
Chapter 3
Classic: Stochastic Optimization

Abstract In this chapter, we introduce standard stochastic optimization problems
and present key stochastic optimization algorithms along with their complexity anal-
ysis. While many important stochastic algorithms have been proposed for solving
stochastic optimization and empirical riskminimization problems, we focus on seven
foundational methods that gained prominence before the deep learning era. These
algorithms have had a profound impact on machine learning and provide essential
insights for understanding more advanced methods presented in later chapters. The
selected algorithms include stochastic gradient descent (SGD), stochastic proximal
gradient descent, stochasticmirror descent, adaptive gradient methods, stochastic co-
ordinate descent, stochastic gradient descent ascent, and stochastic optimistic mirror
prox. We concentrate on the complexity analysis in the convex setting.

Stochastic optimization is classical wisdom in motion!
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3.1. STOCHASTIC GRADIENT DESCENT

Algorithm 1 SGD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update the model w by w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡
5: end for

3.1 Stochastic Gradient Descent

Let us consider the following standard stochastic optimization problem:

min
w
𝑔(w) := E𝜁 [𝑔(w; 𝜁)] . (3.1)

If 𝑔 is differentiable, the stochastic gradient descent (SGD) method takes the follow-
ing update:

w𝑡+1 = w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ), (3.2)

where 𝜁𝑡 is a random sample. If 𝑔 is non-differentiable, we use a stochastic subgra-
dient G(w; 𝜁) to update the model parameter:

w𝑡+1 = w𝑡 − 𝜂𝑡G(w𝑡 ; 𝜁𝑡 ). (3.3)

The key assumption regarding the stochastic gradient or subgradient is the following.

Assumption 3.1. For any w, we have E𝜁 [∇𝑔(w; 𝜁)] = ∇𝑔(w) or E𝜁 [G(w; 𝜁)] ∈
𝜕𝑔(w).

Explanation of SGD update

The update (3.2) is equivalent to:

w𝑡+1 = arg min
w
𝑔(w𝑡 ; 𝜁𝑡 ) + ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +

1
2𝜂𝑡

‖w − w𝑡 ‖2
2. (3.4)

The stochastic linear approximation 𝑔̃(w; 𝜁𝑡 ) = 𝑔(w𝑡 ; 𝜁𝑡 ) + ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w−
w𝑡 ) serves as a stochastic surrogate for 𝑔(w). Since it is only an approxima-
tion, we avoid optimizing it directly; instead, we seek a solution close to w𝑡
that minimizes this surrogate.

When SGD is applied to solving ERM (2.1), 𝜁𝑡 could represent one randomly
sampled data with an index from {1, . . . , 𝑛} or a mini-batch of random data.

Below, we present the convergence analysis for smooth and non-smooth, convex
and non-convex objective functions.
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3.1.1 Smooth Convex Functions

For a point w, convergence is typically measured by the objective gap:

𝑔(w) − min
w
𝑔(w) = 𝑔(w) − 𝑔(w∗),

where w∗ denotes a global optimal solution. A convergence analysis aims to show
that after 𝑇 iterations of updates, we can obtain a solution ŵ𝑇 such that the expected
objective gap is bounded by

E [𝑔(ŵ𝑇 ) − 𝑔(w∗)] ≤ 𝑂
(

1
𝑇 𝛼

)
, (3.5)

for some 𝛼 > 0. The term 1/𝑇 𝛼 is referred to as the convergence rate. Accordingly,
to guarantee a small objective gap E[𝑔(ŵ𝑇 )−𝑔(w∗)] ≤ 𝜖 for some 𝜖 � 1, the bound
implies that 𝑇 = 𝑂

(
1
𝜖 1/𝛼

)
, which is known as the iteration complexity.

Let us first assume that 𝑔 is smooth and its stochastic gradient ∇𝑔(w; 𝜁) satisfies
the following assumption.

Assumption 3.2. (i) 𝑔(w) is 𝐿-smooth and convex; (ii) For any w, we have

E[‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2
2] ≤ 𝜎2

for some 𝜎 ≥ 0.

The following lemma is useful for convergence analysis.

Lemma 3.1 Consider the update (3.2). For any w we have

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

Proof. Since the problem (3.4) is 1/𝜂𝑡 strongly convex and has an optimal solution
w𝑡+1, following (1.18) for any w we have

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1

2𝜂𝑡
‖w − w𝑡 ‖2

2

≥ ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w𝑡 ) +
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2 +
1

2𝜂𝑡
‖w − w𝑡+1‖2

2.

Re-arranging the inequality, we have

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2.

ut

The following lemma shows one-step objective gap bound.
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3.1. STOCHASTIC GRADIENT DESCENT

Lemma 3.2 Suppose Assumption 3.1 and 3.2 hold. For one step SGD updatew𝑡+1 =
w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜉𝑡 ), we have

E[𝑔(w𝑡+1) − 𝑔(w∗)] ≤E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2

]
+ 𝜂𝑡𝜎2.

Proof. From Lemma 3.1, we have

∇𝑔(w𝑡 )> (w𝑡+1 − w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

+ (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − w).
(3.6)

By the smoothness and convexity of 𝑔, we have

𝑔(w𝑡+1) ≤ 𝑔(w𝑡 ) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡 − w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w) + 𝐿
2
‖w𝑡+1 − w𝑡 ‖2

2.

(3.7)
Combining this with (3.6), we have

𝑔(w𝑡+1) − 𝑔(w) ≤ 1
2𝜂𝑡

‖w − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

+ 𝐿
2
‖w𝑡+1 − w𝑡 ‖2

2 + (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − w).
(3.8)

Then if 𝜂𝑡 ≤ 1/𝐿 and plugging w = w∗, we have

𝑔(w𝑡+1) − 𝑔(w∗) ≤
1

2𝜂𝑡
‖w∗ − w𝑡 ‖2

2 −
1

2𝜂𝑡
‖w∗ − w𝑡+1‖2

2

+ (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − w∗).

The challenge lies at handling the last term where w𝑡+1 depends on 𝜁𝑡 , hence its
expectation is not equal to zero. To bound the last term, we introduce

ŵ𝑡+1 = arg min
w

∇𝑔(w𝑡 )> (w − w𝑡 ) +
1

2𝜂𝑡
‖w − w𝑡 ‖2

2.

Note that ŵ𝑡+1 is independent of 𝜁𝑡 . ThenE𝜁𝑡 [(∇𝑔(w𝑡 )−∇𝑔(w𝑡 ; 𝜁𝑡 ))> (ŵ𝑡+1−w∗)] =
0. Thus, we have

E[𝑔(w𝑡+1) − 𝑔(w∗)] ≤E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2

]
+ E[(∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1)] .
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Due to Lemma 1.7, we have ‖w𝑡+1 − ŵ𝑡+1‖2 ≤ 𝜂𝑡 ‖∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 ; 𝜁𝑡 )‖2, thus

E[𝑔(w𝑡+1) − 𝑔(w∗)] ≤E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2

]
+ 𝜂𝑡𝜎2.

ut

Theorem 3.1 Suppose Assumption 3.1 and 3.2 hold. Let the learning rate {𝜂𝑡 } be
𝜂𝑡 = 𝜂 ≤ 1/𝐿 and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡+1. Then after 𝑇 iterations of SGD update we

have

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝜎2. (3.9)

If 𝜂 = min( 1
𝐿 ,

‖w1−w∗ ‖2√
2𝑇𝜎

), then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
√

2𝜎‖w1 − w∗‖2√
𝑇

+
𝐿‖w1 − w∗‖2

2
𝑇

.

 Why it matters

In the convergence upper bound (3.9), the first term captures the optimization
error due to the finite time horizon, while the second term represents the error
induced by stochastic gradient noise.
If 𝜎 = 0 (no noise), SGD reduces to gradient descent, then a constant step size
𝜂 = 1/𝐿 can be used and the convergence rate becomes𝑂

(
𝐿 ‖w1−w∗ ‖2

2
𝑇

)
. If𝜎2 > 0

(there is noise in stochastic gradient), in order to guarantee convergence, we have
to set 𝜂𝑡 → 0 or a small value to guarantee certain level of accuracy.
For a fixed number of iterations 𝑇 , a smaller variance 𝜎 allows for faster con-
vergence with a larger learning rate 𝜂 (up to a certain limit).
The iteration complexity required to achieve E[𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤ 𝜖 is

𝑇 = 𝑂
(
max

(
𝜎2 ‖w1−w∗ ‖2

2
𝜖 2 ,

𝐿 ‖w1−w∗ ‖2
2

𝜖

))
.

If a mini-batch of size 𝐵 is used to compute the stochastic gradient at each it-
eration, the variance of the stochastic gradient decreases by a factor of 𝐵. This
implies that increasing the batch size, up to a certain point, can reduce the num-
ber of iterations needed.
Finally, the result also highlights that the initial learning rate 𝜂 cannot be too
large; in practice, an excessively large initial learning rate may cause the algo-
rithm to diverge.

Proof. If 𝜂𝑡 = 𝜂, summing the inequalities in Lemma 3.2 over 𝑡 = 1, . . . , 𝑇 , we have
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3.1. STOCHASTIC GRADIENT DESCENT

E
[ 𝑇∑
𝑡=1

(𝑔(w𝑡+1) − 𝑔(w∗))
]
≤E

[
𝑇∑
𝑡=1

1
2𝜂

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂

‖w∗ − w𝑡+1‖2
2

]
+ 𝑇𝜂𝜎2.

The first term in [·] is a telescoping series,

𝑇∑
𝑡=1

1
2𝜂

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂

‖w∗ − w𝑡+1‖2
2 ≤ 1

2𝜂
‖w∗ − w1‖2

2 −
1
2𝜂

‖w∗ − w𝑇+1‖2
2

≤ 1
2𝜂

‖w∗ − w1‖2
2.

As a result,

E
[
1
𝑇

𝑇∑
𝑡=1

(𝑔(w𝑡+1) − 𝑔(w∗))
]
≤ 1

2𝜂𝑇
‖w∗ − w1‖2

2 + 𝜂𝜎2,

which concludes the proof of the first part of the theorem.
For the second part, optimizing the upper bound over 𝜂 gives 𝜂∗ = ‖w1−w∗ ‖√

2𝑇𝜎
. If

𝜂∗ ≤ 1/𝐿, i.e., 𝑇 ≥ ‖w1−w∗ ‖2
2𝐿

2

2𝜎2 , we set 𝜂 = 𝜂∗, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
2𝜎‖w1 − w∗‖2√

2𝑇
.

If 𝜂∗ > 1/𝐿, i.e., 𝜎2 ≤ ‖w1−w∗ ‖2
2𝐿

2

2𝑇 , we set 𝜂 = 1/𝐿, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐿‖w1 − w∗‖2

2
2𝑇

+
𝐿‖w1 − w∗‖2

2
2𝑇

=
𝐿‖w1 − w∗‖2

2
𝑇

.

ut

3.1.2 Non-smooth Convex Functions

Now, let us consider the SGD update (3.3) for non-smooth convex functions under
the following assumption.

Assumption 3.3. (i) 𝑔(w) is convex; (ii) For any w, we have E[‖G(w; 𝜁)‖2
2] ≤ 𝐺2.

Lemma 3.3 Suppose Assumption 3.1 and 3.3 hold. For one step SGD updatew𝑡+1 =
w𝑡 − 𝜂𝑡G(w𝑡 ; 𝜉𝑡 ), we have

E[𝑔(w𝑡 ) − 𝑔(w∗)] ≤ E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2

]
+ 𝜂𝑡

2
𝐺2.
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Proof. From Lemma 3.1, we have

G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗) ≤
1

2𝜂𝑡
‖w∗ − w𝑡 ‖2

2 −
1

2𝜂𝑡
‖w∗ − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2

+ G(w𝑡 ; 𝜁𝑡 )> (w𝑡+1 − w𝑡 )

≤ 1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w∗ − w𝑡+1‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w𝑡 ‖2
2

+ 𝜂𝑡
2
‖G(w𝑡 ; 𝜁𝑡 )‖2

2 +
1

2𝜂𝑡
‖w𝑡+1 − w𝑡 ‖2

2,

(3.10)
where the last inequality uses the Young’s inequality. Taking expectation on both
sides, we have

E[G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗)] ≤ E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2

]
+ 𝜂𝑡

2
𝐺2.

(3.11)
Since w𝑡 is independent of 𝜁𝑡 , we have E[G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗)] = E[v>𝑡 (w𝑡 − w∗)]
for some v𝑡 ∈ 𝜕𝑔(w𝑡 ). By the convexity of 𝑔, we have

E[𝑔(w𝑡 ) − 𝑔(w∗)] ≤ E[v>𝑡 (w𝑡 − w∗)] = E[G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w∗)]

≤ E
[

1
2𝜂𝑡

‖w∗ − w𝑡 ‖2
2 −

1
2𝜂𝑡

‖w − w𝑡+1‖2
2

]
+ 𝜂𝑡

2
𝐺2.

(3.12)

ut

The theorem below establishes the convergence of SGD for non-smooth convex
functions as measured by the objective gap.

Theorem 3.2 Suppose Assumption 3.1 and 3.3 hold. Let the learning rate {𝜂𝑡 } be
𝜂𝑡 = 𝜂 and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡 . Then after for 𝑇 iterations of SGD update (3.3) we have

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝐺
2

2
.

If 𝜂 = ‖w1−w∗ ‖2√
𝑇𝐺

, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐺‖w1 − w∗‖2√

𝑇
.

 Why it matters

The above theorem exhibits the key difference in the convergence of SGD for
smooth convex functions and non-smooth convex functions. Even with a zero
variance for the stochastic subgradient , the convergence rate is still 𝑂 (1/

√
𝑇).

The reason is that for smooth convex functions when 𝑔(w) → 𝑔(w∗), we have
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3.1. STOCHASTIC GRADIENT DESCENT

∇𝑔(w) → 0 (cf. Lemma 1.5(b)), which is not true for non-smooth convex func-
tions.

Proof. The proof is similar to that in the smooth case.
ut

3.1.3 Smooth Non-Convex Functions

For a non-convex function, it is generally NP-hard to find a global optimal solution.
Hence, our goal here is to establish the complexity of SGD for finding an 𝜖-stationary
solution with 𝜖 � 1, as defined below.

Definition 3.1 (𝜖-stationary solution) w is an 𝜖-stationary solution to minw 𝑔(w),
if ‖∇𝑔(w)‖2 ≤ 𝜖 .

Assumption 3.4. (i) 𝑔(w) is 𝐿-smooth and non-convex; (ii) For any w, we have

E[‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2
2] ≤ 𝜎2

for some 𝜎 ≥ 0.

Based on the above assumptions, we establish the following convergence guaran-
tee.

Theorem 3.3 Suppose Assumption 3.1 and 3.4 hold. Let the learning rate {𝜂𝑡 } be
𝜂𝑡 = min{ 1

𝐿 ,
𝐷
𝜎
√
𝑇
} for some constant 𝐷 > 0. Let 𝜏 ∈ {1, . . . , 𝑇} be a random sample

following a distribution Pr(𝜏 = 𝑡) = 1
𝑇 . Then we have

E[‖∇𝑔(w𝜏)‖2
2] ≤

2𝐿 (𝑔(w1) − 𝑔(w∗)
𝑇

+
(
2(𝑔(w1) − 𝑔(w∗))

𝐷
+ 𝐷𝐿

)
𝜎
√
𝑇
.

Proof. For brevity of notation, we let∇𝑔𝑡 (w𝑡 ) = ∇𝑔(w𝑡 ; 𝜁𝑡 ). Due to the 𝐿-smoothness
of 𝑔, we have
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𝑔(w𝑡+1) ≤ 𝑔(w𝑡 ) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

= 𝑔(w𝑡 ) − 𝜂𝑡∇𝑔(w𝑡 )>∇𝑔𝑡 (w𝑡 ) +
𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 )‖2

2

= 𝑔(w𝑡 ) − 𝜂𝑡 ‖∇𝑔(w𝑡 )‖2
2 + 𝜂𝑡∇𝑔(w𝑡 )> (∇𝑔(w𝑡 ) − ∇𝑔𝑡 (w𝑡 )) +

𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 )‖2

2

= 𝑔(w𝑡 ) − 𝜂𝑡 ‖∇𝑔(w𝑡 )‖2
2 + 𝜂𝑡∇𝑔(w𝑡 )> (∇𝑔(w𝑡 ) − ∇𝑔𝑡 (w𝑡 ))

+
𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 ) − ∇𝑔(w𝑡 ) + ∇𝑔(w𝑡 )‖2

2

= 𝑔(w𝑡 ) − (𝜂𝑡 −
𝜂2
𝑡 𝐿

2
) ‖∇𝑔(w𝑡 )‖2

2 + (𝜂𝑡 − 𝜂2
𝑡 𝐿)∇𝑔(w𝑡 )> (∇𝑔(w𝑡 ) − ∇𝑔𝑡 (w𝑡 ))

+
𝜂2
𝑡 𝐿

2
‖∇𝑔𝑡 (w𝑡 ) − ∇𝑔(w𝑡 )‖2

2 .

Taking expectation over 𝜁𝑡 given w𝑡 on both sides, we have

E𝜁𝑡 [𝑔(w𝑡+1)] ≤ 𝑔(w𝑡 ) − (𝜂𝑡 −
𝜂2
𝑡 𝐿

2
) ‖∇𝑔(w𝑡 )‖2

2 +
𝜂2
𝑡 𝐿

2
𝜎2. (3.13)

Telescoping this from 𝑡 = 1 to 𝑇 gives

E

[
𝑇∑
𝑡=1

(𝜂𝑡 −
𝜂2
𝑡 𝐿

2
) ‖∇𝑔(w𝑡 )‖2

2

]
≤ (𝑔(w1) − 𝑔(w∗) +

𝑇∑
𝑡=1

𝜂2
𝑡 𝐿

2
𝜎2.

As a result,

E
[
‖∇𝑔(w𝜏)‖2

2
]
≤ (𝑔(w1) − 𝑔(w∗))∑𝑇

𝑡=1 (𝜂𝑡 −
𝜂2
𝑡 𝐿
2 )

+
∑𝑇
𝑡=1 𝜂

2
𝑡 𝐿

2
∑𝑇
𝑡=1 (𝜂𝑡 −

𝜂2
𝑡 𝐿
2 )

𝜎2.

