Chapter 1
Basics: Convex Optimization

Abstract This chapter provides a concise introduction to foundational concepts in
convex optimization, including convex sets and functions, Fenchel conjugates, La-
grangian duality, and the Karush-Kuhn-Tucker (KKT) conditions. Definitions are
accompanied by illustrative examples to build intuition and support practical under-
standing. While convex optimization is a rich and expansive subject that merits its
own dedicated volume, our focus is intentionally selective. We present only the es-
sential tools and results that the author considers most relevant for understanding and
analyzing optimization problems encountered in later chapters. The goal is to equip
readers with a practical yet rigorous foundation, enabling them to appreciate the the-
oretical underpinnings of algorithm design and analysis in subsequent chapters.

Convex Optimization is the foundation of foundations!
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1.1. NOTATIONS AND DEFINITIONS

1.1 Notations and Definitions

This book uses the following notations.

Let us denote by || - || the Euclidean norm, and by || - || a general norm.

For a differentiable function f, let V f(x) denote its gradient at x, and d f(x)
denote its subdifferential set at x.

Let 01 f(w,u) and 0, f (w, u) denote the partial subgradients of f with respect to
the first variable w and the second variable u, respectively.

Define the d-dimensional probability simplex as

d
Ad={xeRd:x,~zovl’,2x,~=1}.

i=1

Let I(-) denote the standard indicator function, which returns 1 if the input con-
dition is true and 0 otherwise. Let [y_ () denote the zero-infinity indicator func-
tion, which returns 0 if the input condition is true and co otherwise.

Denote by 1 a vector of all ones. Let e; denote the standard basis vector with a 1
in the i-th coordinate and 0 in all other entries.

Let x ~ P denote a random variable that follows a distribution P.

[n] denotes the set of all integers from 1 to n, i.e., [n] = {1,...,n}.

We use (x, y) interchangeable with x "y to denote the inner product of two vectors.
log(x) is in the base of natural constant e.

w.r.t is short for with respect to.

s.t. is short for subject to.

Definition 1.1 (Dual Norm) Let || - || be a norm on R¢, then its dual norm || - || :
R? — R is defined as

llylls =sup{x"y : [Ix|| < 1}.

Examples

Example 1.1. || - ||5 is the dual norm of itself as X"y < ||x]|2||yll2.
Example 1.2. || - || and || - ||1 are dual norms of each other as X'y <
X111y lleo-

Example 1.3. Let ||x||4 = VXTAX, where A > 0 is a positive definite ma-
trix. Then ||y|l. = \YTA~ly. This is because that X"y = x' A/2A~1%y <
AT 2x||2[[ A= 2y ]2 < A2y,

Definition 1.2 (Convex set) A set C is convex if the line segment between any two
points in C lies in C, i.e. Vx|, X3 € C,V60 € [0, 1],

0x; + (1 - 6)x, € C.



Definition 1.3 (Convex function) A function f(-) : R? — R is convex if its domain
dom( f) is convex and

f(Ox+(1-0)y) <0f(x)+(1-0)f(y),Vx,y € dom(f),8 € [0, 1].

It is strictly convex if strict inequality holds whenever x # y and 6 € (0, 1).

This inequality implies that the graph of a convex function lies below the straight
line connecting any two points on the graph—like a bowl: if you place a chopstick
across its edges, it will stay above the surface of the bowl.

Lemma 1.1 (First-order condition) Suppose f is differentiable (i.e., its gradient
Vf exists at each point in dom f). Then f is convex if and only if dom f is convex
and

f@ 2 f®)+Vf(X)"(y-x) (1.1)
holds for all X,y € dom f.

Proof. We first prove for one-dimensional convex function ¢(-) : R — R, we have
$(1) > ¢(s) +¢'(s)( = 5). (1.2)
According to the definition of convexity, we have

B(s +a(t =) - d(s)

a

¢(1) = ¢(s) +

Taking the limit @ — 0 yields (1.2).
(=) Assume f is convex and differentiable on the open convex set dom f. Fix
x € dom f and any y € dom f. Define ¢ : [0, 1] — R by

#(1) = f(x+1(y —x)).

Since f is convex and the map ¢ — x + t(y — x) is affine, ¢ is a convex function on
[0, 1]. For a convex (one-dimensional) differentiable function, we have proved that

¢(1) 2 ¢(0) +¢'(0)(1 - 0).
By the chain rule,
¢’'(0) = Vf(x) " (y - x).
Thus
F=9¢1)=¢0)+V () (y-x) = f(xX) + V(%) (y - ).
(<) Assume dom f is convex and for all X,y € dom f,
2 f®+ViX(y-x).

