
Chapter 2
Introduction: Advanced Machine Learning

Abstract This chapter begins with an introduction to the traditional empirical risk
minimization (ERM) framework, using standard label prediction tasks to illustrate its
three core components: loss functions, optimization algorithms, and generalization
analysis. We then explore advanced learning techniques including distributionally
robust optimization (DRO) and group DRO that aim to enhance model robustness
under distribution shifts. Building on this foundation, we introduce the empirical
X-risk minimization (EXM) paradigm and discuss its applications in modern ma-
chine learning. Finally, we present the concept of data prediction for discriminative
learning in foundation models. The goals of this chapter are threefold: (i) to provide
a cohesive view of how discriminative principles inform objective function design;
(ii) to highlight the role of optimization tools for objective design andmodel training;
and (iii) to motivate the need for compositional optimization frameworks.

models fade, but principles endure!

23



Contents
2.1 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Discriminative Label Prediction . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Discriminative Loss Functions . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3 Need of Optimization Algorithms . . . . . . . . . . . . . . . . . . . . 29
2.1.4 Generalization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Distributionally Robust Optimization . . . . . . . . . . . . . . . . . 31
2.2.2 Optimized Certainty Equivalent . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Group Distributionally Robust Optimization . . . . . . . . . . . 38

2.3 Empirical X-risk Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 AUC Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Average Precision Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3 Partial AUC Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.4 Ranking Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.5 Contrastive Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Discriminative Data Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 A Discriminative Probabilistic Modeling Approach . . . . . 54
2.4.2 A Robust Optimization Approach . . . . . . . . . . . . . . . . . . . . 59

2.5 History and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

24



2.1. EMPIRICAL RISK MINIMIZATION

2.1 Empirical Risk Minimization

What is Machine Learning (ML)?

In 1959, Arthur Samuel, a pioneer in the field ofML, definedMachine Learn-
ing as the “field of study that gives computers the ability to learn without
being explicitly programmed”.

Nowadays, machine learning has become the foundation of AI. The essence of
machine learning is to learn a model by optimizing an objective function on training
data, with the goal of achieving strong generalization to unseen data. This relation-
ship is captured by the formula:

Machine Learning = Objective + Algorithm + Generalization.

Optimization plays a fundamental role in machine learning, as it underpins (1) the
formulation of objective functions, (2) the development of optimization algorithms,
and (3) the analysis of generalization error of learned models. Below, we will use the
traditional label prediction problem to illustrate the three components.

2.1.1 Discriminative Label Prediction

In supervised learning, the primary objective is often to learn a predictive model
from a given set of supervised training data. Let us consider a classical label predic-
tion problem. Denote by (x, 𝑦) a data-label pair, where x ∈ X ⊂ R𝑑0 denotes the
input feature vector, and 𝑦 ∈ Y = {1, . . . , 𝐾} is the corresponding label. The goal
is to learn a predictive model parameterized by w ∈ W ⊆ R𝑑 (e.g., a deep neural
network), which induces a scoring function ℎ(w; ·) : X → R𝐾 . Conceptually, the
model can be expressed as ℎ(w; x) = 𝑊ℎ0 (w; x), where ℎ0 (w; ·) : X → R𝑑1 is the
feature extraction component, and𝑊 ∈ R𝐾×𝑑1 is the classification head correspond-
ing to the 𝐾 classes.

A classical framework for learning such a model is the well-known empirical risk
minimization (ERM), which minimizes the empirical risk over the training dataset.
To this end, a pointwise loss function ℓ(ℎ(w; x), 𝑦) is defined to measure the discrep-
ancy between the model’s prediction ℎ(w; x) and the true label 𝑦. Given a training
dataset S = {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)}, the ERM problem is formulated as:

min
w∈W

RS (w) :=
1
𝑛

𝑛∑
𝑖=1

ℓ(ℎ(w; x𝑖), 𝑦𝑖). (2.1)
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2.1.2 Discriminative Loss Functions

A major element of ERM is the design of the loss function. A common strategy of
designing a loss function for label prediction is through a discriminative approach.
Below, we introduce several discriminative loss functions.

Logistic Loss

A parameterized probabilistic model is defined to represent the probability of a class
label for a given data point as

Pr(𝑦 |x; w) =
exp([ℎ(w; x)]𝑦)∑𝐾
𝑙=1 exp( [ℎ(w; x)]𝑙)

, (2.2)

where [·]𝑘 denotes the 𝑘-th element of a vector. The associated loss is derived from
the negative log-likelihood, resulting in the multi-class logistic loss, also known as
the cross-entropy (CE) loss:

ℓ(ℎ(w; x), 𝑦) = − log
exp([ℎ(w; x)]𝑦)∑𝐾
𝑙=1 exp([ℎ(w; x)]𝑙)

. (2.3)

The resulting method by ERM is commonly referred to as multi-class logistic regres-
sion. For binary classification, this loss becomes the binary logistic loss ℓ(ℎ(w; x), 𝑦) =
log(1 + exp(−𝑦ℎ(w; x))), where ℎ(w; ·) ∈ R and 𝑦 ∈ {1,−1}.

Max-Margin Loss

The max-margin loss, introduced by Crammer and Singer and commonly referred to
as the Crammer-Singer (CS) loss (Crammer and Singer, 2002), is defined as:

ℓ(ℎ(w; x), 𝑦) = max
(
0,max

𝑘≠𝑦

(
𝑐𝑘,𝑦 + [ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦

) )
, (2.4)

where 𝑐𝑘,𝑦 > 0 is a margin parameter. This loss seeks to ensure that the prediction
score for the ground-truth label, [ℎ(w; x)]𝑦 , exceeds the scores of other class labels,
[ℎ(w; x)]𝑘 for 𝑘 ≠ 𝑦, by at least the margin 𝑐𝑘,𝑦 . This method is also known as
the multi-class support vector machine. For binary classification, it reduces to the
standard hinge loss ℓ(ℎ(w; x), y) = max(0, 1 − 𝑦ℎ(w; x)) for ℎ(w; ·) ∈ R and 𝑦 ∈
{1,−1} with a margin 1.
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2.1. EMPIRICAL RISK MINIMIZATION

Label Distributionally Robust (LDR) Loss

Both the CS loss and the CE loss have their strengths and limitations. For example,
the CS loss with the margin parameters is more flexible in controlling the discrim-
ination between classes, while it is not consistent and non-smooth in terms of the
prediction scores. The CE loss is smooth and consistent but lacks robustness to noise
in class labels.

Consistency of a surrogate loss function

The consistency measures whether minimizing a surrogate loss with an in-
finite number of data also minimizes the Bayes error. More formally, a sur-
rogate loss ℓ(ℎ(x), 𝑦) is said to be consistent if any sequence of measurable
functions ℎ (𝑛) it holds

R(ℎ (𝑛) ) → inf
ℎ∈H

R(ℎ) ⇒ R0−1 (ℎ (𝑛) ) → inf
ℎ∈H

R0−1 (ℎ),

where R(ℎ) = Ex,𝑦 [ℓ(ℎ(x), 𝑦)] is the expected risk, R0−1 (ℎ) =
Ex,𝑦 [I(𝑦 ≠ ℎ(x))] is the Bayes error, and H is the set of any measurable
functions.

In fact, the strengths and limitations of both the CE and CS losses can be better
understood within a broader family known as the label-distributionally robust (LDR)
loss:

ℓ𝜏 (ℎ(w; x), 𝑦) = max
p∈Δ𝐾

𝐾∑
𝑘=1

𝑝𝑘
(
[ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦 + 𝑐𝑘,𝑦

)
− 𝜏

𝐾∑
𝑘=1

𝑝𝑘 log(𝑝𝑘𝐾),

(2.5)

where 𝜏 > 0 is a hyperparameter, 𝑐𝑦,𝑦 = 0, p ∈ R𝐾 is referred to as the label
distributional weight vector, and Δ𝐾 = {p ∈ R𝐾 : 𝑝𝑘 ≥ 0,

∑𝐾
𝑘=1 𝑝𝑘 = 1} is a

simplex.
It is clear that the LDR loss is defined by solving an optimization problem. In-

deed, the above optimization problem follows the distributionally robust optimiza-
tion (DRO) principle, which is widely used at the level of data as discussed in sec-
tion 2.2. By treating ‘label’ as a kind of data, we can unify the LDR loss with other
losses discussed later in Section 2.4.

A closed-form solution for p can be derived using the KKT conditions (cf. Ex-
ample 1.16), making the LDR loss equivalent to:

ℓ𝜏 (ℎ(w; x), 𝑦) = 𝜏 log
(

1
𝐾

𝐾∑
𝑘=1

exp
( [ℎ(w; x)]𝑘 + 𝑐𝑘,𝑦 − [ℎ(w; x)]𝑦

𝜏

) )
. (2.6)
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From the perspective of DRO, we can define a more general family of LDR losses
using different regularization functions on p and constrained domains Ω:

ℓ̄𝜏 (ℎ(w; x), 𝑦) = max
p∈Ω

𝐾∑
𝑘=1

𝑝𝑘
(
[ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦 + 𝑐𝑘,𝑦

)
− 𝜏𝑅(p). (2.7)

where Ω ⊆ Δ𝐾 and 𝑅(p) is a strongly convex regularizer.

 Why it matters:

• The LDR loss (2.6) unifies both the CS and CE losses as special cases. Specif-
ically, the CE loss corresponds to the LDR loss when 𝜏 = 1 and 𝑐𝑘,𝑦 = 0 for
all 𝑘 , while the CS loss corresponds to the case 𝜏 = 0.
Moreover, the LDR loss encompasses the Label-Distribution-Aware Margin
(LDAM) loss (Cao et al., 2019) when 𝜏 = 1 and 𝑐𝑘,𝑦 = 𝑐𝑦 ∝ 1/𝑛1/4

𝑦 for
𝑘 ≠ 𝑦, where 𝑛𝑦 denotes the number of samples in class 𝑦:

ℓLDAM (ℎ(w; x), 𝑦)

= − log
©­­­­«

exp
(
[ℎ(w; x)]𝑦 − 𝐶

𝑛
1/4
𝑦

)
exp

(
[ℎ(w; x)]𝑦 − 𝐶

𝑛
1/4
𝑦

)
+ ∑

𝑙≠𝑦 exp( [ℎ(w; x)]𝑙)

ª®®®®¬
,

where 𝐶 is a constant. For imbalanced datasets, this assigns larger margins
𝑐𝑦 to minority classes, making it more suitable for handling class imbalance.

• The LDR loss provides insights into the strengths and limitations of CE and
CS losses. The regularizer 𝑅(p) = ∑𝐾

𝑘=1 𝑝𝑘 log(𝑝𝑘𝐾) is strongly convex in p,
which implies smoothness of the loss in terms of prediction scores due to the
duality between smoothness and strong convexity (Lemma 1.9). This strong
convexity also contributes to the statistical consistency of the loss (Zhu et al.,
2023b). In contrast, the CS loss with 𝜏 = 0 lacks this property, and hence
suffer from non-smoothness and inconsistency.

• The LDR loss framework enables the design of new losses that are robust to
label noise. For instance, when 𝜏 → ∞, the LDR loss reduces to:

ℓ∞ (w; x, 𝑦) = 1
𝐾

𝐾∑
𝑘=1

(
[ℎ(w; x)]𝑘 − [ℎ(w; x)]𝑦 + 𝑐𝑘,𝑦

)
.

A remarkable property of this loss is its symmetry:
∑𝐾
𝑦=1 ℓ∞ (w; x, 𝑦) is con-

stant. This symmetry serves as a sufficient condition for robustness to uni-
form label noise (Ghosh et al., 2017). However, by treating all negative labels
equally, it may limit the model’s ability to focus on hard negative labels and
potentially slow down the learning process. In practice, it is better to tune 𝜏
if there is label noise.
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2.1. EMPIRICAL RISK MINIMIZATION

CS loss CE loss, LDAM loss Noise tolerantConsistent & Smooth

Fig. 2.1: The LDR loss and its special cases by varying 𝜏.

In conclusion, the LDR loss offers flexibility in achieving three desirable properties:
max-margin, consistency, and symmetry. In practice, when tuning 𝜏 ∈ (0,∞), it may
be beneficial to normalize the prediction scores ℎ(w; x).

Critical: It is worth noting that all the discussed losses are discriminative in
nature, aiming to increase the score [ℎ(w; x)]𝑦 of the true label while decreas-
ing the scores [ℎ(w; x)]𝑘 of the negative labels (𝑘 ≠ 𝑦).