Plugging the value of 𝜂𝑡 = min( 1
𝐿 ,

𝐷
𝜎
√
𝑇
), we have

E
[
‖∇𝑔(w𝜏)‖2

2
]
≤ 𝑔(w1) − 𝑔(w∗)

𝑇 (𝜂1 −
𝜂2

1𝐿

2 )
+

𝑇𝜂2
1𝐿

2𝑇 (𝜂1 −
𝜂2

1𝐿

2 )
𝜎2

≤ 2(𝑔(w1) − 𝑔(w∗))
𝑇𝜂1

+ 𝜂1𝐿𝜎
2

≤ max
(
2𝐿 (𝑔(w1) − 𝑔(w∗))

𝑇
,
2(𝑔(w1) − 𝑔(w∗))𝜎

𝐷
√
𝑇

)
+ 𝐷𝜎𝐿√

𝑇

≤ 2𝐿 (𝑔(w1) − 𝑔(w∗))
𝑇

+
(
2(𝑔(w1) − 𝑔(w∗))

𝐷
+ 𝐷𝐿

)
𝜎
√
𝑇
.

If we set 𝜂𝑡 = min( 1
𝐿 ,

𝐷
𝜎
√
𝑡
), then ∑𝑇

𝑡=1 𝜂𝑡 ≥ Ω(
√
𝑇) and ∑𝑇

𝑡=1 𝜂
2
𝑡 ≤ 𝑂 (log(𝑇)), then

E
[
‖∇𝑔(w𝜏)‖2

2
]
≤ 𝑂 (log𝑇/𝑇). ut
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3.1. STOCHASTIC GRADIENT DESCENT

3.1.4 Non-smooth Weakly Convex Functions

Next, let us extend the analysis to non-smooth non-convex functions. Consider a
function 𝑔 : R𝑑 ↦→ R and a point w ∈ R𝑑 with 𝑔(w) finite. The Fréchet subdifferen-
tial of 𝑔 at w, denoted 𝜕𝑔(w), consists of all vectors v satisfying

𝑔(w) ≥ 𝑔(w′) + v> (w − w′) + 𝑜(‖w − w′‖2) as w′ → w.

We consider a family of non-convex functions, namely weakly convex functions. A
lower semi-continuous function 𝑔 is called 𝜌-weakly, if there exists 𝜌 > 0 such that:

𝑔(w) ≥ 𝑔(w′) + v> (w − w′) − 𝜌

2
‖w − w′‖2

2, ∀w,w′, v ∈ 𝜕𝑔(w′).

It is easy to show that if 𝑔 is 𝜌-weakly convex, then 𝑔(w)+ 𝜌2 ‖w‖2
2 is a convex function

of w. A smooth function is weakly convex, but the reverse is not necessarily true.

Example

Example 3.1 (Compositional functions). Let 𝐹 (x) = 𝑓 (𝑔(x)). If 𝑓 convex
and𝐺1-Lipschitz continuous and 𝑔(x) is 𝐿2-smooth, then 𝐹 is 𝜌-weakly con-
vex for some 𝜌 > 0. We will prove this in Section 5.3. The OCE risk (2.22) is
a special case when 𝜙∗ is non-smooth and the loss function ℓ(w; z) is smooth
non-convex.

Example 3.2 (Compositional functions). Let 𝐹 (x) = 𝑓 (𝑔(x)). If 𝑓 𝐿1-
smooth and monotonically non-decreasing and 𝑔(x) is non-smooth convex
and 𝐺2-Lipschitz continuous, then 𝐹 is 𝜌-weakly convex for some 𝜌 > 0.
Let us prove it. Since 𝑓 (𝑔) is 𝐿1 smooth, i.e., for any w, v ∈ R𝑑 , we have
𝑓 (𝑔(v)) + 𝑓 ′ (𝑔(v)) (𝑔(w) − 𝑔(v)) − 𝐿1

2 |𝑔(w) − 𝑔(v) |2 ≤ 𝑓 (𝑔(w)). Since 𝑔
is convex, i.e. for any w, v ∈ R𝑑 , 𝑔(w) ≥ 𝑔(v) + 𝜕𝑔(v)> (w − v), then

𝑓 (𝑔(w)) − 𝑓 (𝑔(v)) ≥ 𝑓 ′ (𝑔(v))𝜕𝑔(v)> (w − v) − 𝐿1

2
|𝑔(w) − 𝑔(v) |2

≥ 𝑓 ′ (𝑔(v))𝜕𝑔(v)> (w − v) −
𝐺2

2𝐿1

2
‖w − v‖2

2,

where the first inequality uses 𝑓 ′ (𝑔(v)) ≥ 0; the second inequality uses the
fact that ‖𝜕𝑔(w)‖2 ≤ 𝐺2. That is, 𝑓 (𝑔(w)) is 𝐺2𝐿-weakly convex.
An important application of this function in machine learning is optimizing
the truncation of a convex loss 𝑔(w) = ℓ(w; z) ≥ 0 with a smooth truncation
function 𝑓 (ℓ(w; z)) = 𝛼 log(1 + ℓ (w;z)

𝛼 ) for some 𝛼 > 0, which is useful for
tackling heavy-tailed data distribution.
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Fig. 3.1: Moreau envelope of 𝑔(𝑥) = |𝑥2 − 1| with 𝜆 = 0.2.

Nearly 𝜖-stationary solution

When 𝑔(·) is non-smooth, finding an 𝜖-stationary solution such that ‖∇𝑔(w)‖2 ≤ 𝜖
is difficult even for a convex function. Let us consider a simple example min𝑤 |𝑤 |.
The only stationary point is the optimal solution 𝑤∗ = 0, and any 𝑤 ≠ 0 is not an
𝜖-stationary solution (𝜖 < 1) no matter how close 𝑤 to 0. To address this issue, we
introduce a weak notion of 𝜖-stationary solution, termed nearly 𝜖-stationary solution.

Definition 3.2 (Nearly 𝜖-stationary solution) w is a nearly 𝜖-stationary solution to
minw 𝑔(w), if there exists ŵ such that ‖w − ŵ‖ ≤ 𝑂 (𝜖) and dist(0, 𝜕𝑔(ŵ)) ≤ 𝜖 .

A useful tool for deriving a nearly 𝜖-stationary solution is the Moreau envelope of 𝑔:

𝑔𝜆 (w) := min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2. (3.14)

Define

prox𝜆𝑔 (w) := arg min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2. (3.15)

An example of a weakly convex function and its Moreau envelope is illustrated in
Figure 3.1.

The proposition below shows that when 𝜆 is sufficiently small, 𝑔𝜆 (·) is a smooth
function.

Proposition 3.1. Consider a 𝜌-weakly convex function 𝑔(·). Then for any 𝜆 ∈
(0, 𝜌−1), the Moreau envelope 𝑔𝜆 (·) is 2−𝜆𝜌

𝜆(1−𝜆𝜌) -smooth, with gradient given by
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3.1. STOCHASTIC GRADIENT DESCENT

∇𝑔𝜆 (w) = 1
𝜆
(w − prox𝜆𝑔 (w)).

Proof. First, when 𝜆 < 𝜌−1 we have 𝑔(u) + 1
2𝜆 ‖u − w‖2

2 become ( 1
𝜆 − 𝜌) -strongly

convex. Hence the solution prox𝜆𝑔 (w) is unique for a given w. We can also write
prox𝜆𝑔 (w) as

prox𝜆𝑔 (w) := arg min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2

= arg min
u
𝑔(u) + 𝜌

2
‖u‖2

2︸           ︷︷           ︸
𝑟 (u)

+1
2

(
1
𝜆
− 𝜌

)



u − 1
1 − 𝜆𝜌w





2

2
.

Due to Lemma 1.7, we have ‖prox𝜆𝑔 (w) − prox𝜆𝑔 (w′)‖2 ≤ 1
1−𝜆𝜌 ‖w − w′‖2. Then

‖∇𝑔𝜆 (w) − ∇𝑔𝜆 (w′)‖2 =
1
𝜆
‖(w − prox𝜆𝑔 (w)) − (w′ − prox𝜆𝑔 (w′))‖2

≤ 1
𝜆

(
‖w − w′‖2 +

1
1 − 𝜆𝜌 ‖w − w′‖2

)
=

2 − 𝜆𝜌
𝜆(1 − 𝜆𝜌) ‖w − w′‖2.

ut

With the Moreau envelope, we can use the norm of its gradient to measure the
convergence for optimizing the original function.

Proposition 3.2. If 𝜆 < 𝜌−1, we have

𝑔𝜆 (w) ≤ 𝑔(w), min
w
𝑔𝜆 (w) = min

w
𝑔(w). (3.16)

If ‖∇𝑔𝜆 (w)‖2 ≤ 𝜖 , then ŵ = prox𝜆𝑔 (w) is a nearly 𝜖-stationary solution. In partic-
ular,

‖ŵ − w‖2 = 𝜆‖∇𝑔𝜆 (w)‖2 ≤ 𝜆𝜖,
dist(0, 𝜕𝑔(ŵ)) ≤ ‖∇𝑔𝜆 (w)‖2 ≤ 𝜖 .

(3.17)

Proof. 𝑔𝜆 (w) ≤ 𝑔(w) follows the definition of 𝑔𝜆 (w). Then 𝑔𝜆 (w∗) ≤ 𝑔(w∗). To
prove they are equal, we have

𝑔𝜆 (w) = min
u
𝑔(u) + 1

2𝜆
‖u − w‖2

2 ≥ min
u
𝑔(u) = 𝑔(w∗).

Since ∇𝑔𝜆 (w) = 1
𝜆 (w− ŵ), which implies the second inequality. The first inequality

is due to the first-order optimality condition of minu 𝑔(u) + 1
2𝜆 ‖u − w‖2

2. ut
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 Why it matters

Proposition 3.2 shows that if we can make ‖∇𝑔𝜆 (w)‖2 small, then w is close to
an 𝜖-stationary solution ŵ of the original function 𝑔(w). The smaller the 𝜆, the
closer between w and ŵ.

Convergence Analysis

Assumption 3.5. (i) 𝑔(w) is 𝜌-weakly convex; (ii) For anyw,E𝜁 [‖G(w, 𝜁)‖2
2] ≤ 𝐺2

for some 𝐺 ≥ 0.

Lemma 3.4 Let us consider an update w𝑡+1 = w𝑡 − 𝜂𝑡z𝑡 . If E𝑡 [z𝑡 ] = M𝑡 and
E𝑡 [‖z𝑡 ‖2

2] ≤ 𝐺2, then we have

E𝑡 [𝑔𝜆 (w𝑡+1)] ≤ 𝑔𝜆 (w𝑡 ) +
𝜂𝑡
𝜆
(ŵ𝑡 − w𝑡 )>M𝑡 +

𝜂2
𝑡𝐺

2

2𝜆
,

where ŵ𝑡 = prox𝜆𝑔 (w𝑡 ).

Proof. We have

𝑔𝜆 (w𝑡+1) = 𝑔(ŵ𝑡+1) +
1
2𝜆

‖ŵ𝑡+1 − w𝑡+1‖2
2 ≤ 𝑔(ŵ𝑡 ) +

1
2𝜆

‖ŵ𝑡 − w𝑡+1‖2
2

= 𝑔(ŵ𝑡 ) +
1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2 −

1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2 +

1
2𝜆

‖ŵ𝑡 − w𝑡+1‖2
2.

Merging the first two terms we get 𝑔𝜆 (w𝑡 ), and using the three-point equality 2(𝑎 −
𝑏)(𝑏 − 𝑐) = ‖𝑎 − 𝑐‖2

2 − ‖𝑎 − 𝑏‖2
2 − ‖𝑏 − 𝑐‖2

2 to merge the last two terms we get

𝑔𝜆 (w𝑡+1) = 𝑔𝜆 (w𝑡 ) +
1
𝜆
(ŵ𝑡 − w𝑡 )> (w𝑡 − w𝑡+1) +

1
2𝜆

‖w𝑡 − w𝑡+1‖2
2

= 𝑔𝜆 (w𝑡 ) +
1
𝜆
(ŵ𝑡 − w𝑡 )>𝜂𝑡z𝑡 +

𝜂2
𝑡

2𝜆
‖z𝑡 ‖2

2.

Taking expectation over 𝜁𝑡 given w𝑡 on both sides, we have

E𝑡 [𝑔𝜆 (w𝑡+1)] ≤ 𝑔𝜆 (w𝑡 ) +
1
𝜆
(ŵ𝑡 − w𝑡 )>𝜂𝑡M𝑡 +

𝜂2
𝑡𝐺

2

2𝜆
.

ut

Lemma 3.5 Under the same setting of Lemma 3.4 we have

𝜂𝑡 (1 − 𝜆𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2 ≤ 𝑔𝜆 (w𝑡 ) − E𝑡 [𝑔𝜆 (w𝑡+1)] +

𝜂2
𝑡𝐺

2

2𝜆
.

Proof. Due to the weak convexity of 𝑔, for any M𝑡 ∈ 𝜕𝑔(w𝑡 ), we have
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M>
𝑡 (w𝑡 − ŵ𝑡 ) ≥ 𝑔(w𝑡 ) − 𝑔(ŵ𝑡 ) −

𝜌

2
‖ŵ𝑡 − w𝑡 ‖2

2

= (𝑔(w𝑡 ) +
1
2𝜆

‖w𝑡 − w𝑡 ‖2
2) − (𝑔(ŵ𝑡 ) +

1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2) + ( 1

2𝜆
− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2.

Since ℎ(w) = 𝑔(w) + 1
2𝜆 ‖w − w𝑡 ‖2

2 is (1/𝜆 − 𝜌)-strongly convex and ŵ𝑡 =
arg min ℎ(w), then applying Lemma 1.6(a), we get

(𝑔(w𝑡 ) +
1
2𝜆

‖w𝑡 − w𝑡 ‖2
2) − (𝑔(ŵ𝑡 ) +

1
2𝜆

‖ŵ𝑡 − w𝑡 ‖2
2) ≥ ( 1

2𝜆
− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2.

Combining the above two inequalities we have

M>
𝑡 (w𝑡 − ŵ𝑡 ) ≥ 𝑔(w𝑡 ) − 𝑔(ŵ𝑡 ) −

𝜌

2
‖ŵ𝑡 − w𝑡 ‖2

2

≥ ( 1
2𝜆

− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2 + ( 1
2𝜆

− 𝜌

2
)‖ŵ𝑡 − w𝑡 ‖2

2 = (𝜆 − 𝜆2𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2.

Plugging this into the inequality in Lemma 3.4, we have

𝜂𝑡 (1 − 𝜆𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2 ≤ 𝑔𝜆 (w𝑡 ) − E𝑡 [𝑔𝜆 (w𝑡+1)] +

𝜂2
𝑡𝐺

2

2𝜆
.

ut

Theorem 3.4 Suppose the learning rate {𝜂𝑡 } is set to 𝜂𝑡 = 𝐶√
𝑇
. Let 𝜏 ∈ {1, . . . , 𝑇} be

a random sample following a distribution Pr(𝜏 = 𝑡) = 1
𝑇 . Then for any 𝜆 ∈ (0, 𝜌−1),

we have

E[‖∇𝑔𝜆 (w𝜏)‖2
2] ≤

𝑔(w1) − 𝑔(w∗)
(1 − 𝜆𝜌)𝐶

√
𝑇

+ 𝐶𝐺2

2𝜆(1 − 𝜆𝜌)
√
𝑇
.

Proof. Summing up the inequalities in Lemma 3.5 over 𝑡 = 1, . . . , 𝑇 and taking
expectation over all randomness, we have

E

[
𝑇∑
𝑡=1

𝜂𝑡 (1 − 𝜆𝜌)‖∇𝑔𝜆 (w𝑡 )‖2
2

]
≤ 𝑔(w1) − 𝑔(w∗) +

𝑇∑
𝑡=1

𝜂2
𝑡𝐺

2

2𝜆
.

where we have used 𝑔𝜆 (w) ≤ 𝑔(w) and min 𝑔𝜆 (w) = 𝑔(w∗). Then

E[‖∇𝑔𝜆 (w𝜏)‖2
2] ≤

𝑔(w1) − 𝑔(w∗)
(1 − 𝜆𝜌)𝐶

√
𝑇

+ 𝐶𝐺2

2𝜆(1 − 𝜆𝜌)
√
𝑇
.

ut
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Algorithm 2 SPGD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update the model w by w𝑡+1 = arg minw∈R𝑑 z>𝑡 (w − w𝑡 ) + 1

2𝜂𝑡 ‖w − w𝑡 ‖2
2 + 𝑟 (w) .

5: end for

3.2 Stochastic Proximal Gradient Descent

Let us consider the following stochastic composite optimization problem:

min
w∈R𝑑

𝐹 (w) := E𝜁 [𝑔(w; 𝜁)] + 𝑟 (w), (3.18)

where 𝑔(w) = E𝜁 [𝑔(w; 𝜁)] is a smooth function and 𝑟 (w) is a possibly non-smooth
function. In machine learning, 𝑟 usually corresponds to some regularizer on the
model parameter. We make the following assumption.

Assumption 3.6. Suppose the following conditions hold:

(i) 𝑔(w) is 𝐿-smooth and convex, and 𝑟 (w) is convex.
(ii) There exists 𝜎 > 0 such that E𝜁 [‖∇𝑔(w; 𝜁) − ∇𝑔(w)‖2

2] ≤ 𝜎2 for all w.

If the regularizer 𝑟 is non-smooth, the overall objective function is also non-
smooth. Consequently, applying SGD directly cannot exploit the smoothness of 𝑔,
which would otherwise enable faster convergence and enjoy the variance scaling in
the convergence bound.

To address this challenge, we can employ the stochastic proximal gradient descent
(SPGD) method:

w𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) + 𝑟 (w) + 1
2𝜂𝑡

‖w − w𝑡 ‖2
2

= arg min
w∈R𝑑

𝑟 (w) + 1
2𝜂𝑡

‖w − (w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ))‖2
2.

