (277t 2)”Wz Wit || (10'
If n, < ¢, we have
1
By, [F(Wer1) — F(wy)] < Eg, [U—(D¢(W, W) =Dy (W, W) | + %02.
t
Summing over t = 1,...,T, we have
T T )
! Dy(Wi, W) Xm0
E| o > m(F(wi) - F(w.) | < =57 + e
Zl:l 77t t=1 Z[:l nl @ Zt:I nt
Let n;, = n and optimizing the upper bound over 7 finishes the proof. |

3.4.2 Non-smooth Problems

Next, we present the convergence analysis of SMD (3.33) for non-smooth convex
objectives under the following assumption.

Assumption 3.9. For any w, we have E; [G(w; ()] € dg(w) and E[||G(w; O)]1?] <
G

Theorem 3.11 Suppose Assumption 3.9 holds. Let the learning rate {n;} be n; = n
and Wt = % Zthl w;. After T iterations of SMD update (3.34), we have

D EE) 2
E [g(Wr) — g(w,)] < Dy(Wew)  nG*
nT 2a

IfT] _ V2aD,(w.,wy)

Ve , then

G+/2D 4, (W, wy)
VaT '

E[g(Wwr) —g(w.)] <

Proof. From Lemma 3.10, we have
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1 1
Q(w,,{,)T(le -w) < U_(Dga(w, W) — D¢(W, Wit1)) — U_Dw(wt+1,wt)~
t t

Rearranging it, we get

ntg(w,;é’t)T(W, - W)
< Dcp(w’ W) — Dw(W, Wipl) — Dga(Wt+1, W) +1:G (Wi {t)T(Wt - Wii1)

< Dw(w, W) — Dtp(w7 Wipl) — Dcp(Wr+l,Wt)
2
n a
+ 321G (Wes )12 + S 1we = W 1%,
2a 2

where the last inequality uses the Cauchy-Schwarz inequality. Using (3.32), we have

2
NG (Wes £)T(Wy = W) < D (W, Wy) = Dy (W, Wes1) + ;7—;||g<w,; DI (3.40)

The remaining proof is similar to that of Theorem 3.2. O

3.5 Adaptive Gradient Method (AdaGrad)

The stochastic algorithms discussed so far are fairly general and were originally de-
veloped to address a wide range of problems, extending beyond those encountered
specifically in machine learning. Nevertheless, the ERM problem of machine learn-
ing may exhibit some unique properties dependent on data. How to leverage them to
develop a stochastic algorithm that could be potentially faster in practice?

Below, we introduce Adaptive Gradient Method (AdaGrad), which employs an
adaptive step size, which incorporates knowledge of the geometry of the data ob-
served in earlier iterations to perform more informative gradient-based learning.

While AdaGrad was considered an important breakthrough in machine learning,
it indeed evolves from SMD. We use the same language as SMD to present AdaGrad
and its analysis. Let us consider the smooth problem (3.1) and recall the update of
SMD:

. 1
Wil = arg min Veg(w:; &) w+ HDLP(W, w;).
weE

The key design to AdaGrad is to use a time-varying proximal function ¢, that changes
across iterations. A specific way to construction ¢, is the following.

Let H, = diag(s; 1,...,5:,4) be a diagonal positive matrix. Define ¢;(w) =
%WTHtw and a general norm ||w||gy = VWTHw. Then the Bregman divergence in-
duced by ¢, becomes:

d
’ l ’ ’ 1 ’
Dy, (WoW) = 5 (W= W)TH (W= W) = 2 3 se.i(wi —w)’,
i=1
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3.5. ADAPTIVE GRADIENT METHOD (ADAGRAD)

Algorithm 6 AdaGrad

: Input: learning rate parameter 77, starting point w;
cforr=1,...,Tdo
Compute an unbiased gradient estimator z, = Vg (w;; &)

1
2
3
4 Update s,; = T4y 11V (We3 £ 1ill3, Vi
5
6

Update the model w by w4 = w; — ;_Z oz,

: end for

which is 1-strongly convex w.r.t || - || 7. The weights s; = (s;,1, ..., 8¢,4) are updated
according to the following:

3
st =4[ D [Ve(Wes £)12, Vi, (3.41)
=1

which essentially measures the growth of stochastic gradients across all iterations
before ¢.

Let z; = Vg(w;, ), and my; = [zy,...,%/], and m;.,; denotes its i-th row
vector. Then s; ; = ||my.;;||2. As a result, the updating step becomes
- U
Weet = Wi = nH; V(Wi ) = Wi = = 0 Vg(Wis ), (3.42)
t

where o denotes element-wise product. The full steps of AdaGrad are summarized
in Algorithm 6.

Compared with SGD, there are two differences: (i) the effective step size Q is
adaptive that depends on the history of updates, hence depends on data sampled
{1, ..., ¢ . This is the reason it is called adaptive step size; (ii) each coordinate of w
will receive a different step size. This feature makes it useful to tackle deep neural
networks as the parameters at each layer usually have different orders of gradient.

Convergence Analysis

Let the dual norm of || - || is given by |[u|| z-1 = VuTH~!u. Then, ¢; is 1-strongly
convex in terms of || - || g, .