2.1.3 Need of Optimization Algorithms

To address the ERM problem in the context of large-scale data (i.e., a substan-
tial number of training examples), first-order stochastic algorithms are commonly
employed. These include stochastic gradient descent (SGD), stochastic momentum
methods, and adaptive gradient methods. For instance, the update rule of classical
SGD for solving (2.1) with W = R𝑑 is given by:

w𝑡+1 = w𝑡 − 𝜂𝑡
1

|B𝑡 |
∑

(x𝑖 ,𝑦𝑖 ) ∈B𝑡
∇ℓ(ℎ(w𝑡 ; x𝑖), 𝑦𝑖), 𝑡 = 1, . . . , 𝑇, (2.8)

where 𝜂𝑡 ≥ 0 is the learning rate (or step size), and B𝑡 denotes a random mini-
batch data sampled from the full dataset. The concern of designing an optimization
algorithm is how fast the algorithm can converge to a (near) optimal solution. We
will discuss the design and analysis of classical stochastic optimization algorithms
in Chapter 3.

Critical: A critical assumption in conventional stochastic optimization algo-
rithms such as SGD is that the gradient ∇ℓ(ℎ(w; x𝑖), 𝑦𝑖) of each individual
loss, can be easily computed. This assumption will fail for the logistic loss
when the number of classes 𝐾 is gigantic, e.g. millions or even billions. This
challenge will be addressed in this book.
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2.1.4 Generalization Analysis

To study the generalization of a model learned by solving ERM, we usually consider
the expected risk defined as

R(w) = Ex,𝑦∼P [ℓ(ℎ(w; x), 𝑦)] . (2.9)

Let w = A(S; 𝜁) denote a learned model by a randomized algorithm A for solving
ERM that depend on random variables 𝜁 . A standard measure of generalization is
given by the excess risk defined as R(w) − R(w∗), where w∗ ∈ arg minu∈W R(u).
The following lemma decomposes the excess risk into the optimization error and the
generalization error.

Lemma 2.1 For a learned model w = A(S; 𝜁) ∈ W, we have

R(w) − R(w∗) ≤ 2 sup
w∈W

|R(w) − RS (w) |︸                       ︷︷                       ︸
generalization error

+RS (w) − min
u∈W

RS (u)︸                      ︷︷                      ︸
optimization error

,

and

ES,𝜁 [R(w) − R(w∗)] = ES,𝜁 [R(w) − RS (w)] + ES,𝜁 [RS (w) − min
u∈W

RS (u)] .

Proof.

R(w) − R(w∗) = R(w) − RS (w) + RS (w) − min
u∈W

RS (u) + min
u∈W

RS (u) − R(w∗)

≤ R(w) − RS (w) + RS (w) − min
u∈W

RS (u) + RS (w∗) − R(w∗).

This proves the first inequality. By taking expectation over S, 𝜁 and noting that
ES [RS (w∗) − R(w∗)] = 0 , we finish the second inequality. ut

 Why it matters:

The excess risk can be decomposed into two components: the optimization error,
given by RS (w) − minu∈W RS (u), and the generalization error which captures
the difference between the expected risk and the empirical risk. The general-
ization error supw∈W |R(w) − RS (w) | decreases as the training data size |S|
increases. Bounding the (expected) optimization error is a central focus of this
book, approached through the analysis of stochastic optimization algorithms. A
brief discussion of the literature on generalization error analysis will be provided
at the end of this chapter.
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2.2. ROBUST OPTIMIZATION

2.2 Robust Optimization

In this section, we introduce advanced machine learning methods based on the prin-
ciple of robust optimization. Robust optimization is a framework designed to address
uncertainty in data. It ensures that the solutions perform well even under worst-case
scenarios of data within a specified set of uncertainties.

2.2.1 Distributionally Robust Optimization

Minimizing the average empirical risk often fails to yield a robust model in practice.
For instance, the resulting model may perform poorly on minority data (e.g., patients
with rare diseases) because the optimization predominantly focuses onmajority class
data.

Critical: Empirical data may not fully represent the underlying data distribu-
tion, leading to generalization issues.

To address these challenges, distributionally robust optimization (DRO) has been
extensively studied in machine learning as a means to improve robustness and gen-
eralization.

The core idea of DRO is to minimize a robust objective defined over the worst-
case distribution of data, perturbed from the empirical distribution. Let us define a set
of distributional weights, p = (𝑝1, . . . , 𝑝𝑛) ∈ Δ𝑛, where Δ𝑛 = {p ∈ R𝑛 :

∑𝑛
𝑖=1 𝑝𝑖 =

1, 𝑝𝑖 ≥ 0}, with each element 𝑝𝑖 associated with a training sample x𝑖 .

Definition 2.1 (𝜙-divergence) Let 𝜙(𝑡) : R+ → R is a proper closed convex function
and has a minimum value zero that is attained at 𝑡 = 1. The 𝜙-divergence is defined
as:

𝐷𝜙 (p ‖ q) =
𝑛∑
𝑖=1

𝑞𝑖𝜙(𝑝𝑖/𝑞𝑖). (2.10)

𝜙-divergence measures the discrepancy between two distributions p and q us-
ing the function 𝜙. We present two common formulations of DRO based on the 𝜙-
divergence: regularized DRO and constrained DRO. They differ in how to define the
uncertainty set of p.

Below, we use the generic notation ℓ(w; z) to denote the loss of a model w on a
random data point z following a distribution denoted by P. For supervised learning,
this specializes to ℓ(w; z) = ℓ(ℎ(w; x), 𝑦), where z = (x, 𝑦).

Definition 2.2 (Regularized DRO)

min
w

R̂S (w) := max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) − 𝜏𝐷𝜙
(
p ‖ 1

𝑛

)
. (2.11)
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Divergence 𝜙 (𝑡 ) 𝜙∗ (𝑠) 𝐷𝜙 (p ‖ q)
KL 𝑡 log(𝑡 ) − 𝑡 + 1 exp(𝑠) − 1

∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖

𝑞𝑖
Burg entropy − log 𝑡 + 𝑡 − 1 − log(1 − 𝑠) , 𝑠 < 1

∑𝑛
𝑖=1 𝑞𝑖 log 𝑞𝑖

𝑝𝑖

𝜒2 (𝑡 − 1)2
{ 1

4 𝑠
2 + 𝑠 if 𝑠 ≥ −2

−1 o.w.
∑𝑛
𝑖=1 𝑞𝑖 (𝑝𝑖/𝑞𝑖 − 1)2

Hellinger distance (
√
𝑡 − 1)2 𝑠

1−𝑠 , 𝑠 < 1
∑
𝑖 (
√
𝑝𝑖 −

√
𝑞𝑖 )2

Variation distance |𝑡 − 1 |
{
𝑠 if 𝑠 ∈ [−1, 1]
−1 if𝑠 < −1

∑
𝑖 | 𝑝𝑖 − 𝑞𝑖 |

CVaR I0−∞ (𝑡 ≤ 1/𝛼) [𝑠]+
𝛼

{
0 if 𝑝𝑖 ≤ 𝑞𝑖/𝛼, ∀𝑖
∞ o.w

Table 2.1: Examples of 𝜙-divergence

Definition 2.3 (Constrained DRO)

min
w

R̂S (w) :=max
p∈Ω

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) (2.12)

where Ω =

{
p|p ∈ Δ𝑛, 𝐷𝜙

(
p ‖ 1

𝑛

)
≤ 𝜌

}
.

The regularized DRO uses a regularization on the p to implicitly define the un-
certainty set, and the constrained DRO uses a constraint on p to explicitly define the
uncertainty set.

The maximization over p in the DRO formulations simulates a worst-case sce-
nario, thereby enhancing the model’s robustness. The DRO objective interpolates
between the maximal loss and the average loss:

• Without the 𝜙-divergence regularization or constraint (i.e., 𝜏 = 0 or 𝜌 = ∞), the
objective simplifies to the maximal loss among all samples, which is particularly
beneficial for handling imbalanced data but is sensitive to outliers.

• Conversely, when 𝜌 = 0 or 𝜏 = ∞, the DRO objective reduces to the standard
empirical risk, which is not sensitive to outliers but no suitable for imbalanced
data.

In practice, adding a tunable 𝜙-divergence regularization or constraint (via tuning 𝜏
or 𝜌) increases the model’s robustness.

A list of 𝜙-divergence is presented in Table 2.1. Two commonly used ones in
machine learning are presented below:

• KL-Divergence: With 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the 𝜙-divergence becomes the KL
divergence:

KL(p, q) = 𝐷𝜙 (p ‖ q) =
𝑛∑
𝑖=1

𝑝𝑖 log(𝑝𝑖/𝑞𝑖).

• Conditional Value-at-Risk (CVaR):With 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), where 𝛼 ∈ (0, 1]
and I0−∞ is 0 − ∞ indicator function, the divergence becomes 𝐷𝜙 (p ‖ q) = 0 if
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2.2. ROBUST OPTIMIZATION

𝑝𝑖 ≤ 𝑞𝑖/𝛼∀𝑖, otherwise 𝐷𝜙 (p ‖ q) = ∞. The resulting DRO formulation is also
known as the empirical CVaR-𝛼.

The Dual form of Regularized DRO

Solving the above DRO formulations requires dealing with a high-dimensional vari-
able p from a simplex, which will incur additional overhead compared with solving
ERM when the number of training data is large. The reason is that it requires per-
forming a projection onto the simplex Δ𝑛 or the constrained simplex Ω = {p ∈
Δ𝑛, 𝐷𝜙

(
p ‖ 1

𝑛

)
≤ 𝜌}. To reduce this overhead, one approach is to convert the prob-

lem into unconstrained one using the Langrangian dual theory based on the convex
conjugate of 𝜙 function.

Proposition 2.1 (Dual form of Regularized DRO). Let 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡).
Then we have

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) − 𝜏𝐷𝜙
(
p ‖ 1

𝑛

)
= min

𝜈

𝜏

𝑛

𝑛∑
𝑖=1

𝜙∗
(
ℓ(w; z𝑖) − 𝜈

𝜏

)
+ 𝜈. (2.13)

The proof can be found in Example 1.14 in Chapter 1.

Examples of Regularized DRO

Example 2.1. (KL-divergence Regularized DRO) For the special case of
using KL-divergence, we can further simplify the above objective function.
Since 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, then 𝜙∗ (𝑠) = exp(𝑠) − 1 (see Example 1.15) and
solving 𝜈 yields

𝜈 = 𝜏 log
(
1
𝑛

𝑛∑
𝑖=1

exp(ℓ(w; z𝑖)/𝜏)
)
.

Plugging it back into the objective, we can obtain a simplified form

max
p∈Δ𝑛

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) − 𝜏KL
(
p,

1
𝑛

)
= 𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp(ℓ(w; z𝑖)/𝜏)
)
.

As a result, with 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the KL-divergence regularized
DRO (2.11) is equivalent to

min
w
𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; z𝑖)

𝜏

))
. (2.14)

Example 2.2. (Empirical CVaR) As another example, we derive the dual
form of the empirical CVaR. With simple algebra, we can derive that 𝜙∗ (𝑠) =
[𝑠]+
𝛼 (see Example 1.15) for 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼).
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As a result, with 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), the regularized DRO (2.11) corre-
sponding to the empirical CVaR−𝛼 is equivalent to

min
w,𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ(w; z𝑖) − 𝜈]+ + 𝜈. (2.15)

When 𝑘 = 𝑛𝛼 ∈ [1, 𝑛] is an integer, the above objective reduces to the average
of top-𝑘 loss values when sorting them in descending order, as shown in the
following lemma.

Lemma 2.2 Let ℓ[𝑖 ] denote the 𝑖-th largest loss among {ℓ(w; z𝑖), 𝑖 = 1, . . . , 𝑛}
ranked in descending order. If 𝛼 = 𝑘/𝑛, we have

min
𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ(w; z𝑖) − 𝜈]+ + 𝜈 =
1
𝑘

𝑘∑
𝑖=1

ℓ[𝑖 ] . (2.16)

Proof. First, we have

min
𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ(w; z𝑖) − 𝜈]+ + 𝜈 = min
𝜈

1
𝑛𝛼

𝑛∑
𝑖=1

[ℓ[𝑖 ] − 𝜈]+ + 𝜈.

Let 𝜈∗ be an optimal solution given w. Due to the first-order optimality condition,
we have

0 ∈ 1
𝑘

𝑛∑
𝑖=1

𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ + 1.

Hence,

−𝑘 ∈
𝑛∑
𝑖=1

𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+. (2.17)

Let us first assume ℓ[𝑘+1] < ℓ[𝑘 ] . We will show hat 𝜈∗ ∈ (ℓ[𝑘+1] , ℓ[𝑘 ]] satisfy
this condition. Since −1 ∈ 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ for 𝑖 = 1, . . . , 𝑘 due to ℓ[𝑖 ] ≥ 𝜈∗ and
𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ = 0 for 𝑖 = 𝑘 + 1, . . . , 𝑛 due to ℓ[𝑖 ] < 𝜈∗. Hence, it verifies that the
condition (2.17) holds at such 𝜈∗.