Take any x,y € dom f and 6 € [0, 1], and setz = 0x + (1 — )y € dom f. Apply the
assumption with (x,z) and (y, z):
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fX®) = f(2)+Vf(2)" (x~2), f) = f(@)+Vf(2)' (y-2).
Multiply the first by 6 and the second by (1 — 6) and add:
0f(x)+(1-0)f(y) = f(2) +Vf(2)" (0(x~2)+ (1 -6)(y - 2)).
Since 0(x —z) + (1 - 6)(y —z) = 0, we get
f(@) <0fx)+(1-0)1(y),

ie., f(Ox+ (1 -0)y) <0f(x)+(1—-6)f(y). Hence f is convex. O

Definition 1.4 (Subgradient) For a non-differentiable convex function f, let the
subgradient of f at x be denoted by 0 f (x), which consists of all vectors v satisfying:

f(¥) 2 f(x)+v'(y-x),Vx,y € dom(f).

Without causing any confusion, we often write

f(y) 2 f(x)+3f(x)7(y - x),Vx,y € dom(),

where 9 f (x) refers to some specific element of the subgradient set.

Examples

Example 1.4. f(x) = [x]+ = max(0,x). At x = 0 it has a subgradient
0f(0)={£€[0,1]}, af(x) =1,¥x >0, and df(x) =0,V¥x <O.

Definition 1.5 (Strongly Convex Function) A function f(-) : R — R is called
p-strongly convex with respect to a norm || - || if there exists a constant ¢ > 0 such
that for any x,y and v € 9 f(x) we have

F®) 2 f&) +VT (v =20+ Slx -yl

Examples

Example 1.5. The function f(x) = %HXH% is 1-strongly convex with respect
to the Euclidean norm || - ||;. This follows directly from the identity:

1 1 1
SIVI3 = S+ X7 (v =0 + Sl =yl

which satisfies the definition of strong convexity with parameter 1.

Definition 1.6 (Smooth function) A function f : R? i R is called L-smooth with
respect to a norm || - || if it is differentiable and its gradient is L-Lipchitz continuous,
i.e., there exists a positive real constant L such that, for any x,y € R4, we have
IVf(x) = Vf(y)ll« < LlIx = yll, or equivalently,



lf(x) = f(y) = Vfy) (x-y) < %IIX—sz. (1.3)

Definition 1.7 (Bregman Divergence) Let ¢ : Q — R be be a continuously-
differentiable, strictly convex function defined on a convex set Q, the Bregman di-
vergence induced by ¢(-) is defined as

Dy(x,y) = (%) —@(y) - Vo(y) " (x - y).

Examples:

Example 1.6 (Euclidean distance). ¢(x) = %||x||2 induces the Euclidean
distance:

1 1 1
Do(xy) = s I3 =5 IVB -y (x=y) = Slx=yI}. (14

Example 1.7 (Kullback—Leibler (KL) divergence). ¢(x) = Zflzl x; logx;
for x € Ag induces the Kullback—Leibler (KL) divergence:
d d d d .
D,(xy) = Z X 1ngi—z yilog yi—Z(log yitl) (xi=yi) = Z x; log y—l
i=1 i=1 i=1 i=1 !
(1.5)
Example 1.8 (Itakura—Saito distance). ¢(x) = _Z:'l:l logx; for x > 0
induces the Itakura—Saito distance:

d d d d
1 Xi Xi
Dy(x,y) = - E log x; + E logy;+ E )T(Xi_yi) = f—E log;—l.
i=1 i=1 i=1 ! !

L=l
(1.6)

d
i=1

1.2 Verification of Convexity

In practice, directly applying the definition of convexity or verifying the first-order
condition of convexity can be challenging when proving that a function is convex.
The following rules offer practical tools to simplify the verification process.

Second-order Condition for Twice Differentiable Functions

If a function f(x) is twice differentiable, then it is convex if and only if

VZf(x) =0, Vx,
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i.e., its Hessian is positive semidefinite everywhere.

Examples

We can use the above rule to verify the convexity of the following functions.
Example 1.9 (Log-Sum-Exp Function).

K

mpm42mmﬁ,yew.

i=1

Its Hessian matrix is given by

H = diag(p) - pp’ .

where p is the vector of softmax probabilities with components p;
%. It is positive semidefinite as v Hv = Zﬁl p,-vl.2 - (Zfil pivi)?
0 due to Cauchy-Schwarz inequality.