Lemma 3.11 We have

d

T

1
DD (WerWe) = Dy, (W W)} < 5 max [[w. = will%, ) 57
t=1 - i=1

Proof.
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T
D AD G, (Wi W) = D, (W, Wi}

t=1

T
= > Dy, (Way We) = Dig, (W W) + Dogy, (War W) = Do, (Wer Wei1)}
t=1

M=

{Dsﬁt (W*’ Wt) - Dﬂpz—l (W*’ wt)} + kao (W*7 Wl)

~
1l
—_

T
1
= Dy (Wer W1) + 5 > (W = We) T (Hy = Hy1) (W = Wo).

t=1

Since s; = s;_1, we have

T
D W= W) (Hy = Hio) (W = W) = )

=1 t=11i

T d d
2 2
< max [[w. = will%, ) " (sei = se-1.0) = max [l = will%, Y (s7.i = s0.).
= t=1 i=1 - i=l

(se,i = Se—1,0) ([W:]; = [Wii)?

T d
=1

Combining the above two inequalities, we have

T
Z D(Pz (W*,WZ) - D(p, (W*’Wl+1)
t=1
1 d
< Doy (W, w1) + 5 max W = Wit I3, Y (5701 = 51.0)
2 t<T ~
i=
d d
1 2 1 2
SIwi = wallZ, D 0.+ 5 max [lwe = Wil )" (57,0 = $0.0)
2 ; 2 t<T :
i=1 i=1
d
L maxiw. — w2 Y sr
2rznsa% * too.l T.i-

IA

IA

Lemma 3.12 We have

T

d
D IVewi ol <2 s
i=1

t=1

Proof. Let us first prove a general result in the following: for a general real-value
sequence {a, }, we have
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3.5. ADAPTIVE GRADIENT METHOD (ADAGRAD)

T 612 T
D =<2 llairlh, (3.43)
Liflarl, = 4
where ay; = (ay,...,a;). We prove this by induction. First, it holds trivially for
t = 1. Now, assume it holds for 7 — 1, we prove it holds for 7.
lair-ill2 + :
p Z = |al T||2 P |a T||2

Let by = 1/ T -1 a,, then we have
2

a
z§ lavraill+ L =26 - af + L.
T” b2
T

Since +/- is a concave function, applying Vx + ¢ < Vx + 67 we have
b2 2 < b2 2 1
T~ 4r =07 :
24 /b%

aZ
Hence, 2., /sz - azT + \/% <2 b%. Thus, we prove (3.43) for T'.
T
Next, we apply this result to the following:

Z V(Wi 2l = ZVg<w,,4>leag<st> Ve(wi;di)
t=1

t

d d
_ Z Vg(wt’élt < le \JZ[Vg(WT,&

U2 (Ve (Wes £ =

Theorem 3.12 Let wr = % Zthl Wy, then AdaGrad guarantees that

E [max, <7 [[w. — w, |12, Zﬁizl Imy.7: Iz
2nT
+ nE [Zﬁizl ”ml:T,i”Z]
T .

E[g(W;) —g(w,)] <

If max; ||Wy — Wy|leo < Doo and = Do /N2, we have

\/EDooE [Z:'l:] ”ml:T,i”Z]
T .

E[g(W;) —g(w.)] <
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@ Why it matters

The above result shows the convergence rate depends on the growth rate of the
cumulative stochastic gradient Zf: 1 lmy.7;]|>. In the worst case, it grows at a
rate of O(VT), inducing a convergence rate of O (1/VT), similar to SGD. How-
ever, when the cumulative stochastic gradient grows slower than 0(\/7 ), Ada-
Grad will enjoy a convergence rate of o(1/VT).

Let us consider the following linear model with sparse random data scenario,
where g(w;, ;) = [1 — w] ]+ and the data vectors £, € {~1,0, 1}¢. Assume
that at in each round ¢, feature i appears with probability p; = min{1, ci~%} for
some a € (1, ) and a dimension-independent constant ¢. Then we have

d d d
Z lmy.zill2 Z\Ht 12y = 1|l < Z VE |tz =1|]
i=1 i1 i=1
d
= Z vpiT.
i=1

E =E

by Jensen’s inequality. In the rightmost sum, we have ¢ Zflzl i~ = O(log d)
for @ > 2, and Zle i~%2 = 0(d"~??) for @ € (1,2). If w, is restricted in a
domain W = {w : ||W||w < 1}, then D, = 2, and the convergence rate of Ada-
Grad becomes O(max{log d, d' =/} /NT). For contrast, the convergence rate
of SGD in Theorem 3.2 is O (\/d/_T ). So we see that in this sparse yet heavy tailed
feature setting, AdaGrad’s convergence bound can be exponentially smaller in
the dimension d than the non-adaptive bound of SGD.

Proof. Similar to (3.40) in the proof of Theorem 3.11, we have
n?
(Vg (W3 {t), Wi =W) < Dy (W, W;) =Dy, (W, Wr+1)+7’I|Vg(Wz;§t)II§,t_1- (3.44)
Taking expectation and summation overt = 1,...,7, we have

T

Z nE[g(w,) —g(w.)] <E

t=1

T
Z Dgo, (W, w;) — D«pr (w, Wt+1)l

t=1
T

nz
> 7||Vg<w,;4>||i,tll .

t=1

+E

Using the results from the two lemmas above, we conclude the proof.
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3.6. STOCHASTIC GRADIENT DESCENT ASCENT

3.6 Stochastic Gradient Descent Ascent

In this section, we consider stochastic convex—concave min—max optimization prob-
lems:

min max f(w,u) := Bz [f(w,u;0)].