If ℓ[𝑘+1] = ℓ[𝑘 ] , we argue that 𝜈∗ = ℓ[𝑘 ] can still satisfy (2.17). This is because
−1 ∈ 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ for 𝑖 = 1, . . . , 𝑘 and 0 ∈ 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ for ℓ[𝑖 ] = ℓ[𝑘+1] , 𝑖 ≥ 𝑘 +1
and 𝜕𝜈 [ℓ[𝑖 ] − 𝜈∗]+ = 0 for ℓ[𝑖 ] < ℓ[𝑘+1] , 𝑖 ≥ 𝑘 + 1. Then the conclusion follows. ut

The Dual form of Constrained DRO

For transforming the constrained DRO, we can use the following proposition based
on the Lagrangian duality theory.
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2.2. ROBUST OPTIMIZATION

Proposition 2.2 (Dual form of Constrained DRO). Let 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡).
Then we have

max
p∈Δ𝑛 ,𝐷𝜙 (p ‖ 1

𝑛 )≤𝜌

𝑛∑
𝑖=1

𝑝𝑖ℓ(w; z𝑖) = min
𝜏≥0,𝜈

𝜏

𝑛

𝑛∑
𝑖=1

𝜙∗
(
ℓ(w; z𝑖) − 𝜈

𝜏

)
+ 𝜈 + 𝜏𝜌. (2.18)

The proof is similar to that of Proposition 2.1.

Examples of Constrained DRO

Example 2.3. (KL Constrained DRO) With 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the KL-
divergence constrained DRO (2.12) is equivalent to:

min
w,𝜏≥0

𝜏 log

(
1
𝑛

𝑛∑
𝑖=1

exp
(
ℓ(w; z𝑖)

𝜏

))
+ 𝜏𝜌. (2.19)

KL-regularized DRO and KL-constrained DRO play important roles in many
modern artificial intelligence applications. The LDR loss (2.5) can be interpreted
as a form of KL-regularized DRO, except that the uncertainty is placed on the dis-
tribution of class labels for each individual data point. We will present additional
applications in Section 2.4.

The Optimization Challenge

Although the transformed optimization problems do not involve dealing with a high-
dimensional variable p ∈ Δ𝑛, the new optimization problems (2.14), (2.19) are not
of the same form as ERM. The critical assumption that an unbiased gradient can
be easily computed fails. We will cast them as instances of stochastic compositional
optimization (SCO), which is topic of Chapter 4 of the book.

2.2.2 Optimized Certainty Equivalent

How to understand the generalization of DRO? One way is to still consider bounding
the expected risk R(w) of the learned model. However, the expected risk may not be
a good measure when the data distribution is skewed.

For simplicity, let us consider a binary classification problem with Pr(x, 𝑦 = 1) =
𝜋+ Pr(x|𝑦 = 1) and Pr(x, 𝑦 = −1) = 𝜋− Pr(x|𝑦 = −1), where 𝜋+ = Pr(𝑦 = 1), 𝜋− =
Pr(𝑦 = −1). Let P+ and P− be the distributions of x conditioned on 𝑦 = 1 and 𝑦 = −1,
respectively. By the law of total expectation we have

R(w) = Ex,𝑦ℓ(ℎ(w; x), 𝑦) = 𝜋+Ex∼P+ [ℓ(ℎ(w; x), 1)] + 𝜋−Ex∼P− [ℓ(ℎ(w; x),−1)] .
(2.20)
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If 𝜋− � 𝜋+, the expected risk would be dominated by the expected loss of data from
the negative class. As a result, a small R(w) does not necessarily indicate a small
Ex∼P+ [ℓ(w; x, 1)].

Instead, we consider the population risk of DRO as the target measure. A formal
definition of the population risk for the regularized DRO (2.11) is given below.
Definition 2.4 (Population risk of DRO)Given a data distribution P, for any 𝜏 > 0,
we define the population risk of regularized DRO (2.11) as:

Roce (w) : = max
Q∈Q

Ez′∼Qℓ(w; z′) − 𝜏EP𝜙

(
𝑑Q
𝑑P

)
(2.21)

= min
𝜈
𝜏Ez∼P𝜙

∗
(
ℓ(w; z) − 𝜈

𝜏

)
+ 𝜈, (2.22)

where 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡).
In the definition above, Q = {Q | Q � P} denotes the set of probability measures

that are absolutely continuous with respect to P. A probability measure Q is said to
be absolutely continuous with respect to P, denoted Q � P, if every event that has
probability 0 under P also has probability 0 underQ. If P andQ admit densities 𝑝(𝑧)
and 𝑞(𝑧) with respect to a common dominating measure on Z, and Q � P, then

EP

[
𝜙

(
𝑑Q
𝑑P

)]
=

∫
Z
𝑝(𝑧) 𝜙

(
𝑞(𝑧)
𝑝(𝑧)

)
𝑑𝑧.

The equivalent counterpart in (2.22) is a risk measure originates from the op-
timized certainty equivalent (OCE), a concept popularized in mathematical eco-
nomics (Ben-Tal and Teboulle, 1986a). Minimizing OCE has an effect of so-called
risk-aversion, which discourages models from having rare but catastrophic errors.
Two special cases are discussed below:
• When 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), the OCE becomes the CVaR-𝛼, i.e.,

Rcvar (w) = Ez [ℓ(w; z) |ℓ(w; z) ≥ VAR𝛼 (ℓ(w; z))],

where VAR𝛼 (ℓ(w; z)) = sup𝑠 [Pr(ℓ(w; z) ≥ 𝑠) ≥ 𝛼] is the 𝛼-quantile or“value-
at-risk”of the random loss values.

• When 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, OCE becomes the entropic risk:

Rent (w) = 𝜏 log
(
Ez exp

(
ℓ(w; z)
𝜏

))
.

What is risk-aversion?

Risk aversion refers to the preference for a certain and predictable cost over
an uncertain outcome with the same average cost, especially when the un-
certainty involves rare but severe losses. This behavior cannot be captured by
the expectation alone, which treats all outcomes linearly and ignores tail risk.
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2.2. ROBUST OPTIMIZATION

TheOCE provides a principled risk-sensitive alternative by assigning a single
certainty-equivalent value to a random loss that accounts for both its mean
and its variability. A classic illustration is insurance: consider paying a fixed
premium of $1,000 versus facing a $100,000 medical bill with probability
0.01 and zero cost otherwise. Although both options have the same expected
cost, the OCE risk (logE[exp(𝑋)] assigns a much larger value to the unin-
sured option, as it heavily penalizes the rare catastrophic loss. Consequently,
OCE correctly reflects the economic rationale behind insurance decisions by
favoring stable outcomes over risky alternatives with heavy tails.

We present two properties of OCE below.

Lemma 2.3 Let 𝜕𝜙∗ (𝑡) = {𝑠 : 𝜙′∗− (𝑡) ≤ 𝑠 ≤ 𝜙′∗+ (𝑡)}. If 𝑎 < 𝑏, then 0 ≤ 𝜙′∗+ (𝑎) ≤
𝜙′∗− (𝑏).

Proof. Due to the definition 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡), we have 𝜕𝜙∗ (𝑠) ≥ 0, which
indicates that 𝜙∗ is non-decreasing. Since 𝜙∗ is also convex, the conclusion follows
from the convex analysis (Rockafellar, 1970b)[Section 24]. ut

Lemma 2.4 For any 𝜏 > 0,w ∈ R𝑑 , it holds that Roce (w) ≥ R(w).

Proof. Since 𝜙(1) = 0, then 𝜙∗ (𝑠) = max𝑡≥0 𝑡𝑠 − 𝜙(𝑡) ≥ 𝑠 − 𝜙(1) = 𝑠. Hence,

Roce (w) = min
𝜈
𝜏Ez𝜙

∗
(
ℓ(w; z) − 𝜈

𝜏

)
+ 𝜈

≥ min
𝜈
𝜏Ez

(
ℓ(w; z) − 𝜈

𝜏

)
+ 𝜈 = R(w).

ut

 Why it matters:

Lemma 2.3 implies that a data with a larger loss ℓ(ℎ(w; x), 𝑦) will have a higher
weight in the gradient calculation in terms of w.
Lemma 2.4 indicates that OCE is a stronger measure than the expected risk. A
small OCE will imply a small expected risk, while the reverse is not necessarily
true.

Based on OCE, we can define the excess risk Roce (w) −minu∈W Roce (u) and de-
compose it into an optimization error and a generalization error similar to Lemma 2.1.

Lemma 2.5 For a learned model w = A(S; 𝜁) for solving empirical DRO (2.11),
we have

Roce (w) − min
u∈W

Roce (u) ≤ 2 sup
w∈W

|Roce (w) − R̂S (w) |︸                          ︷︷                          ︸
generalization error

+ R̂S (w) − min
u∈W

R̂S (w)︸                      ︷︷                      ︸
optimization error

.
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Fig. 2.2: Illustrative of spurious correlation between the class label and some feature:
waterbird images mostly have water background and landbird images mostly have
land background.

2.2.3 Group Distributionally Robust Optimization

Group DRO is an extension of DRO by aggregating data into groups and using DRO
on the group level to formulate a robust risk function. It is helpful to promote equity
of the learned model and mitigating the impact of spurious correlations that exist
between the label and some features, by using prior knowledge to group the data.

Let us consider an illustrative example of classifying waterbird images from land-
bird images (see Figure 2.2). The training data may have the same number of water-
bird images and landbird images. However, most waterbird images may have water
in the background and most landbird images may have land in the background. Stan-
dard empirical risk minimization may learn spurious correlation between the class
labels (e.g., waterbird) and the specific value of some attribute (e.g., the water back-
ground). As a consequence, the model may perform poorly on waterbird images with
land background.

Critical: Data may exhibit imbalance not in the marginal distribution of class
label but some joint distribution of the class label and some attributes, which
causes the spurious correlation.

GDRO can be used to mitigate this issue by leveraging prior knowledge of spu-
rious correlations to define groups over the training data. Let the training data be
divided into multiple groups G1, . . . ,G𝐾 , where G 𝑗 = {(x 𝑗1, 𝑦

𝑗
1), . . . (x

𝑗
𝑛 𝑗 , 𝑦

𝑗
𝑛 𝑗 )} in-

cludes a set of examples from the 𝑗-th group. We define an averaged loss over exam-
ples from each group 𝐿 𝑗 (w) = 1

𝑛 𝑗

∑𝑛 𝑗
𝑖=1 ℓ(ℎ(w; x 𝑗𝑖 ), 𝑦

𝑗
𝑖 ). Then, a regularized group

DRO can be defined as

min
w

max
p∈Δ𝐾

𝐾∑
𝑗=1

𝑝 𝑗𝐿 𝑗 (w) − 𝜏𝐷𝜙
(
p ‖ 1

𝐾

)
, (2.23)

and a constrained group DRO is given by:

min
w

max
p∈Δ𝐾 ,𝐷𝜙 (p ‖ 1

𝐾 )≤𝜌

𝐾∑
𝑗=1

𝑝 𝑗𝐿 𝑗 (w). (2.24)
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2.3. EMPIRICAL X-RISK MINIMIZATION

By doing so, the learning process is less likely to be dominated by the majority group
associated with the spurious correlation between the label and a particular feature
(e.g., waterbird images with water background). If the model only captures the spu-
rious correlation, the loss for the minority group will be large, which in turn drives
the learning process to reduce this loss and thereby mitigate the spurious correlation.

Examples and Reformulations

Similar to before, we can convert the min-max problem into a minimization problem
to reduce additional overhead of dealing with a large number of groups. We give two
examples of using the KL-divergence constraint of p and CVaR-𝛼.

With 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the KL-divergence constrained group DRO (2.24) is
equivalent to

min
w,𝜏≥0

𝜏 log ©­« 1
𝐾

𝐾∑
𝑗=1

exp
(
𝐿 𝑗 (w)
𝜏

)ª®¬ + 𝜏𝜌. (2.25)

With 𝜙(𝑡) = I0−∞ (𝑡 ≤ 1/𝛼), CVaR-𝛼 group DRO (2.24) is equivalent to

min
w,𝜈

1
𝐾𝛼

𝐾∑
𝑗=1

[𝐿 𝑗 (w) − 𝜈]+ + 𝜈. (2.26)

The Optimization Challenge

Again, these new optimization problems (2.25), (2.26) cannot be solved by simply
using existing stochastic algorithms for ERM since 𝐿 𝑗 (w) depends onmany data and
they are inside non-linear functions. In particular, the problem (2.26) is an instance
of finite-sum coupled compositional optimization (FCCO), which will be explored
in Chapter 5 in depth.