\%

Example 1.10 (Negative entropy).
¢(p) = Z pilogpi
i=1

wherep € Ay = {q : XL, q; = 1,q; > 0,Vi} is a probability vector. Its
Hessian matrix is
H = diag(1/p)

is positive definite.

Operations that Preserve Convexity

The following operations preserve convexity:

Affine Composition: If f is convex, then f(Ax + b) is convex for any matrix A
and vector b.
Non-Negative Weighted Sums: If f; is convex for all i, and @; > 0, then

ﬂm=2mﬁm

is convex.
Pointwise Maximum: If g(x,y) is convex in x for all y, then

f(x)= max g(x,y)



is convex.
* Function Composition: The composition i(x) = f(g(x)) is convex if one of the
following holds:

— fis convex and non-decreasing, and g(x) is convex.
— f is convex and non-increasing, and g(X) is concave.

To quickly verify this, we compute the Hessian matrix assuming that both f and
g are twice-differentiable:

V2h(x) = f(g(x))Vg(x) + £ (g(x))Vg(x)Vg(x)T,

which is positive semi-definite under either of the above two conditions.

1.3 Fenchel Conjugate

Let f : R? — R U {+0c0} be a proper convex function. Its Fenchel conjugate (also
called the convex conjugate) is defined as:

ffyy= sup {x'y-f(x},

xedom(f)

where the domain of the conjugate function consists of y € R for which the supre-
mum is finite. From the definition of conjugate function, we immediately obtain the
inequality

f)+ () > xTy, Vx,y.

This is called Fenchel s inequality. If f is proper, convex, and lower semicontinuous,
then the conjugate of the conjugate of a convex function is the original function, i.e.,

() =1r

Definition 1.8 (Legendre function) Let f : RY — R U {+co} be a proper, lower
semicontinuous, convex function with int(dom f) # (. The function f is called a
Legendre function if it satisfies:

(i) f is differentiable on int(dom f), and for any sequence {xx} C int(dom f) with
Xj converging to a boundary point of dom f, we have ||V f(xx)|| — oo.
(ii) f is strictly convex on every convex subset of dom(df).

If f is Legendre function, its Fenchel conjugate reduces to the Legendre trans-
form, defined by

[y =x"y - f(x().

where x(y) = argminy (x"y — f(x)) is the unique solution to the first-order opti-
mality condition V f(x) =y.



1.4. CONVEX OPTIMIZATION

Examples

Example 1.11 (Conjugate of the Quadratic Function.). Let f(x) = %llxllz.
Then:

. 1 1
FH(y) =supixTy = SIxll3 = 5 llyll5.
X 2 2

Example 1.12 (Conjugate of the Squared Hinge.). Let f(x) = max(x,0)%.
Then:

y2
f*(y) = supxy — max(x,0)* = {7, yz0
x 00, y<0

The Legendre transform is not defined in this case since f is not strictly con-
vex.

Example 1.13. Log-sum-exp and negative entropy are conjugates of each
other. Please refer to the Example 1.16.

1.4 Convex Optimization

A standard optimization problem is defined by:

min  fo(x)
xeR4
sit. fi(x)<0,i=1,...,m (1.7)

hi(x)=0,j=1,...,n.

Definition 1.9 A standard optimization problem (1.7) is a convex optimization prob-
lem if f;(x) is convex fori =0,...,m and h;(x) = aJT.X + b is an affine function for
j=1,...,n

The problem (1.7) is feasible if there exists at least one point such that all con-
straints are satisfied, and infeasible otherwise. The set of all feasible points is called
the feasible set, denoted by

X={x:fix)<0,i=1,...,mh;(x)=0,j=1,...,n}.

The Optimal value and optimal solutions

The optimal value of (1.7) is defined as

fe =inf{fo(x)[x € X}.



where inf returns the greatest value that is less than or equal to all possible objective
values at feasible points if such a value exists. For example inf e™ = 0. If the problem
is infeasible, we let f, = oco.

A solution X, is an optimal solution if it is feasible, i.e., satisfying all constraints,
and fy(x.) = fi.. Hence, we may have a set of optimal solutions:

X, =argmin{ fy(x)|x € X} = {x: x € X, fo(x) = fi}.

The optimal solution is unique if the objective is strongly convex.