(3.19)

This is also known as forward-backward splitting, where w̃𝑡+1 = w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 )
is the forward step and the proximal mapping of 𝑟 is the backward step:

w𝑡+1 = prox𝜂𝑡𝑟 (w̃𝑡+1) = arg min
w
𝑟 (w) + 1

2𝜂𝑡
‖w − w̃𝑡+1‖2

2.

When 𝑟 is absent, the above update is equivalent to the SGD update. If 𝑟 (w) corre-
sponds to a domain constraint w ∈ W, i.e., 𝑟 (w) = I0−∞ (w ∈ W), the above update
becomes

w𝑡+1 = ΠW [w̃𝑡+1] = min
w∈W

‖w − w̃𝑡+1‖2
2, (3.20)
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Regularization 𝑟 ( ·) prox𝜂𝑟 (w̄) or prox𝜂𝑟 (𝑊̄ )

Euclidean norm square 𝜆
2 ‖w‖2

2
w̄

1+𝜆𝜂
Euclidean norm 𝜆‖w‖2

(
1 − 𝜆𝜂

‖w̄‖2

)
+w̄

Lasso 𝜆‖w‖1 sign(w̄) � max{ |w̄ | − 𝜆𝜂, 0}
Group Lasso 𝜆

∑
𝑔 ‖w𝑔 ‖2

(
1 − 𝜆𝜂

‖w̄𝑔 ‖2

)
+w̄𝑔 (for each group 𝑔)

Elastic Net 𝛼‖w‖1 + 𝛽
2 ‖w‖2

2
1

1+𝜂𝛽

(
sign(w̄) � max{ |w̄ | − 𝜂𝛼, 0}

)
Trace norm (nuclear) 𝜆‖𝑊 ‖∗ = 𝜆

∑
𝑖 𝜎𝑖 (𝑊 ) 𝑈 diag

(
(𝜎𝑖 − 𝜆𝜂)+

)
𝑉> (𝑊̄ =𝑈 diag(𝜎𝑖 )𝑉>)

Table 3.1: Examples of regularization functions 𝑟 (·) and their proximal mappings,
where 𝜎𝑖 denote the 𝑖-th singular value of a matrix.

which is the projection of w̃𝑡+1 = w𝑡 − 𝜂𝑡∇𝑔(w𝑡 , 𝜁𝑡 ) onto the constrained domain
W. This is known as projected SGD method.

Explanation of SPGD update

The update (3.19) is equivalent to:

w𝑡+1 = arg min
w
𝑔(w𝑡 ; 𝜁𝑡 ) + ∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) + 𝑟 (w) + 1

2𝜂𝑡
‖w − w𝑡 ‖2

2.

Unlike SGD, SPGD uses a stochastic linear approximation 𝑔(w𝑡 ; 𝜁𝑡 ) +
∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) + 𝑟 (w) as a stochastic surrogate for 𝑔(w) + 𝑟 (w).
Using the first-order optimality condition of (3.19), w𝑡+1 satisfies

w𝑡+1 = w𝑡 − 𝜂(∇𝑔(w𝑡 ; 𝜁𝑡 ) + 𝜕𝑟 (w𝑡+1)). (3.21)

It resembles SGD but differs in that it uses a stochastic gradient of 𝑔 evaluated
at w𝑡 and a subgradient of 𝑟 evaluated at w𝑡+1.

In order to make the update efficient, the proximal mapping of 𝑟 should be easily
computable. Table 3.1 presents several examples of regularizers 𝑟 and the corre-
sponding solutions of their proximal mappings, followed by explanations below. We
leave the detailed derivations of these proximal mappings to the reader as exercises.

Examples

Example 3.3 (Euclidean norm square). This is the most commonly used reg-
ularizer. Its proximal mapping shrinks the magnitude of the input vector w̄,
effectively performing weight decay.

Example 3.4 (ℓ1 norm). The ℓ1 norm regularizer 𝜆‖w‖1 is used in the well-
known Lasso method for linear regression. Its proximal mapping promotes
sparsity in the solution by setting some entries to zero if the corresponding
component of w̄ is smaller than 𝜂𝜆 in magnitude.
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Example 3.5 (Group Lasso). This is an extension of Lasso that groups fea-
tures together and enforces group-wise sparsity. Specifically, if one weight
within a group is set to zero, then all weights in that group are simultane-
ously set to zero.

Example 3.6 (Trace norm). The trace norm regularizer for a matrix is anal-
ogous to the ℓ1 norm for a vector, as it promotes low-rank structure. Its prox-
imal mapping induces a low-rank solution by setting the singular values of
the input matrix to zero whenever they are smaller than 𝜂𝜆.

3.2.1 Convex Functions

Lemma 3.6 Consider the update

w𝑡+1 = arg min
w∈R𝑑

z>𝑡 (w − w𝑡 ) +
1

2𝜂𝑡
‖w − w𝑡 ‖2

2 + 𝑟 (w). (3.22)

If 𝑟 is 𝜇𝑟 -strongly convex, for any w we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
2𝜂𝑡

‖w𝑡 − w‖2
2 − ( 1

2𝜂𝑡
+ 𝜇𝑟

2
)‖w𝑡+1 − w‖2

2

− 1
2𝜂𝑡

‖w𝑡 − w𝑡+1‖2
2.

Proof. By the first-order optimality condition of (3.22), for any w we have

(z𝑡 + 𝜕𝑟 (w𝑡+1) +
1
𝜂𝑡

(w𝑡+1 − w𝑡 ))> (w − w𝑡+1) ≥ 0. (3.23)

By the strong convexity of 𝑟, we have

𝑟 (w𝑡+1) ≤ 𝑟 (w) + 𝜕𝑟 (w𝑡+1)> (w𝑡+1 − w) − 𝜇𝑟
2
‖w − w𝑡+1‖2

2.

Adding the above two inequalities, we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
𝜂𝑡

(w𝑡 − w𝑡+1)> (w𝑡+1 − w) − 𝜇𝑟
2
‖w − w𝑡+1‖2

2

=
1

2𝜂𝑡
(‖w𝑡 − w‖2

2 − ‖w𝑡+1 − w‖2
2 − ‖w𝑡 − w𝑡+1‖2

2) −
𝜇𝑟
2
‖w − w𝑡+1‖2

2.

where the last equality uses the fact that 2(𝑎 − 𝑏)> (𝑏 − 𝑐) = ‖𝑎 − 𝑐‖2
2 − ‖𝑎 − 𝑏‖2

2 −
‖𝑏 − 𝑐‖2

2. ut
Theorem 3.5 Suppose Assumption 3.6 holds. Let 𝜂𝑡 = 𝜂 ≤ 1/𝐿 and w̄𝑇 =
1
𝑇

∑𝑇
𝑡=1 w𝑡+1. Then after 𝑇 iterations of SPGD update (3.19), we have
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E[𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝜎2.

If 𝜂 = min( 1
𝐿 ,

‖w1−w∗ ‖2√
2𝑇𝜎

), then

E [𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
√

2𝜎‖w1 − w∗‖2√
𝑇

+
𝐿‖w1 − w∗‖2

2
𝑇

.

 Why it matters

Insight 1: The theorem indicates that even if the objective has a non-smooth
regularizer 𝑟 , the convergence rate of SPGD still depends on the variance bound
𝜎2 instead of the Lipschitz constant of the objective function as in the analysis
of SGD for non-smooth convex functions.
Insight 2: Employing the proximal mapping of 𝑟 renders the convergence in-
dependent of the smoothness of 𝑟 . Consequently, this approach is advantageous
even when 𝑟 is smooth, particularly if it possesses a large smoothness constant.

Proof. Without loss of generality, we assume 𝑔 is 𝜇-strongly convex with 𝜇 ≥ 0
and 𝑟 is 𝜇𝑟 -strongly convex with 𝜇𝑟 ≥ 0 so that it covers both convex and strongly
convex cases.

By Lemma 3.6, we have

∇𝑔(w𝑡 , 𝜁𝑡 )> (w𝑡+1 − w) + 𝑟 (w𝑡+1) ≤ 𝑟 (w) + 1
2𝜂𝑡

(‖w𝑡 − w‖2
2 − ‖w𝑡+1 − w‖2

2)

− 𝜇𝑟
2
‖w − w𝑡+1‖2

2 −
1

2𝜂𝑡
‖w𝑡 − w𝑡+1‖2

2.

By the smoothness of 𝑔, we have

𝑔(w𝑡+1) ≤ 𝑔(w𝑡 ) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2.

By the strong convexity of 𝑔, we have

𝑔(w𝑡 ) ≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡 − w) − 𝜇

2
‖w𝑡 − w‖2

2.

Adding the above two inequalities, we have

𝑔(w𝑡+1) ≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w) − 𝜇

2
‖w𝑡 − w‖2

2 +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2.

Combining this with the first inequality for w = w∗, we have
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𝐹 (w𝑡+1) − 𝐹 (w∗) ≤
1

2𝜂𝑡
(‖w𝑡 − w∗‖2

2 − ‖w𝑡+1 − w∗‖2
2 − ‖w𝑡 − w𝑡+1‖2

2)

− 𝜇

2
‖w𝑡 − w∗‖2

2 −
𝜇𝑟
2
‖w𝑡+1 − w∗‖2

2 +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2

2

+ (∇𝑔(w𝑡 ) − ∇𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − w∗).

(3.24)

This is similar to (3.8) except for the two negative terms − 𝜇2 ‖w𝑡 −w∗‖2
2 −

𝜇𝑟
2 ‖w𝑡+1 −

w∗‖2
2, which are due to the 𝜇𝑟 -strong convexity of 𝑟 and 𝜇-strong convexity of 𝑔. If

𝜇𝑟 = 𝜇 = 0, the remaining proof is similar to that of Theorem 3.1 with the following
definition of ŵ𝑡+1:

ŵ𝑡+1 = arg min
w∈R𝑑

1
2𝜂𝑡

‖w − (w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ))‖2
2 + 𝑟 (w).

It used to bound the expectation of last term in the RHS of (3.24):

E[(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1 + ŵ𝑡+1 − w∗)] (3.25)
= E[(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1)] ≤ 𝜂𝑡E[‖(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖2

2] = 𝜂𝑡𝜎2,

where the inequality is due to Lemma 1.7.
ut

3.2.2 Strongly Convex Functions

We can prove a faster convergence when the loss function or the regularizer is
strongly convex.

Theorem 3.6 Suppose Assumption 3.6 holds and 𝑔 is 𝜇-strongly convex and 𝑟 is
𝜇𝑟 -strongly convex. Let 𝜂𝑡 = 1/((𝜇 + 𝜇𝑟 )𝑡 + 𝐿) and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡+1. Then after 𝑇

iterations of SPGD update (3.19), we have

E

[
1
𝑇

𝑇∑
𝑡=1

(𝐹 (w𝑡+1) − 𝐹 (w∗))
]
≤

(𝐿 + 𝜇𝑟 ) ‖w1 − w∗‖2
2

𝑇
+ (1 + log𝑇)𝜎2

𝑇 (𝜇 + 𝜇𝑟 )
.

Proof. Similar to the proof of Theorem 3.5, if 𝜂𝑡 ≤ 1
𝐿 we have

E[(𝐹 (w𝑡+1) − 𝐹 (w∗))]

≤ E
[
( 1
2𝜂𝑡

‖w𝑡 − w∗‖2
2 −

1
2𝜂𝑡

‖w𝑡+1 − w∗‖2
2 −

𝜇

2
‖w𝑡 − w∗‖2

2 −
𝜇𝑟
2
‖w𝑡+1 − w∗‖2

2

]
+ 𝜂𝑡𝜎2.

Taking summation over 𝑡 = 1, . . . , 𝑇 we have

86



3.2. STOCHASTIC PROXIMAL GRADIENT DESCENT

Algorithm 3 Restarted SPGD
1: Input: a learning schedule {𝜂𝑘 , 𝑇𝐾 }𝑇𝑘=1, starting point w1
2: for 𝑘 = 1, . . . , 𝐾 do
3: run SPGD with a learning rate 𝜂𝑘 for 𝑇𝑘 iterations starting from w𝑘
4: return an averaged solution w𝑘+1
5: end for

E

[
𝑇∑
𝑡=1

(𝐹 (w𝑡+1) − 𝐹 (w∗))
]

≤ E

[
𝑇∑
𝑡=1

( 1
2𝜂𝑡

− 1
2𝜂𝑡−1

− 𝜇 + 𝜇𝑟
2

) ‖w𝑡 − w∗‖2
2 +

1
2𝜂0

‖w1 − w∗‖2
2 +

𝜇𝑟
2
‖w1 − w∗‖2

2

]
+

𝑇∑
𝑡=1

𝜂𝑡𝜎
2.

Let 𝜂𝑡 = 1
(𝜇+𝜇𝑟 )𝑡+𝐿 . Then

1
2𝜂𝑡 −

1
2𝜂𝑡−1

− 𝜇+𝜇𝑟
2 = 0 and we have

E

[
1
𝑇

𝑇∑
𝑡=1

(𝐹 (w𝑡+1) − 𝐹 (w∗))
]

≤ 𝐿 + 𝜇𝑟
2𝑇

‖w1 − w∗‖2
2 +

1
𝑇

𝑇∑
𝑡=1

𝜎2

(𝜇 + 𝜇𝑟 )𝑡
≤ 𝐿 + 𝜇𝑟

2𝑇
‖w1 − w∗‖2

2 +
(1 + log𝑇)𝜎2

𝑇 (𝜇 + 𝜇𝑟 )
.

ut

A Restarted Approach

The log𝑇 factor in the convergence bound can be removed using a restarting scheme.
It runs in multiple stages. At stage 𝑘 , it start with a step size 𝜂𝑘 and ran SGD with
a number of iterations 𝑇𝑘 and returns an averaged solution w𝑘 . By choosing 𝜂𝑘 , 𝑇𝑘
appropriately, after a logarithmic number of 𝐾 stages, we will get a solution w𝐾
satisfying E[𝐹 (w𝐾 ) − 𝐹 (w∗)] ≤ 𝜖 . The key motivation is coming from the one-
stage convergence bound in Theorem 3.5:

E[𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
‖w1 − w∗‖2

2
2𝜂𝑇

+ 𝜂𝜎2. (3.26)

Since the 𝜇-strong convexity of 𝐹 implies that ‖w1 − w∗‖2
2 ≤ 2

𝜇 (𝐹 (w1) − 𝐹 (w∗)),
then we can establish a recursion of the objective gap in a stage-wise manner. From
which, we can show the objective gap will decrease geometrically if 𝜂𝑘 decreases
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geometrically and 𝑇𝑘 increases accordingly. This is formally stated in the following
theorem.

Theorem 3.7 Suppose Assumption 3.6 holds, 𝐹 is 𝜇-strongly convex and there exists
𝜖1 such that 𝐹 (w1) − 𝐹 (w∗) ≤ 𝜖1. Let 𝜂𝑘 = min( 1

𝐿 ,
𝜖1

2𝑘+1𝜎2 ) and 𝑇𝑘 = 4
𝜇𝜂𝑘

. Then
after 𝐾 = blog2 (𝜖1/𝜖)c stages of Restarted SPGD updates (Alg. 3), we have

E [𝐹 (w𝐾+1) − 𝐹 (w∗))] ≤ 𝜖 .

The iteration complexity is
∑𝐾
𝑘=1 𝑇𝑘 = 𝑂 ( 𝜎2

𝜇𝜖 + 𝐿
𝜇 log( 𝜖1𝜖 )).

Proof. Let 𝜖𝑘 = 𝜖1/2𝑘 . Then 𝜖𝐾+1 = 𝜖1/2𝐾+1 ≤ 𝜖 and 𝜖𝐾 ≥ 𝜖 .
Applying the one-stage analysis of SPGD, we have

E[𝐹 (w̄𝑘+1) − 𝐹 (w∗)] ≤
E[‖w𝑘 − w∗‖2

2]
2𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2 ≤ E[𝐹 (w𝑘) − 𝐹 (w∗)]
𝜇𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2.

Thenwe prove by induction. AssumeE[𝐹 (w𝑘)−𝐹 (w∗)] ≤ 𝜖𝑘 , we proveE[𝐹 (w𝑘+1)−
𝐹 (w∗)] ≤ 𝜖𝑘+1.

E[𝐹 (w̄𝑘+1) − 𝐹 (w∗)] ≤
E[‖w𝑘 − w∗‖2

2]
2𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2.

≤ 𝜖𝑘
𝜇𝜂𝑘𝑇𝑘

+ 𝜂𝑘𝜎2 ≤ 𝜖𝑘
𝜇𝜂𝑘𝑇𝑘

+ 𝜖𝑘+1

2
≤ 𝜖𝑘

4
+ 𝜖𝑘+1

2
= 𝜖𝑘+1.

Thus, E[𝐹 (w𝐾+1) − 𝐹 (w∗)] ≤ 𝜖𝐾+1 ≤ 𝜖 . The total number of iterations is

𝐾∑
𝑘=1

𝑇𝑘 =
𝐾∑
𝑘=1

4
𝜇𝜂𝑘

=
𝐾∑
𝑘=1

max
(
4 · 2𝑘+1𝜎2

𝜇𝜖1
,
4𝐿
𝜇

)
≤

𝐾∑
𝑘=1

max
(

8𝜎2

𝜇𝜖2𝐾−𝑘 ,
4𝐿
𝜇

)
= 𝑂

(
𝜎2

𝜇𝜖
+ 𝐿
𝜇

log
( 𝜖1
𝜖

) )
.

ut

Last-iterate Convergence

Furthermore, if 𝑔(·) and/or 𝑟 is strongly convex, we can also prove ‖w𝑡+1 − w∗‖2
converges to zero.