2.3 Empirical X-risk Minimization

So far, we have revisited classical ideas of machine learning based on empirical risk
minimization and its distributionally robust variants. In these risk functions, we as-
sume each data defines a loss based on itself. These losses are typically surrogate
functions of a prediction error measuring the inconsistency between the prediction
and the label.

However, such loss functions are insufficient to capture many objectives, which
involve comparison between different data points. Examples include areas under
ROC curves (AUROC) and areas under precision-recall curves (AUPRC) for imbal-
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anced data classification, ranking measures such as normalized discounted cumula-
tive gain (NDCG), mean average precision (MAP) and listwise losses for learning to
rank, and contrastive losses for representation learning.

The standard ERM framework is inadequate for optimizing such metrics and
losses, as they involve interactions across multiple data points.We need a newmathe-
matical framework to understand the challenge and to design provable and practical
algorithms. To this end, we introduce a new risk minimization framework, named
empirical X-risk minimization (EXM), as defined below:

Empirical X-risk Minimization (EXM)

X-risk refers to a family of risks such that the loss of each data is defined
in a way that contrasts the data with many others. Mathematically, empirical
X-risk minimization is formulated as:

min
w

1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑔(w, x𝑖 ,S𝑖)), (2.27)

where {x1, . . . , x𝑛} is a set of data points, eachS𝑖 contains a number of items,
𝑓𝑖 is a simple but non-linear function, and 𝑔(w, x𝑖 ,S𝑖) involves the coupling
between x𝑖 and all data in S𝑖 . A simple instance of 𝑔(w, x𝑖 ,S𝑖) is the follow-
ing averaged form:

𝑔(w, x𝑖 ,S𝑖) =
1
|S𝑖 |

∑
z∈S𝑖

ℓ(w; x𝑖 , z). (2.28)

With 𝑔 given in (2.28), EXM is an instance of finite-sum coupled compositional
optimization (FCCO), a framework explored in detail in Chapter 5.

Below, we present several important instances of X-risks.

2.3.1 AUC Losses

AUC, short for Area under receiver operating characteristic (ROC) curve, is com-
monly used to measure performance for the imbalanced data classification.

What is Imbalanced Data Classification?

Imbalanced data classification refers to classification problems, where the
number of examples from some classes is significantly larger than that of
other classes.
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2.3. EMPIRICAL X-RISK MINIMIZATION

Fig. 2.3: Areas under ROC Curves

Definition and an Empirical Estimator of AUC

The ROC curve is the plot of the true positive rate (TPR) against the false posi-
tive rate (FPR) at each threshold setting. Let P+, P− denote the distribution of ran-
dom positive and negative data, respectively. Let ℎ(·) : X → R denote a pre-
dictive scoring function. For a given threshold 𝑡, the TPR of ℎ can be written as
TPR(𝑡) = Pr(ℎ(x) > 𝑡 |𝑦 = 1) = Ex∼P+ [I(ℎ(x) > 𝑡)], and the FPR can be written as
FPR(𝑡) = Pr(ℎ(x) > 𝑡 |𝑦 = −1) = Ex∼P− [I(ℎ(x) > 𝑡)]. Let 𝐹− (𝑡) = 1 − FPR(𝑡) de-
note the cumulative density function of the random variable ℎ(x−) for x− ∼ P− . Let
𝑝− (𝑡) denote its corresponding probability density function. Similarly, let 𝐹+ (𝑡) =
1 − TPR(𝑡) and 𝑝+ (𝑡) denote the cumulative density function and the probability
density function of ℎ(x+) for x+ ∼ P+, respectively.

For a given 𝑢 ∈ [0, 1], let FPR−1 (𝑢) = inf{𝑡 ∈ R : FPR(𝑡) ≤ 𝑢}. The ROC curve
is defined as {𝑢,ROC(𝑢)}, where 𝑢 ∈ [0, 1] and ROC(𝑢) = TPR(FPR−1 (𝑢)).

Hence, we have the following theorem.

Theorem 2.1 The AUC for a predictive scoring function ℎ is equal to

AUC(ℎ) = Pr(ℎ(x+) > ℎ(x−)) = Ex+∼P+ ,x−∼P− [I(ℎ(x+) > ℎ(x−))] . (2.29)

Proof. The AUC score of ℎ is given by

AUC(ℎ) =
∫ 1

0
ROC(𝑢)𝑑𝑢 =

∫ ∞

−∞
TPR(𝑡)𝑑𝐹− (𝑡) =

∫ ∞

−∞
TPR(𝑡)𝑝− (𝑡)𝑑𝑡

=
∫ ∞

−∞

∫ ∞

𝑡
𝑝+ (𝑠)𝑑𝑠𝑝− (𝑡)𝑑𝑡 =

∫ ∞

−∞

∫ ∞

−∞
𝑝+ (𝑠)𝑝− (𝑡)I(𝑠 > 𝑡)𝑑𝑠𝑑𝑡.

Since ℎ(x+) follows 𝑝+ (𝑠) and ℎ(x−) follows 𝑝− (𝑡), we can conclude the proof. ut

This indicates that AUC is a pairwise ranking metric. An ideal scoring function
that ranks all positive examples above negative examples has a perfect AUC score 1.
It also implies the following empirical non-parametric estimator of AUC based on a
set of data S with 𝑛+ positive samples in S+ and 𝑛− negative samples in S−:

AUC(ℎ;S) = 1
𝑛+𝑛−

∑
x+∈S+ ,x−∈S−

I(ℎ(x+) > ℎ(x−)), (2.30)

which is also known as the Mann-Whitney U-statistic (Hanley and McNeil, 1982).
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Necessity of Maximizing AUC

AUC is more appropriate than accuracy for assessing the performance of imbalanced
data classification. Let us consider an example with 2 positive data and 100 negative
data. If one positive data has a prediction score 0.5 and another one has a prediction
score −0.2, and all negative data has prediction scores less than 0 but larger than
−0.2. In this case, if we choose a classification threshold as 0, then the accuracy is
101/102 = 0.99. However, the (emprical) AUC score according to (2.30) is given
by 100/200 = 0.5. “Can a model that optimizes the accuracy also optimize the AUC
score?” Unfortunately, this is not the case as different classifiers that have the same
accuracy could have dramatic different AUC (Cortes and Mohri, 2003). An example
is illustrated in Table 2.2. Hence, it makes sense to directly optimize AUC.

Critical: A model that optimizes accuracy does not necessarily optimize
AUC.

Example 1 2cExample 2 2cExample 3
Prediction Ground Truth Prediction Ground Truth Prediction Ground Truth

0.9 1 0.9 1 0.9 1
0.8 1 0.41(↓) 1 0.41(↓) 1
0.7 1 0.7 1 0.40(↓) 1
0.6 0 0.6 0 0.49(↓) 0
0.6 0 0.49(↓) 0 0.48(↓) 0
0.47 0 0.47 0 0.47 0
0.47 0 0.47 0 0.47 0
0.45 0 0.45 0 0.45 0
0.43 0 0.43 0 0.43 0
0.42 0 0.42 0 0.42 0
...

...
...

...
...

...
0.1 0 0.1 0 0.1 0

Acc=0.92
AUC=1.00

Acc=0.92 (—)
AUC=0.89 (↓)

Acc=0.92 (—)
AUC=0.78 (↓)

Table 2.2: Illustrations of variance of AUC for different classifiers with the same
Accuracy on an imbalanced dataset of 25 samples with a positive ratio of 3/25. The
accuracy threshold is 0.5. Example 1 shows that all positive instances rank higher
than negative instances and two negative instances are misclassified to positive class.
Example 2 shows that 1 positive instance ranks lower than 7 negative instances and
1 positive and 1 negative instances are missclassifed. Example 3 shows that 2 posi-
tive instances rank lower than 7 negative instances, and 2 positive instances are also
missclassifed as negative class. Overall, we can observe that AUC drops dramatically
as the ranks of positive instances drop but meanwhile Accuracy remains unchanged.
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2.3. EMPIRICAL X-RISK MINIMIZATION

Pairwise Loss ℓ (𝑡 ) Monotone
Squared Hinge (𝑐 + 𝑡 )2

+ Yes
Hinge (𝑐 + 𝑡 )+ Yes
Logistic log(1 + exp(𝑠𝑡 ) ) Yes
Sigmoid (1 + exp(−𝑠𝑡 ) )−1 Yes
Square (𝑐 + 𝑡 )2 No
Barrier Hinge max(−𝑠 (𝑐 − 𝑡 ) + 𝑐,max(𝑠 (−𝑡 − 𝑐) , 𝑐 + 𝑡 ) ) No

Table 2.3: Surrogate loss functions for pairwise modeling with the input argument
𝑡 = ℎ(w; x−) − ℎ(w; x+). For the sake of simplicity, denote max(0, 𝑡) by 𝑡+, denote
the scaling hyper-parameter by 𝑠 > 0 and margin hyper-parameter by 𝑐 > 0.

Pairwise Surrogate Losses

Using a pairwise surrogate loss ℓ(·) of the indicator function I(𝑡 ≥ 0) (see exam-
ples in Table 2.3), we have the following empirical AUC optimization problem for
learning a parameterized function ℎ(w; ·):

min
w∈R𝑑

1
𝑛+

1
𝑛−

∑
x𝑖∈S+

∑
x 𝑗 ∈S−

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)). (2.31)

This can be regarded as a special case of (2.27) by setting

𝑔(w; x𝑖 ,S−) =
1
𝑛−

∑
x 𝑗 ∈S−

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

𝑓𝑖 (𝑔) = 𝑔.

This is the simplest form of EXMas 𝑓 is just a linear function. An unbiased stochastic
gradient can be easily computed based on a pair of data points consisting of a random
positive and a random negative data point.

Compositional Objectives

An alternative approach to formulate AUCmaximization is to decouple the pairwise
comparison between positive and negative examples. A generic formulation is given
by:

min
w∈R𝑑 , (𝑎,𝑏) ∈R2

1
|S+ |

∑
x𝑖∈S+

(ℎ(w; x𝑖) − 𝑎)2 + 1
|S− |

∑
x 𝑗 ∈S−

(ℎ(w; x 𝑗 ) − 𝑏)2

+ 𝑓
©­« 1
|S− |

∑
x 𝑗 ∈S−

ℎ(w; x 𝑗 ) −
1

|S+ |
∑

x𝑖∈S+

ℎ(w; x𝑖)ª®¬ ,
(2.32)
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where 𝑓 is a non-linear function. The last component is a compositional function.
The above formulation also has a clear physical meaning. In particular, minimiz-

ing the first two terms aim to push the prediction scores of positive and negative
examples to center around their means, respectively, and minimizing the third term
aims to push the mean score of positive examples to be larger than the mean score
of negative examples.

The above formulation is motivated by the pairwise formulation with a square
surrogate function ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)) = (𝑐 + ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))2. Indeed, in
this case, (2.31) is equivalent to (2.32) with 𝑓 (𝑠) = (𝑠 + 𝑐)2. We leave this as an
exercise for interested readers. Nevertheless, using 𝑓 (𝑠) = [𝑠 + 𝑐]2

+ in (2.32) is more
robust than 𝑓 (𝑠) = (𝑠 + 𝑐)2 with 𝑐 > 0.

Solving the above problem requires compositional optimization techniques, which
will be discussed in Section 6.4.1.

2.3.2 Average Precision Loss

Area under precision-recall curve (AUPRC) is another commonly used measure for
highly imbalanced data. The precision and recall of a scoring function ℎ at threshold
𝑡 are defined as

Rec(𝑡) := Pr(ℎ(x) > 𝑡 | 𝑦 = 1) = TPR(𝑡),
Prec(𝑡) := Pr(𝑦 = 1 | ℎ(x) > 𝑡).

For a given 𝑢 ∈ [0, 1], let TPR−1 (𝑢) = inf{𝑡 ∈ R : TPR(𝑡) ≤ 𝑢}. The precision–
recall (PR) curve is defined as {(𝑢, PR(𝑢))}, where 𝑢 ∈ [0, 1] and PR(𝑢) =
Prec

(
TPR−1 (𝑢)

)
. Hence, AUPRC for ℎ can be computed by

AUPRC(ℎ) =
∫ 1

0
PR(𝑢) 𝑑𝑢.

Theorem 2.2 The AUPRC for a predictive scoring function ℎ is equal to

AUPRC(ℎ) =
∫ ∞

−∞
Prec(𝑡) 𝑝+ (𝑡) 𝑑𝑡 = Ex+∼P+

[
Prec(ℎ(x+))

]
. (2.33)

Proof. By definition,

AUPRC(ℎ) =
∫ 1

0
PR(𝑢) 𝑑𝑢 =

∫ 1

0
Prec

(
TPR−1 (𝑢)

)
𝑑𝑢.