This class of problems has two important applications in machine learning: (1) it
serves as a foundation for directly formulating learning tasks (e.g., the DRO prob-
lem (2.11)); (2) it provides a tool for reformulating standard minimization problems
to enable more efficient optimization.

A solution of interest is the so-called saddle point (w,, u.) € W x U satisfying:

f(w,,u) < f(w,,w,) < f(w,u,),Ywe W, ueU.

In many machine learning applications, we may be only interested in finding a global
optimal solution to the objective F(W) = maxyeq, f (W, u). It is easy to see that if
(W.,u,) is a saddle point, then w,. is a global optimal solution to F(w). This can be
seen from

max f(w,,u) < f(w,,u) < f(w,u,) < max f(w,u).
uel uel
For a point (w,u) € W X U, a convergence measure is defined by the duality gap:
A s = > ) - i ,7 .
(w,u) lllpgéf(w u’) wr,rgglvf(w u)
A simple method for solving the convex-concave min-max problem is the stochas-

tic gradient descent ascent (SGDA) algorithm, which is an extension of SGD. It em-
ploys two key updates:

. 1
W1 = arg min 9y f (W, u,38) " (W= w,) + =—|lw — w, |3
weW 21 (3.45)
. 1 '
Uy = argmin -0 f (W, u;547) T (w—uy) + —|ju— u,||%,
uel 2n2

where 0 f (w, u; ¢) and 0, f (W, u; £) denote the stochastic partial subgradients such
that Bz [01 f(w,w;{)] € 01 f(w,u) and E/ [02 f (W, u; )] € &> f (W, u).
Convergence Analysis

Below, we analyze the convergence rate of SGDA under the following assumptions.
Assumption 3.10. Suppose the following conditions hold:

(i) f(w,u) is convex w.r.t w and concave w.r.t 0.
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Algorithm 7 SGDA

1: Input: learning rates {71, 172}, starting points w, u;

2: fort=1,...,Tdo

3 Compute unbiased gradient estimators z; , = 91 f (W,; ;) and o, = 2 f (W, 03 ;)
4: Update the primal variable w by w;,; = arg minyey z]Tyt(w - W) + ﬁ [|lw—w, ||§
5 Update the dual variable u by u,,; = arg mingeqs —z{, (u—wuy) + ﬁ [[a —u; ||%
6: end for

(ii) There exist G, G, > 0 such that

E 1101 f(w,w; O)[13] < G3,¥w e W,u e U, (3.46)
E; [l2f (w,w; )|I5] < G3,¥w e W,ue U. (3.47)

(iii) maxXwe w wew lw—w| < D and maXpyey ,weld lu—u']] < D>

Lemma 3.13 Let us consider a martingale difference sequence {6;};>1 and a se-
quence {y; }¢>1:

Yert = argmin{-67 v+ @Dy (v, )}
veV

If y is py-strongly convex w.r.t. || - || (1y > 0). For any v (that possibly depends on
{6:}) we have

E[o/v] <E [aDw(v, yi) = @Dy (0, y041) + 3 ||6t||§] :
A [y,

@ Why it matters

In standard minimization problems, the convergence measure is usually defined
with respect to the optimal solution w.,, which is fixed and independent of the
randomness introduced by the algorithm. In contrast, in stochastic min—max op-
timization we are concerned with the duality gap A(w, u) = maxycq f(W,u’)—
miny ey f (W, w), where the optimal w” and w’ depend on the current random
iterates (w, u). This dependency introduces additional subtleties into the analy-
sis.

The preceding lemma applies to any random variable v that may depend on the
entire randomness of the algorithm, and will be useful for our analysis. Recall
that a sequence {X,} is a martingale difference sequence if the conditional ex-
pectation of each variable given the past is zero, i.e., E[X; | X1,...,X;—1] =0.

Proof. Applying Lemma 3.10 to the update of y;.;, we have

E [_6:()’”1 - U)] <E [aD¢(y,y,) - CVD{//(}’,)’HI) - CYD://()’HI’}’Z)] .

Hence,
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3.6. STOCHASTIC GRADIENT DESCENT ASCENT

E 6] (v-yi)| <E[aDy(v,y,) = aDy(v,yi41) = @Dy (yrs1. ¥1) ]
+E[6] (yes1 — y1)]
<E [a'Dw(U, yi) —aDy (v, ym)]

2
llo:1l% ] -

apy 2 My >
-E|— - +— - +
2o =l S e =l 4

Since E[6,] = 0 and y, is independent of 6,, we have E[6; y;] = 0. As a result,

1
E[6;v] <E[aDy(v,y:) —aDy(v,ym1)] + WE [5:112] -

2u
O

Theorem 3.13 Letwr = + 31w, iy = = Y1, u,. After T iterations, SGDA (3.45)
guarantees that

D?> D2 531G? 51.G3
E[A(Wr,ar)] € —= + —2 + Ly =2
[A(Wr,a7)] < Tt T > >

If we set | = O(G?\Iﬁ) andn, = O(G?\Z/T)’ we have

+

NT VT

Proof. Similar to (3.10), for the primal update and dual update for any w € ‘W, u €
U we have

E[A(Wr, )] < O(D‘Gl DZGZ).