Lemma 3.7 If 𝑔 is 𝐿-smooth and 𝜇-strongly convex and 𝑟 is 𝜇𝑟 -strongly convex, for
the update (3.19) with 𝜂𝑡 ≤ 2/𝐿 we have

E𝜁𝑡 [‖w𝑡+1 − w∗‖2
2] ≤

(1 − (2𝜂𝑡 − 𝜂2
𝑡 𝐿)𝜇)‖w𝑡 − w∗‖2

2 + 𝜂2
𝑡𝜎

2

1 + 𝜂𝜇𝑟
. (3.27)
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If 𝑔 𝜇-strongly convex and ‖𝜕𝑔(w)‖2 ≤ 𝐺 for w ∈ dom(𝑟), for the update (3.19) we
have

E𝜁𝑡 [‖w𝑡+1 − w∗‖2
2] ≤

(1 − 2𝜂𝑡𝜇)‖w𝑡 − w∗‖2
2 + 𝜂2

𝑡 (𝜎2 + 4𝐺2)
1 + 𝜂𝜇𝑟

. (3.28)

Proof. Let E𝑡 = E𝜁𝑡 . Let us consider smooth case first. Due to the optimality condi-
tion of w∗, we have

w∗ = arg min
w∈R𝑑

∇𝑔(w∗)> (w − w∗) +
1

2𝜂𝑡
‖w − w∗‖2

2 + 𝑟 (w)

= prox𝜂𝑡𝑟 (w∗ − 𝜂𝑡∇𝑔(w∗)).

Due to the Lipschitz continuity of the prox operator (see Lemma 1.7), we have

E𝑡 ‖w𝑡+1 − w∗‖2
2 ≤ 1

1 + 𝜂𝜇𝑟
E𝑡 ‖w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ) − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2

2. (3.29)

Next, we bound

E𝑡 ‖w𝑡 − 𝜂𝑡∇𝑔(w𝑡 ; 𝜁𝑡 ) − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2
2

= E𝑡 ‖ [w𝑡 − 𝜂𝑡∇𝑔(w𝑡 )] − [w∗ − 𝜂𝑡∇𝑔(w∗)] + 𝜂𝑡∇𝑔(w𝑡 ) − 𝜂𝑡∇𝑔(w𝑡 , 𝜁𝑡 )‖2
2

= E𝑡 ‖ [w𝑡 − 𝜂𝑡∇𝑔(w𝑡 )] − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2
2 + 𝜂2

𝑡𝜎
2,

where the last inequality uses E𝑡 [∇𝑔(w𝑡 , 𝜁𝑡 ) − ∇𝑔(w𝑡 )] = 0 by expanding the RHS.
Let us bound the first term below.

E𝑡 ‖[w𝑡 − 𝜂𝑡∇𝑔(w𝑡 )] − [w∗ − 𝜂𝑡∇𝑔(w∗)] ‖2
2

= E𝑡 ‖w𝑡 − w∗‖2
2 + 𝜂2

𝑡 E𝑡 ‖∇𝑔(w𝑡 ) − ∇𝑔(w∗)‖2
2 − 2𝜂𝑡E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))

≤ E𝑡 ‖w𝑡 − w∗‖2
2 + 𝜂2

𝑡 𝐿E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))
− 2𝜂𝑡E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))
= E𝑡 ‖w𝑡 − w∗‖2

2 − (2𝜂𝑡 − 𝜂2
𝑡 𝐿)E𝑡 (w𝑡 − w∗)> (∇𝑔(w𝑡 ) − ∇𝑔(w∗))

≤ E𝑡 ‖w𝑡 − w∗‖2
2 − (2𝜂𝑡 − 𝜂2

𝑡 𝐿)𝜇E𝑡 ‖w𝑡 − w∗‖2
2

≤ (1 − (2𝜂𝑡 − 𝜂2
𝑡 𝐿)𝜇)E𝑡 ‖w𝑡 − w∗‖2

2,

where the first inequality uses Lemma 1.5(c) and the second inequality follows from
Lemma 1.6(c).

If 𝑔 is non-smooth, we bound E‖∇𝑔(w𝑡 ) − ∇𝑔(w∗)‖2
2 ≤ 4𝐺2. Combining this

with (3.29) concludes the proof.
ut

Theorem 3.8 Suppose Assumption 3.6 holds and 𝑔 is 𝜇-strongly convex and 𝑟 is
𝜇𝑟 -strongly convex. Let 𝜂𝑡 = 𝜂 ≤ min(1/𝐿, 1/𝜇𝑟 ). Then after 𝑇 iterations of
SPGD (3.19) update, we have

89



E[‖w𝑇+1 − w∗‖2
2] ≤ 𝑒−

𝜂 (𝜇+𝜇𝑟 )𝑇
2 E[‖w1 − w∗‖2

2] +
𝜂𝜎2

𝜇 + 𝜇𝑟
. (3.30)

 Why it matters

This theorem indicates that if we set 𝜂 ≤ 𝑂 ((𝜇 + 𝜇𝑟 )𝜖/𝜎2), then with 𝑇 =

𝑂̃
(

𝜎2

(𝜇+𝜇𝑟 )2 𝜖

)
iterations, the algorithm finds an solution w𝑇+1 that is 𝜖-close to

the optimal solution w∗ measured by E[‖w𝑇+1 −w∗‖2
2], where 𝑂̃ (·) hides a log-

arithmic factor of log(1/𝜖).

Proof. If 𝜂 ≤ 1/𝐿, Lemma 3.7 implies that

E[‖w𝑡+1 − w∗‖2
2] ≤

(1 − 𝜂𝜇)E[‖w𝑡 − w∗‖2
2] + 𝜂2𝜎2

1 + 𝜂𝜇𝑟

≤
(
1 − 𝜂𝜇𝑟

2

)
{(1 − 𝜂𝜇)E[‖w𝑡 − w∗‖2

2] + 𝜂2𝜎2}

≤
(
1 − 𝜂𝜇𝑟

2
− 𝜂𝜇 + 𝜂

2𝜇𝜇𝑟
2

)
E[‖w𝑡 − w∗‖2

2] + 𝜂2𝜎2,

where the first inequality is due to 1 ≤ (1 + 𝜂𝜇𝑟 ) (1 − 𝜂𝜇𝑟
2 ) = 1 + 𝜂𝜇𝑟

2 − 𝜂2𝜇2
𝑟

2 as
𝜂𝜇𝑟 ≤ 1. Then

E[‖w𝑡+1 − w∗‖2
2] ≤ (1 − 𝜂𝜇𝑟

2
− 𝜂𝜇

2
)E[‖w𝑡 − w∗‖2

2] + 𝜂2𝜎2.

Unroll this inequality for 𝑡 = 1, . . . , 𝑇 , we have

E[‖w𝑇+1 − w∗‖2
2] ≤

(
1 − 𝜂(𝜇 + 𝜇𝑟 )

2

)
E‖w𝑇 − w∗‖2

2 + 𝜂2𝜎2.

Applying this inequality 𝑇 times gives

E[‖w𝑇+1 − w∗‖2
2]

≤
(
1 − 𝜂(𝜇 + 𝜇𝑟 )

2

)𝑇
E‖w1 − w∗‖2

2 +
𝑇−1∑
𝑡=0

(
1 − 𝜂(𝜇 + 𝜇𝑟 )

2

) 𝑡
𝜂2𝜎2.

Since (1 − 𝛼)𝑇 ≤ 𝑒−𝛼𝑇 for 𝛼 ∈ (0, 1) and ∑𝑇−1
𝑡=0 𝛼

𝑡 < 1
1−𝛼 , we have

E[‖w𝑇+1 − w∗‖2
2] ≤ 𝑒−

𝜂 (𝜇+𝜇𝑟 )𝑇
2 E[‖w1 − w∗‖2

2] + 𝜂2𝜎2 2
𝜂(𝜇 + 𝜇𝑟 )

= 𝑒−
𝜂 (𝜇+𝜇𝑟 )𝑇

2 E[‖w1 − w∗‖2
2] +

2𝜂𝜎2

𝜇 + 𝜇𝑟
.

ut
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Corollary 3.1. Under the setting of Theorem 3.8, if 1
𝜂𝑡

= 𝜇̄
2 +

√
( 𝜇̄2 )2 + 1

𝜂2
𝑡−1

with

𝜂0 ≤ min(1/𝐿, 1/𝜇𝑟 ) and 𝜇̄ = (𝜇 + 𝜇𝑟 )/2, then we have

E[‖w𝑇+1 − w∗‖2
2] ≤

4‖w1 − w∗‖2
2

𝜂2
0 𝜇̄

2𝑇2
+ 2𝜎2

𝜇̄2𝑇
.

Proof. Let 𝛿𝑡 = ‖w𝑡 −w∗‖2
2. Due to the update of 𝜂𝑡 , we have 1− 𝜇̄𝜂𝑡 = 𝜂2

𝑡

𝜂2
𝑡−1

. Hence,
we have:

E[ 𝛿𝑇+1] ≤ E[(1 − 𝜇̄𝜂𝑇 )𝛿𝑇 ] + 𝜎2𝜂2
𝑇 ≤ E

[
𝜂2
𝑇

𝜂2
𝑇−1

𝛿𝑇

]
+ 𝜎2𝜂2

𝑇 .

Unrolling this inequality for 𝑡 = 1, . . . , 𝑇 , we have

E[ 𝛿𝑇+1] ≤ E
[
𝜂2
𝑇

𝜂2
𝑇−2

𝛿𝑇−1

]
+ 𝜎2𝜂2

𝑇 ∗ 2 ≤
𝜂2
𝑇

𝜂2
0
𝛿1 + 𝜎2𝜂2

𝑇 ∗ 𝑇.

Since 1
𝜂𝑡

= 𝜇̄
2 +

√
( 𝜇̄2 )2 + 1

𝜂2
𝑡−1

. Then, we have 1
𝜂𝑡

≥ 𝜇̄
2 + 1

𝜂𝑡−1
. As a result, 1

𝜂𝑇
≥

𝜇̄𝑇
2 + 1

𝜂0
≥ max(𝐿, 𝜇𝑟 ), where 𝜂0 ≤ min( 1

𝐿 ,
1
𝜇𝑟
). Hence, 𝜂𝑇 ≤ 2

𝜇̄𝑇 , and

E[𝛿𝑇+1] ≤
4𝛿1

𝜂2
0 𝜇̄

2𝑇2
+ 2𝜎2

𝜇̄2𝑇
.

ut

 Why it matters

This corollary shows that a decreasing learning rate schedule can be usedwithout
requiring prior knowledge of 𝜖 , in order to obtain a solution w𝑇+1 that is 𝜖-close
to the optimum w∗, measured by E[‖w𝑇+1 − w∗‖2

2]. The iteration complexity is

𝑇 = O
(
max

{
1

𝜇̄𝜂0
√
𝜖
,
𝜎2

𝜇̄2𝜖

})
.

3.3 Stochastic Coordinate Descent

In this section, we present stochastic coordinate descent (SCD) for solving the
stochastic optimization:

min
𝛼∈Ω⊆R𝑛

𝑓 (𝛼) = E[ 𝑓 (𝛼, 𝜉)] . (3.31)
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where Ω = Ω1 ×Ω2 · · · ×Ω𝑛.
The key motivation is that if the dimensionality 𝑛 of 𝛼 is very large, then comput-

ing ∇ 𝑓 (𝛼, 𝜉) could be expensive at each iteration. However, if the function exhibits
decomposable structure over dimensions of 𝛼, then we can sample a random coordi-
nate of 𝛼 and update it. To this end, we assume that [∇ 𝑓 (𝛼, 𝜉)]𝑖 ,∀𝑖 ∈ [𝑛] is easy to
compute. In machine learning applications, this is possible if 𝑓 (𝛼, 𝜉) = 𝛼>𝒈(𝜉) and
computing each coordinate of 𝒈(𝜉) is much more cheaper than computing itself. An
example is the COCE problem (2.62), which will be discussed in Section 5.5.

Let us consider a simple version of SCD. At each iteration 𝑡, a coordinate de-
noted by 𝑖𝑡 is randomly sampled from {1, . . . , 𝑛} with uniform probabilities. Then
we compute ∇𝑖𝑡 𝑓 (𝛼𝑡 , 𝜉𝑡 ) = [∇ 𝑓 (𝛼𝑡 , 𝜉𝑡 )]𝑖𝑡 and update 𝛼 by

𝛼𝑡+1,𝑖 =

{
ΠΩ𝑖 [𝛼𝑡 ,𝑖 − 𝜂∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 )] if 𝑖 = 𝑖𝑡
𝛼𝑡 ,𝑖 o.w.

Convergence Analysis

We make the following assumption.

Assumption 3.7. The following conditions hold:

(i) 𝑓 (𝛼) is convex;
(ii) For any 𝛼, we have E[‖∇𝑖 𝑓 (𝛼; 𝜁) − ∇𝑖 𝑓 (𝛼)‖2

2] ≤ 𝜎2
𝑖 for some 𝜎𝑖 ≥ 0;

(iii) ∇ 𝑓 is 𝐿𝑖-Lipschitz continuous w.r.t to the 𝑖-th coordinate, i.e.,

‖∇ 𝑓 (𝛼) − ∇ 𝑓 (𝛼 + e𝑖𝛿)‖2 ≤ 𝐿𝑖 |𝛿 |.

Theorem 3.9 Let 𝛼̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 𝛼𝑡+1, 𝐿̄ = max𝑖 𝐿𝑖 . If 𝜂𝑡 = 𝜂 ≤ 1

𝐿̄
, after 𝑇 iterations

of SCD update we have

E
[
𝑓 (𝛼̄𝑡 ) − 𝑓 (𝛼∗)

]
≤ (𝑛 − 1) ( 𝑓 (𝛼1) − 𝑓 (𝛼∗))

𝑇
+ 𝑛

2𝜂𝑇
‖𝛼1 − 𝛼∗‖2

2 +
𝑛∑
𝑖=1

𝜂𝜎2
𝑖 .

If ‖𝛼1 − 𝛼∗‖2
2 ≤ 𝐷2,

∑𝑛
𝑖=1 𝜎

2
𝑖 ≤ 𝜎2, with 𝜂 = 𝑂 (min(

√
𝑛√

2𝑇𝜎
, 1/𝐿̄)), we have

E
[
𝑓 (𝛼̄𝑡 ) − 𝑓 (𝛼∗)

]
≤ (𝑛 − 1)( 𝑓 (𝛼1) − 𝑓 (𝛼∗))

𝑇
+
√

2𝑛𝐷𝜎
√
𝑇

+ 𝐿̄𝑛𝐷
2

𝑇
.

 Why it matters

According to the theorem, SCD’s iteration complexity is 𝑂 ( 𝑛𝐷2𝜎2

𝜖 2 ). Although
this is 𝑛 times higher than that of SGD, it is offset by the fact that each individual
iteration of SCD can be 𝑛 times cheaper to compute.
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Algorithm 4 SCD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point 𝛼1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Sample a coordinate 𝑖𝑡 uniformly
4: Compute an unbiased coordinate gradient estimator ∇𝑖𝑡 𝑓 (𝛼𝑡 , 𝜉𝑡 )
5: Update

𝛼𝑡+1,𝑖 =

{
ΠΩ𝑖 [𝛼𝑡,𝑖 − 𝜂𝑡∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ) ] if 𝑖 = 𝑖𝑡
𝛼𝑡,𝑖 o.w.

6: end for

Proof. To facilitate the analysis, we consider a virtual sequence {𝛼̃𝑡 } defined by

𝛼̃𝑡+1 = ΠΩ [𝛼𝑡 − 𝜂𝑡∇ 𝑓 (𝛼𝑡 , 𝜉𝑡 )] .

Due to the decomposability of Ω = Ω1 × · · ·Ω𝑛, it implies that

𝛼̃𝑡+1,𝑖 = ΠΩ𝑖 [𝛼𝑡 ,𝑖 − 𝜂𝑡∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 )],∀𝑖.

Applying Lemma 3.6 to each coordinate of 𝛼̃𝑡+1 with 𝑟 (𝛼𝑖) = I0−∞ (𝛼𝑖 ∈ Ω𝑖), we
have

E[∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤
1

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2 −
1

2𝜂𝑡
‖𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2

2]

− 1
2𝜂𝑡

E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2
2] .

Then,

E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤
1

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2 −
1

2𝜂𝑡
‖𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2

2]

− 1
2𝜂𝑡

E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2
2] + E[(∇𝑖 𝑓 (𝛼𝑡 ) − ∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ))> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] .

Similar to (3.25), the last term in the RHS can be bounded by E[(∇𝑖 𝑓 (𝛼𝑡 ) −
∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ))> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤ E(∇𝑖 𝑓 (𝛼𝑡 ) − ∇𝑖 𝑓 (𝛼𝑡 , 𝜉𝑡 ))2 ≤ 𝜂𝑡𝜎

2
𝑖 . Then adding

the above inequality over 𝑖 = 1, . . . , 𝑛, we have

E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)] ≤
1

2𝜂𝑡
E

[
‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2 −
1

2𝜂𝑡
‖𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2

2

]
− 1

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2

2] + 𝜂𝑡𝜎2
𝑖 .

Due to the randomness of 𝑖𝑡 , we have
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E[(𝛼𝑡+1,𝑖 − 𝛼∗,𝑖)2] = 1
𝑛
E[(𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)2] + (1 − 1

𝑛
)E[(𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)2]

E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖)] =
1
𝑛
E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼̃𝑡+1,𝑖 − 𝛼∗,𝑖)]

+ (1 − 1
𝑛
)E[∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)]

E[‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2] =

1
𝑛
E[‖𝛼𝑡 ,𝑖 − 𝛼̃𝑡+1,𝑖 ‖2

2] .

Combining the above, we have

E[𝑛∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) − (𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)]

≤ 1
2𝜂𝑡

E[‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2] −

1
2𝜂𝑡

E[(𝑛‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2 − (𝑛 − 1)‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2

2)]

− 𝑛

2𝜂𝑡
E[‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2

2] + 𝜂𝑡𝜎2
𝑖 .

Adding this over 𝑖 = 1, . . . , 𝑛, we have

E
[
𝑛

𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) −
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)
]

≤ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖 .

For the LHS, we have

𝑛
𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) −
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

= 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼∗,𝑖𝑡 ) + 𝑛
𝑛∑
𝑖≠𝑖𝑡

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

−
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

= 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼∗,𝑖𝑡 ) − 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖𝑡 − 𝛼∗,𝑖𝑡 )

+
𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

= 𝑛∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ) + ∇ 𝑓 (𝛼𝑡 )> (𝛼𝑡 − 𝛼∗).