Let 𝑢 = TPR(𝑡) = 1 − 𝐹+ (𝑡). Then 𝑑𝑢 = −𝑝+ (𝑡) 𝑑𝑡. Therefore,

AUPRC(ℎ) =
∫ −∞

∞
Prec(𝑡) (−𝑝+ (𝑡) 𝑑𝑡) =

∫ ∞

−∞
Prec(𝑡) 𝑝+ (𝑡) 𝑑𝑡,
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2.3. EMPIRICAL X-RISK MINIMIZATION

which proves (2.33). ut

The above theorem yields the following empirical estimator of AUPRC. For a set
of training examples S = S+∪S− , a non-parametric estimator of AUPRC is average
precision (AP) (Boyd et al., 2013):

AP(ℎ) = 1
𝑛+

∑
x𝑖∈S+

∑
x 𝑗 ∈S+

I(ℎ(x 𝑗 ) ≥ ℎ(x𝑖))∑
x 𝑗 ∈S

I(ℎ(x 𝑗 ) ≥ ℎ(x𝑖))
. (2.34)

AP is an unbiased estimator of AUPRC in the limit 𝑛→ ∞.

Necessity of Maximizing AUPRC

While AUC is generally more suitable than accuracy for imbalanced classification
tasks, it may fail to adequately capture misorderings among top-ranked examples.
Consider a scenario with 2 positive and 100 negative samples. If the two positive
samples are ranked below just two of the negative ones, followed by the remaining
98 negatives, the resulting AUC is 196/200 = 0.98, which appears high. However,
this model would be inadequate if our focus is on the top two predicted positive in-
stances. In drug discovery, for example, models are expected to identify the most
promising candidate molecules for experimental validation. If these top-ranked pre-
dictions turn out to lack the desired properties, the resulting experimental efforts may
lead to significant wasted resources and costly failures.

To avoid this issue, AUPRC or its empirical estimator AP is typically used as a
performance metric. According to its definition (2.34), the AP score for the above
example is 1

2 (
1
3 +

2
4 ) = 0.42. In contrast, a perfect ranking that ranks the two positive

examples at the top gives an AP score of 1. Unfortunately, optimizing AUC does not
necessarily lead to optimal AP, as two models with identical AUC scores can exhibit
significantly different AP values. This highlights the need for efficient optimization
algorithms that directly maximize AP.

Critical: AUPRC/AP penalizes more on the error at the top of the ranked list.

Surrogate Loss of AP

To construct a differentiable objective for minimization, a differentiable surrogate
loss ℓ(ℎ(x 𝑗 ) − ℎ(x𝑖)) is used in place of I(ℎ(x 𝑗 ) ≥ ℎ(x𝑖)). Then AP can be approx-
imated by :
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AP ≈ 1
𝑛+

∑
x𝑖∈S+

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(x 𝑗 ) − ℎ(x𝑖))∑
x 𝑗 ∈S

ℓ(ℎ(x 𝑗 ) − ℎ(x𝑖))
. (2.35)

Let us define

𝑓 (g) = − [g]1

[g]2
,

g(w; x𝑖 ,S) = [𝑔1 (w; x𝑖 ,S), 𝑔2 (w; x𝑖 ,S)]

𝑔1 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

I(𝑦 𝑗 = 1)ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)),

𝑔2 (w; x𝑖 ,S) =
1
|S|

∑
x 𝑗 ∈S

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)).

Then, we formulate AP maximization as the following problem:

min
w

1
𝑛+

∑
x𝑖∈S+

𝑓 (g(w; x𝑖 ,S)), (2.36)

which is a special case of EXM. We will explore efficient algorithms for optimizing
AP in Section 6.4.2 using FCCO techniques.

2.3.3 Partial AUC Losses

There are two commonly used versions of partial AUC (pAUC), namely one-way
pAUC (OPAUC) and two-way pAUC (TPAUC). OPAUC puts a restriction on the
range of FPR, i.e., FPR ∈ [𝛼, 𝛽] (the second figure from the left in Figure 2.3) and
TPAUC puts a restriction on the lower bound of TPR and the upper bound of FPR,
i.e., TPR ≥ 𝛼, FPR ≤ 𝛽 (the second figure from the right in Figure 2.3).

By the definition, we have the following probabilistic interpretations.

Theorem 2.3 OPAUC with FPR restricted in the range [𝛼, 𝛽] for a predictive scor-
ing function ℎ is equal to

OPAUC(ℎ|FPR ∈ (𝛼, 𝛽)) = Pr(ℎ(x+) > ℎ(x−), ℎ(x−) ∈ [FPR−1 (𝛽),FPR−1 (𝛼)]).
(2.37)

Similarly, TPAUC with FPR restricted in a range of [0, 𝛽] and TPR restricted in a
range of [𝛼, 1] is equal to

TPAUC(ℎ|TPR ≥ 𝛼,FPR ≤ 𝛽) (2.38)
= Pr(ℎ(x+) > ℎ(x−), ℎ(x−) ≥ FPR−1 (𝛽), ℎ(x+) ≤ TPR−1 (𝛼)}).
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2.3. EMPIRICAL X-RISK MINIMIZATION

Proof. The first part about OPAUC is similar to AUC except for the range of integral:

OPAUC(ℎ|FPR ∈ (𝛼, 𝛽)) =
∫ FPR−1 (𝛼)

FPR−1 (𝛽)
TPR(𝑡)𝑑𝐹− (𝑡)

=
∫ FPR−1 (𝛼)

FPR−1 (𝛽)

∫ ∞

−∞
𝑝+ (𝑠)𝑝− (𝑡)I(𝑠 > 𝑡)𝑑𝑠𝑑𝑡.

This concludes the proof of the first part.
For TPAUC with FPR restricted in [0, 𝛽] and TPR restricted in [𝛼, 1], it is equal

to OPAUCwith FPR restricted in [𝛾, 𝛽] minus the square area with FPR ∈ [𝛾, 𝛽] and
TPR < 𝛼, where 𝛾 is the FPR that corresponds to TPR equals to 𝛼, i.e., FPR−1 (𝛾) =
TPR−1 (𝛼). Since TPR(𝑡) =

∫ ∞
𝑡
𝑝+ (𝑠)𝑑𝑠 and FPR(𝑡) =

∫ ∞
𝑡
𝑝− (𝑠)𝑑𝑠, we have

𝛼 =
∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑑𝑠, 𝛽 =

∫ ∞

FPR−1 (𝛽)
𝑝− (𝑡)𝑑𝑡.

Then, we have

(𝛽 − 𝛾)𝛼

=
∫ ∞

FPR−1 (𝛽)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡 −

∫ ∞

FPR−1 (𝛾)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡

=
∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡.

As a result,

TPAUC(ℎ|TPR ≥ 𝛼, FPR ≤ 𝛽) = OPAUC(ℎ|FPR ∈ (𝛾, 𝛽)) − (𝛽 − 𝛾)𝛼

=
∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ ∞

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡 −

∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ ∞

TPR−1 (𝛼)
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡

=
∫ FPR−1 (𝛾)

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡 =

∫ ∞

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡,

where the last equality follows from FPR−1 (𝛾) = TPR−1 (𝛼). Thus,

TPAUC(ℎ|TPR ≥ 𝛼, FPR ≤ 𝛽) =
∫ ∞

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

𝑡
𝑝+ (𝑠)𝑝− (𝑡)𝑑𝑠𝑑𝑡

=
∫ ∞

FPR−1 (𝛽)

∫ TPR−1 (𝛼)

−∞
𝑝+ (𝑠)𝑝− (𝑡)I(𝑠 > 𝑡)𝑑𝑠𝑑𝑡.

This concludes the proof of the second part. ut

Hence, an empirical estimator of OPAUC with FPR restricted in the range [𝛼, 𝛽]
can be computed by
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1
𝑛+𝑘1

∑
x𝑖∈S+

∑
x 𝑗 ∈S↓

− [𝑘1+1,𝑘2 ]

I(ℎ(x+) > ℎ(x−)), (2.39)

where 𝑘1 = d𝑛−𝛼e, 𝑘2 = b𝑛−𝛽c, and S↓ [𝑘1, 𝑘2] ⊆ S denotes the subset of examples
whose rank in terms of their prediction scores in the descending order are in the
range of [𝑘1, 𝑘2].

An empirical estimator of TPUC with with FPR restricted in a range of [0, 𝛽] and
TPR restricted in a range of [𝛼, 1] is computed by:

1
𝑘1

1
𝑘2

∑
x𝑖∈S↑

+ [1,𝑘1 ]

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

I(ℎ(w; x𝑖) > ℎ(w; x𝑖)), (2.40)

where 𝑘1 = d𝑛+ (1 − 𝛼)e, 𝑘2 = b𝑛−𝛽c, and S↑ [𝑘1, 𝑘2] ⊆ S denotes the subset of
examples whose rank in terms of their prediction scores in the ascending order are
in the range of [𝑘1, 𝑘2].

Necessity of Maximizing partial AUC

In many applications, there are large monetary costs due to high false positive rates
(FPR) and low true positive rates (TPR), e.g., in medical diagnosis. Hence, a mea-
sure of interest would be the pAUC- the region of the ROC curve corresponding to
low FPR and/or high TPR.With a similar argument as last section, a model that max-
imizes AUC does not necessarily optimizes pAUC. Let us compare two models on a
dataset with 2 positive and 100 negative molecules (Figure 2.4). The model 1 ranks
two negatives above the two positives followed by the remaining 98 negatives. The
model 2 ranks one positive at the top, and then four negatives above the other positive
followed by the remaining 96 negatives. The twomodels have the same AUC score of
196/200 = 0.98 but have different pAUC scores. When restricting FPR ∈ [0, 0.02],
model 1 has an empirical pAUC score of 0

4 = 0 and model 2 has an empirical pAUC
score of 2

4 = 0.5 according to (2.39).

Critical: Partial AUC emphasize the correct order between the top ranked
negative data and/or the bottom ranked positive data.

A Direct Formulation

Using a surrogate loss of zero-one loss, OPAUCmaximization for learning a param-
eterized model ℎ(w; ·) can be formulated as:

48



2.3. EMPIRICAL X-RISK MINIMIZATION

…

…

Model 1

Model 2

Low High

Fig. 2.4: Two models that have the same AUC score but differ dramatically in pAUC.
The arrows indicate the prediction scores from low to high.

min
w

1
𝑛+

1
𝑘2

∑
x𝑖∈S+

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)). (2.41)

Similarly, TPAUC maximization can be formulated as:

min
w

1
𝑘1

1
𝑘2

∑
x𝑖∈S↑

+ [1,𝑘1 ]

∑
x 𝑗 ∈S↓

− [1,𝑘2 ]

ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖)), (2.42)

where 𝑘1 = b𝑛+ (1 − 𝛼)c, 𝑘2 = b𝑛−𝛽c.
Both problems are not standard ERM. The challenge for solving the above prob-

lems is that the selection of examples in a range, e.g., S↓
− [1, 𝑘2] and S↑

+ [1, 𝑘1], is
not only expensive but also non-differentiable. We will explore different approaches
for optimizing OPAUC and TPUC in Section 6.4.3 using advanced compositional
optimization techniques.

An Indirect Formulation

When the surrogate loss ℓ(𝑡) is non-decreasing, the top-𝑘 selector of negative exam-
ples S↓

− [1, 𝑘2] can be transferred into the top-𝑘 average of pairwise losses, which
becomes an CVaR. By drawing the connection between CVaR and KL-regularized
DRO, an indirect objective for OPAUC maximization is formulated by:

min
w

1
𝑛+

∑
x𝑖∈S+

𝜏 log ©­«
∑

x 𝑗 ∈S−

exp
(
ℓ(ℎ(w; x 𝑗 ) − ℎ(w; x𝑖))

𝜏

)ª®¬ . (2.43)

This problem is an instance of EXM, which will be solved by FCCO techniques.
TPAUC maximization can be handled similarly. We will present detailed exposition
in Chapter 6.4.3.
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2.3.4 Ranking Losses

Ranking losses are commonly employed in learning to rank.

What is Learning to Rank?

Learning to rank (LTR) is a machine learning problem that aims to learn a
ranking model, which can be used to predict the relevance order of a set of
items given a query.

Let Q denote the query set of size 𝑁 , and let 𝑞 ∈ Q represent an individual
query. For each query 𝑞, let S𝑞 be a set of 𝑁𝑞 items (e.g., documents, movies) to
be ranked. For each item x𝑞,𝑖 ∈ S𝑞 , let 𝑦𝑞,𝑖 ∈ R+ denote its relevance score, which
quantifies the relevance between the query 𝑞 and the item x𝑞,𝑖 . Define S+

𝑞 ⊆ S𝑞 as
the subset of 𝑁+

𝑞 items relevant to 𝑞, i.e., those with non-zero relevance scores. Let
S = {(𝑞, x𝑞,𝑖) | 𝑞 ∈ Q, x𝑞,𝑖 ∈ S+

𝑞 } represent the collection of all relevant query-item
(Q-I) pairs.