Af(weus &) (wy —w) <

1 1 1
7”% - w3 - 2_m||Wt+] - w3+ 3 181f (Wi, g5 20|13
_(92f(wtaut;§t)-r(ut - u) <

ol =l = 5o w4 Sl v IR
The difference from the SGD analysis is that we cannot fix w as w,. and fix u as u,,
which will not yield the duality gap measure. Indeed, at the end we need to take max
over w € ‘W and min over u € U to obtain the duality gap, making them dependent
on the randomness.

To proceed, we have
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1 1
O1f (Wr )T (We = W) < oWy = Wil = 2= lween = w3

1
+ Emllﬁlf(wt,ut; é’t)”% + (01 f (W) = 01 f(We, 5 84)) T (W — W)

1 1
- azf(wt,ut)T(ut -u) < 2_772||ut - u||§ - 2 [[agey — u||%
1
+ 5772||62f(wt,ut; 41)”% + (O f (W w3 &) — 0o f (We,wp)) T (uy — ).

Adding these inequalities we have

61f(wtaut)T(wt -W) - 62f(Wt,u,)T(ut -u)

1
3y (10 = wll3 = luges — wl)
1 1
#3101 (W, urs CI3+ 320l f (e s )13

+ (01 f (Wi, uy) — (91f(wt,ut§§t))-r(wt - W)
+ (0o f (Weug54y) — aZf(thut))T(ul -u).

1 2 2
< — W = W||5 = [|[Wee1 — W )+
g (I = WIE = 1w = Wi

Due to the convexity and concavity of f(w,u) in terms of w, u, respectively, we have
FWeur) = f(w,u,) < 01 f(we,u,) T (W —w),
Fwe,u) = f(we,u) < =02 f (We,u) T (u; — ).

Adding these two equalities, we have

f(we, ) = f(w,u) < (91f(W,,u,)T(W, -w) - 62f(w,,u,)T(u, -u)

As a result, we have
f(W[,u) - f(w’ ut)

1

2 2 2 2
< — | ||Wr = W||5 — [|W - W )+—(ll—ll — || —-u )
2 | (” t ”2 ” t+1 ”2 2 ) ” t ”2 ” t+1 ”2

1 1
#3101 (W 013 + 3m2ll0f (e i )13

+ (01 f(We,wp) = 01 f (We, 03 40)) T (We — W)
+ (0o f (W, 5 8y) — 0o f (Wi, wp)) T (uy — ).

Taking average overt = 1,...,T, we have
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T
(1w = F(80) < 72 30 (700w = o)

1 2
+ 3l = w3

T
L n mn
=3 > 161 v IR + 7 Zl 1621 (we. wrs )11

* % ;(51f(wt,u,) -1 f(We,u54)) T (W —w)

T
g D0 v ) =0 o)~ )

Let w, u be the solution to maxyeay yeqs f (Wr,u) — f(w,@iy), which are random
variables. Taking expectation over both sides, we have

2 2
G2 G
mey  mY

1 1
BIAGWr 7)) <5 [Iwi =Wl + =l —ul}+ =L+ =

—2mT 2n,T

T
Z(alf(wz,uz,é) o f(we,up)) WI (3.48)

T
Z 0o f (We,uy) = 0zf(wt,uz;§z))7ul :
t=1

Next, we apply Lemma 3.13 to bound the last two terms. To this end, we introduce
two virtual sequences with Wi = wi, ) = uy:

R . 1 .
W1 = arg min —(0y f (W, u;5) — 01 f (Wi, uy)) "W+ —||lw — thI%
weWw 2m
N . 1 R
O,y = argmin (0 f (W, 5 4y) — 0o f (Wy, u)) u+ —Ju- Uz”%-
well 2
Applying Lemma 3.13, we have
1 . R
E[(01f(Weus &) = 01 f (weoup) Tw] < o (Ilwt — W3 = ([ W1 — WII§)
TR0y f (Weswis £0) = 01 f (Weoup) 3]
1 . R
3 (18 =l = sy i)
TR0y f (W3 £0) = 1 f (Wi up) 3]

[(aZf(Wtaut) - f(Wi,u;4)) “]

Hence,
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T
E Z(alf(wt,uﬁft) - alf(Wt,ut))TWl
=1
T
+E Z(ﬁzf(wt,u,) —azf(wt,u,;gt))Tul (3.49)
=1

4mGiT  4mGaT
+ .
2 2

< W - Wi+ o6, —ul +
S 2o 2
Combining (3.48) and (3.49), we have

57]1G% 57]2G§
2 T2

1 1
E[A(Wr,ar)] < —E[||w; - w|2] + —E[|lu; — u)?
[A(Wr,8r)] < T [llw WI|2]+n2T [y —ull5] +

Hence, we conclude the proof. O

3.7 Stochastic Optimistic Mirror Prox

While simple in design, SGDA cannot enjoy a faster convergence when the function
is smooth and the stochastic gradients have zero variance. A classical method to
address this limitation is to use an extra-gradient. Let

Vlf(w9 ll)

w
V= [u]’ M) = =V f(w,u)

], V=WxU.