By the assumption, we have
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∇𝑖𝑡 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ) = ∇ 𝑓 (𝛼𝑡 )>e𝑖𝑡 (𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 )

≥ 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼𝑡 ) −
𝐿𝑖𝑡
2

‖(𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 )‖2
2

∇ 𝑓 (𝛼𝑡 )> (𝛼𝑡 − 𝛼∗) ≥ 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗).

Combining the above, we have

𝑛
𝑛∑
𝑖=1

∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡+1,𝑖 − 𝛼∗,𝑖) −
𝑛∑
𝑖=1

(𝑛 − 1)∇𝑖 𝑓 (𝛼𝑡 )> (𝛼𝑡 ,𝑖 − 𝛼∗,𝑖)

≥ 𝑛( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼𝑡 ) −
𝐿𝑖𝑡
2

‖𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ‖2
2) + 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗).

Thus, we have

E[𝑛( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼𝑡 ) −
𝐿𝑖𝑡
2

‖𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ‖2
2) + 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗)]

≤ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖 .

Re-arranging this, we have

E[𝑛( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗) − (𝑛 − 1)( 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗))]

≤ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖

+ E
[
𝑛𝐿𝑖𝑡

2
‖𝛼𝑡+1,𝑖𝑡 − 𝛼𝑡 ,𝑖𝑡 ‖2

2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
=

𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖

+ E
[ 𝑛∑
𝑖=1

𝑛𝐿𝑖
2

‖𝛼𝑡+1,𝑖 − 𝛼𝑡 ,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼𝑡+1,𝑖 ‖2
2

]
.

If 𝜂𝑡 ≤ 1
𝐿̄
, the sum of the last two terms is less than 0, then we have

E[ 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗)]
≤ E[(𝑛 − 1) ( 𝑓 (𝛼𝑡 ) − 𝑓 (𝛼∗)) − (𝑛 − 1)( 𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗))]

+ 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡 ,𝑖 − 𝛼∗,𝑖 ‖2
2

]
− 𝑛

2𝜂𝑡
E
[ 𝑛∑
𝑖=1

‖𝛼𝑡+1,𝑖 − 𝛼∗,𝑖 ‖2
2

]
+

𝑛∑
𝑖=1

𝜂𝑡𝜎
2
𝑖 .
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Algorithm 5 SMD
1: Input: learning rate schedule {𝜂𝑡 }𝑇𝑡=1, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update the model w by w𝑡+1 = arg minw∈R𝑑 z>𝑡 (w − w𝑡 ) + 1

𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w) .

5: end for

Averaging over 𝑡 = 1, . . . , 𝑇 , we have

E
[
1
𝑇

𝑇∑
𝑡=1

𝑓 (𝛼𝑡+1) − 𝑓 (𝛼∗)
]
≤ (𝑛 − 1) ( 𝑓 (𝛼1) − 𝑓 (𝛼∗))

𝑇
+ 𝑛

2𝜂𝑇
‖𝛼1 − 𝛼∗‖2

2

+
𝑛∑
𝑖=1

𝜂𝜎2
𝑖 ,

which concludes the proof.
ut

3.4 Stochastic Mirror Descent

The SGD update (3.2) and the SPGD update (3.19) can be generalized using the
Bregman divergence instead of the Euclidean distance. Let 𝜑 be an 𝛼-strongly con-
vex function with respect to a general norm ‖ · ‖. Recall the definition of Bregman
divergence 𝐷𝜑 (w,w′) in Definition 1.7 induced by 𝜑. Due to the strong convexity
of 𝜑, we have,

𝐷𝜑 (w,w′) ≥ 𝛼

2
‖w − w′‖2. (3.32)

The stochastic mirror descent (SMD) update applied to non-smooth convex opti-
mization problem (3.1) is given by

w𝑡+1 = arg min
w∈R𝑑

G(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ). (3.33)

The SMD update applied to composite optimization problem (3.18) is given by

w𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w). (3.34)
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Examples

Example 3.7 (Euclidean distance). By choosing 𝜑(·) = 1
2 ‖ · ‖2

2, which is 1-
strongly convex with respect to ‖ · ‖2, the Bregman divergence reduces to the
Euclidean distance, and the above updates simplify to SGD or SPGD.

Example 3.8 (KL Divergence). Let us consider another example, where
𝑟 (w) = I0−∞ (w ∈ Δ) and Δ𝑑 = {w ∈ R𝑑 : w ≥ 0,

∑𝑑
𝑖=1 [w]𝑖 = 1}.

By choosing 𝜑(w) = ∑𝑑
𝑖=1 [w]𝑖 log[w]𝑖 , which is 1-strongly convex w.r.t ‖ · ‖1

(cf. Lemma 1.10), the Bregman divergence reduces to the KL-divergence:

𝐷𝜑 (w, u) =
𝑑∑
𝑖=1

[w]𝑖 log
[w]𝑖
[u]𝑖

,

and the SMD update (3.34) simplifies to

[w𝑡+1]𝑖 =
[w𝑡 ]𝑖 exp(−𝜂𝑡 [∇𝑔(w𝑡 ; 𝜉𝑡 )]𝑖)∑𝑑
𝑗=1 [w𝑡 ] 𝑗 exp(−𝜂𝑡 [∇𝑔(w𝑡 ; 𝜉𝑡 )] 𝑗 )

,

which is also known as stochastic exponential gradient descent.

Convergence Analysis

The following lemma is similar to Lemma 1.7.

Lemma 3.8 If 𝑟 (·) is convex and 𝜑 is 𝛼-strongly convex w.r.t a norm ‖ · ‖, with

z1 = arg min
w

w>a + 𝑟 (w) + 1
𝜂
𝐷𝜑 (w, z),

z2 = arg min
w

w>b + 𝑟 (w) + 1
𝜂
𝐷𝜑 (w, z),

we have ‖z1 − z2‖ ≤ 𝜂
𝛼 ‖a − b‖∗.

Proof. By the optimality of z1 and z2 we have

u :=
∇𝜑(z) − ∇𝜑(z1)

𝜂
− a ∈ 𝜕𝑟 (z1)

v :=
∇𝜑(z) − ∇𝜑(z2)

𝜂
− b ∈ 𝜕𝑟 (z2).

Since 𝑟 (x) is convex, we have

𝑟 (z1) ≥ 𝑟 (z2) + v> (z1 − z2)
𝑟 (z2) ≥ 𝑟 (z1) + u> (z2 − z1).
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Adding them together, we have

0 ≤ (u − v)> (z1 − z2) =
1
𝜂
(𝜂b − 𝜂a + ∇𝜑(z2) − ∇𝜑(z1))> (z1 − z2),

which implies

1
𝜂
(∇𝜑(z1) − ∇𝜑(z2))> (z1 − z2) ≤ (b − a)> (z1 − z2) ≤ ‖b − a‖∗‖z1 − z2‖.

Since 𝜑 is 𝛼-strongly convex, similar to Lemma 1.6 (c) we have

(∇𝜑(z1) − ∇𝜑(z2))> (z1 − z2) ≥ 𝛼‖z1 − z2‖2.

Combining the above two inequalities, we have ‖z1 − z2‖ ≤ 𝜂
𝛼 ‖a − b‖∗. ut

Lemma 3.9 (Generalized Three-point Equality) For any w,w𝑡 ,w𝑡+1, we have

(∇𝜑(w𝑡 ) − ∇𝜑(w𝑡+1))> (w𝑡+1 − w) = 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w𝑡+1,w𝑡 ).

Proof.

𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w,w𝑡 )
= −𝜑(w𝑡+1) − ∇𝜑(w𝑡+1)> (w − w𝑡+1) + 𝜑(w𝑡 ) + ∇𝜑(w𝑡 )> (w − w𝑡 )
= (∇𝜑(w𝑡+1) − ∇𝜑(w𝑡 ))> (w𝑡+1 − w) − 𝜑(w𝑡+1) + 𝜑(w𝑡 ) + ∇𝜑(w𝑡 )> (w𝑡+1 − w𝑡 )
= (∇𝜑(w𝑡+1) − ∇𝜑(w𝑡 ))> (w𝑡+1 − w) − 𝐷𝜑 (w𝑡+1,w𝑡 ).

Rearranging this equality finishes the proof. ut

The following lemma is similar to Lemma 3.6.

Lemma 3.10 Consider the update

w𝑡+1 = arg min
w∈R𝑑

z>𝑡 (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w). (3.35)

If 𝐷𝑟 (w,w′) ≥ 𝜇𝐷𝜑 (w,w′), then for any w we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) − ( 1

𝜂𝑡
+ 𝜇)𝐷𝜑 (w,w𝑡+1)

− 1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

Proof. By the first-order optimality condition of (3.35), we have

(z𝑡 + 𝜕𝑟 (w𝑡+1) +
1
𝜂𝑡

(∇𝜑(w𝑡+1) − ∇𝜑(w𝑡 )))> (w − w𝑡+1) ≥ 0. (3.36)

By the assumption of 𝑟 , we have
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𝜇𝐷𝜑 (w,w𝑡+1) ≤ 𝑟 (w) − 𝑟 (w𝑡+1) − 𝜕𝑟 (w𝑡+1)> (w − w𝑡+1).

Adding the above two inequalities, we have

z>𝑡 (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w)

≤ 1
𝜂𝑡

(∇𝜑(w𝑡 ) − ∇𝜑(w𝑡+1))> (w𝑡+1 − w) − 𝜇𝐷𝜑 (w,w𝑡+1)

=
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) − ( 1

𝜂𝑡
+ 𝜇)𝐷𝜑 (w,w𝑡+1) −

1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

where the last equality uses Lemma 3.9. ut

3.4.1 Non-smooth Composite Problems

Let us first analyze SMD (3.34) for the composite problem (3.18) under a modified
Assumption.

Assumption 3.8. Suppose the following conditions hold:

(i) 𝑔 is convex and 𝐿-smooth with respect to the norm ‖ · ‖, and 𝑟 is convex.
(ii) There exists 𝜎 > 0 such that E𝜁 [∇𝑔(w; 𝜁)] = ∇𝑔(w) and E𝜁 [‖∇𝑔(w; 𝜁) −

∇𝑔(w)‖2
∗] ≤ 𝜎2 for all w.

Theorem 3.10 Suppose Assumption 3.8 holds. Let 𝜂𝑡 = 𝜂 ≤ 𝛼/𝐿 and w̄𝑇 =
1
𝑇

∑𝑇
𝑡=1 w𝑡+1. After𝑇 iterations of SMDupdate (3.34) for the composite problem (3.18),

we have

E[𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
𝐷𝜑 (w1,w∗)

𝜂𝑇
+ 𝜂𝜎

2

𝛼
.

If 𝜂 = min
(
𝛼
𝐿 ,

√
𝛼𝐷𝜑 (w1 ,w∗ )√

𝑇𝜎

)
, then

E [𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
2𝜎

√
𝐷𝜑 (w1,w∗)√
𝑇𝛼

+
2𝐿𝐷𝜑 (w1,w∗)

𝑇𝛼
.

 Why it matters

The key difference of the above result of SMD from that of SPGD in Theo-
rem 3.5 lies in the divergence measure and the variance bound that is measured
in the dual norm. Let us consider 𝑟 (w) = I0−∞ (w ∈ Δ𝑑). With the Euclidean
setup, the convergence upper bound is dominated by 𝑂 ( 𝜎2 ‖w1−w∗ ‖2√

𝑇
), where

𝜎2
2 ≥ E‖∇𝑔(w, 𝜁) − ∇𝑔(w)‖2

2 for all w, 𝜁 .
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In contrast, with the stochastic exponential gradient descent update, the con-

vergence upper bound is dominated by 𝑂 ( 𝜎∞
√
𝐷𝜑 (w1 ,w∗ )√
𝑇

), where 𝜎2
∞ ≥

E‖∇𝑔(w, 𝜁) − ∇𝑔(w)‖2
∞ for all w, 𝜁 . If we set [w1]𝑖 = 1

𝑛 for all 𝑖, then we
get 𝐷𝜑 (w1,w∗) ≤ log 𝑑 for all w∗ ∈ Δ𝑑 . In addition, ‖w1 − w∗‖2 could be
𝑂 (1). However, the constant 𝜎2

∞ can be smaller than 𝜎2
2 by a factor of 𝑑. Hence

𝜎∞
√
𝐷𝜑 (w1 ,w∗ )

𝜎2 ‖w1−w∗ ‖2
= 𝑂 ( log 𝑑√

𝑑
), which indicates that stochastic exponential gradient

descent may converge faster than SGD.

Proof. From Lemma 3.10, we have

∇𝑔(w𝑡 , 𝜁𝑡 )> (w𝑡+1 − w) + 𝑟 (w𝑡+1) − 𝑟 (w) ≤ 1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1))

− 1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

Same as (3.7) we have

𝑔(w𝑡+1) ≤ 𝑔(w) + ∇𝑔(w𝑡 )> (w𝑡 − w) + ∇𝑔(w𝑡 )> (w𝑡+1 − w𝑡 ) +
𝐿

2
‖w𝑡+1 − w𝑡 ‖2.

Adding the above two inequalities for w = w∗, we have

𝐹 (w𝑡+1) − 𝐹 (w∗) ≤
1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −
1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 )

+ 𝐿
2
‖w𝑡+1 − w𝑡 ‖2 + (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − w∗). (3.37)

Similar to the analysis of SPGD, we define:

ŵ𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 )> (w − w𝑡 ) +
1
𝜂𝑡
𝐷𝜑 (w,w𝑡 ) + 𝑟 (w),

which uses the full gradient ∇𝑔(w𝑡 ), making it independent of 𝜁𝑡 . Then we have

(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − w∗) (3.38)
≤ (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1) + (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (ŵ𝑡+1 − w∗).

In addition,

(∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1) ≤ ‖∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖∗‖w𝑡+1 − ŵ𝑡+1‖

≤ 𝜂𝑡
𝛼
‖∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖2

∗, (3.39)

where the last inequality follows Lemma 3.8. Adding (3.37), (3.38) and (3.39) and
using (3.32), we have
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𝐹 (w𝑡+1) − 𝐹 (w∗) ≤
1

2𝜂𝑡
(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −

(
𝛼

2𝜂𝑡
− 𝐿

2

)
‖w𝑡 − w𝑡+1‖2

+ (∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 ))> (w𝑡+1 − ŵ𝑡+1) +
𝜂𝑡
𝛼
‖∇𝑔(w𝑡 ) − 𝑔(w𝑡 , 𝜁𝑡 )‖2

∗ .

Taking expectation over 𝜁𝑡 on both sides, we have

E𝜁𝑡 [𝐹 (w𝑡+1) − 𝐹 (w∗)]

≤ E𝜁𝑡

[
1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −
(
𝛼

2𝜂𝑡
− 𝐿

2

)
‖w𝑡 − w𝑡+1‖2

]
+ 𝜂𝑡
𝛼
𝜎2.

If 𝜂𝑡 ≤ 𝛼
𝐿 , we have

E𝜁𝑡 [𝐹 (w𝑡+1) − 𝐹 (w∗)] ≤ E𝜁𝑡

[
1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1))
]
+ 𝜂𝑡
𝛼
𝜎2.

Summing over 𝑡 = 1, . . . , 𝑇 , we have

E

[
1∑𝑇
𝑡=1 𝜂𝑡

𝑇∑
𝑡=1

𝜂𝑡 (𝐹 (w𝑡+1) − 𝐹 (w∗))
]
≤
𝐷𝜑 (w1,w∗)∑𝑇

𝑡=1 𝜂𝑡
+

∑𝑇
𝑡=1 𝜂𝑡𝜎

2

𝛼
∑𝑇
𝑡=1 𝜂𝑡

.

Let 𝜂𝑡 = 𝜂 and optimizing the upper bound over 𝜂 finishes the proof. ut

3.4.2 Non-smooth Problems

Next, we present the convergence analysis of SMD (3.33) for non-smooth convex
objectives under the following assumption.

Assumption 3.9. For any w, we have E𝜁 [G(w; 𝜁)] ∈ 𝜕𝑔(w) and E[‖G(w; 𝜁)‖2
∗] ≤

𝐺2.

Theorem 3.11 Suppose Assumption 3.9 holds. Let the learning rate {𝜂𝑡 } be 𝜂𝑡 = 𝜂
and w̄𝑇 = 1

𝑇

∑𝑇
𝑡=1 w𝑡 . After 𝑇 iterations of SMD update (3.34), we have

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐷𝜑 (w∗,w1)

𝜂𝑇
+ 𝜂𝐺

2

2𝛼
.

If 𝜂 =
√

2𝛼𝐷𝜑 (w∗ ,w1 )√
𝑇𝐺

, then

E [𝑔(w̄𝑇 ) − 𝑔(w∗)] ≤
𝐺

√
2𝐷𝜑 (w∗,w1)√

𝛼𝑇
.

Proof. From Lemma 3.10, we have
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G(w𝑡 , 𝜁𝑡 )> (w𝑡+1 − w) ≤ 1
𝜂𝑡

(𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1)) −
1
𝜂𝑡
𝐷𝜑 (w𝑡+1,w𝑡 ).

Rearranging it, we get

𝜂𝑡G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w)
≤ 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w𝑡+1,w𝑡 ) + 𝜂𝑡G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w𝑡+1)
≤ 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) − 𝐷𝜑 (w𝑡+1,w𝑡 )

+
𝜂2
𝑡

2𝛼
‖G(w𝑡 ; 𝜁𝑡 )‖2

∗ +
𝛼

2
‖w𝑡 − w𝑡+1‖2,

where the last inequality uses the Cauchy-Schwarz inequality. Using (3.32), we have

𝜂𝑡G(w𝑡 ; 𝜁𝑡 )> (w𝑡 − w) ≤ 𝐷𝜑 (w,w𝑡 ) − 𝐷𝜑 (w,w𝑡+1) +
𝜂2
𝑡

2𝛼
‖G(w𝑡 ; 𝜁𝑡 )‖2

∗ . (3.40)

The remaining proof is similar to that of Theorem 3.2. ut

3.5 Adaptive Gradient Method (AdaGrad)

The stochastic algorithms discussed so far are fairly general and were originally de-
veloped to address a wide range of problems, extending beyond those encountered
specifically in machine learning. Nevertheless, the ERM problem of machine learn-
ing may exhibit some unique properties dependent on data. How to leverage them to
develop a stochastic algorithm that could be potentially faster in practice?