Let 𝑠(w; x, 𝑞) denote the predicted relevance score for item xwith respect to query
𝑞, parameterized by w ∈ R𝑑 (e.g., a deep neural network). Define the rank of item x
within S𝑞 as:

𝑟 (w; x,S𝑞) =
∑

x′∈S𝑞
I(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞) ≥ 0),

where ties are ignored.

NDCG and NDCG Loss

Normalized Discounted Cumulative Gain (NDCG) is a metric commonly used to
evaluate the quality of ranking algorithms, especially in information retrieval and
recommender systems.

NDCG evaluates how well a model ranks relevant items near the top of a list for
a query 𝑞. The DCG of a ranked list according to {𝑠(w; x, 𝑞), x ∈ S𝑞} is given by:

DCG𝑞 :=
∑

x∈S𝑞

2𝑦𝑖 − 1
log2 (1 + 𝑟 (w; x,S𝑞))

=
∑

x∈S+
𝑞

2𝑦𝑖 − 1
log2 (1 + 𝑟 (w; x,S𝑞))

.

Note that the summation is over S+
𝑞 rather than S𝑞 , as only relevant items contribute

to the DCG score due to their non-zero relevance.
NDCG normalizes DCG by the ideal DCG denoted by 𝑍𝑞 of the best possible

ranking:

NDCG𝑞 =
DCG𝑞
𝑍𝑞

.

The average NDCG over all queries is given by:
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NDCG:
1
𝑁

𝑁∑
𝑞=1

1
𝑍𝑞

∑
x𝑞,𝑖∈S+

𝑞

2𝑦𝑞,𝑖 − 1
log2 (𝑟 (w; x𝑞,𝑖 ,S𝑞) + 1) , (2.44)

where 𝑍𝑞 can be precomputed.
By replacing the indicator function with a surrogate function in Table 2.3, we

approximate 𝑟 (w; x,S𝑞)/𝑁𝑞 by

𝑔(w; x,S𝑞) =
1
𝑁𝑞

∑
x′∈S𝑞

ℓ(𝑠(w; x′, 𝑞) − 𝑠(w; x, 𝑞)).

Then the NDCG loss minimization is defined by

min
w

1
𝑁

𝑁∑
𝑞=1

1
𝑍𝑞

∑
x𝑞,𝑖∈S+

𝑞

1 − 2𝑦𝑞,𝑖
log2 (𝑁𝑞𝑔(w; x𝑞,𝑖 ,S𝑞) + 1) , (2.45)

which is an instance of EXM. We will explore FCCO techniques for solving this
problem in Section 6.4.4.

Listwise Cross-Entropy Loss

Analogous to multi-class classification, we can define a listwise cross-entropy loss
for ranking. This is based on modeling the probability that a specific item is ranked
at the top:

𝑃top (x | 𝑞) = exp(𝑠(w; x, 𝑞))∑
x 𝑗 ∈S𝑞 exp(𝑠(w; x 𝑗 , 𝑞))

. (2.46)

Accordingly, the listwise cross-entropy loss for query 𝑞 is defined as:

𝐿 (w; 𝑞) =
∑

x𝑞,𝑖∈S+
𝑞

−𝑝𝑞,𝑖 log

(
exp(𝑠(w; x𝑞,𝑖 , 𝑞))∑

x 𝑗 ∈S𝑞 exp(𝑠(w; x 𝑗 , 𝑞))

)
,

where 𝑝𝑞,𝑖 denotes the top-one prior probability for item x𝑞,𝑖 , such as

𝑝𝑞,𝑖 =
exp(𝑦𝑞,𝑖)∑

x𝑞,𝑖∈S𝑞 exp(𝑦𝑞,𝑖)
or 𝑝𝑞,𝑖 =

1
𝑁𝑞
.

An optimization objective based on the average of listwise cross-entropy losses
over all queries leads to the following formulation known as ListNet:

min
w

1
𝑁

𝑁∑
𝑞=1

∑
x𝑞,𝑖∈S+

𝑞

𝑝𝑞,𝑖 log ©­«
∑

x 𝑗 ∈S𝑞
exp(𝑠(w; x 𝑗 , 𝑞) − 𝑠(w; x𝑞,𝑖 , 𝑞))ª®¬ . (2.47)
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This formulation closely resembles equation (2.43) and constitutes a special case
of the EXM framework.

2.3.5 Contrastive Losses

Contrastive losses are commonly used in representation learning, which is a funda-
mental problem in the era of deep learning and modern AI.

What is Representation Learning?

Representation Learning is a process in machine learning where algorithms
extract meaningful patterns from raw data (e.g., images) to create represen-
tations that are useful for many downstream tasks, e.g., learning a classifier
or a retrieval model.

A deep neural network is usually used to extract representation from unstructured
raw data. Let ℎ(w; ·) : X → R𝑑1 denote the representation network that outputs
an embedding vector, which is sometimes called the encoder. A meaningful encoder
should capture the semantics such that ‘similar’ data points (positive pairs) are closer
to each other and dissimilar data points (negative pairs) are far away from each other
in the embedding space.

To conduct the representation learning, the following data is usually constructed.
Let x𝑖 be an anchor data, and let x+𝑖 denote a positive data of x𝑖 . Denote by S−

𝑖 the
set of negative data of x𝑖 . Let 𝑠(w; x, y) denote a similarity score between the two
encoded representations. For example, if ℎ(w; x) is a normalized vector such that
‖ℎ(w; x)‖2 = 1, we can use 𝑠(w; x, y) = ℎ(w; x)>ℎ(w; y).

A contrastive loss for each positive pair (x𝑖 , x+𝑖 ) is defined by:

𝐿 (w; x𝑖 , x+𝑖 ) = 𝜏 log ©­« 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ , (2.48)

where 𝜏 > 0 is called the temperature parameter. Given a set of data {(x𝑖 , x+𝑖 ,S−
𝑖 )}𝑛𝑖=1,

minimizing a contrastive objective for representation learning is formulated as:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­« 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ . (2.49)

Traditional supervised representation learning methods construct the positive and
negative data using the annotated class labels, such that data in the same class are
deemed as positive and data from different classes are considered as negative. How-
ever, this requires a large amount of labeled data to learn the encoder, which requires
significant human effort in labeling. To address this issue, self-supervised represen-
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tation learning (SSRL) techniques are employed to fully exploit the vast data readily
available on the internet via self-supervision to learn representations that are useful
for many downstream tasks. In SSRL, a positive pair (x𝑖 , x+𝑖 ) may consist of different
augmented views of the same sample or represent different modalities of the same
underlying object (e.g., an image and its corresponding text). The negative samples
for each anchor x𝑖 are typically drawn from all other data points in the dataset ex-
cluding x𝑖 . In this setting, a variant of the contrastive objective is useful by adding a
small constant 𝜀 > 0 inside the logarithm:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­«𝜀 + 1
|S−
𝑖 |

∑
y∈S−

𝑖

exp((𝑠(w; x𝑖 , y) − 𝑠(w; x𝑖 , x+𝑖 ))/𝜏)
ª®¬ . (2.50)

This can mitigate the impact of false negative data in S−
𝑖 . We will explore SSRL in

Section 6.5.

Optimization Challenge

Optimizing the above contrastive objectives is challenging due to the presence of
summations both inside and outside the logarithmic function. These losses can be
reformulated as special cases of the X-risk, where the outer function is 𝑓 (𝑔𝑖) =
𝜏 log(𝑔𝑖), and 𝑔𝑖 represents the inner average computed over negative samples asso-
ciated with each x𝑖 .

2.4 Discriminative Data Prediction

The aforementioned X-risks can be unified under a principled discriminative learn-
ing framework for data prediction, providing a statistical foundation for developing
advanced methods to train foundation models in modern AI.

What is a Foundation Model?

A foundation model (FM) is a type of machine learning model trained on
large, diverse datasets (generally using self-supervision at scale) that can be
adapted to a wide range of downstream tasks.

The widely used foundation models include Contrastive Language-image Pre-
trained (CLIP) model (see Section 6.5), Dense Passage Retrieval (DPR) model, large
language models (LLMs) such as the Generative Pretrained Transformer (GPT) se-
ries (see Section 6.6), and vision-language models (VLMs). These models fall into
two main categories: representation models, such as CLIP and DPR, and genera-
tive models, including LLMs and VLMs.
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We present a discriminative data prediction framework to facilitate the learn-
ing of these foundation models. Suppose there exists a set of observed paired data,
{(x𝑖 , y𝑖)}𝑛𝑖=1, where x𝑖 ∈ X and y𝑖 ∈ Y. These pairs typically represent real-world
positive correspondences. While this setup resembles traditional supervised learn-
ing where x𝑖 represents input data and y𝑖 denotes a class label, there is a crucial
difference: here, y𝑖 refers to data from a continuous space (e.g., images) or an un-
countable space (e.g., text). For instance:

• In training the CLIP model, x𝑖 represents an image and y𝑖 is the corresponding
text caption (or vice versa).

• In training the DPR model, x𝑖 is an input question, and y𝑖 is the corresponding
textual answer.

• In fine-tuning LLMs or VLMs, x𝑖 represents input data (e.g., prompts or images),
and y𝑖 represents the text to be generated.

Discriminative Data Prediction

The problem of learning a representation model or fine-tuning a generative
model can be framed as discriminative learning, which we term as data pre-
diction, such that given any anchor data x, the parameterized scoring function
𝑠(w; ·, ·) is able to discriminate a positive data y from any other negative data
y′, i.e., 𝑠(w; x, y) ≥ 𝑠(w; x, y′).

Since the risk function usually involves coupling each positive data with many other
possibly negative data points in a compositional structure, the resulting risk is called
discriminative X-risk. The following subsections detail two specific approaches to
formulating discriminative X-risks.

2.4.1 A Discriminative Probabilistic Modeling Approach

Without loss of generality, we assume that X and Y are continuous spaces. Let P𝐽
denote the joint distribution of a pair (x, y), and let P1 and P2 denote the marginal
distributions of x and y, respectively. We write their corresponding density functions
as 𝑝(·, ·), 𝑝1 (·), and 𝑝2 (·).We denote the conditional density functions by 𝑝(y|x) and
𝑝(x|y), corresponding to the conditional distributions P(y|x) and P(x | y). Below,
we present two approaches based on discriminative probabilistic modeling (DPM)

Symmetric DPM

For symmetric DPM, we use 𝑠(w; x, y) to model both conditional distributions
P(y|x) and P(x|y). A discriminative probabilistic approach models the conditional
probability 𝑝(y|x) using a scoring function 𝑠(w; x, y) by:
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2.4. DISCRIMINATIVE DATA PREDICTION

𝑝w (y|x) =
𝑝2 (y) exp(𝑠(w; x, y)/𝜏)∫

y∈Y 𝑝2 (y) exp(𝑠(w; x, y′)/𝜏)𝑑y′
, (2.51)

where 𝜏 > 0 is a temperature hyperparameter. The above parameterized distribution
is the solution to the following problem for a fixed x:

𝑝w (·|x) = arg max
Q∈Q

Ey′∼Q𝑠(w; x, y′) − 𝜏KL(Q, P2),

where Q = {Q|Q � P2} is a set of probability distributions over y ∈ Y.
Similarly, we model 𝑝(x|y) as

𝑝w (x|y) =
𝑝1 (x) exp(𝑠(w; x, y)/𝜏)∫

x∈X 𝑝1 (x) exp(𝑠(w; x′, y)/𝜏)𝑑x′
. (2.52)

Given a set of observed positive pairs {(x𝑖 , y𝑖)}𝑛𝑖=1, the model parameters w are
learned by minimizing the empirical risk of the negative log-likelihood:

min
w

−1
𝑛

𝑛∑
𝑖=1

{
𝜏 log

exp(𝑠(w; x𝑖 , y𝑖)/𝜏)
Ey′∼P2 exp(𝑠(w; x𝑖 , y′)/𝜏)

+ 𝜏 log
exp(𝑠(w; x𝑖 , y𝑖)/𝜏)

Ex′∼P1 exp(𝑠(w; x′, y𝑖)/𝜏)

}
.

A significant challenge in solving this problem lies in handling the partition func-
tions,

𝑍 (x𝑖) = Ey′∼P2 exp(𝑠(w; x𝑖 , y′)/𝜏)𝑑y′, 𝑍 (y𝑖) = Ex′∼P1 exp(𝑠(w; x′, y𝑖)/𝜏),

which are often computationally intractable. To overcome this, an approximation can
be constructed using a set of samples Ŷ𝑖 ⊆ Y, X̂𝑖 ⊆ X. The partition functions are
then estimated by:

𝑍̂ (x𝑖) =
1
|Ŷ𝑖 |

∑
ŷ 𝑗 ∈Ŷ𝑖

exp(𝑠(w; x𝑖 , ŷ 𝑗 )/𝜏), 𝑍̂ (y𝑖) =
1
|X̂𝑖 |

∑
x̂ 𝑗 ∈X̂𝑖

exp(𝑠(w; x̂ 𝑗 , y𝑖)/𝜏).