1.4.1 Local Minima and Global Minima

A solution x is called a local minima if there is an R > 0 such that

Jox) =inf{fo(y)ly € X, |ly - x> < R}. (1.8)

Theorem 1.1 For a convex optimization problem, a local minima X is also a global
minima.

Proof. Suppose x is not a global minima. It means that there exists a feasible z such
that foy(z) < fo(x). Then ||z — x||2 > R because x is an optimal solution in the local
region Q = {y : ||y — x||> < R}.

Let us derive a contradiction. Lety = X + 8(z — X), where 6 = ﬁ such that
ly = xll2 < 6llz = xll2 < R. Then fo(y) < 6o(2) + (1 - 6)fo(X) < fo(x), which
contradicts to the fact that x is an optimal solution in the region Q = {y : ||y — x||» <
R}. Hence such an z does not exist. a

1.4.2 Optimality Conditions

Let us consider a differential objective function fj.

Theorem 1.2 For a convex optimization problem (1.7) with non-empty X,, X is op-
timal if and only if x € X and

Vix)(y-x)>0,Vy € X. (1.9

For non-differential function, the above condition is replaced by v € 9 fy(x)
such that vT (y — x) > 0,Vy € X.

Proof. To prove the sufficient condition, we use the convexity of fj. For any y € X,
we have

10
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fo(y) = fo(x) +Vfio(x)"(y —x) > fo(x).

Hence x is an optimal solution. Let us prove the necessary condition. If (1.9) does
not hold for an y, i.e., Vfy(x)T(y — x) < 0, let us consider z(7)) = ty + (1 — 1)x,
which is feasible. Thence V, fy(z())|=0 = V fo(x) T (y — x) < 0, which means there
exists a small ¢ > 0 such that fy(z(¢)) < fy(z(0)) = fo(x), which is impossible as x
is an optimal solution. O

When the problem is unconstrained such that X = R, then the optimality condi-
tion (1.9) implies that x is optimal if and only if V f5(x) = 0.

Lemma 1.2 For a convex optimization problem (1.7), if fy is strongly convex, then
X contains only a single element if it is not empty.

Proof. Assume X, contains two different solutions x; # X such that fy(x;) =
Jfo(x2). We will derive a contradiction. Since fj is strongly convex, we have

fox) 2 fol2) + o) T (1 = %2) + 5 s = ol

Due to the optimality condition, 8 fy(x2) T (X; — X2) > 0, hence fo(x;) > fo(x2) +
%||X1 - xz||§ > fo(x2), which contradicts to the fact fy(x;) = fo(x2).
O

1.4.3 Karush—Kuhn-Tucker (KKT) Conditions

Constrained optimization problems such as (1.7) are often challenging to analyze and
solve directly. The Karush-Kuhn-Tucker (KKT) conditions, derived from Lagrangian
duality theory, offer first-order necessary conditions for optimality. These conditions
can simplify the original problem, sometimes enabling a transformation into a more
tractable form or even leading to a closed-form solution.

The Lagrangian function and the Lagrangian dual function

For the constrained optimization (1.7), the Lagrangian function is defined as:
n

L(x A, 1) = fo(®) + D" AifiX) + ) vih;(x),
i=1

J=1

where A1, ..., 4, v1,...,V, are called the Lagrangian multipliers.
The Lagrangian dual function is defined as:

g(A,v) =inf L(x, A, u).
X

11



Based on this, we define the Lagrangian dual problem:

g+ =supg(4,v).
>0

Regarding the original optimal value f. and the dual optimal value g., we have the
following weak duality.

Lemma 1.3 We always have g, < f..

Proof. Let x,. be an optimal solution to (1.7). For any 4 > 0, v, we have

g, v) = ir;fL(x, A, p) £ L(Xe, A, 1)
= fox) + DT Aifi(x) + ) vih(x) < fo(x.),
i=1 j=1

where the last inequality uses the fact 4;(x.) = 0, fi(x.) < 0,and 2 > 0. The
conclusion follows. O

KKT conditions

An interesting scenario is the strong duality where g, = f.. In such case, we can
derive two conditions.

Lemma 1.4 Suppose that the primal and dual optimal values are attained and equal.
Let X, be an optimal primal solution and A.,v. be optimal dual solutions. Assume
that f, g;, hj are continuously differentiable, then the following conditions hold:

m n
Vfo(x*)+Z/l*,,-Vf,-(x*)+Zv*,thj(x*) =0, (1.10)
i=1 j=1
Aifi(x)=0,i=1,....m, (1.11)

where the second condition is called the complementary slackness.