The extra-gradient method takes the following update with an initialization of x; €
V: 1
y: = argmin M(x,) v+ —||v - Xt”%
veV 27]
) (3.50)
_ . T = _ 2
X4l = arggélgM(Y;) v+ o v —xll5.

The name “extragradient” comes from the fact that it uses two gradients M(x;) and
M(y,) at each iteration.

The extragradient method can be generalized using the mirror descent steps with
a Bregmand divergence D, (-, -) defined by a strongly-convex function ¢ : ¥V — R:

1

y: = argmin M(x,) v+ =Dy (v,%,)
veV n

) (3.51)

Xp+1 = argmin M(y;) 'V + =Dy (v, %,).
veV n

This method is called mirror prox.
Both methods can be extended to their stochastic versions. For example, the
stochastic mirror prox method (SMP) uses the following update:
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3.7. STOCHASTIC OPTIMISTIC MIRROR PROX

Algorithm 8 Stochastic Optimistic Mirror Prox (SOMP)
1: Input: learning rates n, starting points x; =yo = (W, uy)
2: Compute y; = arg minyey M(yo; o) v+ ,i,D‘p (v,x1).
3: fort=1,...,Tdo
Compute unbiased gradient mapping M (y;; &;)
Update X;,; = arg minyeqy M(y;; &) Tv+ %Dg, (v, X).

4
5
6: Update y;,; = arg minyeqy M(y;; &) Tv+ %Dg, (V, Xz41)-
7: end for

1

y: = argmin M(x;3¢))'v+ =Dy (v,X,)
veV n

| (3.52)

X;+1 = arg min M(Yzigr)TV"‘ _D¢(V’ X;),
veV n

where B, [M(x; ()] = M(x).

Stochastic Optimistic Mirror Prox: a variant with a Single Gradient Sequence

The updates of SMP (3.52) need to compute two stochastic gradient sequences
{M(x4, )} and {M(y;; )}, which double the costs of SGDA. A simple remedy
is to use M(y;-1; {;—1) in the first update of y,, yielding

. 1
yr = arg min M(Yi-15-1) TV + =Dy (V. X;)
. (3.53)
Xp4] = arggéiqr/lM(yt; )TV EDW(V, X/).

As aresult, we only need to compute one sequence of stochastic gradients { M (y;; ¢;)}.
This method is known as stochastic optimistic mirror prox (SOMP).
Let us consider a special case when V = R? x R and D, (x,y) = 1[Ix - yli3.
The above update reduces to
Ye =X —nMYr-154-1)

(3.54)
Xei1 = X = pM(ys; &r).

This update can be re-written using one sequence of {y, }. By subtracting the second
equation from the first one, we have

Vi — Xes1 = gM(Y15 &) —aMI(Yi—15 4-1). (3.55)
As a result,

Yi = Xex1 +pM(Y15 &) —nM(Yi-134i-1)
= Y1 + MY &) + My &) —nM(Ye-15 4e-1)-
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From this, we derive that

Vo1 =Ye = n(M(Ye5 &) + M(ye5 &) = M(Yi-154i-1))- (3.56)

This method applied to the min-max problem is known as stochastic optimistic gra-
dient descent ascent (SOGDA), yielding the following primal and dual updates:

Weel =W —n2Vif(We, 3 8) = Vif(Weo,w—154-1)) (3.57)
Uy =0 + 02V f(We, 05 4) — Vo f(Wem1, W15 45-1)))- (3.58)

Convergence Analysis

We analyze the stochastic optimistic mirror prox method in Algorithm 8. We make
the following assumption.

Assumption 3.11. Suppose the following conditions hold:

(i) f(w,u) is convex w.r.t w and concave w.r.t 0.

(ii) Let ¢(z) be a a-strongly convex function with respect to the norm || - ||, whose
dual norm is denoted by || - ||.,

(it) M(v) is L-Lipschitz continuous such that

IM(V) = M) < LP|lv=v'|1%.
(ii) There exist o, 0 > 0 such that
E/[IM(x;0) = M(®)]1?] < 0%, ¥x e V.
(iii) maxxey wev D (X, X') < D2,
Lemma 3.14 Given X, consider the updates:

y = argmin yM(&)Tv+ D (v, x),
veV

. (3.59)
X, = arg min yM(Q) TV + Dy (v,X).
For any v € V, we have
YM(OT(Y = V) <D (V,X) = Dy (V, x4) + %ZHM(f) -MQ)II? (3.60)
= Ly =<l + lly ~ %21 |
Proof. First, by Lemma 3.8, we have
Iy = xell < ZIM(©) = M@l (3.61)
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3.7. STOCHASTIC OPTIMISTIC MIRROR PROX

Let ¢(v) = yM({)T(y—v)—D 4 (v,x)+D o (v, X,). Given the optimality condition of
X,, it is easy to verify that it also satisfies the optimality condition of maxyey ¢(Vv).
As aresult, ¢(v) < ¢(x4),Vv eV, ie,

YM(Q)T(y = V) = Dy (V. X) + Dy (V,X4)

< yM({)T(y -X4) — D‘p(x+,x)

= yM(O)T(y = %) +¢(¥) + Vo(x) " (X = X) = p(xs) (3.62)

=y(M({) = M()T(y = x) + YM(E)T(y — x4)

+o(x) + Vo(x) T (x: —X) — p(x4).