Consequently, the resulting optimization problem is an empirical X-risk minimiza-
tion problem:

min
w

1
𝑛

𝑛∑
𝑖=1
𝜏 log

©­­«
∑
𝑦̂ 𝑗 ∈Ŷ𝑖

exp
(
𝑠(w; x𝑖 , ŷ 𝑗 ) − 𝑠(w; x𝑖 , y𝑖)

𝜏

)ª®®¬
+ 𝜏 log ©­«

∑
𝑥̂ 𝑗 ∈X̂𝑖

exp
(
𝑠(w; x̂ 𝑗 , y𝑖) − 𝑠(w; x𝑖 , y𝑖)

𝜏

)ª®¬ .
(2.53)

The above approach can be justified that if 𝑠(w, ·, ·) is optimized over all possible
scoring functions, then the learned 𝑝𝑠 (y|x) and 𝑝𝑠 (x|y) approaches the true density
functions of P(y|x) and P(x|y) when 𝑛 approaches ∞, respectively.
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Theorem 2.4 Let us consider the following problem over all possible scoring func-
tions 𝑠(·, ·):

min
𝑠

−Ex,y

[
𝜏 log

𝑝2 (y) exp(𝑠(x, y)/𝜏)
Ey′∼P2 exp(𝑠(x, y′)/𝜏) + 𝜏 log

𝑝1 (x) exp(𝑠(x, y)/𝜏)
Ex′∼P1 exp(𝑠(x′, y)/𝜏)

]
. (2.54)

Then the set of global minimizers is given by

S∗ =

{
𝑠 :

𝑠(x, y)
𝜏

= log
𝑝(x, y)

𝑝1 (x)𝑝2 (y)
+ const

}
,

where const is a constant, and we have

𝑝𝑠 (y|x) =
𝑝2 (y) exp(𝑠(x, y)/𝜏)∫

y′∈Y 𝑝2 (y′) exp(𝑠(x, y′)/𝜏)𝑑y′
= 𝑝(y|x),

𝑝𝑠 (x|y) =
P1 (y) exp(𝑠(x, y)/𝜏)∫

x′∈X P1 (x) exp(𝑠(x′, y)/𝜏)𝑑y′
= 𝑝(x|y).

Proof. LetF1 be a class of functions 𝑓1 (x, y) : X×Y → R such that 𝑓1 (x, y) ≥ 0 and∫
y∈Y 𝑓1 (x, y) = 1, which induces a probability distribution Q1,𝑥 (·) over Y for any

x. Similarly, we define 𝑓2 (x, y) ∈ F2 that induces a probability distribution Q2,𝑦 (·)
over X for any y.

Let us define a problem:

min
𝑓1∈F1 , 𝑓2∈F2

Ex,y [− log 𝑓1 (x, y) − log 𝑓2 (x, y)] .

Since

Ex,y [− log 𝑓1 (x, y) − log 𝑓2 (x, y)]

= ExEy∼P( · |x)

[
− log

𝑓1 (x, y)
𝑝(y|x) − log 𝑝(y|x)

]
+ EyEx∼P( · |y)

[
− log

𝑓2 (x, y)
𝑝(x|y) − log 𝑝(y|x)

]
= Ex [KL(P(·|x),Q1,𝑥 (·))] + Ey [KL(P(·|y),Q2,𝑦 (·))] + const,

where const is independent of 𝑓 . Hence the minimizer 𝑓 ∗1 (x, y) is equal to 𝑝(y|x)
and the minimizer 𝑓 ∗2 (x, y) is equal to 𝑝(x|y). As a result, for optimal 𝑠∗ (·, ·) we
require

𝑝2 (y) exp(𝑠∗ (x, y)/𝜏)∫
Y 𝑝2 (y) exp(𝑠∗ (x, y′)/𝜏)𝑑y′

= 𝑓 ∗1 (x, y) = 𝑝(y|x), (2.55)

𝑝1 (x) exp(𝑠∗ (x, y)/𝜏)∫
Y 𝑝1 (x) exp(𝑠∗ (x′, y)/𝜏)𝑑x′

= 𝑓 ∗2 (x, y) = 𝑝(x|y). (2.56)

56
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From the first equation, we can derive that 𝑠∗ (x, y) = log 𝑝 (y |x)
𝑝2 (y) + ℎ1 (x), where

ℎ1 (x) is any arbitrary function of x. From the second equation, we can derive that
𝑠∗ (x, y) = log 𝑝 (x |y)

𝑝1 (x) + ℎ2 (x), where ℎ2 (y) is any arbitrary function of y. As a result,
the global minimizer 𝑠∗ (x, y) will be in the form of log 𝑝 (x,y)

𝑝1 (x) 𝑝2 (y) + const. ut

One-sided DPM

If we are only interested in modeling P(y|x), then we can consider one-sided DPM.
We define the following parametric probability function to model P(y|x):

𝑝w (y|x) =
exp(𝑠(w; x, y)/𝜏)∫

Y exp(𝑠(w; x, y′)/𝜏)𝑑𝜇(y′)
, (2.57)

where 𝜏 > 0 is a temperature hyperparameter, and 𝜇 is the Lebesgue measure asso-
ciated with the space Y.

Given a set of observed positive pairs {(x𝑖 , y𝑖)}𝑛𝑖=1, the model parameters w are
learned by minimizing the empirical risk of the negative log-likelihood:

min
w

−1
𝑛

𝑛∑
𝑖=1

𝜏 log
exp(𝑠(w; x𝑖 , y𝑖)/𝜏)∫

Y exp(𝑠(w; x𝑖 , y′)/𝜏)𝑑𝜇(y′)
.

A significant challenge in solving this problem lies in handling the partition function,

𝑍𝑖 =
∫
Y

exp(𝑠(w; x𝑖 , y′)/𝜏)𝑑𝜇(y′),

which is often computationally intractable. To overcome this, an approximation can
be constructed using a set of samples Ŷ𝑖 ⊆ Y. The partition function is then esti-
mated as:

𝑍̂𝑖 =
∑

ŷ 𝑗 ∈Ŷ𝑖

1
𝑞 𝑗

exp(𝑠(w; x𝑖 , ŷ 𝑗 )/𝜏),

where 𝑞 𝑗 is an importance weight that accounts for the sample probability of ŷ 𝑗 .
Consequently, the empirical X-risk minimization problem is reformulated as:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log
©­­«

∑
ŷ 𝑗 ∈Ŷ𝑖

exp((𝑠(w; x𝑖 , ŷ 𝑗 ) + 𝜁 𝑗 − 𝑠(w; x𝑖 , y𝑖))/𝜏)
ª®®¬ ,

where 𝜁 𝑗 = 𝜏 ln 1
𝑞 𝑗
.

We can similarly justify the above approach by the following theorem.

Theorem 2.5 Let us consider the following problem over all possible scoring func-
tions 𝑠(·, ·):
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Learning to Rank

Discriminative Probabilistic 
Model (DPM) over a Finite Set 

for Supervised Learning

Multi-Class Classification
= {Cat, Dog, Bird,…}

       = {Joker, Dune II, …, Lift,…}

Discriminative Probabilistic Model 
(DPM) over a Data Space

Self-Supervised 
Representation Learning

Image space

Fig. 2.5: DPM for supervised learning and self-supervised representation learning.

min
𝑠

−Ex,y𝜏 log
exp(𝑠(x, y)/𝜏)∫

y′∈Y exp(𝑠(x, y′)/𝜏)𝑑𝜇(y′)
. (2.58)

Then the set of global minimizers is given by

S∗ =

{
𝑠 :

𝑠(x, y)
𝜏

= log 𝑝(y|x) + ℎ(x)
}
,

where ℎ(·) is an arbitrary function of x, and we have 𝑝𝑠 (y|x) = exp(𝑠 (x,y)/𝜏 )∫
Y exp(𝑠 (x,y′ )/𝜏 )𝑑y′ =

𝑝(y|x).

The proof is similar to the previous one and thus is omitted.

Instantiation

The fundamental difference between symmetric DPM and one-sided DPM lies in
what their scoring functions 𝑠(w; x, y) are designed to capture. We can use sym-
metric DPM for learning representation models and one-sided DPM for learning
generative models and supervised prediction models.

The standard cross-entropy loss for classification and the listwise cross-entropy
loss for learning to rank can both be viewed as special cases of the one-sided DPM
framework, where Y represents either a finite set of class labels or a list of items
to be ranked for each query. In these cases, the integral naturally simplifies to a
finite summation, eliminating the need to approximate the normalization term 𝑍𝑖 .
However, whenY is large, computing 𝑍𝑖 remains computationally demanding. This
challenge, in turn, motivates the development of more advanced compositional op-
timization techniques.

For representation learning, the goal is to learn a symmetric scoring function
𝑠(w; x, y) = ℎ1 (w; x)>ℎ2 (w; y) that approximates the global optimum
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𝑠∗ (x, y) = 𝜏 log
𝑝(x, y)

𝑝1 (x)𝑝2 (y)
+ const,

which measures how much the joint distribution P(x, y) deviates from independence
between x and y. Wewill consider contrastive losses of CLIP in Section 6.5 for multi-
modal representation learning, which can be interpreted by the symmetric DPMwith
x, y denoting an image-text pair.

For generative modeling, we can use underlying models to induce a scoring func-
tion 𝑠(w; x, y) for approximating the global optimum 𝑠∗ (x, y) = 𝜏 log 𝑝(y|x) + ℎ(x).
We will also consider discriminative fine-tuning of LLMs Section 6.6, which can be
interpreted by the one-sided DPM with x, y denoting an input-output pair.

An illustration of the connection between the probabilistic model for multi-modal
representation learning and traditional supervised learning tasks including multi-
class classification and learning to rank is shown in Figure 2.5.

Critical: Discriminative probabilistic model over a data space is a framework
that unifies traditional label prediction and data ranking of supervised learn-
ing and modern self-supervised representation learning, and induces new ap-
proaches for fine-tuning LLMs.

2.4.2 A Robust Optimization Approach

The goal of discriminative learning is to increase the score 𝑠(w; x, y+) for a “positive”
pair (x, y+) while decreasing the score 𝑠(w; x, y−) for any “negative” pair (x, y−).

Full Supervised setting

Let us first consider the supervised learning setting, where positive and negative
samples are labeled, i.e., there is a function 𝑟 (x, y) ∈ (0, 1) that indicates whether
they form a positive pair or a negative pair. We let (x, y+) ∼ P+ (x, y+) denote a
positive pair and (x, y−) ∼ P− (x, y−) denote a negative pair, where P+ (x, y+) =
P(x)P+ (y+ |x),P− (x, y−) = P(x)P− (y− |x), and P(x, y+, y−) = P+ (y+ |x)P− (y− |x)P(x).
Let us denote a pairwise loss by ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+)).

A naive goal is to minimize the expected risk:

min
w

Ex,y+ ,y−∼P(x,y+ ,y− )
[
ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+))

]
.

However, a fundamental challenge for data prediction is that the number of negative
data is usually much larger than the number of positive data. Hence, the expected
risk is not a strong measure. To address this challenge, we can leverage OCE. In
particular, we replace the expected risk Ey−∼P(y− |x)

[
ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+))

]
by

its OCE counterpart, resulting the following population risk:
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min
w

Ex,y+

[
min
𝜈
𝜏Ey− |x𝜙

∗
(
ℓ(𝑠(w; x, y−) − 𝑠(w; x, y+)) − 𝜈

𝜏

)
+ 𝜈

]
. (2.59)

If the training dataset is S = {x𝑖 , y+𝑖 , y−
𝑖 𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]}, where y+𝑖 ∼ P+ (·|x𝑖) and

y−
𝑖 𝑗 ∼ P− (·|x𝑖), then the empirical version becomes:

min
w

1
𝑛

𝑛∑
𝑖=1

min
𝜈𝑖
𝜏

1
𝑚

𝑚∑
𝑗=1

𝜙∗
(
ℓ(𝑠(w; x𝑖 , y−

𝑖 𝑗 ) − 𝑠(w; x𝑖 , y+𝑖 )) − 𝜈𝑖
𝜏

)
+ 𝜈𝑖 . (2.60)

Semi-supervised setting

We can extend the above framework to the semi-supervised learning setting, where
we only have samples from the positive distribution P+ (·|x) and samples from the
distribution 𝑃(·|x).