Proof. First, we have

g« =supg(d,v) = g(As, v,) =inf L(X, A, Vi)
=0 X

m n

= inf So(x) + Z Asifi(X) + Z Vi, jhj(X)

i=1 j=1

< fo(xi) + Z i fi(%) + Z Vi, jhj(X.)
=1

i=1 j

< fo(x.) = fi.

12
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Since g. = f., the inequalities will become equalities. The first equality is
inf fo(x) + DA i)+ D v ihi (%) = fo(x) + D Aeifil(%) + Y e jhi(X),
i=1 j=1 i=1 j=1

which implies that x, optimizes L(X, 4., v.). Hence, by the first-order optimality
condition, we have V4 L(x, A, v.) = 0, which is (1.10). The second equality is

Fox) + D Aifi(x) + Y v jhj(x,) = fo(x.),
i=1 j=1

which implies A, ; fi(x.) = 0,V,i because A, ; f;(x.) < 0,V,7 and they cannot be
larger than zero; otherwise the equality will not hold. O

¢ KKT conditions

Assume that f, g;, h; are continuously differentiable. Let x, be an optimal primal
solution and A., v. be optimal dual solutions. The KKT conditions are:

m n

(Stationarity)  Vfo(x.) + Y eV fi(xe) + Y s jVhy(x.) =0,
i=1 j=1

(Primal feasibility)  fi(x,) <0, h;(x.)=0,Vi,j,
(Dual feasibility) A.; > 0, Vi,
(Complementary slackness) A.;fi(x.) =0, Vi.

Slater’s condition

How to ensure the strong duality holds? Constraint qualifications have been devel-
oped as sufficient conditions of strong duality. One simple constraint qualification is
Slater’s condition for a convex optimization problem: There exists an x € relint(D)
(where relint denotes the relative interior of the convex set D := N, dom( f;) such
that

fi(x) <0,Vi, and ajx+b;=0,Vj.

An important theorem of Lagrangian duality is that the strong duality holds when
the primal problem is convex and Slater’s condition holds. This suggests a tangible
approach to compute X.. or transform the original problem into a simplified one. First,
we solve the dual problem to obtain an optimal dual solution (A, v.):

(s, v) = arg max g(4,v). (1.12)
A1=0,v

Then we use the stationarity condition of KKT conditions to derive a close form of
X.. In addition, we have

13



min{ fy(x), s.t. x € X} = max g(4,v).
X A1>0,v

Examples

Example 1.14 (Dual of Distributionally Robust optimization (DRO)).
The following problem often arises in robust machine learning:

F, ... )= max Z;pifi - TZ; q:9(pi/qi),
i= i=

where T > 0,q € A, and ¢(t) : R* — R is a proper closed convex function
and has a minimum value zero that is attained at t = 1. Let us derive its
dual problem. We write the above problem as a standard convex optimization
problem:

n
min= > pil; +7 ) qid(pi/a:)
i=1 i

=
s.t. Zpl- =1.
i=1

where the constraint p; > 0 is enforced by the domain of ¢(t).
We define the Lagrangian function:

L(p,v) ==Y piti+7 ). qi(pi/qi) +v (Zm - 1) :
i=1 i=1 i=1
Let us define

¢"(s) =m>ag<ts—¢(t). (1.13)

By minimizing over p > 0, we have
n n
g(v) = min - 21 piti =) +r; 41(pi/ai) = v
=—{max ) pi(li =) =7 ) 4id(pi/gi)} -
==l i=1

With a variable change p = p/q, we have

14
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() = —r]glggl; 4i{pili = v) = T6(5)} = v

=—Zﬁli{g}%ﬁi(&'—V)—Tlf’(ﬁi)}—V:—ZTCIicﬁ*( V)—V-
i=1 =

i=1
Since the Slater’s condition holds (p; = 1/n satisfies), we have

n n
min — Zpifi +7 Z qi9(pilqi)
i=1 i=1

peA

=maxg(v) = - {minZTqi¢* (gi;v) +v} .

i=1

Hence,
n n n f'—v
rng’(;Pifi—T;qm(pi/qi)=mvin;mi¢*(‘T )+V- (1.14)

Example 1.15 (Conjugate of ¢ functions.). We can derive ¢ for three cases
below (exercise):

o ¢(n)=(-1)%
1.2 :
crN eyt ty fy==2
¢(y)—r?§18<yt (=1 _{il o.W.
o ¢(t)=tlogt—t+1and