Below, we introduce Adaptive Gradient Method (AdaGrad), which employs an
adaptive step size, which incorporates knowledge of the geometry of the data ob-
served in earlier iterations to perform more informative gradient-based learning.

While AdaGrad was considered an important breakthrough in machine learning,
it indeed evolves from SMD.We use the same language as SMD to present AdaGrad
and its analysis. Let us consider the smooth problem (3.1) and recall the update of
SMD:

w𝑡+1 = arg min
w∈R𝑑

∇𝑔(w𝑡 ; 𝜁𝑡 )>w + 1
𝜂
𝐷𝜑 (w,w𝑡 ).

The key design toAdaGrad is to use a time-varying proximal function 𝜑𝑡 that changes
across iterations. A specific way to construction 𝜑𝑡 is the following.

Let 𝐻𝑡 = diag(𝑠𝑡 ,1, . . . , 𝑠𝑡 ,𝑑) be a diagonal positive matrix. Define 𝜑𝑡 (w) =
1
2w>𝐻𝑡w and a general norm ‖w‖𝐻 =

√
w>𝐻w. Then the Bregman divergence in-

duced by 𝜑𝑡 becomes:

𝐷𝜑𝑡 (w,w′) = 1
2
(w − w′)>𝐻𝑡 (w − w′) = 1

2

𝑑∑
𝑖=1

𝑠𝑡 ,𝑖 (𝑤𝑖 − 𝑤′
𝑖)2,
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Algorithm 6 AdaGrad
1: Input: learning rate parameter 𝜂, starting point w1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute an unbiased gradient estimator z𝑡 = ∇𝑔 (w𝑡 ; 𝜁𝑡 )
4: Update 𝑠𝑡,𝑖 =

√∑𝑡
𝜏=1 ‖ [∇𝑔 (w𝜏 ; 𝜁𝑡 ) ]𝑖 ‖2

2 , ∀𝑖.
5: Update the model w by w𝑡+1 = w𝑡 − 𝜂

s𝑡 ◦ z𝑡
6: end for

which is 1-strongly convex w.r.t ‖ · ‖𝐻 . The weights s𝑡 = (𝑠𝑡 ,1, . . . , 𝑠𝑡 ,𝑑) are updated
according to the following:

𝑠𝑡 ,𝑖 =

√√√ 𝑡∑
𝜏=1

[∇𝑔(w𝜏 ; 𝜁𝜏)]2
𝑖 ,∀𝑖, (3.41)

which essentially measures the growth of stochastic gradients across all iterations
before 𝑡.

Let z𝑡 = ∇𝑔(w𝑡 , 𝜁𝑡 ), and m1:𝑡 = [z1, . . . , z𝑡 ], and m1:𝑡 ,𝑖 denotes its 𝑖-th row
vector. Then 𝑠𝑡 ,𝑖 = ‖m1:𝑡 ,𝑖 ‖2. As a result, the updating step becomes

w𝑡+1 = w𝑡 − 𝜂𝐻−1
𝑡 ∇𝑔(w𝑡 ; 𝜁𝑡 ) = w𝑡 −

𝜂

s𝑡
◦ ∇𝑔(w𝑡 ; 𝜁𝑡 ), (3.42)

where ◦ denotes element-wise product. The full steps of AdaGrad are summarized
in Algorithm 6.

Compared with SGD, there are two differences: (i) the effective step size 𝜂
s𝑡 is

adaptive that depends on the history of updates, hence depends on data sampled
𝜁1, . . . , 𝜁𝑡 . This is the reason it is called adaptive step size; (ii) each coordinate of w
will receive a different step size. This feature makes it useful to tackle deep neural
networks as the parameters at each layer usually have different orders of gradient.

Convergence Analysis

Let the dual norm of ‖ · ‖𝐻 is given by ‖u‖𝐻−1 =
√

u>𝐻−1u. Then, 𝜑𝑡 is 1-strongly
convex in terms of ‖ · ‖𝐻𝑡 .

Lemma 3.11 We have
𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)} ≤
1
2

max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

𝑠𝑇,𝑖 .

Proof.
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𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)}

=
𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡−1 (w∗,w𝑡 ) + 𝐷𝜑𝑡−1 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)}

≤
𝑇∑
𝑡=1

{𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡−1 (w∗,w𝑡 )} + 𝐷𝜑0 (w∗,w1)

= 𝐷𝜑0 (w∗,w1) +
1
2

𝑇∑
𝑡=1

(w∗ − w𝑡 )> (𝐻𝑡 − 𝐻𝑡−1) (w∗ − w𝑡 ).

Since s𝑡 � s𝑡−1, we have

𝑇∑
𝑡=1

(w∗ − w𝑡 )> (𝐻𝑡 − 𝐻𝑡−1) (w∗ − w𝑡 ) =
𝑇∑
𝑡=1

𝑑∑
𝑖=1

(𝑠𝑡 ,𝑖 − 𝑠𝑡−1,𝑖)( [w∗]𝑖 − [w𝑡 ]𝑖)2

≤ max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑇∑
𝑡=1

𝑑∑
𝑖=1

(𝑠𝑡 ,𝑖 − 𝑠𝑡−1,𝑖) = max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

(𝑠𝑇,𝑖 − 𝑠0,𝑖).

Combining the above two inequalities, we have

𝑇∑
𝑡=1

𝐷𝜑𝑡 (w∗,w𝑡 ) − 𝐷𝜑𝑡 (w∗,w𝑡+1)

≤ 𝐷𝜑0 (w∗,w1) +
1
2

max
𝑡≤𝑇

‖w∗ − w𝑡+1‖2
∞

𝑑∑
𝑖=1

(𝑠𝑇+1,𝑖 − 𝑠1,𝑖)

≤ 1
2
‖w1 − w∗‖2

∞

𝑑∑
𝑖=1

𝑠0,𝑖 +
1
2

max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

(𝑠𝑇,𝑖 − 𝑠0,𝑖)

≤ 1
2

max
𝑡≤𝑇

‖w∗ − w𝑡 ‖2
∞

𝑑∑
𝑖=1

𝑠𝑇,𝑖 .

ut

Lemma 3.12 We have
𝑇∑
𝑡=1

‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
𝐻−1
𝑡

≤ 2
𝑑∑
𝑖=1

𝑠𝑇,𝑖 .

Proof. Let us first prove a general result in the following: for a general real-value
sequence {𝑎𝑡 }, we have
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𝑇∑
𝑡=1

𝑎2
𝑡

‖𝑎1:𝑡 ‖2
≤ 2

𝑇∑
𝑡=1

‖𝑎1:𝑇 ‖2, (3.43)

where 𝑎1:𝑡 = (𝑎1, . . . , 𝑎𝑡 ). We prove this by induction. First, it holds trivially for
𝑡 = 1. Now, assume it holds for 𝑇 − 1, we prove it holds for 𝑇 .

𝑇∑
𝑡=1

𝑎2
𝑡√∑𝑡
𝜏=1 𝑎

2
𝑡

=
𝑇−1∑
𝑡=1

𝑎2
𝑡√∑𝑡
𝜏=1 𝑎

2
𝑡

+
𝑎2
𝑇

‖𝑎1:𝑇 ‖2
≤ 2

𝑇∑
𝑡=1

‖𝑎1:𝑇−1‖2 +
𝑎2
𝑇

‖𝑎1:𝑇 ‖2
.

Let 𝑏𝑇 =
√∑𝑇

𝑡=1 𝑎
2
𝑡 , then we have

2
𝑇∑
𝑡=1

‖𝑎1:𝑇−1‖2 +
𝑎2
𝑇

‖𝑎1:𝑇 ‖2
= 2

√
𝑏2
𝑇 − 𝑎2

𝑇 +
𝑎2
𝑇√
𝑏2
𝑇

.

Since √· is a concave function, applying
√
𝑥 + 𝛿 ≤ √

𝑥 + 𝛿 1
2
√
𝑥
we have√

𝑏2
𝑇 − 𝑎2

𝑇 ≤
√
𝑏2
𝑇 − (𝑎2

𝑇 )
1

2
√
𝑏2
𝑇

.

Hence, 2
√
𝑏2
𝑇 − 𝑎2

𝑇 + 𝑎2
𝑇√
𝑏2
𝑇

≤ 2
√
𝑏2
𝑇 . Thus, we prove (3.43) for 𝑇 .

Next, we apply this result to the following:

𝑇∑
𝑡=1

‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2
𝐻−1
𝑡

=
𝑇∑
𝑡=1

∇𝑔(w𝑡 ; 𝜁𝑡 )>diag(s𝑡 )−1∇𝑔(w𝑡 ; 𝜁𝑡 )

=
𝑑∑
𝑖=1

[∇𝑔(w𝑡 ; 𝜁𝑡 )]2
𝑖√∑𝑡

𝜏=1 [∇𝑔(w𝜏 ; 𝜁𝜏)]2
𝑖

≤
𝑑∑
𝑖=1

2

√√√ 𝑡∑
𝜏=1

[∇𝑔(w𝜏 ; 𝜁𝜏)]2
𝑖 .

ut

Theorem 3.12 Let w̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 w𝑡 , then AdaGrad guarantees that

E[𝑔(w̄𝑡 ) − 𝑔(w∗)] ≤
E

[
max𝑡≤𝑇 ‖w∗ − w𝑡 ‖2

∞
∑𝑑
𝑖=1 ‖m1:𝑇,𝑖 ‖2

]
2𝜂𝑇

+
𝜂E

[∑𝑑
𝑖=1 ‖m1:𝑇,𝑖 ‖2

]
𝑇

.

If max𝑡 ‖w∗ − w𝑡 ‖∞ ≤ 𝐷∞ and 𝜂 = 𝐷∞/
√

2, we have

E[𝑔(w̄𝑡 ) − 𝑔(w∗)] ≤
√

2𝐷∞E
[∑𝑑

𝑖=1 ‖m1:𝑇,𝑖 ‖2
]

𝑇
.
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 Why it matters

The above result shows the convergence rate depends on the growth rate of the
cumulative stochastic gradient

∑𝑑
𝑖=1 ‖m1:𝑇,𝑖 ‖2. In the worst case, it grows at a

rate of 𝑂 (
√
𝑇), inducing a convergence rate of 𝑂 (1/

√
𝑇), similar to SGD. How-

ever, when the cumulative stochastic gradient grows slower than 𝑂 (
√
𝑇), Ada-

Grad will enjoy a convergence rate of 𝑜(1/
√
𝑇).

Let us consider the following linear model with sparse random data scenario,
where 𝑔(w𝑡 , 𝜁𝑡 ) = [1 − w>

𝑡 𝜁𝑡 ]+ and the data vectors 𝜁𝑡 ∈ {−1, 0, 1}𝑑 . Assume
that at in each round 𝑡, feature 𝑖 appears with probability 𝑝𝑖 = min{1, 𝑐𝑖−𝛼} for
some 𝛼 ∈ (1,∞) and a dimension-independent constant 𝑐. Then we have

E

[
𝑑∑
𝑖=1

‖m1:𝑇,𝑖 ‖2

]
= E

[
𝑑∑
𝑖=1

√��𝑡 : z𝑡 ,𝑖 = 1
��] ≤

𝑑∑
𝑖=1

√
E

[��𝑡 : z𝑡 ,𝑖 = 1
��]

=
𝑑∑
𝑖=1

√
𝑝𝑖𝑇.

by Jensen’s inequality. In the rightmost sum, we have 𝑐
∑𝑑
𝑖=1 𝑖

−𝛼/2 = 𝑂 (log 𝑑)
for 𝛼 ≥ 2, and

∑𝑑
𝑖=1 𝑖

−𝛼/2 = 𝑂 (𝑑1−𝛼/2) for 𝛼 ∈ (1, 2). If w𝑡 is restricted in a
domain W = {w : ‖w‖∞ ≤ 1}, then 𝐷∞ = 2, and the convergence rate of Ada-
Grad becomes 𝑂 (max{log 𝑑, 𝑑1−𝛼/2}/

√
𝑇). For contrast, the convergence rate

of SGD in Theorem 3.2 is𝑂 (
√
𝑑/𝑇). Sowe see that in this sparse yet heavy tailed

feature setting, AdaGrad’s convergence bound can be exponentially smaller in
the dimension 𝑑 than the non-adaptive bound of SGD.

Proof. Similar to (3.40) in the proof of Theorem 3.11, we have

𝜂〈∇𝑔(w𝑡 ; 𝜁𝑡 ),w𝑡−w〉 ≤ 𝐷𝜑𝑡 (w,w𝑡 )−𝐷𝜑𝑡 (w,w𝑡+1)+
𝜂2
𝑡

2
‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2

𝐻−1
𝑡
. (3.44)

Taking expectation and summation over 𝑡 = 1, . . . , 𝑇 , we have

𝑇∑
𝑡=1

𝜂E[𝑔(w𝑡 ) − 𝑔(w∗)] ≤E
[
𝑇∑
𝑡=1

𝐷𝜑𝑡 (w,w𝑡 ) − 𝐷𝜑𝑡 (w,w𝑡+1)
]

+ E

[
𝑇∑
𝑡=1

𝜂2

2
‖∇𝑔(w𝑡 ; 𝜁𝑡 )‖2

𝐻−1
𝑡

]
.

Using the results from the two lemmas above, we conclude the proof.
ut
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3.6 Stochastic Gradient Descent Ascent

In this section, we consider stochastic convex–concave min–max optimization prob-
lems:

min
w∈W

max
u∈U

𝑓 (w, u) := E𝜁
[
𝑓 (w, u; 𝜁)

]
.

This class of problems has two important applications in machine learning: (1) it
serves as a foundation for directly formulating learning tasks (e.g., the DRO prob-
lem (2.11)); (2) it provides a tool for reformulating standard minimization problems
to enable more efficient optimization.

A solution of interest is the so-called saddle point (w∗, u∗) ∈ W ×U satisfying:

𝑓 (w∗, u) ≤ 𝑓 (w∗, u∗) ≤ 𝑓 (w, u∗),∀w ∈ W, u ∈ U .

In many machine learning applications, we may be only interested in finding a global
optimal solution to the objective 𝐹 (w) = maxu∈U 𝑓 (w, u). It is easy to see that if
(w∗, u∗) is a saddle point, then w∗ is a global optimal solution to 𝐹 (w). This can be
seen from

max
u∈U

𝑓 (w∗, u) ≤ 𝑓 (w∗, u∗) ≤ 𝑓 (w, u∗) ≤ max
u∈U

𝑓 (w, u).

For a point (w, u) ∈ W ×U, a convergence measure is defined by the duality gap:

Δ(w, u) = max
u′∈U

𝑓 (w, u′) − min
w′∈W

𝑓 (w′, u).

A simple method for solving the convex-concavemin-max problem is the stochas-
tic gradient descent ascent (SGDA) algorithm, which is an extension of SGD. It em-
ploys two key updates:

w𝑡+1 = arg min
w∈W

𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (w − w𝑡 ) +
1

2𝜂1
‖w − w𝑡 ‖2

2

u𝑡+1 = arg min
u∈U

−𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (u − u𝑡 ) +
1

2𝜂2
‖u − u𝑡 ‖2

2,

(3.45)

where 𝜕1 𝑓 (w, u; 𝜁) and 𝜕2 𝑓 (w, u; 𝜁) denote the stochastic partial subgradients such
that E𝜁 [𝜕1 𝑓 (w, u; 𝜁)] ∈ 𝜕1 𝑓 (w, u) and E𝜁 [𝜕2 𝑓 (w, u; 𝜁)] ∈ 𝜕2 𝑓 (w, u).

Convergence Analysis

Below, we analyze the convergence rate of SGDA under the following assumptions.

Assumption 3.10. Suppose the following conditions hold:

(i) 𝑓 (w, u) is convex w.r.t w and concave w.r.t u.
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Algorithm 7 SGDA
1: Input: learning rates {𝜂1, 𝜂2}, starting points w1, u1
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute unbiased gradient estimators z1,𝑡 = 𝜕1 𝑓 (w𝑡 ; 𝜁𝑡 ) and z2,𝑡 = 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )
4: Update the primal variable w by w𝑡+1 = arg minw∈W z>1,𝑡 (w − w𝑡 ) + 1

2𝜂1
‖w − w𝑡 ‖2

2 .

5: Update the dual variable u by u𝑡+1 = arg minu∈U −z>2,𝑡 (u − u𝑡 ) + 1
2𝜂2

‖u − u𝑡 ‖2
2 .

6: end for

(ii) There exist 𝐺1, 𝐺2 > 0 such that

E𝜁 [‖𝜕1 𝑓 (w, u; 𝜁)‖2
2] ≤ 𝐺2

1,∀w ∈ W, u ∈ U, (3.46)
E𝜁 [‖𝜕2 𝑓 (w, u; 𝜁)‖2

2] ≤ 𝐺2
2,∀w ∈ W, u ∈ U . (3.47)

(iii) maxw∈W,w′∈W ‖w − w′‖ ≤ 𝐷1 and maxu∈U,u′∈U ‖u − u′‖ ≤ 𝐷2.

Lemma 3.13 Let us consider a martingale difference sequence {𝛿𝑡 }𝑡≥1 and a se-
quence {𝑦𝑡 }𝑡≥1:

𝑦𝑡+1 = arg min
𝑣∈V

{−𝛿>𝑡 𝑣 + 𝛼𝐷𝜓 (𝑣, 𝑦𝑡 )}.

If 𝜓 is 𝜇𝜓-strongly convex w.r.t. ‖ · ‖ (𝜇𝜓 > 0). For any 𝑣 (that possibly depends on
{𝛿𝑡 }) we have

E
[
𝛿>𝑡 𝑣

]
≤ E

[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1) +

1
2𝛼𝜇𝜓

‖𝛿𝑡 ‖2
∗

]
.