Let us assume that P(·|x) = 𝜋+ (x)P+ (·|x) + 𝜋− (x)P− (·|x) and 𝜋+ (x) � 𝜋− (x).
This means that for a fixed data x, the sampled data y ∼ 𝑃(·|x) is mostly likely
from the negative distribution P− (·|x). Hence, we can approximate Ey−∼P− ( · |x) by
Ey∼P( · |x) . Hence, a population risk in the semi-supervised learning setting becomes

min
w

Ex,y+

[
min
𝜈
𝜏Ey |x𝜙

∗
(
ℓ(𝑠(w; x, y) − 𝑠(w; x, y+)) − 𝜈

𝜏

)
+ 𝜈

]
, (2.61)

and its empirical version becomes

min
w

1
𝑛

𝑛∑
𝑖=1

min
𝜈𝑖
𝜏

1
𝑚

𝑚∑
𝑗=1

𝜙∗
(
ℓ(𝑠(w; x𝑖 , y𝑖 𝑗 ) − 𝑠(w; x𝑖 , y+𝑖 )) − 𝜈𝑖

𝜏

)
+ 𝜈𝑖 , (2.62)

where {y𝑖 𝑗 , 𝑗 = 1, . . . , 𝑚} are samples from P(·|x).

Self-supervised setting

For self-supervised learning, we let (x, y+) ∼ P(x, y+) denote a “positive” pair, and
(x, y−) ∼ P(x)P(y−) denote a “negative” pair. For empirical learning, we only have
a training set of S = {x𝑖 , y+𝑖 , 𝑖 ∈ [𝑛]}. We use S−

𝑖 = {y+𝑗 } 𝑗≠𝑖 to define the empirical
risk:

min
w

1
𝑛

𝑛∑
𝑖=1

min
𝜈𝑖
𝜏

1
|S−
𝑖 |

∑
y′∈S−

𝑖

𝜙∗
(
ℓ(𝑠(w; x𝑖 , y′) − 𝑠(w; x𝑖 , y+𝑖 )) − 𝜈𝑖

𝜏

)
+ 𝜈𝑖 . (2.63)

We refer to the problems in (2.60), (2.62) and (2.63) as the Compositional OCE
(COCE) optimization. We will present and analyze stochastic algorithms for solving
COCE optimization in Chapter 5[Section 5.5].
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2.4. DISCRIMINATIVE DATA PREDICTION

Discriminative 
Learning

Robust 
Optimization

Label Prediction Loss: 
CE, CS, LDR

DRO, GDRO, OCEAUC, AP, NDCG

Data Prediction Loss: 
Contrastive losses,
Partial AUC losses, 

Listwise CE

Empirical X-risk Minimization

Compositional Optimization: FCCO & SCO

Fig. 2.6: Overview of different losses and two fundamental learning principles

Instantiation

When 𝜙(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1, the inner optimization over 𝜈𝑖 in (2.62) admits a closed-
form solution, which can be substituted back into the objective, yielding:

min
w

1
𝑛

𝑛∑
𝑖=1

𝜏 log ©­« 1
𝑚

𝑚∑
𝑗=1

exp
(
ℓ(𝑠(w; x𝑖 , y𝑖 𝑗 ) − 𝑠(w; x𝑖 , y+𝑖 ))

𝜏

)ª®¬ . (2.64)

This formulation unifies several well-known losses as special cases:

• Cross-Entropy Loss for Classification: Let x𝑖 denote an input data point, let
𝑦+𝑖 represent its true class label and {𝑦𝑖 𝑗 , 𝑗 = 1, . . . , 𝑚} = {1, . . . , 𝐾} forms the
full label space. Define the prediction score for the 𝑦-th class of x as 𝑠(w; x, 𝑦) =
ℎ0 (w0; x)>w𝑦 .When the loss function is ℓ(𝑠) = 𝑠 and 𝜏 = 1, the objective reduces
to the empirical risk with the standard cross-entropy loss.

• Listwise Cross-Entropy Loss for Ranking: Let x𝑖 denote a query, {y+𝑖 } denote
a relevant (positive) document, and {y𝑖 𝑗 }𝑚𝑗=1 denote the complete candidate list
to be ranked. Let 𝑠(w; x, y) be the predicted relevance score between a query x
and a document y. When the loss function is ℓ(𝑠) = 𝑠 and 𝜏 = 1, the objective
simplifies to the listwise cross-entropy loss.

• Self-supervised Contrastive Loss for Representation Learning: If x𝑖 is an an-
chor (e.g., an image), y+𝑖 denotes its positive pair (e.g., the corresponding text)
and {y𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑚} = S−

𝑖 , the the objective in (2.64) recovers the contrastive
loss (2.48) used in self-supervised contrastive representation learning.
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• Partial AUCLoss for Imbalanced Binary Classification: Let x𝑖 be a fixed class
label (𝑖 = 1), with {y+𝑖 } denoting its positive data set and {y𝑖 𝑗 }𝑚𝑗=1 being its nega-
tive data set. Define the scoring function as 𝑠(w; x, y) = ℎ(w; y) ∈ R. Under this
setting, the objective in (2.64) reduces to the partial AUC loss in (2.43).

This framework offers a flexible foundation for designing alternative contrastive
objectives by varying the loss function ℓ(·), the temperature 𝜏, the divergence func-
tion 𝜙(·), and the distributionally robust optimization (DRO) formulation, including
its constrained variants.

Finally, Figure 2.6 illustrates the losses, objectives, and learning frameworks dis-
cussed in this chapter, along with their connections to the principles of discrimina-
tive learning and robust optimization. This perspective highlights the necessity of
stochastic compositional optimization and finite-sum coupled compositional opti-
mization, which will be presented in subsequent chapters.

2.5 History and Notes

Loss functions

A pioneering work analyzing the infinite-sample consistency of various multi-class
surrogate loss functions is provided by Zhang (2004b). This work proves the con-
sistency of several losses, including the cross-entropy loss. It also shows that the
consistency of the Crammer-Singer and hinge losses can fail unless the maximum
conditional probability of a class label given the input exceeds 0.5.

The Label-Distribution-Aware Margin (LDAM) Loss was proposed and studied
by Cao et al. (2019), inspired by margin-based generalization error bounds tailored
for each class. The label distributionally robust (LDR) losses and their consistency
was proposed and studied by Zhu et al. (2023b).

Variants of standard loss functions have been developed to minimize the top-𝑘
error for 𝑘 > 1, such as the top-𝑘 SVM loss and the top-𝑘 cross-entropy loss (Lapin
et al., 2018; Yang and Koyejo, 2020). The top-𝑘 SVM loss can be recovered as a
special case of the general LDR loss by setting 𝑅(p) = 0 and Ω = {p ∈ Δ𝐾 : 𝑝𝑘 ≤
1/𝑘}. Although this formulation is generally inconsistent, adding a small strongly
convex regularizer 𝑅(p) to the LDR loss can restore consistency.

A sufficient condition for a loss function to be noise-tolerant is the symmetry
property, as introduced by Ghosh et al. (2017). A loss function is considered noise-
tolerant if the minimizer of the expected risk under the true label distribution remains
the same under the noisy label distribution, provided the noise level is not excessively
high.
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2.5. HISTORY AND NOTES

Robust optimization

Robust optimization dates back to Scarf (1958), who studied an inventory problem
in which the goal is to determine the purchase quantity that maximizes profit when
future demand is a random variable whose underlying probability distribution is as-
sumed to belong to a set of plausible distributions. The problem is reformulated as a
worst-case analysis over all distributions in this set with known mean and variance.
Later, Dupačová (1966) investigated the min–max robust formulation of stochastic
linear programming. Since then, robust optimization has been extensively studied
in management science, operations research, and mathematical programming (Kou-
velis and Yu, 1997; Shapiro and Kleywegt, 2002; Rustem and Howe, 2002; Ben-Tal
et al., 2009b). The term distributionally robust optimization was introduced by De-
lage and Ye (2010).

The 𝜙-divergence (sometimes called 𝑓 -divergence, where both 𝑓 and 𝜙 denote
a function) was introduced by Csiszár (1967). The use of 𝜙-divergence to define
the uncertainty set in robust optimization was first studied by Ben-Tal et al. (2013),
while earlier works had considered using the KL divergence to define an uncertainty
set of probabilities (Calafiore, 2007). A special case of DRO, namely the maximal
loss, was shown to be beneficial for imbalanced classification by Shalev-Shwartz and
Wexler (2016). The popularity of DRO in machine learning is largely attributed to
Namkoong and Duchi (2017), who established a variance-based generalization error
bound for DRO with the 𝜒2 divergence, building on their preceding work (Duchi
et al., 2022). The optimized certainty equivalent (OCE) was proposed by Ben-Tal
and Teboulle (1986b), and its connection to DRO was later established in (Ben-Tal
and Teboulle, 2007). Group DRO was first proposed by Hu et al. (2018) and became
widely recognized due to Sagawa et al. (2019).

AUC and NDCG

The receiver operating characteristic (ROC) curve was originally developed in the
1940s by electrical and radar engineers during World War II to detect enemy ob-
jects on the battlefield, which gave rise to its name (”receiver operating character-
istic”) (Marcum, 1947). It was subsequently formalized within the framework of
signal detection theory (Green and Swets, 1966). The probabilistic interpretation of
AUC and its equivalence to the Mann–Whitney U-statistic (or Wilcoxon statistic)
were later established by Hanley and McNeil (1982). The concept was subsequently
introduced into machine learning as a standard metric for evaluating learning algo-
rithms (Spackman, 1989). The first study of the one-way partial AUC (pAUC) was
presented by Dodd and Pepe (2003), and the notion of two-way partial AUC was
later introduced by Yang et al. (2019).

The study of AUCmaximization dates back to Verrelst et al. (1998) and has since
been extensively explored in machine learning. Yan et al. (2003) were the first to
apply the gradient descent method to optimize a hinge-based pairwise surrogate loss
for AUC, while Cortes andMohri (2003) employed the Rankboost algorithm (Freund
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et al., 2003) to optimize AUC. The compositional objective for AUC maximization
was first proposed byYing et al. (2016a) in amin–max form andwas later generalized
in (Yuan et al., 2021; Zhu et al., 2022c). For a comprehensive overview of related
work, see the survey by Yang and Ying (2022). The first work onmaximizing average
precision was conducted by Morgan et al. (2004). The use of DRO for formulating
partial AUC losses was proposed by Zhu et al. (2022a).

NDCG was introduced by Järvelin and Kekäläinen (2000), and the listwise cross-
entropy loss for learning to rank was proposed by Cao et al. (2007). The concept of
empirical X-riskminimization for unifying a family of non-decomposable losses was
developed by the author of this book in (Yang, 2022), which also presents additional
examples of X-risks.

Foundation Models

Representation learning in traditional machine learning is related to principal com-
ponent analysis and distance metric learning (Yang and Jin, 2006). Conventional
contrastive losses are defined on pairs (x, y) using it binary label indicating positive
or negative pair (Hadsell et al., 2006) or triplets (x, y+, y−) (Weinberger and Saul,
2009). The Contrastive loss defined on a list of negative data for a positive pair was
first introduced by Sohn (2016).

The term foundation model was introduced by Bommasani et al. (2021). The use
of DRO to formulate the contrastive loss was first proposed by Qiu et al. (2023), pro-
viding a principled approach for optimizing individualized temperature parameters.
The discriminative probabilistic modeling approach for self-supervised representa-
tion learning was first explored by Wang et al. (2025).

Generalization Error

Generalization error analysis is a central topic in several classical machine learning
texts (Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018) and in the statisti-
cal learning theory literature (Koltchinskii, 2011). Typically, uniform convergence
bounds of the form supw∈W |R(w) − RS (w) | are derived using concentration in-
equalities, with dependencies on both the number of training samples 𝑛 and the
complexity of the hypothesis class. More recently, there has been growing interest in
directly analyzing the generalization performance of models returned by stochastic
optimization algorithms using stability-based techniques (Hardt et al., 2016; Lei and
Ying, 2019).

Generalization error analyses for DRO and OCE objectives have been extensively
developed in the literature: Brown (2007) established theoretical bounds for CVaR,
Namkoong and Duchi (2017) developed bounds for 𝜒2-constrained DRO, and Lee
et al. (2020) explored generalization for general OCE risk. However, the generaliza-
tion error for compositional OCE is under-development.

64



2.5. HISTORY AND NOTES

Machine Learning texts

There are excellent textbooks on machine learning (Shalev-Shwartz and Ben-David,
2014; Mohri et al., 2018; Bishop, 2006) and on robust optimization (Ben-Tal et al.,
2009a). However, to the best of our knowledge, this book is the first to provide a com-
prehensive and unified treatment of diverse loss functions and objectives, ranging
from the traditional cross-entropy loss to the contrastive loss used in self-supervised
representation learning, through the lens of robust optimization and discriminative
learning.
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