0" (y) = maéiyt — (tlogt—r+1) =exp(y) — 1.
>

o (1) =ly_(t < 1/a) for @ € (0, 1]:

[Y]+'

¢*(y) = maxyt —Ip_o(t < 1/a) =
t>0 a

Example 1.16 (KKT conditions of DRO with a KL divergence). Let us
consider a special case of Example 1.14 with ¢(t) = tlogt —t+ 1:

n n
£l ) :lr,ggzlpia—r;pilog%. (1.15)

We can derive the following KKT conditions:

15



M

; b—v, —
(f,‘ — V) —T(logp—[+ 1) =0,Vi :)p:< :qiexp(#) ,
qi T

ip? =1
i=1

As a result, we can derive

exp( b
pre 2 eXP(T)& (1.16)
Zim qiexp(F)
n 5[
...t =tlog (;qiexp(?)). (1.17)

1.5 Basic Lemmas

Below, we present some basic lemmas that are useful for the presentation and analysis
in later chapters.

Lemma 1.5 For a L-smooth convex function w.r.t. || - ||2, the following conditions
are equivalent:

(@ 0<f(y)-f®-V T (y-x < Zlx-yl3
(b) SV = VI3 < f(¥) = &) =V T (y-x);
(© IV =VfWI3 < (V) =V )T (x=y) < LIx=yl3:

(d) 2NV f(x) - VIWIE < afx) + (1 - a)f(y) - flax+ (1 - a)y) <
a(l—a)klx -yl

Proof. Letus prove (a). Since %;yp)

= V f(x+yp) " p, according to Taylor Theory

1
Flx+p) = F(x) + /0 VF(x+yp) pdy

Lety=x+p:

16
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FO) - FO0) - V£ (y - x)
1
- /0 VAx+ (3 -2)T(y —x)dy - V)T (y - x)

1
- /0 Vix+y(y —x) (¥ - x) — V()T (¥ - x)dy

1
< / IV F(x+7(y = %) = V@ llpll2dy
0

1
L
< [ Liplalplady = Sy = xI5

Let us prove (b). Define ¢(z) = f(z) — V f(x) " z. We can conclude that z* = x (by
the first-order optimality) and that ¢(z) is also convex & L-smooth if f is convex &

L-smooth.

#(x) = min ¢(2) < min {czs(y) FVO)T -y + 5 - yn%}

"2 min fa(3) + Vo) + £ 1013
2 \v, 2 v 2
l6MIE | IV _, o IoIE

solve r
A ey iy 2L

Then, we have 2L(¢(y) — ¢(x)) = ||Vo(y) ||§, which prove the result by plugging in
¢(z) = f(z) - Vf(x)"zand V¢(z) = Vf(z) - Vf(x).
Let us prove (c). According to part (b) we have
1
TAMAY VIO < F3) = F®) =V &) (y-x).
Similarly,
1
S V) = VW3 < f(X) = f(3) = VI T(x =y
Summing up the above two inequalities leads to

TV =TS )IB < (VF(0 = T/ ()T (x -y

Let us prove (d). Let x, = @x + (1 — @)y. From (a) and (b), we have
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iIIVf(X) — Vx5 < F(%) = (f(Xa) + YV (Xa) (1 = @) (x - Y))

L

< S -a)x=y)l5,

8]

SV ) = TSI < F3) = (F50) + VF (k) Ty =)
L
< Slla(y -9)3.

Multiplying the first by @ and the second by 1 — @, we can prove part (d), where the
lower bound is as

-Vl 2 ST 0 -V Wl

ST IVF0-VF(xa) B+

by applying the Young’s inequality [la — b[|Z < (1+B)|la—c|l3 + (1 + é)“b - |3
with 8 = a/(1 — a). O

Lemma 1.6 If f is differentiable and u-strongly convex w.r.t || - ||2, the following
conditions are equivalent:

(@f(y)—fx) -V (y-x) > §lIx-yll3:

(b)f(y) - f(x) =Vf(x)T(y—x) < ﬁIIVf(Y) - Vf)|3;

(ullx=ylI} < (Vf/(x) - Vf(y)T(x-y) < ,%IIVf(X) -Vl

(@@llx—}’llz < af(x)+(1-a) f(y)-flax+(1-a)y) < 0(1—a)ﬁ||Vf(X)—
Vw3

From (a) we can derive an useful inequality for strongly convex optimization x, =
arg ming f(x), i.e., for any x, we have

f(x) > f(x*)+Vf(x*)T(X—x*)+'§||x—x*||§ > f(x*)+g||x—x*||§. (1.18)

Proof of (b). Define ¢(z) = f(z) — Vf(x)Tz. We can conclude that z* = x (by the
first-order optimality) and that ¢(z) is also convex & u-strongly convex since f is
convex & p-strongly convex.