By the optimality condition of y, for any v € V we have

(YM(€) + Vo(y) = Vo(x)) T (y - v) <0

Plugging v = x, into the above inequality, we have

(YM(&) +Vp(y) - Ve(x) T (y —x4) <0,

which implies that

YMET(y = x1) < (Vo(y) = Vo(x) " (x4 —y).

Combining this with (3.62), we have

YM(OT(Y = V) = Dy (v,X) + Dy (v, X4) < y(M(L) = M(€)T(y - x4)
+(Ve(y) = Vo(x) T (x4 —¥) + @(x) + Vo (x) T (X4 — X) — ¢(x4)
=y(M() = M(é)T(y - x4)
+¢(x) + Vo(x) T (y - x) — o(x4) + (Vo(y) " (x4 - y)
=yM() = M(é)"(y - x4)
+9(x) + Vo (x) T (y = %) = (y) + o(y) + (Vo) " (x4 = ¥) — ¢(x4)
=y(M() = M(é)T(y = x4) = Dy(¥.X) = Dy (X4, )

2
< LIM@) - MO - Sy - xI2 - Sx, - ylI%
a 2 2

where the last inequality uses (3.61) and the @-strong convexity of ¢.
O

Theorem 3.14 Let Wy = + Y, wi iy = + X1 u,. After T iterations, SOMP
guarantees that

2D? 802
E[A(Wr, @ir)] < 5 + —1.
Tn a
If we setn = min(M%, ﬁ), we have
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2
E[A(Wr,i7)] < O (% + %) :

@ Why it matters

This result is consistent with the convergence of SGD for smooth convex mini-
mization in Theorem 3.1. In particular, when o~ = 0 (i.e., using the deterministic
gradient), the convergence rate simplifies to O(1/7).

Proof. Since the updates of y;, X, follow that in (3.59), by applying Lemma 3.14,
we have

nM(Ye, &) (ye = V) < D (V. Xr) = Dy (V. X41)
+ %ZIIM(yz, &) = M@i-1 G-I - %[IIY: =% |17+ Ilyr = %ot [17]
<Dy (v,X;) = D (Y, Xp41)
+ %ZIIM(yt, &) = M(¥e-1,Zi-1) = M(y0) + M(yi-1) + (M(ye) = M(ye-)) 2

12+ llye = Xear 7]

a
Ly -,
Let o7 = | M(y:, &) = M(y1) |3, then we have

IM(Ye, &) = M(Yeot, Gm1) = MAYe) + M(yi—1) + (M(ye) = M(ye-0)|I?
<3IMye &) = MYOIZ +3IMio1, Gem1) = My 112
+3IIM(y:) = M(ye-)I?

<302 +302 +3L% |y, — yi_1 |1
Combining the above two inequalities, we have
My, &) T (¥: = V) < Dy(V, %) — D o (V, Xp41)
7o s 2 2y_ & 2 2
+ (607 4 3L7lyr = yellP) = S llye = eI+ [lyr = Xen 7).

Taking average over t = 1,...,T, we have
1 - 1
T ;M(y,f(yt V) < 7Dy (vx1)

T T
@
+ ;maz #3070y =yt ) - 5 ;[ny, =%l + e = e ]

Y=

a

| &
+ T ;(M(Yt) - My, )" (y: = V).
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Lety, = (w;,u,) and v = (W, u) = arg maxXyew.uew f (Wr,u) — f(w, ii7). We have

T T
D M=) = 2 3 (TS () (e =) = T/ (v, w) T (y — w)
t=1 t=1

T

Z(f(wt,ut) — f(w,up) + f(w, ) = f(w;,u))

t=1

1

ﬂ

~

= D071 = F00)) = F(7.8) = ()

’\]

As a result,

1« 1
A(Wr.Gr) < 2 ) M) (3 = V) < - Dy(V.x1)
t=1 d

T T
iTZ (60 +3L7ly: = yi-1|I?) - ﬁZ[ny,—x,u%ny,—x,+1||21

1
tr ;(M(y» — M L)) (¥ = V).

The last term can be bounded by using Lemma 3.13. Define the virtual sequence
with 1 = x;:

N . 1 N
§re1 = argmin(M(y,) = M(ys, 4)'v+ EDsp(V, §:).