 Why it matters

In standard minimization problems, the convergence measure is usually defined
with respect to the optimal solution w∗, which is fixed and independent of the
randomness introduced by the algorithm. In contrast, in stochastic min–max op-
timization we are concerned with the duality gap Δ(w, u) = maxu′∈U 𝑓 (w, u′)−
minw′∈W 𝑓 (w′, u), where the optimal w′ and u′ depend on the current random
iterates (w, u). This dependency introduces additional subtleties into the analy-
sis.
The preceding lemma applies to any random variable 𝑣 that may depend on the
entire randomness of the algorithm, and will be useful for our analysis. Recall
that a sequence {𝑋𝑡 } is a martingale difference sequence if the conditional ex-
pectation of each variable given the past is zero, i.e., E[𝑋𝑡 | 𝑋1, . . . , 𝑋𝑡−1] = 0.

Proof. Applying Lemma 3.10 to the update of 𝑦𝑡+1, we have

E
[
−𝛿>𝑡 (𝑦𝑡+1 − 𝑣)

]
≤ E

[
𝛼𝐷𝜓 (𝑦, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑦, 𝑦𝑡+1) − 𝛼𝐷𝜓 (𝑦𝑡+1, 𝑦𝑡 )

]
.

Hence,
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E
[
𝛿>𝑡 (𝑣 − 𝑦𝑡 )

]
≤ E

[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1) − 𝛼𝐷𝜓 (𝑦𝑡+1, 𝑦𝑡 )

]
+ E[𝛿>𝑡 (𝑦𝑡+1 − 𝑦𝑡 )]

≤ E
[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1)

]
− E

[
𝛼𝜇𝜓

2
‖𝑦𝑡+1 − 𝑦𝑡 ‖2 +

𝜇𝜓𝛼

2
‖𝑦𝑡+1 − 𝑦𝑡 ‖2 + 1

2𝜇𝜓𝛼
‖𝛿𝑡 ‖2

∗

]
.

Since E[𝛿𝑡 ] = 0 and 𝑦𝑡 is independent of 𝛿𝑡 , we have E[𝛿>𝑡 𝑦𝑡 ] = 0. As a result,

E[𝛿>𝑡 𝑣] ≤ E
[
𝛼𝐷𝜓 (𝑣, 𝑦𝑡 ) − 𝛼𝐷𝜓 (𝑣, 𝑦𝑡+1)

]
+ 1

2𝜇𝜓𝛼
E

[
‖𝛿𝑡 ‖2

∗
]
.

ut

Theorem 3.13 Let w̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 w𝑡 , ū𝑇 = 1

𝑇

∑𝑇
𝑡=1 u𝑡 . After𝑇 iterations, SGDA (3.45)

guarantees that

E[Δ(w̄𝑇 , ū𝑇 )] ≤
𝐷2

1
𝜂1𝑇

+
𝐷2

2
𝜂2𝑇

+
5𝜂1𝐺

2
1

2
+

5𝜂2𝐺
2
2

2
.

If we set 𝜂1 = 𝑂 ( 𝐷1
𝐺1

√
𝑇
) and 𝜂2 = 𝑂 ( 𝐷2

𝐺2
√
𝑇
), we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤ 𝑂
(
𝐷1𝐺1√
𝑇

+ 𝐷2𝐺2√
𝑇

)
.

Proof. Similar to (3.10), for the primal update and dual update for any w ∈ W, u ∈
U we have

𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (w𝑡 − w) ≤
1

2𝜂1
‖w𝑡 − w‖2

2 −
1

2𝜂1
‖w𝑡+1 − w‖2

2 +
1
2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2

−𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )> (u𝑡 − u) ≤
1

2𝜂2
‖u𝑡 − u‖2

2 −
1

2𝜂2
‖u𝑡+1 − u‖2

2 +
1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2.

The difference from the SGD analysis is that we cannot fix w as w∗ and fix u as u∗,
which will not yield the duality gap measure. Indeed, at the end we need to take max
over w ∈ W and min over u ∈ U to obtain the duality gap, making them dependent
on the randomness.

To proceed, we have
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𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) ≤ 1
2𝜂1

‖w𝑡 − w‖2
2 −

1
2𝜂1

‖w𝑡+1 − w‖2
2

+ 1
2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 + (𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)

− 𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u) ≤ 1
2𝜂2

‖u𝑡 − u‖2
2 −

1
2𝜂2

‖u𝑡+1 − u‖2
2

+ 1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 + (𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Adding these inequalities we have

𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) − 𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u)

≤ 1
2𝜂1

(
‖w𝑡 − w‖2

2 − ‖w𝑡+1 − w‖2
2

)
+ 1

2𝜂2

(
‖u𝑡 − u‖2

2 − ‖u𝑡+1 − u‖2
2

)
+ 1

2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 +
1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2

+ (𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)
+ (𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Due to the convexity and concavity of 𝑓 (w, u) in terms of w, u, respectively, we have

𝑓 (w𝑡 , u𝑡 ) − 𝑓 (w, u𝑡 ) ≤ 𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w),
𝑓 (w𝑡 , u) − 𝑓 (w𝑡 , u𝑡 ) ≤ −𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u).

Adding these two equalities, we have

𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 ) ≤ 𝜕1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) − 𝜕2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u).

As a result, we have

𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 )

≤ 1
2𝜂1

(
‖w𝑡 − w‖2

2 − ‖w𝑡+1 − w‖2
2

)
+ 1

2𝜂2

(
‖u𝑡 − u‖2

2 − ‖u𝑡+1 − u‖2
2

)
+ 1

2
𝜂1‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2 +
1
2
𝜂2‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2

2

+ (𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)
+ (𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Taking average over 𝑡 = 1, . . . , 𝑇 , we have
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3.6. STOCHASTIC GRADIENT DESCENT ASCENT

𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ) ≤
1
𝑇

𝑇∑
𝑡=1

( 𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 ))

≤ 1
2𝜂1𝑇

‖w1 − w‖2
2 +

1
2𝜂2𝑇

‖u1 − u‖2
2

+ 𝜂1

2𝑇

𝑇∑
𝑡=1

‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2
2 +

𝜂2

2𝑇

𝑇∑
𝑡=1

‖𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 )‖2
2

+ 1
𝑇

𝑇∑
𝑡=1

(𝜕1 𝑓 (w𝑡 , u𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))> (w𝑡 − w)

+ 1
𝑇

𝑇∑
𝑡=1

(𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))> (u𝑡 − u).

Let w, u be the solution to maxw∈W,u∈U 𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ), which are random
variables. Taking expectation over both sides, we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤
1

2𝜂1𝑇
‖w1 − w‖2

2 +
1

2𝜂2𝑇
‖u1 − u‖2

2 +
𝜂1𝐺

2
1

2
+
𝜂2𝐺

2
2

2

+ 1
𝑇
E

[
𝑇∑
𝑡=1

(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w

]
+ 1
𝑇
E

[
𝑇∑
𝑡=1

(𝜕2 𝑓 (w𝑡 , u𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))>u

]
.

(3.48)

Next, we apply Lemma 3.13 to bound the last two terms. To this end, we introduce
two virtual sequences with ŵ1 = w1, û1 = u1:

ŵ𝑡+1 = arg min
w∈W

−(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w + 1
2𝜂1

‖w − ŵ𝑡 ‖2
2

û𝑡+1 = arg min
u∈U

(𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ))>u + 1
2𝜂2

‖u − û𝑡 ‖2
2.

Applying Lemma 3.13, we have

E
[
(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w

]
≤ 1

2𝜂1

(
‖ŵ𝑡 − w‖2

2 − ‖ŵ𝑡+1 − w‖2
2

)
+ 𝜂1

2
E[‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 )‖2

2]

E
[
(𝜕2 𝑓 (w𝑡 , u𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))>u

]
≤ 1

2𝜂2

(
‖û𝑡 − u‖2

2 − ‖û𝑡+1 − u‖2
2

)
+ 𝜂2

2
E[‖𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 )‖2

2] .

Hence,
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E

[
𝑇∑
𝑡=1

(𝜕1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜕1 𝑓 (w𝑡 , u𝑡 ))>w

]
+ E

[
𝑇∑
𝑡=1

(𝜕2 𝑓 (w𝑡 , u𝑡 ) − 𝜕2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ))>u

]
≤ 1

2𝜂1
‖ŵ1 − w‖2

2 +
1

2𝜂2
‖û𝑡 − u‖2

2 +
4𝜂1𝐺

2
1𝑇

2
+

4𝜂2𝐺
2
2𝑇

2
.

(3.49)

Combining (3.48) and (3.49), we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤
1
𝜂1𝑇

E[‖w1 − w‖2
2] +

1
𝜂2𝑇

E[‖u1 − u‖2
2] +

5𝜂1𝐺
2
1

2
+

5𝜂2𝐺
2
2

2
.

Hence, we conclude the proof. ut

3.7 Stochastic Optimistic Mirror Prox

While simple in design, SGDA cannot enjoy a faster convergence when the function
is smooth and the stochastic gradients have zero variance. A classical method to
address this limitation is to use an extra-gradient. Let

v =

[
w
u

]
, M(v) =

[
∇1 𝑓 (w, u)
−∇2 𝑓 (w, u)

]
, V = W ×U .

The extra-gradient method takes the following update with an initialization of x1 ∈
V:

y𝑡 = arg min
v∈V

M(x𝑡 )>v + 1
2𝜂

‖v − x𝑡 ‖2
2

x𝑡+1 = arg min
v∈V

M(y𝑡 )>v + 1
2𝜂

‖v − x𝑡 ‖2
2.

(3.50)

The name “extragradient” comes from the fact that it uses two gradients M(x𝑡 ) and
M(y𝑡 ) at each iteration.

The extragradient method can be generalized using the mirror descent steps with
a Bregmand divergence 𝐷𝜑 (·, ·) defined by a strongly-convex function 𝜑 : V → R:

y𝑡 = arg min
v∈V

M(x𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 )

x𝑡+1 = arg min
v∈V

M(y𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 ).

(3.51)

This method is called mirror prox.
Both methods can be extended to their stochastic versions. For example, the

stochastic mirror prox method (SMP) uses the following update:
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Algorithm 8 Stochastic Optimistic Mirror Prox (SOMP)
1: Input: learning rates 𝜂, starting points x1 = y0 = (w1, u1 )
2: Compute y1 = arg minv∈V M(y0; 𝜁0 )>v + 1

𝜂𝐷𝜑 (v, x1 ) .
3: for 𝑡 = 1, . . . , 𝑇 do
4: Compute unbiased gradient mapping M(y𝑡 ; 𝜁𝑡 )
5: Update x𝑡+1 = arg minv∈V M(y𝑡 ; 𝜁𝑡 )>v + 1

𝜂𝐷𝜑 (v, x𝑡 ) .
6: Update y𝑡+1 = arg minv∈V M(y𝑡 ; 𝜁𝑡 )>v + 1

𝜂𝐷𝜑 (v, x𝑡+1 ) .
7: end for

y𝑡 = arg min
v∈V

M(x𝑡 ; 𝜁 ′𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 )

x𝑡+1 = arg min
v∈V

M(y𝑡 ; 𝜁𝑡 )>v + 1
𝜂
𝐷𝜑 (v, x𝑡 ),

(3.52)

where E𝜁 [M(x; 𝜁)] = M(x).

Stochastic Optimistic Mirror Prox: a variant with a Single Gradient Sequence

The updates of SMP (3.52) need to compute two stochastic gradient sequences
{M(x𝑡 , 𝜁 ′𝑡 )} and {M(y𝑡 ; 𝜁𝑡 )}, which double the costs of SGDA. A simple remedy
is to use M(y𝑡−1; 𝜁𝑡−1) in the first update of y𝑡 , yielding

y𝑡 = arg min
v∈V

M(y𝑡−1; 𝜁𝑡−1)>v + 1
𝜂
𝐷𝜑 (v, x𝑡 )

x𝑡+1 = arg min
v∈V

M(y𝑡 ; 𝜁𝑡 )>v + 1
2𝜂
𝐷𝜑 (v, x𝑡 ).

(3.53)

As a result, we only need to compute one sequence of stochastic gradients {M(y𝑡 ; 𝜁𝑡 )}.
This method is known as stochastic optimistic mirror prox (SOMP).

Let us consider a special case when V = R𝑑 × R𝑑
′ and 𝐷𝜑 (x, y) = 1

2 ‖x − y‖2
2.

The above update reduces to

y𝑡 = x𝑡 − 𝜂M(y𝑡−1; 𝜁𝑡−1)
x𝑡+1 = x𝑡 − 𝜂M(y𝑡 ; 𝜁𝑡 ).

(3.54)

This update can be re-written using one sequence of {y𝑡 }. By subtracting the second
equation from the first one, we have

y𝑡 − x𝑡+1 = 𝜂M(y𝑡 ; 𝜁𝑡 ) − 𝜂M(y𝑡−1; 𝜁𝑡−1). (3.55)

As a result,

y𝑡 = x𝑡+1 + 𝜂M(y𝑡 ; 𝜁𝑡 ) − 𝜂M(y𝑡−1; 𝜁𝑡−1)
= y𝑡+1 + 𝜂M(y𝑡 ; 𝜁𝑡 ) + 𝜂M(y𝑡 ; 𝜁𝑡 ) − 𝜂M(y𝑡−1; 𝜁𝑡−1).
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From this, we derive that

y𝑡+1 = y𝑡 − 𝜂(M(y𝑡 ; 𝜁𝑡 ) +M(y𝑡 ; 𝜁𝑡 ) −M(y𝑡−1; 𝜁𝑡−1)). (3.56)

This method applied to the min-max problem is known as stochastic optimistic gra-
dient descent ascent (SOGDA), yielding the following primal and dual updates:

w𝑡+1 = w𝑡 − 𝜂(2∇1 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − ∇1 𝑓 (w𝑡−1, u𝑡−1; 𝜁𝑡−1)) (3.57)
u𝑡+1 = u𝑡 + 𝜂(2∇2 𝑓 (w𝑡 , u𝑡 ; 𝜁𝑡 ) − 𝜂∇2 𝑓 (w𝑡−1, u𝑡−1; 𝜁𝑡−1))). (3.58)

Convergence Analysis

We analyze the stochastic optimistic mirror prox method in Algorithm 8. We make
the following assumption.

Assumption 3.11. Suppose the following conditions hold:

(i) 𝑓 (w, u) is convex w.r.t w and concave w.r.t u.
(ii) Let 𝜑(z) be a 𝛼-strongly convex function with respect to the norm ‖ · ‖, whose

dual norm is denoted by ‖ · ‖∗,
(ii) M(v) is 𝐿-Lipschitz continuous such that

‖M(v) −M(v′)‖2
∗ ≤ 𝐿2‖v − v′‖2.

(ii) There exist 𝜎1, 𝜎2 > 0 such that

E𝜁 [‖M(x; 𝜁) −M(x)‖2
∗] ≤ 𝜎2,∀x ∈ V .

(iii) maxx∈V ,x′∈V 𝐷𝜑 (x, x′) ≤ 𝐷2.

Lemma 3.14 Given x, consider the updates:

y = arg min
v∈V

𝛾M(𝜉)>v + 𝐷𝜑 (v, x),

x+ = arg min
v∈V

𝛾M(𝜁)>v + 𝐷𝜑 (v, x).
(3.59)

For any v ∈ V, we have

𝛾M(𝜁)> (y − v) ≤𝐷𝜑 (v, x) − 𝐷𝜑 (v, x+) +
𝛾2

𝛼
‖M(𝜉) −M(𝜁)‖2

∗

− 𝛼

2
[‖y − x‖2 + ‖y − x+‖2] .

(3.60)

Proof. First, by Lemma 3.8, we have

‖y − x+‖ ≤ 𝛾

𝛼
‖M(𝜁) −M(𝜉)‖∗. (3.61)
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3.7. STOCHASTIC OPTIMISTIC MIRROR PROX

Let 𝜙(v) = 𝛾M(𝜁)> (y−v)−𝐷𝜑 (v, x)+𝐷𝜑 (v, x+). Given the optimality condition of
x+, it is easy to verify that it also satisfies the optimality condition of maxv∈V 𝜙(v).
As a result, 𝜙(v) ≤ 𝜙(x+),∀v ∈ V, i.e.,

𝛾M(𝜁)> (y − v) − 𝐷𝜑 (v, x) + 𝐷𝜑 (v, x+)
≤ 𝛾M(𝜁)> (y − x+) − 𝐷𝜑 (x+, x)
= 𝛾M(𝜁)> (y − x+) + 𝜑(x) + ∇𝜑(x)> (x+ − x) − 𝜑(x+)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+) + 𝛾M(𝜉)> (y − x+)
+ 𝜑(x) + ∇𝜑(x)> (x+ − x) − 𝜑(x+).

(3.62)

By the optimality condition of y, for any v ∈ V we have

(𝛾M(𝜉) + ∇𝜑(y) − ∇𝜑(x))> (y − v) ≤ 0

Plugging v = x+ into the above inequality, we have

(𝛾M(𝜉) + ∇𝜑(y) − ∇𝜑(x))> (y − x+) ≤ 0,

which implies that

𝛾M(𝜉)> (y − x+) ≤ (∇𝜑(y) − ∇𝜑(x))> (x+ − y).