$(x) = min ¢(2)> min {$(y) + Vo) (z=y) + & Iz - I3

r=z—y

¥ min {¢(y) + Vo) r + S}

2
sy ||¢;y>||2.
u

solve r

Then, we have 2u(¢(y) — ¢(x)) < ||¢(y)||§, which prove the result by plugging in
¢(z) = f(z) - Vf(x)"zand V¢(z) = Vf(z) - Vf(x).

part (b), (c), (d) can be proved similarly as the previous lemma. a
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1.5. BASIC LEMMAS

Lemma 1.7 Ifr(-) is u-strongly convex w.r.t || - ||» and

1
prox,,(z1) := argminr(w) + —|lw -z, ||§, (1.19)
w 2n
1
prox,,,. (zp) := argminr(w) + —||lw — z2||% s (1.20)
w 2n
then we have || prox,,,.(z1) — prox,,. (z)[|> < ﬁ”zl — 2]|>.

Proof. First, we can see that when » = 0, the conclusion trivially holds. Next, we
prove it when r is present.

By the optimality of prox,,,(z1) and prox, . (z;) we have

Z) — prox, r(zl)
u :=+ € dr(prox,,, (21))

_Zy — prox,, (z2)

v: € 6r(pr0x,7, (z2)).

Since r(x) is u-strongly convex, we have

r(prox,, (z1)) = r(prox,, (22)) + v’ (prox,,, (z1) — prox,,,(22))
+ Ellprox,,, (1) - pro,,, ()}
F(prox,, (z2)) > r(prox,, (21)) +u” (prox,,, () - prox,,, (z1))

u
+ EII prox,,,. (z1) — prox,,,. (22)|13.
Adding them together, we have
/'l“ proxnr (Zl) - prox]]r (12) ”% < (u - V)T(proxqr (Zl) - prox]]r (ZZ))

1
= (21 = 725 prox,, (22) = prox,,, (21)) T (prox,, (21) = prox,, (22)),
which implies
1 5 1 T
(ot IDrox,, (21) = prox,,, ()5 < - (21 = 2) T (prox,, (21) = prox,, (22))
1
< ;”ZI — )2l prox,,,.(z1) — prox,,,.(z2)|l2.

Thus || prox,,, (z1) = prox,, (z2) |l < 55 llz1 = 2212 O
Lemma 1.8 For a proper closed convex function f, the following holds:

(i) if f is G-Lipchitz continuous w.r.t || - ||2, then dom( f*) is bounded and for any
y € dom(f*), we have ||y|» < G;
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(ii) if X, € argmaxx{X'y.— f(x)}, theny, € argmaxy{y'x. — f*(y)}. Equivalently,
Y+ € 0f(X.) (or X, € 0f"(y:));

(iii) if f is further a Legendre function, then f(X.) + f*(y.) = X]y. if and only if
Y: = Vf(x.), and Vf* = (Vf)~".

Proof. Let us prove (i). For any y with [ly||> > G, let u = y/||y||> and take x = ru.
By Lipschitz continuity, f(ru) < f(0) + Gt, hence

y ru— f() 2 1(llyll2 = G) = f(0) — +oo,

s0 f*(y) = +o0 and thus y ¢ dom(f™).

Next, we prove (ii). Since x,. attains the supremum in the definition of f*(y.), we
have y. € 8 f(x.) according to the optimality condition and f*(y.) = X]y. — f(x.).
Using f** = f, we obtain

f(x) =sup{y % = f*(N)} =Xy = [7(¥:)s
y

and the above equality shows that y, attains the supremum. Hence, y. € arg maxy{y ' X.—
SH(y)}, and X, € 97 (y.).