Then Lemma 3.13 implies that

|+ 1
E T;(M(ylagt)_M(yt))TV SEI:n_TD‘p(V’yI)

+E

T
. i 2
zaT;HMm) M IR

Combining the above results, we have
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o’n

o 2 8
E[A(Wr,a7)] < T—an)(V,Xl) +

3L% .
E "ol t:Zl lly: —y:- 1||2 e Z[”)’t Xt”2 +1lye — Xe1 |l l
2 802 312
< 7oDy(vxn) + =g | 2 ;[zuyt %P+ 2l —yt_lnz]]

[\

T

a

8| 57 2y =%+ e = e ]
t=1

the sum of the last two terms will be less than zero

27
If6L;_2,7 ie., U‘W’
due to x; = yo. Then, we have

2 802 2D? 802
E[A(WTaﬁT)] < T—D¢(V,X1) + g < — + g TI'
n a

Tn a
For the second part, optimizing the upper bound over n gives n. = zD\/‘T/Z I
e < ML ie, T > 3D L’ , we set 17 = 1, then
8aD
E[F(wr) - F(w,)] < —.
VTa
If n, > \FL ie.,o? < 3[(’:TL ,Wesetn—rL then
2V12LD?* 12LD?
E[A(Wr,ar)] < \/; + .
a \V3Ta
O

3.8 History and Notes

Stochastic Approximation and Mathematical Optimization

Stochastic approximation has a long history dating back to Robbins and Monro
(1951) for solving a root finding problem f(x) = « using an iterative method
Xe+1 = Xy —a; (y; —a), where y, is a stochastic variable such that E[y;] = f(x;). They
studied the asymptotic convergence of lim; ., E[(x; — #)?] = 0 under some condi-
tions, where 6 is the solution to the root finding problem. It is notable that Herbert
Robbins was regarded as one of the most influential mathematicians of the latter half
of the 20th century, renowned for his seminal contributions to probability, algebra,
and graph theory.
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3.8. HISTORY AND NOTES

Inspired by Robbins and Monro (1951), Kiefer and Wolfowitz (1952) considered
stochastic maximization of a regression function using a stochastic finite difference
estimator of the gradient. Later, Chung (1954) established the convergence bound
of Robbins-Monro’s method under some conditions. Since then, the convergence of
SGD has been extensively studied. Polyak and Juditsky (1992) analyzed the conver-
gence of SGD with a simple averaging for stochastic optimization, which is some-
times referred to as Polyak-Juditsky averaging or Polyak averaging. This work as-
sumes smoothness and strong convexity of the objective function and established a
convergence rate of O(1/T).

Nemirovski and Yudin (1978) is probably the first work that analyzes the non-
asymptotic convergence of SGDA for general convex-concave min-max optimiza-
tion without smoothness and strong convexity assumption. Their paper introduces
the weighted averaging (weighted by the step size at each iteration) and establishes
the convergence rate of O(1/VT). The optimal rate O(1/T) for strongly-convex
strongly-concave min-max problem was recently proved in Yan et al. (2020a).

The mirror descent method originates from Nemirovsky and Yudin (1983), which
is also the work that is often cited for the lower bound of O(1/VT) for general con-
vex problems. A more general form of SMD and its extension for convex-concave
min-max problems using a Bregman divergence was later considered in (Nemirovski
et al., 2009).

The non-asymptotic analysis of SGD for non-convex optimization was initiated
by (Ghadimi and Lan, 2013). The non-asymptotic analysis of SGD for weakly convex
optimization was developed by (Davis and Drusvyatskiy, 2019).

The proximal method dates back to the proximal point method proposed by Mar-
tinet (1972) and further developed in (Rockafellar, 1976). Lions and Mercier (1979)
proposed a splitting method for finding a zero point of the sum of two maximal mono-
tone operators. The forward backward splitting was first proposed by Pazy (1979) in
the same context of finding a zero of sum of monotone operators. Its special instance
for minimization problems known as projected gradient method was first studied
by Goldstein (1964).

Coordinate descent has a long history in optimization, with its earliest roots trace-
able to the Gauss—Seidel iterations for solving linear systems in the 19th century.
The method was later formalized and discussed in early optimization literature, in-
cluding (Warga, 1963; Ortega and Rheinboldt, 1970; Luenberger, 1973). Rigorous
analysis of convergence properties was developed in a sequence of influential works
by Paul Tseng and others, including (Luo and Tseng, 1992; Tseng, 1990; Tseng and
Bertsekas, 1987; Tseng, 2001). Recent developments of block coordinate descent
including accelerated coordinate descent (Nesterov, 2012) and stochastic block co-
ordinate descent (Dang and Lan, 2015).

The extragradient method was first proposed by Korpelevich (1976). The mirror
prox method and its convergence rate O (1/T) was proposed and established by Ne-
mirovski (2004). The stochastic mirror prox method was analyzed in (Juditsky et al.,
2011).
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Optimization in machine learning

Frank Rosenblatt’s pioneering work in the late 1950s introduced a learning rule for
updating the Perceptron model (a single-layer neural network for binary classifica-
tion) (Rosenblatt, 1962), a method that shares a conceptual foundation with modern
stochastic gradient descent (SGD). The earliest instance of SGD for machine learn-
ing is perhaps the Widrow-Hoff algorithm (Widrow and Hoff, 1960) (also known as
the least mean square’ algorithm), which was used to train ADALINE - a single-layer
neural network that produces a continuous output. Amari (1967) is the first work that
applies SGD to optimize a neural network for binary and multi-class classification.