Combining this with (3.62), we have

𝛾M(𝜁)> (y − v) − 𝐷𝜑 (v, x) + 𝐷𝜑 (v, x+) ≤ 𝛾(M(𝜁) −M(𝜉))> (y − x+)
+ (∇𝜑(y) − ∇𝜑(x))> (x+ − y) + 𝜑(x) + ∇𝜑(x)> (x+ − x) − 𝜑(x+)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+)
+ 𝜑(x) + ∇𝜑(x)> (y − x) − 𝜑(x+) + (∇𝜑(y))> (x+ − y)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+)
+ 𝜑(x) + ∇𝜑(x)> (y − x) − 𝜑(y) + 𝜑(y) + (∇𝜑(y))> (x+ − y) − 𝜑(x+)
= 𝛾(M(𝜁) −M(𝜉))> (y − x+) − 𝐷𝜑 (y, x) − 𝐷𝜑 (x+, y)

≤ 𝛾2

𝛼
‖M(𝜁) −M(𝜉)‖2

∗ −
𝛼

2
‖y − x‖2 − 𝛼

2
‖x+ − y‖2,

where the last inequality uses (3.61) and the 𝛼-strong convexity of 𝜑.
ut

Theorem 3.14 Let w̄𝑇 = 1
𝑇

∑𝑇
𝑡=1 w𝑡 , ū𝑇 = 1

𝑇

∑𝑇
𝑡=1 u𝑡 . After 𝑇 iterations, SOMP

guarantees that

E[Δ(w̄𝑇 , ū𝑇 )] ≤
2𝐷2

𝑇𝜂
+ 8𝜎2𝜂

𝛼
.

If we set 𝜂 = min( 𝐷
2
√
𝑇𝜎
, 𝛼√

12𝐿
), we have
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E[Δ(w̄𝑇 , ū𝑇 )] ≤ 𝑂
(
𝐿𝐷2

𝑇𝛼
+ 𝜎𝐷
√
𝑇𝛼

)
.

 Why it matters

This result is consistent with the convergence of SGD for smooth convex mini-
mization in Theorem 3.1. In particular, when 𝜎 = 0 (i.e., using the deterministic
gradient), the convergence rate simplifies to O(1/𝑇).

Proof. Since the updates of y𝑡 , x𝑡+1 follow that in (3.59), by applying Lemma 3.14,
we have

𝜂M(y𝑡 , 𝜁𝑡 )> (y𝑡 − v) ≤ 𝐷𝜑 (v, x𝑡 ) − 𝐷𝜑 (v, x𝑡+1)

+ 𝜂
2

𝛼
‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡−1, 𝜁𝑡−1)‖2

∗ −
𝛼

2
[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2]

≤ 𝐷𝜑 (v, x𝑡 ) − 𝐷𝜑 (v, x𝑡+1)

+ 𝜂
2

𝛼
‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡−1, 𝜁𝑡−1) −M(y𝑡 ) +M(y𝑡−1) + (M(y𝑡 ) −M(y𝑡−1))‖2

∗

− 𝛼

2
[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2] .

Let 𝜎2
𝑡 = ‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡 )‖2

∗, then we have

‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡−1, 𝜁𝑡−1) −M(y𝑡 ) +M(y𝑡−1) + (M(y𝑡 ) −M(y𝑡−1)‖2
∗

≤ 3‖M(y𝑡 , 𝜁𝑡 ) −M(y𝑡 )‖2
∗ + 3‖M(y𝑡−1, 𝜁𝑡−1) −M(y𝑡−1)‖2

∗

+ 3‖M(y𝑡 ) −M(y𝑡−1)‖2
∗

≤ 3𝜎2 + 3𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2.

Combining the above two inequalities, we have

𝜂M(y𝑡 , 𝜁𝑡 )> (y𝑡 − v) ≤ 𝐷𝜑 (v, x𝑡 ) − 𝐷𝜑 (v, x𝑡+1)

+ 𝜂
2

𝛼
(6𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2) − 𝛼

2
[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2] .

Taking average over 𝑡 = 1, . . . , 𝑇 , we have

1
𝑇

𝑇∑
𝑡=1

M(y𝑡 )> (y𝑡 − v) ≤ 1
𝑇𝜂
𝐷𝜑 (v, x1)

+ 𝜂

𝛼𝑇

𝑇∑
𝑡=1

(6𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2) − 𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2]

+ 1
𝑇

𝑇∑
𝑡=1

(M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 ))> (y𝑡 − v).
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Let y𝑡 = (w𝑡 , u𝑡 ) and v = (w, u) = arg maxw∈W,u∈U 𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ). We have

1
𝑇

𝑇∑
𝑡=1

M(y𝑡 )> (y𝑡 − v) = 1
𝑇

𝑇∑
𝑡=1

(∇1 𝑓 (w𝑡 , u𝑡 )> (w𝑡 − w) − ∇2 𝑓 (w𝑡 , u𝑡 )> (u𝑡 − u))

≥ 1
𝑇

𝑇∑
𝑡=1

( 𝑓 (w𝑡 , u𝑡 ) − 𝑓 (w, u𝑡 ) + 𝑓 (w𝑡 , u) − 𝑓 (w𝑡 , u𝑡 ))

=
1
𝑇

𝑇∑
𝑡=1

( 𝑓 (w𝑡 , u) − 𝑓 (w, u𝑡 )) ≥ 𝑓 (w̄𝑇 , u) − 𝑓 (w, ū𝑇 ).

As a result,

Δ(w̄𝑇 , ū𝑇 ) ≤
1
𝑇

𝑇∑
𝑡=1

M(y𝑡 )> (y𝑡 − v) ≤ 1
𝑇𝜂
𝐷𝜑 (v, x1)

+ 𝜂

𝛼𝑇

𝑇∑
𝑡=1

(6𝜎2 + 3𝐿2‖y𝑡 − y𝑡−1‖2) − 𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2]

+ 1
𝑇

𝑇∑
𝑡=1

(M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 ))> (y𝑡 − v).

The last term can be bounded by using Lemma 3.13. Define the virtual sequence
with ŷ1 = x1:

ŷ𝑡+1 = arg min
v∈V

(M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 ))>v + 1
𝜂
𝐷𝜑 (v, ŷ𝑡 ).

Then Lemma 3.13 implies that

E

[
1
𝑇

𝑇∑
𝑡=1

(M(y𝑡 , 𝜁𝑡 ) −M(y𝑡 ))>v

]
≤ E

[
1
𝜂𝑇
𝐷𝜑 (v, ŷ1)

]
+ E

[
𝜂

2𝛼𝑇

𝑇∑
𝑡=1

‖M(y𝑡 ) −M(y𝑡 , 𝜁𝑡 )‖2
∗

]
.

Combining the above results, we have
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E[Δ(w̄𝑇 , ū𝑇 )] ≤
2
𝑇𝜂
𝐷𝜑 (v, x1) +

8𝜎2𝜂

𝛼

+ E

[
3𝐿2𝜂

𝛼𝑇

𝑇∑
𝑡=1

‖y𝑡 − y𝑡−1‖2 − 𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2

]
≤ 2
𝑇𝜂
𝐷𝜑 (v, x1) +

8𝜎2𝜂

𝛼
+ E

[
3𝐿2𝜂

𝛼𝑇

𝑇∑
𝑡=1

[2‖y𝑡 − x𝑡 ‖2 + 2‖x𝑡 − y𝑡−1‖2]
]

− E

[
𝛼

2𝜂𝑇

𝑇∑
𝑡=1

[‖y𝑡 − x𝑡 ‖2 + ‖y𝑡 − x𝑡+1‖2

]
.

If 6𝐿2 𝜂
𝛼 ≤ 𝛼

2𝜂 , i.e., 𝜂 ≤ 𝛼√
12𝐿

, the sum of the last two terms will be less than zero
due to x1 = y0. Then, we have

E[Δ(w̄𝑇 , ū𝑇 )] ≤
2
𝑇𝜂
𝐷𝜑 (v, x1) +

8𝜎2𝜂

𝛼
≤ 2𝐷2

𝑇𝜂
+ 8𝜎2𝜂

𝛼
.

For the second part, optimizing the upper bound over 𝜂 gives 𝜂∗ = 𝐷
√
𝛼

2
√
𝑇𝜎

. If

𝜂∗ ≤ 𝛼√
12𝐿

, i.e., 𝑇 ≥ 3𝐷2𝐿2

𝜎2𝛼
, we set 𝜂 = 𝜂∗, then

E [𝐹 (w̄𝑇 ) − 𝐹 (w∗)] ≤
8𝜎𝐷
√
𝑇𝛼

.

If 𝜂∗ > 𝛼√
12𝐿

, i.e., 𝜎2 ≤ 3𝐷2𝐿2

𝛼𝑇 , we set 𝜂 = 𝛼√
12𝐿

, then

E [Δ(w̄𝑇 , ū𝑇 )] ≤
2
√

12𝐿𝐷2

𝑇𝛼
+ 12𝐿𝐷2

√
3𝑇𝛼

.

ut

3.8 History and Notes

Stochastic Approximation and Mathematical Optimization

Stochastic approximation has a long history dating back to Robbins and Monro
(1951) for solving a root finding problem 𝑓 (𝑥) = 𝛼 using an iterative method
𝑥𝑡+1 = 𝑥𝑡−𝑎𝑡 (𝑦𝑡−𝛼), where 𝑦𝑡 is a stochastic variable such that E[𝑦𝑡 ] = 𝑓 (𝑥𝑡 ). They
studied the asymptotic convergence of lim𝑡→∞ E[(𝑥𝑡 − 𝜃)2] = 0 under some condi-
tions, where 𝜃 is the solution to the root finding problem. It is notable that Herbert
Robbins was regarded as one of the most influential mathematicians of the latter half
of the 20th century, renowned for his seminal contributions to probability, algebra,
and graph theory.
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Inspired by Robbins and Monro (1951), Kiefer and Wolfowitz (1952) considered
stochastic maximization of a regression function using a stochastic finite difference
estimator of the gradient. Later, Chung (1954) established the convergence bound
of Robbins-Monro’s method under some conditions. Since then, the convergence of
SGD has been extensively studied. Polyak and Juditsky (1992) analyzed the conver-
gence of SGD with a simple averaging for stochastic optimization, which is some-
times referred to as Polyak-Juditsky averaging or Polyak averaging. This work as-
sumes smoothness and strong convexity of the objective function and established a
convergence rate of 𝑂 (1/𝑇).

Nemirovski and Yudin (1978) is probably the first work that analyzes the non-
asymptotic convergence of SGDA for general convex-concave min-max optimiza-
tion without smoothness and strong convexity assumption. Their paper introduces
the weighted averaging (weighted by the step size at each iteration) and establishes
the convergence rate of 𝑂 (1/

√
𝑇). The optimal rate 𝑂 (1/𝑇) for strongly-convex

strongly-concave min-max problem was recently proved in Yan et al. (2020a).
The mirror descent method originates fromNemirovsky and Yudin (1983), which

is also the work that is often cited for the lower bound of 𝑂 (1/
√
𝑇) for general con-

vex problems. A more general form of SMD and its extension for convex-concave
min-max problems using a Bregman divergence was later considered in (Nemirovski
et al., 2009).

The non-asymptotic analysis of SGD for non-convex optimization was initiated
by (Ghadimi and Lan, 2013). The non-asymptotic analysis of SGD for weakly convex
optimization was developed by (Davis and Drusvyatskiy, 2019).

The proximal method dates back to the proximal point method proposed by Mar-
tinet (1972) and further developed in (Rockafellar, 1976). Lions and Mercier (1979)
proposed a splittingmethod for finding a zero point of the sum of twomaximalmono-
tone operators. The forward backward splitting was first proposed by Pazy (1979) in
the same context of finding a zero of sum of monotone operators. Its special instance
for minimization problems known as projected gradient method was first studied
by Goldstein (1964).

Coordinate descent has a long history in optimization, with its earliest roots trace-
able to the Gauss–Seidel iterations for solving linear systems in the 19th century.
The method was later formalized and discussed in early optimization literature, in-
cluding (Warga, 1963; Ortega and Rheinboldt, 1970; Luenberger, 1973). Rigorous
analysis of convergence properties was developed in a sequence of influential works
by Paul Tseng and others, including (Luo and Tseng, 1992; Tseng, 1990; Tseng and
Bertsekas, 1987; Tseng, 2001). Recent developments of block coordinate descent
including accelerated coordinate descent (Nesterov, 2012) and stochastic block co-
ordinate descent (Dang and Lan, 2015).

The extragradient method was first proposed by Korpelevich (1976). The mirror
prox method and its convergence rate 𝑂 (1/𝑇) was proposed and established by Ne-
mirovski (2004). The stochastic mirror prox method was analyzed in (Juditsky et al.,
2011).
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Optimization in machine learning

Frank Rosenblatt’s pioneering work in the late 1950s introduced a learning rule for
updating the Perceptron model (a single-layer neural network for binary classifica-
tion) (Rosenblatt, 1962), a method that shares a conceptual foundation with modern
stochastic gradient descent (SGD). The earliest instance of SGD for machine learn-
ing is perhaps the Widrow-Hoff algorithm (Widrow and Hoff, 1960) (also known as
the least mean square’ algorithm), which was used to train ADALINE - a single-layer
neural network that produces a continuous output. Amari (1967) is the first work that
applies SGD to optimize a neural network for binary and multi-class classification.

Starting in late 1980s, online prediction problem has attracted increasing atten-
tion in machine learning, whose developments have many parallels to stochastic op-
timization. Littlestone (1988) proposed the Winnow algorithm for learning Boolean
functions. It was shown to be better than the earlier Perceptron learning algorithm
in the sense that the number of mistakes grows only logarithmically with the num-
ber of irrelevant attributes in the examples. Later, it was generalized to weighted
majority for learning with expert advice (Littlestone and Warmuth, 1994), and the
exponentiated gradient method (Kivinen and Warmuth, 1997) for online learning
with a decision variable from a simplex, which is a special case of SMD using the
KL-divergence. It has impact on the development of Adaboost (Freund and Schapire,
1997).

During the first decade of the 21st century, online convex optimization emerged
as a central topic in machine learning. A key focus was on regret bound analysis,
which can be transferred into convergence guarantees for stochastic optimization via
the online-to-batch conversion technique (Dekel and Singer, 2005). Regret bounds
for online gradient descent were established for both convex loss functions (Zinke-
vich, 2003) and strongly convex loss functions (Hazan et al., 2007). The multi-epoch
scheme for achieving an optimal rate of 𝑂 (1/𝑇) for stochastic strongly convex opti-
mization was established independently and concurrently in (Iouditski and Nesterov,
2010; Hazan and Kale, 2011; Ghadimi and Lan, 2012). Later, SGD has shown to be
able to achieve the optimal rate for stochastic non-smooth strongly convex optimiza-
tion using tail averaging (Rakhlin et al., 2012) or increased weighted averaging (La-
coste-Julien et al., 2012). The last iterate convergence of SGD for non-smooth convex
optimization was established in (Shamir and Zhang, 2013).

The use of the ℓ1 norm as a regularizer in the Lasso method was pioneered by Tib-
shirani (1996). The elastic net regularizer was later proposed in (Zou and Hastie,
2003), while the group lasso regularizer was introduced by (Yuan and Lin, 2006).
More recently, the Piecewise Affine Regularizer (PAR) was proposed in (Jin et al.,
2025). The nuclear norm minimization for promoting a low-rank matrix was first
considered in (Fazel et al., 2001).

Pioneering works on the application of SGD to regularized empirical risk mini-
mization in machine learning, including support vector machines, include (Zhang,
2004a; Shalev-Shwartz et al., 2007). The application of the proximal gradientmethod
to ℓ1 norm regularized problem was initiated by Daubechies et al. (2004), yielding
an algorithm known as iterative thresholding. The application of SPGD to machine
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learning with various regularization terms was studied in (Duchi and Singer, 2009).
The application of SGD for optimizing truncated loss and its theory was studied
in (Xu et al., 2019b).

The most famous application of coordinate descent methods in machine learning
is the solver for support vector machine (Chang et al., 2008; Hsieh et al., 2008).

AdaGrad, proposed by Duchi et al. (2011), was a breakthrough in stochastic opti-
mization for machine learning. It later inspired several popular stochastic algorithms
for deep learning, including RMSprop (Hinton, 2018) and Adam (Kingma and Ba,
2015), which will be discussed in Chapter 6.

The first variant of stochastic optimistic mirror prox method appeared in the au-
thor’s award-winning work (Chiang et al., 2012), inspired by Nemirovski’s mirror
prox method. It was introduced to address a long-standing challenge in online con-
vex optimization for achieving variational regret bounds. This line of research later
inspired the work of (Rakhlin and Sridharan, 2013), which formally coined the term
optimistic mirror descent. More recently, stochastic optimistic mirror prox has been
adopted for solving min–max problems in machine learning, including applications
such as training generative adversarial networks (Daskalakis et al., 2018).

Discussion. The most important factor that affects the practical performance of
SGD and other stochastic algorithms is the learning rate scheme 𝜂𝑡 . In this chapter,
we focus on a fixed learning rate 𝜂𝑡 = 𝜂. However, it is usually not the best choice
in practice. We can also develop theoretical analysis of these algorithms using de-
creasing learning rates, e.g., 𝜂𝑡 ∝ 1/

√
𝑡, 1/𝑡. However, these theoretical learning rate

schemes are usually also not the best in practice. A practical approach is the step
decay strategy as in Theorem 3.7, which gives a convergence that has only loga-
rithmic dependence on the initial distance ‖w1 − w∗‖2. This strategy also works for
general stochastic convex optimization under generic error bound conditions in the
form ‖w − w∗‖2 ≤ 𝑐(𝑔(w) − 𝑔(w∗)) 𝜃 with 𝜃 ∈ (0, 1] (Xu et al., 2017). Another
issue of theoretical learning rates is that their best values that optimize the conver-
gence bound may depend on some unknown parameters of the problem, e.g., w∗, the
smoothness constant, strong convexity modulus. This issue has triggered a line of
research known as parameter-free algorithms (Orabona, 2019; Lan et al., 2023).

While this chapter focuses on classical stochastic methods that not only have
important applications in machine learning but also significantly influence the ap-
proaches presented in later chapters, it does not cover several important algorithms,
most notably accelerated gradient methods and their stochastic variants. These meth-
ods achieve optimal convergence rates for smooth convex objectives when the vari-
ance of stochastic gradients vanishes (Lan, 2012). For a comprehensive treatment
of accelerated gradient methods, we refer to the textbook by Nesterov (2004), and
for stochastic accelerated algorithms, we recommend Lan (2020). Variants of these
methods will be introduced in Chapter 6.

Finally, I recommend the textbook (Recht and Wright, 2025), which provides a
comprehensive treatment of convex optimization algorithms tailored for data analy-
sis.
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