Lastly, we prove (iii). By definition, f*(y.) is the supremum of the concave func-
tion F(x) = yIx — f(x). If this supremum is attained at x, € R?, then VF(x,) = 0,
which is to say y. = Vf(x.). On the other hand, if y. = V f(x.), then x,. is a maxi-
mizer of F(x), and therefore f*(y.) =y, X« — f(X.). Using the this result twice,

y=Vf(x) ifandonlyif f(x)+f*(y)=x"y
x=Vf*(y) ifandonlyif f*(y)+ f*(x)=x"y.
Since f** = f,thenx = Vf~!(y) = Vf*(y). Hence (Vf)~! = Vf*. O

Lemma 1.9 If f is p-strongly convex w.r.t || - ||2, then its Fenchel conjugate is 1/ u-
smooth. Similarly if f is L-smooth and convex w.r.t || - ||2, then its Fenchel conjugate
is 1/L-strongly convex.

Proof. Let f*(y) = maxx X'y — f(x) be the Fenchel conjugate of f.
Suppose f is p-strongly convex. let x(y) = arg maxy X'y — f(x). Then V f*(y) =
x(y) due to the Danskin Theorem. Similar to the previous lemma, we can prove that

1
[Ix(y1) = x(y2)ll2 < ;I|y1 - y2ll2,

which proves the Lipchitz continuity of V f*(y) and hence the smoothness of f*.

Suppose f is L-smooth and convex. Let us prove f* is 1/L-strongly convex. Let
us consider yi,y,. Let x| € argmaxy X'y — f(x) and X, = arg maxx X'y, — f(x).
Then Vf(x;) =y;. For any x; € X,, we have V f(x;) = y,. Given that

) =x{yi—f(x1), [f(y2)=x3y2 - f(x2),
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1.6. HISTORY AND NOTES

then

() = [ (y2) = x5 (y1 - y2)
=x[y1 - f(x1) = (X, ¥2 — f(x2)) =% (Vf(x1) = Vf(x2))
= f(x2) — f(x1) +X{ V[ (x1) =X, Vf(X2) = X5 (Vf(x1) = Vf(x2))

= Fx2) = FO0) + (51 = %) TV () 2 5 IV = VIR = 57 = vall

where the last inequality is due to part (b) of Lemma 1.5. Hence, we can conclude the
proof by noting that 9 f*(y,) = conv(X,) due to the generalized Danskin theorem.
O

Lemma 1.10 For p € A,, the negative entropy function R(p) = X!, p;logp; is
1-strongly convex w.r.t to the £ norm || - ||;.

Proof. For any X,y € A,, let f(t) = R(y + t(x — y). By the second-order Taylor
expansion, for some ¢ € (0, 1), we have

ROO = £(1) = £(0)+ ' (0) + 5.17()
= R(Y) + VRO (= y) + 3 (6= )TVRy + 10 D) (x - ).

Hence it suffices to prove that vT VZR(p)v > ||v||? for any p € A,. This can be seen
from the following:

d
VIV2R(p)v= ) ulp;! = [Z vizp?ll

o]

where the inequality follows by Cauchy inequality.

2

Zpi

4

=

-1/2 1/2
> Pluibp!
i

1.6 History and Notes

This chapter has selectively introduced core concepts from convex optimization that
are most pertinent to the algorithms and applications discussed in later chapters.
While the treatment here is necessarily concise, readers seeking a more comprehen-
sive foundation are encouraged to consult several classic references.

The text by Rockafellar (1970a) provides one of the most comprehensive and
authoritative treatments of convex analysis. The textbook by Boyd and Vandenberghe
(2004) is an excellent introduction to convex optimization well suited for engineers.
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It covers convex sets, convex functions, duality, and optimality conditions in detail,
and emphasizes geometric intuition and practical modeling. Many of the definitions
and examples in this chapter are inspired by this text. Bertsekas (2009) offers deep
insights into convex analysis, duality theory, and constrained optimization from a
classical perspective.

The KKT condition is named after three mathematicians, William Karush, Harold
W. Kuhn and Albert W. Tucker. It was known due to Kuhn and Tucker, who first pub-
lished the conditions in 1951 (Kuhn and Tucker, 2014). Later scholars discovered
that the necessary conditions for this problem had been stated by Karush in his mas-
ter’s thesis in 1939 (Karush, 1939). The Danskin Theorem originates from the work
of Danskin (1967), while its generalized form for subdifferentiable is attributed to
Bertsekas (2005).

Nesterov’s Introductory Lectures on Convex Programming (Nesterov, 2004) pro-
vides a more mathematically rigorous treatment, including several key lemmas on
smooth and strongly convex functions (Lemma 1.5 and Lemma 1.6) that are pre-
sented in this chapter. It is particularly useful for readers interested in complex-
ity analysis and the theoretical underpinnings of first-order methods. The proof of
Lemma 1.10 is due to Nemirovski et al. (2009).
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