Starting in late 1980s, online prediction problem has attracted increasing atten-
tion in machine learning, whose developments have many parallels to stochastic op-
timization. Littlestone (1988) proposed the Winnow algorithm for learning Boolean
functions. It was shown to be better than the earlier Perceptron learning algorithm
in the sense that the number of mistakes grows only logarithmically with the num-
ber of irrelevant attributes in the examples. Later, it was generalized to weighted
majority for learning with expert advice (Littlestone and Warmuth, 1994), and the
exponentiated gradient method (Kivinen and Warmuth, 1997) for online learning
with a decision variable from a simplex, which is a special case of SMD using the
KL-divergence. It has impact on the development of Adaboost (Freund and Schapire,
1997).

During the first decade of the 21st century, online convex optimization emerged
as a central topic in machine learning. A key focus was on regret bound analysis,
which can be transferred into convergence guarantees for stochastic optimization via
the online-to-batch conversion technique (Dekel and Singer, 2005). Regret bounds
for online gradient descent were established for both convex loss functions (Zinke-
vich, 2003) and strongly convex loss functions (Hazan et al., 2007). The multi-epoch
scheme for achieving an optimal rate of O(1/T) for stochastic strongly convex opti-
mization was established independently and concurrently in (Iouditski and Nesterov,
2010; Hazan and Kale, 2011; Ghadimi and Lan, 2012). Later, SGD has shown to be
able to achieve the optimal rate for stochastic non-smooth strongly convex optimiza-
tion using tail averaging (Rakhlin et al., 2012) or increased weighted averaging (La-
coste-Julien et al., 2012). The last iterate convergence of SGD for non-smooth convex
optimization was established in (Shamir and Zhang, 2013).

The use of the £; norm as a regularizer in the Lasso method was pioneered by Tib-
shirani (1996). The elastic net regularizer was later proposed in (Zou and Hastie,
2003), while the group lasso regularizer was introduced by (Yuan and Lin, 2006).
More recently, the Piecewise Affine Regularizer (PAR) was proposed in (Jin et al.,
2025). The nuclear norm minimization for promoting a low-rank matrix was first
considered in (Fazel et al., 2001).

Pioneering works on the application of SGD to regularized empirical risk mini-
mization in machine learning, including support vector machines, include (Zhang,
2004a; Shalev-Shwartz et al., 2007). The application of the proximal gradient method
to £; norm regularized problem was initiated by Daubechies et al. (2004), yielding
an algorithm known as iterative thresholding. The application of SPGD to machine
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learning with various regularization terms was studied in (Duchi and Singer, 2009).
The application of SGD for optimizing truncated loss and its theory was studied
in (Xu et al., 2019b).

The most famous application of coordinate descent methods in machine learning
is the solver for support vector machine (Chang et al., 2008; Hsieh et al., 2008).

AdaGrad, proposed by Duchi et al. (2011), was a breakthrough in stochastic opti-
mization for machine learning. It later inspired several popular stochastic algorithms
for deep learning, including RMSprop (Hinton, 2018) and Adam (Kingma and Ba,
2015), which will be discussed in Chapter 6.

The first variant of stochastic optimistic mirror prox method appeared in the au-
thor’s award-winning work (Chiang et al., 2012), inspired by Nemirovski’s mirror
prox method. It was introduced to address a long-standing challenge in online con-
vex optimization for achieving variational regret bounds. This line of research later
inspired the work of (Rakhlin and Sridharan, 2013), which formally coined the term
optimistic mirror descent. More recently, stochastic optimistic mirror prox has been
adopted for solving min—-max problems in machine learning, including applications
such as training generative adversarial networks (Daskalakis et al., 2018).

Discussion. The most important factor that affects the practical performance of
SGD and other stochastic algorithms is the learning rate scheme 7. In this chapter,
we focus on a fixed learning rate 7, = 1. However, it is usually not the best choice
in practice. We can also develop theoretical analysis of these algorithms using de-
creasing learning rates, e.g., n; oc 1/v/f, 1/t. However, these theoretical learning rate
schemes are usually also not the best in practice. A practical approach is the step
decay strategy as in Theorem 3.7, which gives a convergence that has only loga-
rithmic dependence on the initial distance ||w; — w.||2. This strategy also works for
general stochastic convex optimization under generic error bound conditions in the
form ||lw — w.|l» < c(g(w) — g(w.))? with 6 € (0,1] (Xu et al., 2017). Another
issue of theoretical learning rates is that their best values that optimize the conver-
gence bound may depend on some unknown parameters of the problem, e.g., w,, the
smoothness constant, strong convexity modulus. This issue has triggered a line of
research known as parameter-free algorithms (Orabona, 2019; Lan et al., 2023).

While this chapter focuses on classical stochastic methods that not only have
important applications in machine learning but also significantly influence the ap-
proaches presented in later chapters, it does not cover several important algorithms,
most notably accelerated gradient methods and their stochastic variants. These meth-
ods achieve optimal convergence rates for smooth convex objectives when the vari-
ance of stochastic gradients vanishes (Lan, 2012). For a comprehensive treatment
of accelerated gradient methods, we refer to the textbook by Nesterov (2004), and
for stochastic accelerated algorithms, we recommend Lan (2020). Variants of these
methods will be introduced in Chapter 6.

Finally, I recommend the textbook (Recht and Wright, 2025), which provides a
comprehensive treatment of convex optimization algorithms tailored for data analy-
sis.
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